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THE STRONG GIANT IN A RANDOM DIGRAPH

MATHEW D. PENROSE,∗ University of Bath

Abstract

Consider a random directed graph on n vertices with independent and identically
distributed outdegrees with distribution F having mean μ, and destinations of arcs
selected uniformly at random. We show that if μ > 1 then for large n there is very
likely to be a unique giant strong component with proportionate size given as the product
of two branching process survival probabilities, one with offspring distribution F and the
other with Poisson offspring distribution with mean μ. If μ ≤ 1 there is very likely to be
no giant strong component. We also extend this to allow for F varying with n.
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1. Introduction

Given n ∈ N := {1, 2, 3, . . . } and given a probability distribution F on Z+ := N ∪ {0},
consider a random directed multigraph Gn,F on vertex set [n] := {1, . . . , n}, defined as follows
(a multigraph is a graph with multiple arcs and loops allowed). Let each vertex of Gn,F have
outdegree independently sampled from distribution F . Given these outdegrees, the arcs have
their destinations sampled independently uniformly from [n].

Consider also a random directed graph G̃n,F , similar to Gn,F but with loops and multiple arcs
excluded. Let the outdegrees be sampled independently from distribution F as before, denoting
the respective outdegrees by ξ1, . . . , ξn. Given these outdegrees, let the set of destinations of
the arcs from vertex i in G̃n,F be selected uniformly at random from the collection of all

(
n−1
ξi

)
subsets of [n]\{i} with ξi elements, independently of the arcs from other vertices. If ξi > n−1,
include all arcs from i in the graph G̃n,F (so in this case the outdegree of i is n − 1, not ξi).

In the special case where F is the Dirac distribution at k for some k ∈ N (i.e. F({k}) = 1),
the random directed graph G̃n,F is also known as Gn,k-out or just Gk-out, mentioned in [2] and
studied in [8] and elsewhere.

Random graph models with specified degree distributions (e.g. with power-law decay of the
tails) are of much recent interest, and directed graphs are often a better model for real-world
networks than the undirected ones; see [3], [6], [9], and the references therein. Our model is
a simple and natural way to allow for an arbitrary specified outdegree distribution in a random
directed graph.

We use the abbreviation ‘digraph’ to mean either a directed graph or a directed multigraph.
For vertices i, j of a finite digraph G we write i � j if there is a directed path from i to j (or
if i = j ), and i � j if both i � j and j � i. We say G is strongly connected if for any two
vertices i, j we have i � j . For k ∈ N let Lk(G) denote the number of vertices in the kth
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largest strongly connected component of G (if k exceeds the number of such components, set
Lk(G) = 0.)

Set μF := ∑
k kF ({k}), the mean of the distribution F . In Theorem 1 we show that Gn,F

and G̃n,F enjoy a ‘giant component’ phenomenon also seen in other random graph models such
as the Erdös–Rényi random graph (see, e.g. [2]) if and only if μF > 1. In Theorems 2 and 3
we extend this result to allow for F varying with n, and in Theorem 4 we give a further result
on the distributional limit of the proportionate number of vertices j ∈ [n] such that 1� j .

Related random digraph models are considered (and results analogous to Theorem 1 are
derived) in [1] and [5], but they are not the same as ours. In [5], the degrees are imposed globally
whereas here they are determined locally. In [1], each vertex has a randomly determined type,
and each arc is included at random with probability determined by the type of its endpoints.

The random digraph model considered here seems at least as natural as those in [1] and [5].
In some sense, it is intermediate between the one in [5] which is homogeneous and the one in [1]
which is inhomogeneous; loosely speaking, one may say that a random graph is homogeneous
if all its vertices have the same status; see [1] and the references therein. Our graphs are
semi-homogeneous in the sense that they are inhomogeneous with respect to outdegree but
homogeneous with respect to indegree. Nevertheless, our model does not appear to be a special
case of that in [1], since the status (present/absent) of different arcs from a given vertex are not
conditionally independent given the type (i.e. outdegree) of that vertex. Also, in [1] the number
of types is assumed to be finite, whereas we allow for F with infinite support.

2. Statement of results

Given a probability distribution F on Z+ ∪ {∞}, let xF be the smallest solution in [0, 1] of
x = φF (x), where we set φF (x) = ∑∞

k=0 xkF ({k}), and set σ(F ) := 1 − xF . It is well known
(see, e.g. [7]) that σ(F ) is the survival probability of a Galton–Watson branching process with
offspring distribution F , and that σ(F ) > 0 if and only if μF > 1. In the special case where F

is a Poisson distribution with parameter μ ∈ [0, ∞) (so φF (x) = eμ(x−1)), we write σ ′(μ) for
σ(F ), and we set σ ′(∞) = 1.

Let ‘
P−→’ denote convergence in probability.

Theorem 1. Given any probability distribution F on Z+, as n → ∞, we have

L1(Gn,F )

n

P−→ σ ′(μF )σ (F ),
L2(Gn,F )

n

P−→ 0, (1)

and
L1(G̃n,F )

n

P−→ σ ′(μF )σ (F ),
L2(G̃n,F )

n

P−→ 0. (2)

It is natural to ask whether the convergence in probability statements of Theorem 1 hold
uniformly over all choices of the outdegree distribution F . This amounts to asking whether
similar statements hold if we allow F to vary with n. Our next results tell us that this is
indeed the case if for each n we impose a deterministic bound bn on the outdegrees in Gn,F

satisfying bn = o(n) (i.e. bn/n → 0 as n → ∞). For n ∈ N, let Mn be the class of
probability distributions F on Z+ which are supported by {0, 1, . . . , n}, i.e. which satisfy
F({0, 1, . . . , n}) = 1.

