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Has the ultimate state of turbulent thermal
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An important question in turbulent Rayleigh–Bénard convection is the scaling of
the Nusselt number with the Rayleigh number in the so-called ultimate state,
corresponding to asymptotically high Rayleigh numbers. A related but separate
question is whether the measurements support the so-called Kraichnan law, according
to which the Nusselt number varies as the square root of the Rayleigh number
(modulo a logarithmic factor). Although there have been claims that the Kraichnan
regime has been observed in laboratory experiments with low aspect ratios, the
totality of existing experimental results presents a conflicting picture in the high-
Rayleigh-number regime. We analyse the experimental data to show that the
claims on the ultimate state leave open an important consideration relating to
non-Oberbeck–Boussinesq effects. Thus, the nature of scaling in the ultimate state of
Rayleigh–Bénard convection remains open.
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1. Introduction
Although the equations describing turbulent buoyancy driven flows and the

corresponding convective heat transfer have been known for a long time (Tritton 1988),
our ability to predict the intense convection occurring at large scales in the atmosphere,
ocean, stars or Sun is very limited or non-existent. This is true even for the simplest
model flow – the ideal laterally infinite Rayleigh–Bénard convection occurring in
an Oberbeck–Boussinesq fluid layer confined between two perfectly conducting
plates; the bottom plate is heated and the top plate is cooled. Rayleigh–Bénard
convection is fully characterized by the Rayleigh number, Ra = g(α/νκ)1TL3, and
the Prandtl number, Pr = ν/κ . Here, g is the acceleration due to gravity, α is the
isobaric thermal expansion coefficient of the fluid, ν and κ are the fluid viscosity
and thermal diffusivity respectively, 1T = Tb − Tt is the difference between the top
and bottom wall temperatures, denoted by suffixes t and b respectively, and L is the
vertical separation between the top and bottom walls. The combination η= α/(νκ) is
often a useful combination. Organized features such as plumes, jets and large-scale
circulation, known as ‘wind’ (Niemela et al. 2001), of the mean velocity U, with a
size comparable to the size of the convective layer, L, are known to exist in the flow
and can be characterized by the flow Reynolds number, Re=UL/ν.
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The ability of the convective motion to transfer heat from the heated bottom plate
to the cooled top plate, i.e. the convective heat transfer effectiveness, is described
by the Nusselt number, Nu = Lq̇/λ1T , via the Nu = Nu(Ra; Pr) dependence. Here,
q̇ is the total convective heat flux density and λ denotes the thermal conductivity
of the fluid. The relation Nu = Nu(Ra; Pr) is usually expressed in the form of a
dimensionless scaling law Nu ∝ RaγPrβ . A number of theoretical models have been
developed (see Ahlers, Grossmann & Lohse (2009), Chillà & Schumacher (2012)
and original references therein). We should explicitly mention that two independent
theories of Castaing et al. (1989) and Shraiman & Siggia (1990) predict γ = 2/7,
while Malkus (1954) and Priestley (1959) derived γ = 1/3 in a model where heat
transfer is controlled by the heat conduction of marginally stable boundary layers
which become thinner with increasing heat flux; in their model, the heat transport
does not depend on the height L and all of the temperature difference 1T occurs
within the boundary layers which are thin in comparison with L, while the central
turbulent fluid is effectively mixed and has a constant temperature Tm = (Tt + Tb)/2.

At very high Ra, Rayleigh–Bénard convection is thought to enter the so-called
ultimate, or asymptotic, regime, although it is not known with any certainty the
Rayleigh numbers above which this state sets in. Kraichnan (1962) postulated that
the heat transport mechanisms in this regime become independent of ν and κ , because
the boundary layers would be turbulent and fully developed. The phenomenologically
predicted scaling law, for 0.15< Pr< 1, is of the form Nu∝ Ra1/2Pr−1/4 (log Ra)−3/2;
for the conjecture on the ultimate Nu ∝ (PrRa)1/2, see also Spiegel (1971). An
alternative theoretical model has been proposed by Grossmann & Lohse (2000)
and recently updated by Stevens et al. (2013) but, since this model does not have
absolute predictive power concerning the transition to the ultimate regime, we shall
not consider it any further. One has to consider that when developing the model
Kraichnan used what was known about turbulent boundary layers at that time;
however, much more has been learnt about them since 1962. There is a clear call to
theorists to repeat Kraichnan’s calculations as diligently as he did, but with the modern
outlook on boundary layers and turbulent convection itself, until then, one should
not take his prediction seriously on its own. Rigorous theory regards the problem of
Nu(Ra, Pr) scaling at very high Ra (even in the simplest case of laterally infinite
Rayleigh–Bénard convection) as open (Doering 2012), in the sense that rigorous
analysis does not preclude it, but, at the same time, does not prove that any flow
can possibly realize it. This issue seems unlikely to be resolved numerically in the
near future (Ahlers et al. 2009; Chillà & Schumacher 2012), therefore experimental
investigations under controlled laboratory conditions are crucial.

