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abstract

In this paper we consider a discrete time insurance risk model with interest income. Using the
recursive calculation method of De Vylder & Goovaerts (1988), recursive equations for the finite
time ruin probabilities and the distribution of the time of ruin are derived. Fredholm type
integral equations for the ultimate ruin probability, the distribution of the severity of ruin, the
joint distribution of surplus before and after ruin, and the probability of absolute ruin are
obtained. Numerical results are included.
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". Introduction

The compound Poisson model is the most commonly used in actuarial
science. Various methods have been developed to deal with the ruin
probability and related problems on this model. Some examples of these are
the recursive calculation, upper bounds, asymptotic results and renewal
equations. Over the past two decades people in actuarial science have also
started paying attention to the severity of ruin. Gerber, Goovaerts & Kaas
(1987) considered the distribution of the severity of ruin, and an integral
equation for the mentioned distribution was obtained (see also Panjer &
Willmot,1992; and Dickson & Egidio dos Reis, 1994). In cases where the
claims have an exponential-mixture or Gamma-mixture distribution, closed
form solutions for the distribution of severity of ruin were obtained in the
same paper. Later, Dufresne & Gerber (1988) introduced the distribution of
the surplus immediately prior to ruin in the classical compound Poisson risk
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model. Similar results to those in Gerber, Goovaerts & Kaas (1987) were
obtained in that paper. Gerber & Shiu (1997, 1998) examined the joint
distribution of the time of ruin, the surplus immediately before ruin, and the
deficit at ruin. They showed that, as a function of the initial surplus, the joint
density of the surplus immediately before ruin and the deficit at ruin
satisfies a renewal equation. A recent paper by Li & Garrido (2002) can be
viewed as the discrete version of Gerber & Shiu (1998). For other references
see, for example, Dickson (1989, 1993), Dickson & Waters (1992, 1999),
Dickson & Egidio dos Reis (1995), Egidio dos Reis (2000), Lin & Willmot
(2000) and Willmot (2000).

In comparison to the huge amount of literature on the compound Poisson
model, there are relatively few papers dealing with the discrete time model.
Cheng, Gerber & Shiu (2000) considered the severity of ruin under a
compound binomial process. In De Vylder & Goovaerts (1988) a simple
recursive method was used to derive some recursive formulae for the finite
time ruin probability in a discrete model. Yang (1999) considered a discrete
time model with interest income, which we will also do in this paper. By
using the method in De Vylder & Goovaerts (1988), recursive formulae for
the finite time ruin probability and distribution of ruin time are derived.
Fredholm type integral equations satisfied by the ultimate ruin probability,
severity of ruin, joint distribution of surplus before and after ruin, and
probability of absolute ruin are also obtained.

The rest of this paper is constructed as follows. Section 2 considers the
finite time ruin probability. Recursive formulae are obtained in the models
with interest income. Section 3 derives the recursive formulae for the time of
ruin. The Fredholm type equation is derived for the ultimate ruin probability.
In Section 4 we obtain the integral equation for the joint distribution of
surplus before and after ruin. Section 5 discusses the probability of absolute
ruin. Some numerical results are presented in Section 6.

Æ. Finite Time Ruin Probability

In this section we derive recursive equations for calculating the finite time
ruin probabilities in the models with interest income. Let r be the compound
interest rate. We will assume that r is a non-negative constant. The dynamic
of the surplus is given by:

UnðuÞ ¼ uð1þ rÞ
n
þ
Xn

i¼1

Xið1þ rÞ
nÿiþ1
ÿ
Xn

i¼1

Yið1þ rÞ
nÿi

ð1Þ

where n ¼ 1; 2; . . . and U0ðuÞ ¼ u is the initial surplus, Xi is a sequence of
independent and identically distributed (i.i.d.) non-negative random variables
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and denotes the premium collected during time interval ½iÿ 1; iÞ or ith year,
Yi is a sequence of i.i.d. non-negative random variables, independent of Xi,
and denotes the claim amount during the time interval ½iÿ 1; iÞ or ith year.
We assume that the expectations of X1 and Y1 are finite, and denote their
distribution function by FXðxÞ and FY ðyÞ respectively. Here we assume that
the premium is paid at the beginning of the time period and that the claim is
paid at the end. The premium and claim random variables Xi and Yi can be
discrete or not.