Given a probability distribution F on Z+ ∪ {∞}, and a sequence of probability distri-
butions (Fn)n≥1 on Z+, we write Fn

w−→F if Fn converges weakly to F as n → ∞, i.e. if
limn→∞ Fn({k}) = F({k}) for all k ∈ Z+. We note that if Fn

w−→F then σ(Fn) → σ(F ) as
n → ∞. Likewise, σ ′(μ) is continuous in μ, including at μ = ∞.
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Theorem 2. Let (bn)n≥1 be an N-valued sequence with bn = o(n) as n → ∞. Suppose that
(Fn)n≥1 is a sequence of probability distributions on Z+ with Fn ∈ Mbn for each n, satisfying
Fn

w−→F for some probability distribution F on Z+ ∪ {∞}, and also μFn → μ∞ as n → ∞ for
some μ∞ ∈ [0, ∞]. Then as n → ∞, we have

L1(Gn,Fn)

n

P−→ σ ′(μ∞)σ (F ),
L2(Gn,Fn)

n

P−→ 0, (3)

and
L1(G̃n,Fn)

n

P−→ σ ′(μ∞)σ (F ),
L2(G̃n,Fn)

n

P−→ 0. (4)

As a corollary, we may deduce a result about uniform convergence. To state this we need a
metrization of convergence in probability. Given random variables X, Y on the same probability
space, set d(X, Y ) := sup{ε : P[|X − Y | > ε] > ε}.
Theorem 3. Let (bn)n≥1 be an N-valued sequence with bn = o(n) as n → ∞. Then

lim
n→∞ sup

F∈Mbn

d

(
L1(Gn,F )

n
, σ ′(μF )σ (F )

)
= 0, (5)

lim
n→∞ sup

F∈Mbn

d

(
L1(G̃n,F )

n
, σ ′(μF )σ (F )

)
= 0, (6)

and

lim
n→∞ sup

F∈Mbn

(d(L2(Gn,F ), 0))

n
= lim

n→∞ sup
F∈Mbn

(d(L2(G̃n,F ), 0))

n
= 0.

Theorem 1 cannot be deduced directly from Theorems 2 or 3 because distribution F in the
statement of Theorem 1 could have unbounded support. We shall give an example at the end of
this section to show that the condition bn = o(n) is needed in Theorems 2 and 3; it is too much
to expect the convergence in Theorem 3 to be uniform over all probability distributions on [n].

Our proof of Theorems 1, 2, and 3 relies heavily on the following result, which is of
independent interest. Given a vertex i of a finite digraph G, let Ti := Ti(G) be the number of
vertices j such that i � j (including i itself). In epidemic modelling, this may be considered
as the final size of the epidemic, i.e. the total number of individuals to become infected starting
from a single infected individual i. Let ‘

d−→’ denote convergence in distribution.

Theorem 4. Suppose that (Fn)n≥1 is a sequence of probability distributions on N0 such that
Fn

w−→F for some probability distributionF on N0∪{∞}andμFn → μ∞ for someμ∞ ∈ [0, ∞].
Suppose that either Fn = F for all n, or that there exists an N-valued sequence (bn)n∈N such
that bn = o(n) as n → ∞ and Fn ∈ Mbn for all n. Then

T1(Gn,Fn)

n

d−→ σ ′(μ∞)ξ, (7)

and

T1(G̃n,Fn)

n

d−→ σ ′(μ∞)ξ, (8)

where ξ is a Bernoulli random variable with parameter σ(F ).

https://doi.org/10.1017/jpr.2015.8 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2015.8


60 M. D. PENROSE

Theorem 4 extends a recent result of Comets et al. [4], who proved (7) in the case with
Fn = F for all n. Only the case of (7) with μ∞ < ∞ (but with Fn possibly varying with n) is
used in proving our other results; the rest of Theorem 4 is included for its own sake.

In the rest of this paper we prove the theorems stated above. Before embarking on the
detailed proof we introduce further notation and give some intuitive ideas behind the proof of
the theorems.

Given F , let (Zm)m≥0 := (Zm(F ))m≥0 be a Galton–Watson branching process with off-
spring distribution F . If F({∞}) > 0 then we may have Zm = ∞ for some m, in which case
we set Zn = ∞ for all n ≥ m.