In applications, it is hard to overestimate the importance of this asymptotic regime
for deeper understanding of a number of natural phenomena (Ahlers et al. 2009).
Typical values of Ra for convection in the atmosphere, ocean or Sun are extremely
high (Sreenivasan 1998), and extrapolation of the heat transport efficiency from the
presently known experimental or computational data may lead to uncertainties of
up to an order of magnitude, due to uncertainties in γ . A convenient identification
of the transition to the ultimate regime is made when, upon increasing Ra, the
scaling exponent γ starts to exceed the value of 1/3. We emphasize, however,
that our considerations so far have assumed an Oberbeck–Boussinesq working fluid
of constant physical properties except for its density which linearly depends on
temperature. However, this is never exactly valid in practice and, as we shall see,
causes severe problems in experiments reaching very high Ra.

Observation of the transition to the ultimate state of Rayleigh–Bénard convection
has been claimed several times – in the Grenoble cryogenic helium experiments
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(Chavanne et al. 1997, 2001; Roche et al. 2010) and in the SF6 Göttingen experiments
at ambient temperature (Ahlers et al. 2012b; He et al. 2012a,b, 2014). This paper
extends our recent experimental studies considerably (Urban, Musilová & Skrbek
2011; Urban et al. 2012, 2014), where we discussed in detail issues such as the
influence of the shape (aspect ratio) and material properties of the experimental
cells, various corrections to the raw data and advantages of using a clean cryogenic
environment. Here, we do not discuss details of experimental corrections applied to
the experimentally measured raw data; rather, we concern ourselves exclusively with
the non-Oberbeck–Boussinesq effects. The following detailed analysis shows that the
claims of observing transition to the ultimate state of Rayleigh–Bénard convection
could indeed be related to non-Oberbeck–Boussinesq effects.

2. The experimental cells
We start with a brief description of the experimental cells in which it is claimed

that the transition to the ultimate state has been observed.
The Grenoble cells. The first claim of observing the transition (described as ‘possibly
corresponding to the asymptotic regime predicted by R. Kraichnan’) by Chavanne
et al. (1997) – see also Chavanne et al. (2001) – results from a cylindrical aspect ratio
Γ = 1/2 cell 20 cm in height. Similar results, displaying the transition to what was
later called the ‘Grenoble regime’, have been observed in seven cryogenic convection
cells, differing in various details, see figures 2 and 3 of Roche et al. (2010). All of
them are cylindrical, of diameter D = 10 cm and height, L, of 8.8 cm (Short cell),
43 cm (Cigar cell) and 20 cm (Flange, Paper, Screen, Vintage and ThickWall, i.e.
all remaining ones), corresponding respectively to aspect ratios of Γ = 1.14, 0.23
and 0.50.