In the model here we assume the premiums to be random. The random
premium model has been used in some papers. See, for example, Willmot (1996)
and Yang (1999). This model is a natural extension of the classical model
where the premium is set as a constant over time. In practice the premium rate
will be affected by many factors, such as political events, economic environment
changes, inflation rate, etc. Therefore, a random premium is more realistic. Of
course the claim random variable cannot be independent of the premium
random variable in practice. However, if we let Xi ¼ E½Yi � þ di, where di is i.i.d.
and independent with Yi , then our model makes sense. In the classical model
we need to assume that the risk loading is positive in order to exclude the trivial
case where the ruin probability is 1. In our model, since the interest effect is
included, the ruin probability will not be equal to 1 even where the risk loading is
negative, therefore we do not have to make the positive risk loading
assumption (by assuming that di are non-negative, the risk loading will be
positive). In this case, as will be proved in Section 5, the surplus process may or
may not return to positive if ruin occurs.

Write:

Zi ¼ Yi ÿ ð1þ rÞXi:

fZi; i � 1g are then i.i.d. random variables. We denote the distribution
function of Zi by:

GðuÞ ¼ PfZi � ug

¼ PfYi ÿ ð1þ rÞXi � ug

¼

Z 1
0

FY ðuþ ð1þ rÞxÞdFXðxÞ:

Then we can rewrite model (1) as:

UnðuÞ ¼ uð1þ rÞ
n
ÿ ð1þ rÞ

n
Sn

where Sn ¼
Pn

i¼1
Zi

ð1þrÞi
. Let the stopping time T be the time of ruin:

T ¼ minfn > 0 : Un < 0g:
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Define the probability of ruin before or at time n as:

cnðuÞ ¼ PfT � ng:

The probability of non-ruin before or at time n is then:

fnðuÞ ¼ 1ÿ cnðuÞ: ð2Þ

By using the recursive method, we have:

f1ðuÞ ¼ PfU1ðuÞ � 0g ¼ PfZ1 � uð1þ rÞg

¼ Gðuð1þ rÞÞ ð3Þ

and

fnðuÞ ¼ PfT > ng ¼

Zuð1þrÞ

ÿ1

fnÿ1ðuð1þ rÞ ÿ yÞdGðyÞ ðn � 2Þ: ð4Þ

By using a similar argument to that in De Vylder & Goovaerts (1988), we
have the recursive equations for the ruin probabilities:

c1ðuÞ ¼ 1ÿ Gðuð1þ rÞÞ ¼ �Gðuð1þ rÞÞ

cnðuÞ ¼ �Gðuð1þ rÞÞ þ

Zuð1þrÞ

ÿ1

cnÿ1ðuð1þ rÞ ÿ yÞdGðyÞ ðn � 2Þ:

When X and Y are discrete random variables and

PfX ¼ xig ¼ gi ði ¼ 0; 1; 2; � � �Þ

PfY ¼ yjg ¼ hj ð j ¼ 0; 1; 2; � � �Þ

we have:

PfZ ¼ zkg ¼
X

yjÿð1þrÞxi¼zk

gihj ¼ pk:

The corresponding results of the non-ruin and ruin probabilities are:
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f1ðuÞ ¼
X

zk�uð1þrÞ

pk ð5Þ

fnðuÞ ¼
X

zk�uð1þrÞ

fnÿ1ðuð1þ rÞ ÿ zkÞpk ð6Þ

and

c1ðuÞ ¼
X

zk>uð1þrÞ

pk ð7Þ

cnðuÞ ¼ c1ðuÞ þ
X

zk�uð1þrÞ

cnÿ1ðuð1þ rÞ ÿ zkÞpk ðn � 2Þ: ð8Þ

If we set r ¼ 0, the model above becomes the classical discrete insurance
risk model and the recursive equations above become the same as those in De
Vylder & Goovaerts (1988).