Given also μ∞ ∈ [0, ∞], let (Z′
m)m≥0 := (Z′

m(μ∞))m≥0 be a branching process with
Poisson offspring distribution with mean μ∞, independent of (Zm)m≥0 (with Z0 = Z′

0 = 1).
Let T := ∑∞

m=0 Zm and T ′ := ∑∞
m=0 Z′

m. If μ∞ = ∞ then set Z′
m := +∞ for all m ≥ 1,

and set T ′ = ∞. Then σ(F ) = P[T = ∞] and σ ′(μ∞) = P[T ′ = ∞].
Given a vertex i of a digraph G, for m ∈ N let Si,m(G) denote the size of the mth out-

generation starting from i, i.e. the number of vertices j of G such that there is a directed path
from i to j and the shortest such path is of length m. Let S′

i,m(G) denote the size of the mth
in-generation starting from i, i.e. the number of vertices j of G such that there is a directed
path from j to i and the shortest such path is of length m. Set Si,0(G) = 1 and S′

i,0(G) = 1.
Set Si,m(G) := (Si,0(G), . . . , Si,m(G)) and set S′

i,m(G) := (S′
i,0(G), . . . , S′

i,m(G)). Then
Ti(G) = ∑∞

m=0 Si,m(G). Set T ′
i := T ′

i (G) := ∑∞
m=0 S′

i,m, the total number of vertices that can
be reached by a backwards directed path from vertex i in the graph G. Let Pn,F (respectively
P̃n,F ) denote probability with reference to the graph Gn,F (respectively G̃n,F ). Let En,F

(respectively Ẽn,F ) denote expectation with reference to the graph Gn,F (respectively G̃n,F ).

The intuition for Theorem 1 or 2 is that (with Gn,F or G̃n,F or Gn,Fn or G̃n,Fn now denoted Gn

for short) for any fixed m and i, the distribution of the random vector Si,m(Gn) approximates in
the large-n limit to that of the branching process Zm := (Z0, . . . , Zm). Moreover, the indegree
of vertex i in Gn is asymptotically Poisson with mean μ∞ (where in the setting of Theorem 1
we set μ∞ = μF ), and the random vector S′

i,m(Gn) converges in distribution (as n → ∞)
to the random vector Z′ := (Z′

0, . . . , Z
′
m) with Si,m(Gn), S′

i,m(Gn), Sj,m(Gn), and S′
j,m(Gn)

asymptotically independent for fixed i, j, m with j 
= i. We justify these assertions in Lemma 2
below.

One might reasonably hope that for large K , the condition that Ti(Gn) > K and T ′
i (Gn) > K

would be approximately necessary and sufficient for i to lie in a giant strong component.
Our argument to demonstrate this (in Lemma 4 below) is based on the branching process
approximation combined with Theorem 4.

We now give an example to show what can go wrong if we drop the condition bn = o(n) in
Theorem 2, 3, or 4. Suppose that we take Fn({n − 1}) = 2n−1 and Fn({2}) = 1 − 2n−1. Then
the limiting distribution F of Fn is a unit point mass at 2 (with σ(F ) = 1) and the limit of μF

is 4. If the conclusion of Theorem 2 were still true for this example then the n−1L1(G̃n,Fn)

should approximate to σ ′(4).

Consider, however, the successive in-generations S′
1,m(G̃n,Fn), m ≥ 1. While S′

1,1(G̃n,Fn)

does converge in distribution to the first generation Z′
1 of a branching process with Poisson

offspring distribution with mean 4, the second generation S′
1,2(G̃n,Fn) does not converge in

distribution to Z′
2. This is because the vertices of S′

1,1(G̃n,Fn) decompose into two types,
namely those of outdegree 2 and those of outdegree n − 1 (with an asymptotically Poisson
number of each type with mean 2), but in subsequent generations S′

1,m(G̃n) for m ≥ 2, there
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are no vertices of the second type (because all such vertices would be included in the first
generation). Therefore the branching process approximation fails.

In our proofs we shall repeatedly use the fact that for any n ∈ N and any probability
distribution F on Z+, the random digraph G̃n,F stochastically dominates Gn,F , i.e.

Gn,F ≺st G̃n,F , (9)

in the sense that there exist coupled realizations of these two random digraphs for which Gn,F

(with loops removed and multiple edges reduced to single edges) is a (directed) subgraph
of G̃n,F .

3. Proof of Theorem 4

Throughout this section we assume that Fn, F , μ∞, and (if applicable) bn are as in the
statement of Theorem 4. Also we write just Pn (respectively P̃n, En, Ẽn) for Pn,Fn (respectively
P̃n,Fn , En,Fn , Ẽn,Fn ).

Given a digraph G = (V , E) and given i, j ∈ V , we write i → j if there is an arc of G

from i to j . Given also B ⊂ V we write i → B if i → j for at least one j ∈ B. In the
following lemma the notation H stands for ‘hit’ and A stands for ‘avoid’.

Lemma 1. Fix r, s ∈ Z+, let Hr,s be the event {1 → {r + 2, . . . , r + 1 + s}} and let Ar be the
complement of the event H0,r . Then

lim
n→∞ Pn,Fn [Ar ] = lim

n→∞ P̃n,Fn [Ar ] = 1, (10)

and
lim

n→∞(nPn,Fn [Hr,s | Ar ]) = lim
n→∞(nP̃n,Fn [Hr,s | Ar ]) = sμ∞. (11)

Proof. For k ∈ Z+ and n ∈ N, set pn,k := Fn({k}) and p̃n,k := pn,k for k ≤ n − 2 with
p̃n,n−1 := ∑

k≥n−1 pn,k and p̃n,k := 0 for k ≥ n. Then

P̃n[Ar ] =
∑

k

p̃n,k

k∏
i=1

(
n − i − r

n − i

)

with the product interpreted as unity for k = 0. By Fatou’s lemma, P̃n[Ar ] → 1 as n → ∞.
By (9), we have P̃n[Ar ] ≤ Pn[Ar ] so Pn[Ar ] → 1 as well, which gives us (10).