Although the transition to the ultimate, or Grenoble, state has been observed in
all of these cells, we find it useful to divide them into three groups, simply by
their absolute height, L. The common feature of cells with L = 20 cm is that they
all displayed the local scaling exponent characterizing the heat transport efficiency
via Nu = Nu(Ra), crossing the value of 1/3 at approximately 1011–1012 in Ra. The
Short cell displays this same feature but at significantly lower Ra. Finally, the
scaling exponent measured in the Cigar cell displays an almost constant value of
approximately 1/3 until Ra reaches approximately 5 × 1012, where it steeply rises.
It should be noted that, if Ra were rescaled assuming the same height (20 cm) for
all of the Grenoble cells (i.e. a factor of eight up for the Short cell and the same
factor down for the Cigar cell), the observed transitions to the Grenoble state would
almost collapse if Nu were plotted versus this rescaled Ra. Let us emphasize that in
Grenoble cells the transitions have been observed several times under strictly fixed
values of Pr (Roche et al. 2010), i.e. the possible Nu(Pr) dependence cannot be
identified as a reason for the observed transition.
The Göttingen cells. Transitions to the ultimate state has been claimed (at Pr . 1) in
three cylindrical cells of diameter D=1.12 m: Γ =1/2 (i.e. L=2.24 m) (Ahlers et al.
2012b; He et al. 2012b), Γ = 1 (He et al. 2012a) and, most recently, Γ = 1/3 (He
et al. 2014). All of these cells were located in the ‘Uboot of Göttingen’, a pressure
vessel of approximately 25 m3 volume able to contain up to 2000 kg of the working
fluid (SF6) at pressures of up to 19 bars. The sidewall insulated by thermal shields
was made of 9.5 mm thick Plexiglas sealed to aluminium top and bottom plates. For
most recent experiments cited here (after the authors dealt with the ‘chimney effect’,
by sealing the originally existing gap between the plates and the sidewall), at the
mid-height of the sidewall, there was a hole connected to a remotely controlled valve,
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via a tube of 13 mm inner diameter. Before each measurement sequence, the valve
was opened and the sample cell and Uboot were filled with (SF6) to the desired
pressure. Then, after all pressure and temperature transients had decayed, the valve
was closed and the desired measurements were made on a completely closed sample.

We now consider complementary experimental cells reaching very high Ra but
displaying no transition to the ultimate state.
The Chicago, Oregon/Trieste and Brno cells have been used in clean cryogenic
conditions with cryogenic He gas as working fluid. The largest Chicago cell used in
the experiments of Wu (1991) – see also Castaing et al. (1989) – was identical in
shape to the Chavanne cell (Chavanne et al. 1997; Roche et al. 2010) but twice as
large (L= 40 cm); values of Ra of up to 2× 1014 were obtained.

The original Oregon/Trieste cell (Niemela et al. 2000), of the same shape as above,
is the largest (L = 100 cm) cryogenic cell used so far. No sign of transition was
observed up to so far the highest Ra ≈1017. The least-square fit of the Nusselt number
versus Rayleigh number for the original ‘Oregon’ data spanning 11 orders of Ra in
turbulent convection up to 1017 yields a d log Nu/d log Ra slope of 0.32 (Niemela
& Sreenivasan 2006). The design of the Oregon cell is close to the Flange Grenoble
cell (Roche et al. 2010) – its sidewall consists of two equal halves, allowing a simple
change to the Γ = 1 cell (L = 50 cm), which was later used in Trieste (Niemela &
Sreenivasan 2003, 2006, 2010).

Our cylindrical Γ = 1 Brno cell (Urban et al. 2010) is slightly smaller (L =
30 cm), capable of covering the range 106 < Ra < 1015 with sufficient precision of
measurements.

We point out here that in earlier work (Funfschilling, Bodenschatz & Ahlers 2009)
the Γ = 1/2 Göttingen cell has been used to explore the global heat transport with
other working fluids in addition to SF6 (Pr = 0.79–0.84), namely with gaseous He
(Pr = 0.67) and N2 (Pr = 0.72) at near-ambient temperatures, altogether covering
the 109 . Ra . 3 × 1014 range. These measurements did not reveal any sign of the
transition to the ultimate regime and were claimed to be roughly consistent with the
cryogenic Oregon data but inconsistent with the Grenoble results.

3. Analysis

In our previous study (Urban et al. 2011), we have shown that for 7.2 × 106 6
Ra 6 1011 our sidewall-corrected data agree with suitably corrected data from
complementary cryogenic experiments, and are consistent with Nu ∝ Ra2/7. On
approaching Ra ≈ 1011, all cryogenic data display a broad crossover to Nu ∝ Ra1/3,
as predicted by the theory (Malkus 1954; Priestley 1959). It is mainly above
approximately 1012 in Ra that strong differences appear.