â. Distribution of the Time of Ruin

In this section we derive a recursive equation for the probability function
of the time of ruin. Consider model (1) and denote the probability function of
the ruin time T by:

QnðuÞ ¼ PfT ¼ ng: ð9Þ

Then:

Q1ðuÞ ¼ PfT ¼ 1g ¼ PfT > 0g ÿ PfT > 1g

¼ 1ÿ Gðuð1þ rÞÞ ¼ �Gðuð1þ rÞÞ: ð10Þ

Recursively, for n � 2, we have:

QnðuÞ ¼ E½PfT ¼ njZ1g� ¼ E½Qnÿ1ðuÿ Z1Þ�

¼

Zuð1þrÞ

ÿ1

Qnÿ1ðuð1þ rÞ ÿ yÞdGðyÞ: ð11Þ

Remark. From the definition, we know that the probability of ultimate
ruin is given by:

cðuÞ ¼ pfT <1g ¼
X1
n¼1

QnðuÞ:
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It is easy to see that cðuÞ satisfies the following Fredholm type integral
equation:

cðuÞ ¼ �Gðuð1þ rÞÞ þ

Zuð1þrÞ

ÿ1

cðuð1þ rÞ ÿ yÞdGðyÞ;

¼ �Gðuð1þ rÞÞ ÿ

Z1
0

cðsÞdGðuð1þ rÞ ÿ sÞ: ð12Þ

It is well known that, in the classical compound Poisson model, the
ultimate ruin probability satisfies a Volterra integral equation of the second
kind (see Panjer & Willmot, 1992, p382). However, in the discrete time model
we see that the ultimate ruin probability satisfies a Fredholm type equation.

If both X and Y are discrete, we have:

Q1ðuÞ ¼
X

zk>uð1þrÞ

pk ð13Þ

QnðuÞ ¼
X

zk�uð1þrÞ

Qnÿ1ðuð1þ rÞ ÿ zkÞpk: ð14Þ

ª. The Joint Distribution of Surplus Immediately

Before and After Ruin

In this section we derive the integral equations satisfied by the joint
distribution of the surplus immediately before and after ruin. The joint
distribution of the surplus before and after ruin is defined as:

W ðu; y; xÞ ¼ PfUT � ÿy;UTÿ1 > x; T <1jU0 ¼ ug ð15Þ

where x > 0 and y > 0. It is not difficult to see that:

W ðu; y; xÞ ¼
X1
n¼1

PfUT � ÿy;UTÿ1 > x; T ¼ njU0 ¼ ug

¼
X1
n¼1

P Sn�uþ
y

ð1þ rÞ
n ; Snÿ1<uÿ

x

ð1þ rÞ
nÿ1 ; Snÿ2 � u; . . . ; S1 � u

� �
¼
X1
n¼1

Anðu; y; xÞ: ð16Þ
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Using the recursive method, we have:

A1ðu; y; xÞ ¼

�
�G
þ
ðuð1þ rÞ þ yÞ; if x � u

0; if x > u

Anðu; y; xÞ ¼

Zuð1þrÞ

ÿ1

Anÿ1ðuð1þ rÞ ÿ s; y; xÞdGðsÞ ðn � 2Þ ð17Þ

where �G
þ
ðxÞ ¼ PðZ � xÞ. Therefore, the expression of W ðu; y; xÞ is given

when x � u by:

W ðu; y; xÞ ¼
X1
n¼1

Anðu; y; xÞ ¼ A1ðu; y; xÞ þ
X1
n¼2

Anðu; y; xÞ

¼ �G
þ
ðuð1þ rÞ þ yÞ þ

X1
n¼2

Zu

ÿ1

Anÿ1ðuð1þ rÞ ÿ s; y; xÞdGðsÞ

¼ �G
þ
ðuð1þ rÞ þ yÞ þ

Zuð1þrÞ

ÿ1

W ðuð1þ rÞ ÿ s; y; xÞdGðsÞ ð18Þ

and when x > u by:

W ðu; y; xÞ ¼
X1
n¼1

Anðu; y; xÞ

¼ A2ðu; y; xÞ þ
X1
n¼3

Anðu; y; xÞ

¼

Zuð1þrÞ

ÿ1

W ðuð1þ rÞ ÿ s; y; xÞdGðsÞ: ð19Þ

That is, W ðu; y; xÞ is the solution of the following Fredholm type integral
equation:

W ðu; y; xÞ ¼ Hðuð1þ rÞ; y; xÞ ÿ

Z1
0

W ðs; y; xÞdGðuð1þ rÞ ÿ sÞ ð20Þ

where:

Hðuð1þ rÞ; y; xÞ ¼
�G
þ
ðuð1þ rÞ þ yÞ if x � u

0 if x > u

�
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and

�G
þ
ðxÞ ¼ PðZ � xÞ:

Remark. Using the same notation as in Section 2, the distribution of the
severity at ruin is given by:

V ðu; yÞ ¼ PfUT � ÿy; T <1jU0 ¼ ug: ð21Þ

If we let x!ÿ1 in (20), we obtain the integral equation satisfied by
V ðu; yÞ:

V ðu; yÞ ¼ �G
þ
ðuð1þ rÞ þ yÞ ÿ

Z1
0

V ðs; yÞdGðuð1þ rÞ ÿ sÞ: ð22Þ

ä. Absolute Ruin Probability

In this section we consider the following model:

Un ¼ uð1þ rÞ
n
þ c

Xn

i¼1

ð1þ rÞ
nþ1ÿi
ÿ
Xn

i¼1

Yið1þ rÞ
nÿi

ð23Þ

where c is a constant which denotes the premium income in one time
interval. All other notation is the same as before.

If the surplus falls below ÿ
cð1þ rÞ

r
; then even if there is no claim

occurring during the next time interval, the surplus process will not
increase. This is due to the fact that the premium income will be less than the
interest paid for the debt. In this case, we call the following probability:

Cð~uÞ ¼ P
[1
n¼1

Un < ÿ
cð1þ rÞ

r

� �
jU0 ¼ u

( )
ð24Þ

the probability of absolute ruin, where:

~u ¼ uþ
cð1þ rÞ

r
:

In Dassios & Embrechts (1989), the above probability was defined and
studied for a piecewise-deterministic Markov process model. The concept of
absolute ruin was introduced there. Define:
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CcðuÞ ¼ Pf ~T <1g

where:

~T ¼ min n > 0 : Un < ÿ
cð1þ rÞ

r

� �
:

It is easy to see that CcðuÞ ¼ C0ðuþ c ð1þrÞ
r Þ and C0ðuÞ ¼ cðuÞ. C0ðuÞ has been

obtained in Section 3. Also define:

CcnðuÞ ¼ Pf ~T � ng: ð25Þ

Then CcnðuÞ ¼ cnðuþ c 1þr
r Þ; which has been discussed in Section 2. Similarly,

we can discuss the distribution of the absolute ruin time.

å. Numerical Examples

In this section we provide some numerical results to illustrate the
methods of this paper. First, we give an algorithm to explain how to solve the
Fredholm type equation. In the literature there are many works on the
numerical methods for solving Fredholm type equations. See, for example,
Delves & Mohamed (1985).

Considering a Fredholm type integral equation:

f ðtÞ ¼ l
Z b

a

Kðt; sÞ f ðsÞdsþ gðtÞ: ð26Þ

The method we describe here is called the Nystrom method. This method
requires the choice of some approximate quadrature rule:

Z b

a

yðsÞds ¼
XN

j¼1

wjyðsjÞ: ð27Þ

Here the set fwjg is the weights of the quadrature rule, while the N points
fsjg are the abscissae.

We will see that the numerical calculation involves OðN3
Þ operations, so

an efficient method of solving the Fredholm integral equation is by using a
high-order quadrature rule (such as the Gauss quadrature rule) to keep N as
small as possible.

If we apply the quadrature rule (27) to equation (26), we obtain:
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f ðtÞ ¼ l
XN

j¼1

wjKðt; sjÞ f ðsjÞ þ gðtÞ: ð28Þ

Evaluating equation (28) at the quadrature points:

f ðtiÞ ¼ l
XN

j¼1

wjKðti; sjÞ f ðsjÞ þ gðtiÞ: ð29Þ

Let f be the vector with the ith component being f ðtiÞ, g be the vector with
the ith component being gðtiÞ, K be the matrix with the ij element being
Kðti; sjÞ, and define:

~Kij ¼ Kðti; sjÞwj:

Then, in matrix notation, equation (29) becomes ð1ÿ l ~KÞ � f ¼ g, where ~K
is a matrix with the ij element being ~Kij. This is a system of N linear algebraic
equations with N unknowns. This system can be solved by standard
triangular decomposition techniques. From this, we know where the OðN3