By the union bound, we have

P̃n[Hr,s] ≤
∑

k

p̃n,k

(
ks

n − 1

)
≤ 1

n − 1
sμFn

so that lim sup(nP̃n[Hr,s]) ≤ sμ∞, and, therefore, also lim sup(nPn[Hr,s]) ≤ sμ∞. Hence,

lim sup(nPn[Hr,s ∩ Ar ]) ≤ sμ∞, lim sup(nP̃n[Hr,s ∩ Ar ]) ≤ sμ∞. (12)

By conditioning on the outdegree of vertex 1 and then using the estimate ex ≥ 1 + x for
x ∈ R, we have

(13)Pn[Hr,s ∩ Ar ] =
∑

k

pn,k

(
1 − r

n

)k[
1 −

(
1 − s

n − r

)k]

≥
∑

k

pn,k

(
1 − r

n

)k[
1 − exp

(
− ks

n − r

)]
. (14)
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Also

P̃n[Hr,s ∩ Ar ] =
∑

k

p̃n,k

[ k∏
i=1

(
1 − r

n − i

)
−

k∏
i=1

(
1 − r + s

n − i

)]
. (15)

Suppose that Fn = F for all n. Then both in (14) and (15), the expression inside the square
brackets is asymptotic to n−1ks, and hence by Fatou’s lemma, lim inf(nPn[Hr,s ∩Ar ]) ≥ sμF

and lim inf(nP̃n[Hr,s ∩ Ar ]) ≥ sμF . Combined with (12), this gives us (11) in the case with
Fn = F for all n.

Now suppose that Fn varies with n but Fn ∈ Mbn for all n with bn = o(n). By (14),

nPn[Hr,s ∩ Ar ] ≥
(

1 − r

n

)bn ∑
k

npn,k

[
1 − exp

(
− ks

n − r

)]

and by Taylor’s theorem, for k ≤ bn we have for some θ = θ(n, k) ∈ (0, 1),

1 − exp

(
− ks

n − r

)
= ks

n − r
−

(
1

2

)(
ks

n − r

)2

exp

(
− θks

n − r

)

so that (
n

ks

)(
1 − exp

(
− ks

n − r

))
≥ n

n − r
− nks

(n − r)2 ≥ 1 − nbns

(n − r)2 .

Hence,

nPn[Hr,s ∩ Ar ] ≥
(

1 − r

n

)bn
(

1 − nbns

(n − r)2

) ∑
k

kspn,k,

so that
lim inf(nPn[Hr,s ∩ Ar ]) ≥ sμ∞. (16)

Next we estimate the right-hand side of (15). By Taylor’s theorem, we have

k∏
i=1

(
1 − r

n − i

)
≥

(
1 − r

n − k

)k

≥ 1 − kr

n − k

and
k∏

i=1

(
1 − r + s

n − i

)
≤

(
1 − r + s

n

)k

≤ 1 − k(r + s)

n
+ k2(r + s)2

2n2 .

Combining these estimates, we obtain

n

k

[ k∏
i=1

(
1 − r

n − i

)
−

k∏
i=1

(
1 − r + s

n − i

)]
≥ s − rk

n − k
− (r + s)2k

n
.

Hence, by (15), for Fn ∈ Mbn , we have

nP̃n[Hr,s ∩ Ar ] ≥
(∑

k

ksp̃n,k

)
(1 + o(1)),

and hence lim inf(nP̃n[Hr,s ∩ Ar ]) ≥ sμ∞. Combined with (16) and (12) this gives us (11) in
the case with Fn ∈ Mbn , completing the proof. �
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Let (Zm)m≥0 = (Zm(F ))m≥0 and (Z′
m)m≥0 = (Z′

m(μ∞))m≥0 be branching processes as
described in Section 2. We always assume that these branching processes are independent of
each other. For later use, we set T = ∑∞

m=0 Zm and T ′ = ∑∞
m=1 Z′

m. For m ∈ Z+, set
Zm := (Z0, . . . , Zm) and Zm := (Z′

0, . . . , Z
′
m). Let (Z̃m, Z̃′

m) denote an independent copy of
(Zm, Z′

m).

Lemma 2. Let m ∈ N. Then as n → ∞, we have

(S1,m(Gn,Fn), S2,m(Gn,Fn), S
′
1,m(Gn,Fn), S

′
2,m(Gn,Fn))

d−→ (Zm, Z̃m, Z′
m, Z̃′

m). (17)

Also, (17) holds with Gn,Fn replaced by G̃n,Fn .

Proof. We give the argument for Gn,Fn ; the argument for G̃n,Fn is just the same.
It is rather obvious that (S1,m, S2,m) converges in distribution to (Zm, Z̃m). Formally, this

can be proved by induction on m, using (10).
Suppose that we are given (for fixed m) the values of (S1,m, S2,m) and consider for r ∈ N the

conditional distribution of (S′
1,r , S

′
2,r ). We need to show that this converges to the distribution

of (Z′
r , Z̃

′
r ). This is done by induction in r and we consider the inductive step, so suppose we

also fix for some r the values of (S′
1,r , S

′
2,r ). Then the value of S′

1,r+1 is the number of vertices
j ∈ [n] \ ⋃

s≤r S′
1,s such that j → S′

1,r (where we use the notation S′
1,s to mean either a set of

vertices or its cardinality).
Given (S1,m, S2,m, S′

1,r , S2,r ), the number of j ∈ ⋃
i≤m(S1,i ∪ S2,i ) is fixed and the

(conditional) probability that any of these has j → S′
1,r tends to 0. We need to consider

the other js, i.e. with j /∈ ⋃
r ′≤r S′

1,r ′ and j /∈ ⋃
i≤m(S1,i ∪ S2,i ).