Here, we show that the probable reason for this disagreement is a gradual departure
from the Oberbeck–Boussinesq conditions upon increasing Ra in each particular cell.
To justify that the fluid sample can be treated as Oberbeck–Boussinesq in high-Ra
experiments, various phenomenological requirements have usually been applied, such
as α(Tb − Tt) < C, with C typically up to 0.2 (Niemela & Sreenivasan 2003). As
a result of our experimental study, based on figure 3 in Urban et al. (2012) we
concluded, however, that it is hard to set any simple quantitative criterion justifying
the validity of Oberbeck–Boussinesq conditions.

The gradual departure from the Oberbeck–Boussinesq conditions with increasing Ra
gives rise to asymmetry between the boundary layers on the top and bottom plates.
We illustrate this feature in figure 1 for the Γ = 1 (He et al. 2012a) and Γ = 1/2
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FIGURE 1. (Colour online) Growing asymmetry with increasing Ra of relative changes in
relevant fluid properties for the Göttingen Γ = 1 (He et al. 2012a) and Γ = 1/2 (He et al.
2012b) experiments. Plots of dimensionless combinations of the physical quantities α, ν,
κ , η=α/(νκ) and λ as indicated in the legend (left axis) evaluated at Tt, Tb and Tc versus
Rac (for these Göttingen data sets, the result hardly changes if Tm is used instead of Tc)
are shown to be closely correlated with the increase in the local power law exponent γ
in the observed Nu= Nu(Ra) scaling, plotted here in the compensated form as Nu/Ra1/3

(right axis). The vertical dashed lines indicate where the transition to the ultimate state
was claimed by He et al. (2012b).

(He et al. 2012b) Göttingen experiments, making use of the known SF6 properties.
(To evaluate the SF6 properties we use the same computer program as the Göttingen
group, kindly provided to us by G. Ahlers and X. He.) The results of this analysis for
other cells mentioned in the previous section look similar. For an additional example
of the influence of the non-Oberbeck–Boussinesq conditions on the effectiveness of
heat transport, plotted in a different way for our own cryogenic He data, see figure 6
of Urban et al. (2014).

In order to quantify the effect of boundary layer asymmetry on the heat transfer
efficiency, we follow Wu & Libchaber (1991) and use their X parameter, defined
as X = (Tc − Tt)/(Tb − Tc). Where available, we use the experimentally measured
temperature Tc of the (almost isothermal) cell interior and evaluate X = Xexpt.
Whenever Tc is not available, we use the following simple idea to estimate X = Xth.
The underlying physics of Malkus’ theory is such that the temperature drop occurs
entirely across the two boundary layers, the fluid in the bulk of the apparatus being
almost isothermal. The boundary layers, of thicknesses db and dt, are assumed to
be marginally stable, meaning that the bottom and top Rayleigh numbers Racrit

BL ,
calculated on the basis of the boundary layer thicknesses db, dt and characteristic
fluid properties [α/(νκ)]b and [α/(νκ)]t, are equal. We therefore write

g
( α
νκ

)
b

d3
b(Tb − Tc)= g

( α
νκ

)
t
d3

t (Tc − Tt)= Racrit
BL . (3.1)

The heat flux q̇ passes both (laminar) boundary layers, and assuming that Fourier’s
law holds, we can infer

q̇∝ λb

db
(Tb − Tc)= λT

dT
(Tc − Tt), (3.2)
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where we introduced the characteristic thermal conductivities of the boundary layers.
This allows us to replace the ratio db/dt with the combination (λB/λT)/X and estimate
the X parameter as

X = Xth = Tc − Tt

Tb − Tc
=


( α
νκ

)
b( α

νκ

)
t

(
λb

λt

)3


1/4

. (3.3)

The characteristic bottom (top) boundary layer properties can be estimated as
arithmetic means of fluid properties evaluated at Tm and Tb (Tt); these are available
for all cryogenic as well as Göttingen experiments. Figure 2 plots the X parameter
evaluated by us for a number of experimental cells using (3.3) as well as, where
available, based on the direct measurements of Tc. It has to be emphasized that the
X parameter is not an analytical function of Ra; it depends on the size (and generally
on the shape) of the convection cell and on the choice of the working point on the
p–T phase diagram. For high-Rayleigh-number experiments of the Rayleigh–Bénard
type, however, the X parameter serves as a useful measure of how closely the
Oberbeck–Boussinesq conditions are satisfied, provided that both Tt and Tb lie on the
same side of the saturated vapour pressure (SVP) curve or critical isochore in the
pressure/temperature (p, T) phase diagram of the working fluid used in the particular
experiment.