Þ

operations come from.
In the following, we will assume that both the claim random variable Y

and the premium random variable X are discrete random variables. Table 1
presents the distributions of the premium random variable X and the claim
random variable Y . Table 2 provides the ruin time probability function,
which was calculated by using equations (10) and (11), when r ¼ 0. Table 3
presents the distribution of ruin probability when r ¼ 0. Table 4 is calculated
from equation (12) with r ¼ 0. Tables 5-9 present the corresponding results
for the models with interest rate r > 0. Tables 10 and 11 were obtained using
equation (22). Tables 12 and 13 were obtained by solving equation (20). In
Tables 14 and 15 we consider the probability of absolute ruin. The claim
random variable Y is the same as before, but we use a constant premium rate
of c ¼ 2:1 instead of a random premium in this case. The distribution of the
time of absolute ruin and the probability of absolute ruin are given in Tables
14 and 15, respectively.

Table 1. The distributions of X and Y

xk ¼ 1.2 1.8 2.1 2.5 3.1
gk ¼ 0.1 0.2 0.3 0.3 0.1

yk ¼ 1.5 2.2 2.6 2.8 3 3.2
hk ¼ 0.35 0.3 0.2 0.05 0.05 0.05
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From Table 2 we can see that, unlike the ruin probabilities and finite time
ruin probabilities (see Tables 3 and 4), the probability of PðT ¼ nÞ is not a
decreasing function of u.

Table 3 tells us that the finite time ruin probabilities are decreasing as the
initial surplus increases, as expected.

Similar to before, as shown in Table 4, the ultimate ruin probabilities
decrease as the initial surplus increases.

If we compare Tables 2 to 5, we can see that when interest r increases
from 0 to 0:03, the probability of ruin is decreasing most of the time. This is
reasonable, since, when interest is included, the initial surplus will grow as
time goes on. Economically, this means that the investment incomes will help

Table 2. Distribution of the ruin time when r ¼ 0
PðT ¼ nÞ u ¼ 0:8 u ¼ 1:1 u ¼ 1:4 u ¼ 1:7

n ¼ 1 0.125000 0.055000 0.015000 0.005000
n ¼ 2 0.090900 0.074450 0.051925 0.028275
n ¼ 3 0.056215 0.053237 0.046229 0.033075
n ¼ 4 0.037811 0.038756 0.036335 0.029793
n ¼ 5 0.027813 0.029630 0.028993 0.025415
n ¼ 6 0.021496 0.023468 0.023489 0.021434
n ¼ 7 0.017172 0.019035 0.019310 0.018081
n ¼ 8 0.014020 0.015695 0.016055 0.015289
n ¼ 9 0.011613 0.013085 0.013457 0.012957
n ¼ 10 0.009713 0.010991 0.011343 0.011001

Table 3. Finite time ruin probabilities when r ¼ 0
PðT � nÞ u ¼ 0:8 u ¼ 1:1 u ¼ 1:4 u ¼ 1:7

n ¼ 1 0.125000 0.055000 0.015000 0.005000
n ¼ 2 0.215900 0.129450 0.066925 0.033275
n ¼ 3 0.272115 0.182687 0.113154 0.066350
n ¼ 4 0.309926 0.221443 0.149489 0.096143
n ¼ 5 0.337739 0.251073 0.178482 0.121558
n ¼ 6 0.359235 0.274541 0.201971 0.142992
n ¼ 7 0.376407 0.293576 0.221281 0.161073
n ¼ 8 0.390427 0.309271 0.237336 0.176362
n ¼ 9 0.402040 0.322356 0.250792 0.189319
n ¼ 10 0.411753 0.342266 0.262135 0.200320

Table 4. Ultimate ruin probabilities when r ¼ 0
u ¼ 0:8 cð0:8Þ ¼ 0:691289
u ¼ 1:1 cð1:1Þ ¼ 0:620652
u ¼ 1:4 cð1:4Þ ¼ 0:582348
u ¼ 1:7 cð1:7Þ ¼ 0:514321
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the insurance company. However, we cannot say that the probability of
PðT ¼ nÞ is a decreasing function of r. There are some exceptions in Tables 2
and 5. For example, when n ¼ 3 and u ¼ 0:8, the probability of ruin
occurring at time 3 with r ¼ 0:03 is larger than the probability of ruin
occurring at time 3 with r ¼ 0.