For these values of j the conditioning means we know there are no arcs from j to the set⋃
r ′<r S′

1,r ′ , a fixed number of vertices. Therefore, by Lemma 1, the conditional probability
that there is an arc from j to one of the vertices in S′

1,r is asymptotic to n−1S′
1,rμ∞. Hence, by

standard binomial-Poisson convergence, the (conditional) distribution of the number of such
vertices j such that j → S′

1,r is asymptotically Poisson with parameter S′
1,rμ∞, which is the

same as the conditional distribution of the next value of the branching process Z′
r+1.

We can then apply a similar argument for S′
2,r to complete the induction. �

We now prove a part of Theorem 4.

Lemma 3. Under the assumptions of Theorem 4, the first conclusion (7) holds in the case
where μ∞ < ∞.

Proof. First consider the graphs Gn,Fn with Fn = F for all n and some fixed distribution F

on Z+. In this case, we can obtain (7) from a result from [4]. The model in [4] is not described
there in terms of a random digraph, but it is not hard to see that it can be interpreted that way.
In particular, the random variable Nn(τn) in [4, Theorem 2.2] can be interpreted as being the
same as our T1(Gn,F ). Therefore, by [4, Theorem 2.2], there exists a coupling of the branching
process (Zm)m≥0 and the sequence of random digraphs (Gn,F )n≥0 such that

T1(Gn,F )

n

P−→ σ ′(μF )1{T =∞} as n → ∞. (18)

Note that our σ ′(μF ) is the p of [4]. The distributional convergence (7) is immediate from
(18).

Next, we consider Gn,Fn in the case with Fn varying with n, assuming also that μ∞ < ∞.
The proof for this case involves adapting the proof of [4, Theorem 2.2].
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The argument in [4] (for fixed F ) involves considering an exploration process of the random
graph starting from vertex 1, where at each step one of the currently unassigned arcs out of
one of the vertices currently being considered is assigned its destination (uniformly at random
over [n]), and if this destination is a previously unconsidered vertex then this vertex is added
to those currently being considered at the next stage. If there are no unassigned arcs out of the
current set of vertices under consideration, the exploration process terminates.

Let (Kn,i)i∈N (respectively (Ki)i∈N) be a sequence of independent and identically distributed
random variables with the distribution Fn (respectively F ). For t ≥ 0 set Rn(t) := ∑�t�

i=1 Kn,i

and R(t) := ∑�t�
i=1 Ki , as in [4, Equation (25)].

Let survn denote the event that 1 + Rn(t) − t > 0 for all t ∈ N (or, equivalently, that
Rn(u + 1) − u > 0 for all u ∈ Z+), and let surv denote the event that 1 + R(t) − t > 0 for
all t ∈ N. Note that P[survn] = σ(Fn) and P[surv] = σ(F ) because the exploration process
of a branching process with offspring distribution F can be interpreted as a random walk with
successive steps having the distribution of K1 − 1.

For t ∈ Z+, let Nn(t) denote the number of coupons collected after n attempts in a coupon
collector process with n coupons (starting with Nn(0) = 1; see [4] for a formal description),
running independently of the random walk Rn(·). For t ≥ 0, set Sn(t) := Rn(Nn(�t�)) − t .
As described in [4], there is a coupling in which Sn(t) (for t ∈ N) can be viewed as the total
number of unassigned out-arcs from the current set of vertices after t stages of the exploration
process up to time τn, where τn denotes the first t such that Sn(t) ≤ 0.

We claim that there exists ε > 0 such that

lim
n→∞(P[τn ≥ nε, survn]) = σ(F ). (19)

This is proved by following the proof of [4, Lemma 4.2] (the notation σGW in [4] denotes an
extinction probability, whereas our σ(F ) is a survival probability!) Most of the proof of [4,
Lemma 4.2] carries over easily to the present setting. We just elaborate on the assertion in that
proof that z−1G(z)1−2ε < 1 for some z < 1. Here the G of [4] is a probability generating
function which we denote by φn with φn(z) := ∑

k zkFn({k}). Also set φ(z) := ∑
k zkF ({k}),

and note that limn→∞ φn(z) = φ(z) for z ∈ (0, 1).
By Fatou’s lemma, lim infa↓0 a−1(1−φ(1−a)) ≥ μF . Assuming μF > 1, taking ε > 0 and

δ > 0 with (1 − 2ε)(μF − δ) > 1, and then a ∈ (0, 1) (close to 0) with (1 − a(μF − δ))1−2ε <

(1 − a) and also a−1(1 − φ(1 − a)) > μF − δ, it follows that φ(1 − a)1−2ε < (1 − a), and
hence for large n that φn(1 − a)1−2ε < 1 − a.