Given the crudeness of our model, one cannot expect exact quantitative agreement
between values of the experimentally deduced X=Xexpt parameter and those predicted
by (3.3) (X=Xth). Figure 2 shows, however, fairly good agreement in behaviour, both
quantities departing down from unity with increasing Ra.

As Tc was not directly measured in the Grenoble cryogenic experiments (Chavanne
et al. 1997; Roche et al. 2010), we rely on this similarity (and on Occam’s razor
reasoning) in drawing the following conclusion: for experimental reasons (size of the
cell, choice of the working point), the Grenoble claims of observing the transition
to the ultimate/Grenoble regime of Rayleigh–Bénard convection are most likely not
justified, as the transition values of Ra were reached when the X parameter strongly
suggested non-Oberbeck–Boussinesq conditions. Moreover, there are complementary
experiments with the X value nearly unity, both He cryogenic (Wu 1991; Niemela
et al. 2000; Urban et al. 2012) and SF6 (He et al. 2012b), covering the range of
Ra (with nearly constant Pr . 1) where the transition is claimed in the Grenoble
experiments, and they show no sign of the transition, at least up to 1013 in Ra. (An
additional supporting argument is that suppression of the large-scale flow, by inserting
planar obstacles in the Grenoble Γ = 1/2 Screen cell of 20 cm in height, hardly
affected the observed heat transfer efficiency (Roche et al. 2010). This is a surprising
result, as the large-scale flow, sweeping the fluid across plates, is assumed to stimulate
the laminar to turbulent transition of boundary layers.)

Here, we have to repeat the warning already expressed in Urban et al. (2014). The
high-Ra ranges of the Trieste and Grenoble experiments have often been investigated
using a working point (p, Tm) in the 4He phase diagram close to the critical isochore.
For small 1T , our analysis is not applicable, as both boundary layers will be affected
and the above assumption that one of the boundary layers can be treated as Oberbeck–
Boussinesq is not justified. Moreover, on the basis of the analysis of Ahlers et al.
(2007) of the non-Oberbeck–Boussinesq effects in gaseous ethane, one may expect that
the asymmetry of the boundary layers might be partly cancelled if Tb and Tt lie on
opposite sides of the critical isochore in the (p,T) phase diagram. Further experiments
are needed to clarify this issue.
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FIGURE 2. (Colour online) The asymmetry X parameter plotted versus Ra for various
experiments as indicated. We plot both its experimental values, X = Xexpt, based on the
direct measurements of Tc (where available, (a)) as well as its theoretically estimated
value, X = Xth, (3.3) (b). Panel (c) (the meaning of the symbols is as in (b)) shows
the observed Nu(Ra) scaling for experiments, with Nu and Ra appropriately corrected,
calculated in a conventional way, i.e. based on 1T =Tb−Tt and fluid properties evaluated
at Tm = (Tt + Tb)/2.
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FIGURE 3. (Colour online) The p–T phase diagram of SF6, showing the working points
used in the Göttingen experiments.

Our analysis assumes that there are not multiple steady stages of high-Ra convective
flow, such as those that have been recently observed in turbulent von Karman flows
– for details see Thalabard et al. (2015) and references therein.

Let us now examine the Göttingen SF6 data. Figure 3 shows where in the p–T
phase diagram the Γ = 1/2 (He et al. 2012b) and Γ = 1 (He et al. 2012a) SF6
data lie. We see that Tm was kept roughly constant (except for four data points
that are not significant for the following discussion); higher values of Ra were
obtained by increasing the pressure (vertically, towards the dashed SVP line) and
then by increasing 1T . The horizontal ‘error bars’ show the span of the internal cell
temperature for each particular data point – their left (right) ends correspond to Tt
(Tb). The critical point (red symbol) far away does not play any significant role here;
however, we see that in some cases (encircled) the Tt values are dangerously close
to the SVP line (representing the equilibrium first-order liquid–gas phase transition
where due to fluctuations condensation/evaporation could take place), and these are
precisely those data points that display the reputed Nu = Nu(Ra) transition to the
ultimate state! We can further strengthen our argument by pointing out the work of
Zhong, Funfschilling & Ahlers (2009), showing that the heat transfer efficiency would
be considerably enhanced if condensation/evaporation processes were to take place in
the vicinity of the SVP line at the top plate of the SF6 cell.