Table 5. Distribution of the ruin time when r ¼ 0:03
PðT ¼ nÞ u ¼ 0:5 u ¼ 0:8 u ¼ 1:1 u ¼ 1:4

n ¼ 1 0.180000 0.110000 0.045000 0.010000
n ¼ 2 0.098900 0.088825 0.069600 0.041475
n ¼ 3 0.057224 0.056409 0.051429 0.038299
n ¼ 4 0.037745 0.038737 0.037462 0.031097
n ¼ 5 0.026851 0.028288 0.028229 0.024954
n ¼ 6 0.020095 0.021543 0.021946 0.020186
n ¼ 7 0.015579 0.016898 0.017462 0.016487
n ¼ 8 0.012379 0.013535 0.014127 0.013575
n ¼ 9 0.010008 0.011002 0.011563 0.011245
n ¼ 10 0.008189 0.009036 0.009542 0.009355

Table 6. Finite time ruin probabilities when r ¼ 0:03
PðT � nÞ u ¼ 0:5 u ¼ 0:8 u ¼ 1:1 u ¼ 1:4

n ¼ 1 0.180000 0.110000 0.045000 0.010000
n ¼ 2 0.278900 0.198825 0.114600 0.051475
n ¼ 3 0.336124 0.255234 0.166029 0.089704
n ¼ 4 0.373869 0.293971 0.203491 0.120801
n ¼ 5 0.400720 0.322259 0.231720 0.145755
n ¼ 6 0.420815 0.343802 0.253666 0.165941
n ¼ 7 0.436394 0.360700 0.271128 0.182428
n ¼ 8 0.448773 0.374235 0.285255 0.196003
n ¼ 9 0.458781 0.385237 0.296818 0.207248
n ¼ 10 0.466970 0.394273 0.306360 0.216603

Table 7. Distribution of the ruin time when r ¼ 0:04
PðT ¼ nÞ u ¼ 0:8 u ¼ 1:1 u ¼ 1:4 u ¼ 1:7

n ¼ 1 0.110000 0.045000 0.010000 0.005000
n ¼ 2 0.087075 0.065925 0.036500 0.022800
n ¼ 3 0.054655 0.048829 0.034096 0.027309
n ¼ 4 0.036774 0.035003 0.027987 0.024270
n ¼ 5 0.026424 0.026062 0.022502 0.020305
n ¼ 6 0.019859 0.020063 0.018133 0.016781
n ¼ 7 0.015407 0.015821 0.014724 0.013854
n ¼ 8 0.012224 0.012692 0.012045 0.011458
n ¼ 9 0.009852 0.010306 0.009911 0.009498
n ¼ 10 0.008027 0.008440 0.008189 0.007888
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Table 6 indicates that, when interest r increases from 0 to 0.03, the finite
time ruin probability becomes smaller. As explained above, this is
reasonable.

We have some similar observations from Table 7 as those from Table 2.
Similar to the above, Table 8 further shows that the finite time ruin

probabilities decrease as the interest rate increases.
Table 9 indicates that the ultimate ruin probabilities decrease as the

interest rate increases.
Table 10 indicates that, when u is small, the probability of severity being

great or equal to a certain amount decreases as the initial surplus increases.
When the initial surplus is small, the interest has an obvious effect on the

Table 8. Finite time ruin probabilities when r ¼ 0:04
PðT � nÞ u ¼ 0:8 u ¼ 1:1 u ¼ 1:4 u ¼ 1:7

n ¼ 1 0.110000 0.045000 0.010000 0.050000
n ¼ 2 0.197075 0.110925 0.046500 0.027800
n ¼ 3 0.251730 0.159754 0.080596 0.055100
n ¼ 4 0.288504 0.194757 0.108583 0.079370
n ¼ 5 0.314928 0.220819 0.131085 0.099675
n ¼ 6 0.334787 0.240822 0.149218 0.116456
n ¼ 7 0.350194 0.256703 0.163942 0.130310
n ¼ 8 0.362418 0.269395 0.175987 0.141768
n ¼ 9 0.372270 0.279701 0.185898 0.151266
n ¼ 10 0.380297 0.288141 0.194087 0.159154

Table 9. Ultimate ruin probabilities when r ¼ 0:04
u ¼ 0:8 cð0:8Þ ¼ 0:402938
u ¼ 1:1 cð1:1Þ ¼ 0:322146
u ¼ 1:4 cð1:4Þ ¼ 0:308977
u ¼ 1:7 cð1:7Þ ¼ 0:269881