For q > 0, we have n−1
E[Rn(nq)] → qμ∞ as n → ∞, and since we are assuming

μ∞ < ∞ and bn = o(n), we have

var

[
Rn(nq)

n

]
= �nq� var[Kn,1]

n2 ≤
(

q

n

)
EK2

n,1 ≤
(

q

n

)
E[bnKn,1] → 0.

By following the proof of [4, Equation (26)], for each positive s, we have

Sn(ns)

n
→ (1 − e−s)μ∞ − s (20)

in probability. This weaker version of [4, Equation (26)] suffices to give us [4, Equation (27)].
At the end of the three-line display just after [4, Equation (27)], there are three terms which

we wish to show tend to 0. The first term tends to 0 by (19) and the fact that σ(Fn) → σ(F ) as
n → ∞. The third term can be shown to tend to 0 using the same fact. To show that the second
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term tends to 0, we use the next three-line display of [4]; we need to check that for δ > 0, we
have

lim sup
n→∞

P[inf Sn(ns), s ∈ [ε, θ − δ]] = 0, (21)

where θ is the solution in (0, ∞) to (1−e−θ )/θ = 1/μ∞. To see this, set h := infs∈[ε,θ−δ]((1−
e−s)μ∞ − s) > 0 and take s1, . . . , s	 ∈ [ε, θ − δ] with s1 = ε, s	 = θ − δ, and 0 <

si+1 − si < h/4 for 1 ≤ i ≤ 	 − 1. By (20), with probability tending to 1, we have for
each i that n−1Sn(nsi) > h/2, and then using the fact that Sn(t) = Rn(Nn(�t�) − t), we have
n−1Sn(ns) ≥ h/4 for all s ∈ [si, si+1] which gives us Sn(ns) > 0 for s ∈ [ε, θ − δ], and
hence (21). We can then follow the rest of the argument in [4] to obtain (7) in the case where
μ∞ < ∞. �
Lemma 4. It is the case that

lim
n→∞ Pn[1� 2] = σ ′(μ∞)σ (F ) (22)

and
lim

n→∞ P̃n[1� 2] = σ ′(μ∞)σ (F ).

Proof. Write just σ ′ for σ ′(μ∞), σ for σ(F ), and T1 for T1(G). We first prove (22). By
symmetry, we have Pn[1� 2 | T1] = (T1 − 1)/n, and therefore by Lemma 3, we have

lim
n→∞ Pn[1� 2] = lim

n→∞ En

[
(T1 − 1)

n

]
= σ ′(μ∞)σ (F ) if μ∞ < ∞. (23)

Now suppose that μ∞ = ∞. Given ε > 0, we can choose K ∈ N such that P[T > K] <

σ + ε. By the branching process approximation (Lemma 2), limn→∞ Pn[T1 > K] = P[T >

K] < σ + ε, and also by symmetry Pn[{1 � 2} ∩ {T1 ≤ K}] ≤ (K/(n − 1))Pn[T1 ≤ K],
which tends to 0, so

lim sup
n→∞

Pn[1� 2] ≤ σ + ε. (24)

Given h ∈ N, let Fh (respectively Fh
n ) denote the distribution of a random variable min(ξ, h)

(respectively min(ξn, h)), where ξ (respectively ξn) is a random variable with distribution F

(respectively Fn). Pick h ∈ N with σ ′(h) > 1 − ε and σ(Fh) ≥ σ(F )(1 − ε). Here we are
using the continuity of the branching process survival probability in the offspring distribution.

Given n, choose an ∈ N with μF
an
n

∈ [h, h + 1] (this is possible for all large enough n

because μ∞ = ∞). Note that an ≥ h. Let P
∗
n denote probability for a random digraph of the

form of Gn,F
an
n

.
Suppose first that an → ∞ as n → ∞. Then F

an
n converges weakly to F , so by monotonicity

and the case already proved, we have

lim inf Pn[1� 2] ≥ lim inf P
∗
n[1� 2] ≥ σ ′(h)σ (F ) ≥ (1 − ε)σ (F ).

Suppose instead that an is bounded. For any subsequence of n we can take a further
subsequence such that along this subsequence an tends to a finite limit a so that F

an
n converges

weakly to Fa , and also μF
an
n

tends to a limit y (between h and h + 1). Also a ≥ h so

σ(F a) ≥ σ(Fh) ≥ σ(F )(1 − ε). Then by monotonicity and the case already proved, as
n → ∞ along this further subsequence, we have

lim inf Pn[1� 2] ≥ lim inf P
∗
n[1� 2] = σ ′(y)σ (F a) ≥ (1 − ε)2σ(F ),

and since ε is arbitrary, combined with (24) this gives us (22) for the μ∞ = ∞ case. Combined
with (23) this gives us (22) in full generality.
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Now consider G̃n,Fn . By (9) and (22), we have

lim inf
n→∞ P̃n[1� 2] ≥ lim inf

n→∞ Pn[1� 2] = σ ′(μ∞)σ (F ). (25)

On the other hand, given ε > 0, we can choose K ∈ N such that P[{T > K} ∩ {T ′ > K}] <

σ ′(μ∞)σ (F ) + ε. By the branching process approximation (Lemma 2),

lim
n→∞ P̃n[{T1 ≤ K} ∪ {T ′

2 ≤ K}] = P[{T ≤ K} ∪ {T ′ ≤ K}] > 1 − (σ ′σ + ε),

and also by symmetry P̃n[{1� 2} ∩ {T1 ≤ K}] ≤ (K/(n − 1))P̃n[T1 ≤ K] which tends to 0,
and similarly P̃n[{1� 2} ∩ {T ′

2 ≤ K}] → 0, so by the union bound

lim
n→∞ P̃n[{1� 2} ∩ ({T1 ≤ K} ∪ {T ′

2 ≤ K})] = 0.