Upon increasing Ra, the top half of the cell becomes affected by the non-Oberbeck–
Boussinesq effects, while the bottom half, if lying sufficiently far away from the SVP
curve, does not. This scenario is confirmed by the X parameter behaviour as discussed
above, see figure 2. In this situation, we can apply the approach that we just described
in detail to our own He cryogenic data (Urban et al. 2014). In short, one can avoid
the non-Oberbeck–Boussinesq effects in the top half of the cell, by replacing it
with the inverted (with respect to Tc) nearly Oberbeck–Boussinesq bottom half,
thus eliminating the boundary layer asymmetry. (It should be noted that for X = 1
(fully Oberbeck–Boussinesq case), such an operation does not change the observed
Nu=Nu(Ra) scaling.) This leads to effective values 1Teff = 2(Tb−Tc), Nueff and Raeff
(evaluated at Tc), changing both Nu and Ra. It is important to emphasize that not
only the Nusselt number scaling, but the scaling of any other independently measured
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FIGURE 4. (Colour online) (a,c) The Nu/Ra1/3 versus Ra plots of the Göttingen data
(He et al. 2012a,b) (a) and the Brno cryogenic He data (Urban et al. 2014) (c); Nu
and Ra are calculated based on the SF6 and He properties at Tm, Tc, 1T and 1Teff
as indicated. The vertical dashed lines indicate where the transition to the ultimate
state was claimed (He et al. 2012b). (b,d) The same Nu and Ra Göttingen data (b)
and Brno cryogenic He data (d), but calculated using the experimentally measured and
tabulated Tb and Tt only, with 1T th

eff = (Tb − T th
c ), where T th

c is evaluated for all available
experimental data points using the theoretically estimated value Xth, (3.3). It should be
noted that for the SF6 experiments there are more data points in (b). The reason is that
this approach does not require experimental values of Tc (which for (a) we calculated
using Ahlers et al. (2012a)), and we used all Tb, Tt data points tabulated in Ahlers
et al. (2012b). The theoretically estimated Nu = Nu(Ra) scalings, for both the nearly
constant Pr SF6 Göttingen data (He et al. 2012a,b) (a,b) and the Brno cryogenic He data
where Pr increases at the high-Ra end (Urban et al. 2014) (c,d), indicate no transition
to the ultimate state.

quantity, such as the Reynolds number Re=Re(Ra), that might have displayed ‘phase
transitions’ spuriously interpreted as independent confirmation of the transition to the
ultimate regime, will change, as well.

We have already applied this approach to our He experiments (Urban et al. 2014),
where, however, Pr changes at the high end of attainable Ra, which complicates
any definite conclusion of a possible transition to the ultimate state, see figure 4(c).
Figure 4(a) displays the nearly constant Pr SF6 original data of He et al. (2012a,b)
together with those re-evaluated by us using the data of Ahlers et al. (2012a) in
order to calculate Tc, which is then used to evaluate both 1Teff = 2(Tb − Tc) and the
relevant fluid properties. We see (yellow-filled large symbols) that the Nueff ∝ Ra1/3

eff
scaling is closely followed.
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It is interesting to examine the influence of the difference in Nu= Nu(Ra) scaling
depending on whether the fluid properties are evaluated conventionally, at Tm, or at
the directly measured Tc. We start with Ra and Nu still based on the total 1T =
Tb − Tt. We have shown (Urban et al. 2012, 2014) that for 1012 . Ra . 1015, Nu ∝
Ra1/3 within the experimental error, if the properties of the working fluid – cryogenic
He gas – are evaluated at Tc, while their conventional evaluation at Tm = (Tt + Tb)/2
lead to spuriously steeper Nu(Ra) scaling, see figure 4(c). Indeed, as the bulk of the
Rayleigh–Bénard convection cell has temperature close to Tc, we agreed with Wu
& Libchaber (1991) that it is physically natural to define Ra, Nu and Pr based on
fluid properties evaluated at this temperature rather than Tm. Although this question is
interesting in its own right, for the reanalysis of the Göttingen SF6 data, the particular
choice of temperature – either Tm or Tc – hardly matters for evaluating fluid properties
(figure 4a; see also He et al. 2013). For SF6 they differ only marginally while for our
own data (Urban et al. 2012, 2013) the influence turns out to be significant.