Table 10. Solution of the integral equation (22) when r ¼ 0
V ðu; yÞ u ¼ 0:5 u ¼ 0:6 u ¼ 0:8 u ¼ 1:0 u ¼ 1:1

y ¼ 0:6 0.22592 0:22763 0:21518 0:19611 0:20120
y ¼ 0:8 0.14227 0:13315 0:12121 0:11310 0:11576
y ¼ 0:9 0.10027 0:09717 0:09453 0:08649 0:08324
y ¼ 1:0 0.07016 0:07043 0:06699 0:05917 0:06209
y ¼ 1:1 0.04726 0:05214 0:04783 0:04141 0:04144
y ¼ 1:2 0.03816 0:03455 0:03039 0:02899 0:03037
y ¼ 1:5 0.00749 0:00735 0:00877 0:00976 0:00811
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distribution of the severity of ruin. When the initial surplus becomes large,
the effect of interest on the distribution of severity becomes complex.

Table 11 indicates that, when the interest increases, the probabilities of
the severity of ruin decrease.

Note that Table 12 does not indicate a clear, regular relation when the
variables x, y and u change. This is because we are considering the
conditional joint distribution here. Therefore, the overall effect of the
variables on the probabilities on the left-hand side of equation (20) is rather
complex.

Table 11. Solution of the integral equation (22) when r ¼ 0:04
V ðu; yÞ u ¼ 0:5 u ¼ 0:6 u ¼ 0:8 u ¼ 1:0 u ¼ 1:1

y ¼ 0:6 0.18897 0:17773 0:14219 0:14027 0:13430
y ¼ 0:8 0.12745 0:08942 0:08684 0:07896 0:07817
y ¼ 0:9 0.07036 0:07265 0:06589 0:06214 0:05294
y ¼ 1:0 0.05631 0:05092 0:04313 0:03918 0:03686
y ¼ 1:1 0.04120 0:04223 0:03507 0:02902 0:02781
y ¼ 1:2 0.03403 0:02502 0:02104 0:02089 0:02033
y ¼ 1:5 0.00603 0:00653 0:00592 0:00602 0:00559

Table 12. Solution of the integral equation (20) when r ¼ 0 and u ¼ 0:8
W ðu; y; xÞ y ¼ 0:6 y ¼ 0:9 y ¼ 1:2 y ¼ 1:5 y ¼ 1:8

x ¼ 0:1 0.17885 0.07404 0.02201 0.00597 0.00068
x ¼ 0:2 0.15434 0.06042 0.01588 0.00461 0.00321

x � u x ¼ 0:4 0.10605 0.03976 0.00742 0.00140 0.00000
x ¼ 0:6 0.06799 0.02258 0.00279 0.00000 0.00000
x ¼ 0:8 0.04289 0.01543 0.00000 0.00000 0.00000

x > u x ¼ 1:0 0.00882 0.00201 0.00000 0.00000 0.00000
x ¼ 1:2 0.00261 0.00000 0.00000 0.00000 0.00000

Table 13. Solution of the integral equation (20) when r ¼ 0:04 and u ¼ 0:8
W ðu; y; xÞ y ¼ 0:6 y ¼ 0:9 y ¼ 1:2 y ¼ 1:5 y ¼ 1:8

x ¼ 0:1 0.12316 0.05426 0.01628 0.00434 0.00076
x ¼ 0:2 0.09805 0.04360 0.00943 0.00282 0.00212

x � u x ¼ 0:4 0.07317 0.03289 0.00632 0.00108 0.00000
x ¼ 0:6 0.04350 0.01920 0.00152 0.00000 0.00000
x ¼ 0:8 0.02984 0.01533 0.00000 0.00000 0.00000

x > u x ¼ 1:0 0.00645 0.00067 0.00000 0.00000 0.00000
x ¼ 1:2 0.00322 0.00000 0.00000 0.00000 0.00000
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In Table 13 we have some similar observations as in Table 12.
Table 14 indicates that, as the initial surplus increases, the absolute ruin

probabilities decrease. We also see that, at any time, the probability of
absolute ruin is much smaller than the probability of ruin.

Again, as shown in Table 15, the absolute ruin probability is much
smaller than the corresponding ruin probability.
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