Therefore, lim supn→∞ P̃n[1� 2] ≤ σ ′σ + ε. Combined with (25) this shows that

lim
n→∞ P̃n[1� 2] = σ ′σ. �

Proof of Theorem 4. Set Xn = n−1T1(Gn,Fn) and X̃n := n−1T1(G̃n,Fn). Given ε > 0, we
may choose finite K such that P[T > K] ≤ σ(F ) + ε/2. Then by the branching process
approximation (Lemma 2), for large enough n we have P[X̃n ≤ ε] ≥ P[T1(G̃n,Fn) ≤ K] ≥
1 − σ(F ) − ε. Also X̃n stochastically dominates Xn by (9). Hence,

lim inf
n→∞ P[Xn ≤ t] ≥ lim inf

n→∞ P[X̃n ≤ t] ≥ 1 − σ(F ), t > 0. (26)

In view of Lemma 3, to prove (7) we need to consider only the case with Fn varying with n

and μ∞ = ∞, so we assume that μ∞ = ∞ for a while. Then σ ′(μ∞) = 1. By Lemma 4, we
have

lim
n→∞ EXn = σ(F ). (27)

In the σ(F ) = 0 case, this gives us (7) at once, so we now assume that σ(F ) > 0 too. Let
ε ∈ (0, σ (F )). Since Xn ≤ 1, we have EXn ≤ εP[Xn ≤ ε] + (1 − P[Xn ≤ ε]) so that
(1 − ε)P[Xn ≤ ε] ≤ 1 − EXn and using (27), we have

lim sup
n→∞

P[Xn ≤ ε] ≤ 1 − σ(F )

1 − ε

so that

lim inf
n→∞ P[Xn > ε] ≥ σ(F ) − ε

1 − ε
≥ σ(F ) − ε. (28)

Let δ ∈ (0, 1
2 ) and set ε = σ(F )δ2/2. Suppose that P[Xn ≤ 1 − δ | Xn > ε] > δ for infinitely

many n. Then for such n, we have

E[Xn | Xn > ε] ≤ (1 − δ)δ + (1 − δ) = 1 − δ2

and, hence, by (26), along this subsequence

lim sup
n→∞

EXn = lim sup(E[Xn1{Xn≤ε}] + P[Xn > ε]E[Xn | Xn > ε])
≤ ε + σ(F )(1 − δ2)

= σ(F )

(
1 − δ2

2

)
,
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which contradicts (27). Hence, P[Xn ≤ 1 − δ | Xn > ε] ≤ δ for all but finitely many n, and
using (28), we have

lim inf
n→∞ P[Xn > 1 − δ] ≥ (1 − δ)

(
1 − δ2

2

)
σ(F ).

Hence, for t ∈ (0, 1), we have lim infn→∞ P[Xn > t] ≥ σ(F ), and with (26) this shows that
P[Xn ≤ t] → 1 − σ(F ). This gives us (7).

We still need to prove (8), not only under the assumption μ∞ = ∞ so now relax this
assumption. By (7), for t < σ ′(μ∞), we have

lim sup P[X̃n ≤ t] ≤ lim sup P[Xn ≤ t] ≤ 1 − σ(F ).

Hence, by (26),

lim
n→∞ P[X̃n ≤ t] = 1 − σ(F ) for 0 < t < σ ′(μ∞). (29)

Next, let T ′ := ∑
m≥0 Z′

m(μ∞) as before. Given ε > 0, choose K with P[T ′ > K] ≤
σ ′(μ∞) + ε/2. Let Nsmall = ∑n

i=11{T ′
i (G̃n,Fn )≤K}. Using Lemma 2, it follows that

P̃n,Fn [T ′
1 ≤ K] → P[T ′ ≤ K], P̃n,Fn [T ′

1 ≤ K, T ′
2 ≤ K] → (P[T ′ ≤ K])2,

and hence E[n−1Nsmall] → P[T ′ ≤ K] and var[n−1Nsmall] → 0. Hence,

P[Nsmall ≤ n(1 − σ ′(μ∞) − ε)] ≤ P

[
Nsmall ≤ n

(
P[T ′ ≤ K] − ε

2

)]
→ 0.

Given n, let Ismall be the set of indices j ∈ [n] such that T ′
j (G̃n,Fn) ≤ K . Then

n∑
i=1

1{∑j∈Ismall
1{i�j in G̃n,Fn

}>εn} ≤ K

ε

so that by symmetry

P̃n,Fn

[ ∑
j∈Ismall

1{1�j} > εn

]
≤ K

nε
,

and hence setting σ ′ = σ ′(μ∞), by the union bound we have

P[X̃n ≥ σ ′ + 2ε] ≤ P[Nsmall ≤ n(1 − σ ′ − ε)] + P̃n,Fn

[ ∑
j∈Ismall

1{1�j} > εn

]
→ 0.