What appears to be important for both the He and SF6 data is the difference
1T = Tb − Tc versus 1Teff = 2(Tb − Tc). Figure 4(c) shows that, in the latter case,
our cryogenic He data, rather than increasing local scaling exponent γ , display
slightly less steep than 1/3 scaling, most likely due to a gradually increasing Pr with
Ra (Urban et al. 2014). On the other hand, the nearly constant Pr SF6 Göttingen
data (He et al. 2012a,b) closely follow the 1/3 scaling, independently of whether
SF6 properties are evaluated at Tm or at Tc, see figure 4(a).

Another independent check that our approach is meaningful is illustrated in
figure 4(b,d), where we calculated the Nu=Nu(Ra) scaling for SF6 (b) and cryogenic
He (d) theoretically, using the directly measured and tabulated values of Tt and
Tb and calculating 1T th

eff = (Tb − T th
c ), where T th

c is evaluated for all the available
experimental data points using the theoretically estimated value Xth, (3.3). Our simple
theoretical model clearly confirms that neither the SF6 data of He et al. (2012a,b) nor
our cryogenic He data (Urban et al. 2014) indicate any transition to the ultimate state,
and our theoretical model prediction confirms the tendency seen in the corresponding
figures 4(a) and 4(c).

For the Γ = 0.33 Göttingen cell (He et al. 2014), we do not have access to
the raw data in order to perform a similar detailed analysis. One can predict,
however, that under similar experimental conditions (i.e. choosing similar working
conditions in the SF6 phase diagram as shown in figure 3) the transition due to
the non-Oberbeck–Boussinesq effects will occur at (0.33/0.5)3 ≈ 3.4 times higher
characteristic RaNOB due to the 1.5 times taller cell. This is illustrated in figure 5,
which shows the digitized data from the single figure of He et al. (2014), together
with the same Γ = 0.33 data shifted down in Ra by a factor of ∼=3.4 and consequently
reduced by this shifted value of Ra in power 0.312. This operation is somewhat
artificial (it is exact only for 1/3 power law scaling), but it is essentially correct;
the open circles cannot be treated in the same way as the experimental data
obtained in the Γ = 1/2 cell, but the purpose of this operation is to show that
the non-Oberbeck–Boussinesq effects (assuming similar working points in the (p, T)
phase diagram) start to be significant at approximately the same RaNOB. The situation
is therefore similar to the Grenoble cells discussed above. Additionally, figure 5
indicates that the highest-Ra Γ = 0.33 and Γ = 1/2 data (i.e. the data points closely
following the shown lines of Nu ∝ Ra0.38 scaling (He et al. 2014)) nearly collapse
if the former are shifted by this factor down in Ra, contrary to the expectation that
transition to the ultimate regime in cells of the same diameter would take place at
some universal Ra∗.
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0.12

0.11

0.10

Ra

FIGURE 5. (Colour online) The Nu/Ra0.312 versus Ra plots of the Göttingen data, digitized
using figure 1 of He et al. (2014). Solid blue symbols represent the data obtained in
the Γ = 0.33 cell, solid orange symbols represent those from the Γ = 1/2 cell of the
same diameter, open blue symbols are the solid blue symbols but shifted by a factor of
(0.33/0.5)3 down in Ra. The black vertical dashed lines Ra∗1 (left) and Ra∗2 (right) indicate
where the transition to the ultimate state was claimed (He et al. 2012b). The black dashed
line represents Nu= 0.01035Ra0.38, while the blue solid line is the same but shifted by a
factor of (0.33/0.5)3 down in Ra.

4. Conclusions
To conclude, we have reanalysed the data of very-high-Ra experiments, focusing

on those claiming to have observed the transition to the ultimate state of Rayleigh–
Bénard convection. Our analysis strongly suggests that the present claims (Chavanne
et al. 1997, 2001; Roche et al. 2010; He et al. 2012a,b, 2014) are most likely not
justified, leaving open an important consideration of relating them to non-Oberbeck–
Boussinesq effects, and the very important and intriguing question of the transition
(if it occurs) to the ultimate state of Rayleigh–Bénard convection remains open.
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