Combined with (29) this gives us (8). �

4. Proof of Theorems 1, 2, and 3

In this section we make the same assumptions about F, Fn, μ∞, and (if applicable) bn, and
use the same notation Pn, P̃n, En, Ẽn, as we did in the previous section. Also T and T ′ are as
in the previous section, and we set σ := σ(F ) and σ ′ := σ ′(μ∞).
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Lemma 5. It is the case that

lim
n→∞ Pn[1� 2] = (σ ′σ)2, (30)

lim
n→∞ P̃n[1� 2] = (σ ′σ)2. (31)

Proof. We prove (30); the proof of (31) is just the same but with Pn replaced by P̃n

throughout.
If μF ≤ 1 then σ ′σ = 0 and (30) follows from Lemma 4, so now assume that μF > 1.

Then μ∞ ≥ μF > 1 by Fatou’s lemma, so σ ′σ > 0. Choose K such that P[{T > K} ∩ {T ′ >

K}] ≈ σ ′σ . The ≈ means the approximation can be made arbitrarily close to 0 by the choice
of K (but we now view K as fixed).

Let Ti, T
′
i be as in Section 2. Then by symmetry, Pn[{1 � 2} ∩ {T1 ≤ K}] ≤ (K/(n −

1))Pn[T1 ≤ K], which tends to 0 as n → ∞. Similarly, limn→∞ Pn[{1� 2}∩{T ′
2 ≤ K}] = 0

so that
lim

n→∞ Pn[{1� 2} \ ({T1 > K} ∩ {T ′
2 > K})] = 0. (32)

Also, by the branching process approximation (Lemma 2),

lim
n→∞ Pn[{T1 > K} ∩ {T ′

2 > K}] = P[{T > K} ∩ {T ′ > K}] ≈ σ ′σ.

Therefore, by (32) and Lemma 4, with � denoting the symmetric difference of two sets,

lim sup
n→∞

Pn[{1� 2}�({T1 > K} ∩ {T ′
2 > K})] ≈ 0.

Similarly,
lim sup
n→∞

Pn[{2� 1}�({T2 > K} ∩ {T ′
1 > K})] ≈ 0,

and, therefore,

lim sup
n→∞

Pn[{1� 2}�({T1 > K} ∩ {T ′
1 > K} ∩ {T2 > K} ∩ {T ′

2 > K})] ≈ 0.

By the branching process approximation (Lemma 2), and the inclusion–exclusion formula,

lim
n→∞ P[{T1 > K} ∩ {T ′

1 > K} ∩ {T2 > K} ∩ {T ′
2 > K}] = (P[T > K])2(P[T ′ > K])2

≈ (σ ′σ)2,

and (30) follows. �
Proof of Theorems 1 and 2. We simultaneously prove (1) and (3); the proof of (2) and (4)

is just the same (with Pn replaced by P̃n throughout). Choose a large constant K such that

P[T > K] ≈ σ, P[T ′ > K] ≈ σ ′

with ≈ interpreted as in the preceding proof. Given n, define the events

Ei := {Ti ≤ K} ∪ {T ′
i ≤ K}, i ∈ [n].

By the branching process approximation (Lemma 2), as n → ∞, we have

Pn[E1] → P[{T ≤ K} ∪ {T ′ ≤ K}], Pn[E1 ∩ E2] → (P[{T ≤ K} ∪ {T ′ ≤ K}])2.
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Therefore, setting Nsmall := ∑n
i=11Ei

, we have var(Nsmall/n) → 0 and

Nsmall

n

P−→ P[{T ≤ K} ∪ {T ′ ≤ K}] ≈ 1 − σ ′σ. (33)

Suppose first that μF ≤ 1. Then σ ′σ = 0, and given any ε > 0, we may choose K such that if
n > K/ε, by (33), we have

Pn[L1(G) > εn] ≤ Pn[Nsmall < (1 − ε)n] → 0.

This gives us (1) and (3) in the case where μF ≤ 1.
Now suppose that μF > 1. Then σ = σ(F ) > 0, and by Fatou’s inequality μ∞ ≥ μF > 1

so σ ′ = σ ′(μ∞) > 0. Let N>K be the number of vertices of Gn lying in strongly connected
components of order greater than K . For i ≥ 1, let us write just Li for Li(G). Let I be the
last i such that Li > K . Then

Pn[1� 2 | (L1, L2, . . . )] ≤
∑

i

(
Li

n

)2

≤
∑
i≤I

(
Li

n

)2

+
∑

I<i≤n

(
K

n

)2

≤ L1

n

(∑
i≤I

Li

n

)
+ K2

n

= L1

n

N>K

n
+ K2

n
. (34)

Note that N>K is determined by (L1, L2, . . . , ). Let ε ∈ (0, 1). By (34), we have

Pn[1� 2 | N>K < (1+ε2)σ ′σn, L1 ≤ (1−ε)σ ′σn] ≤ (1−ε)(1+ε2)(σ ′σ)2 +o(1) (35)

and (using L1 ≤ max(N>K, K)) also

Pn[1� 2 | N>K < (1 + ε2)σ ′σn, L1 > (1 − ε)σ ′σn] ≤ (1 + ε2)2(σ ′σ)2 + o(1). (36)

Now N>K ≤ n − Nsmall so by (33), given ε > 0, we can choose K so that

Pn

[
N>K

n
< (1 + ε2)σ ′σ

]
→ 1. (37)

Then by (35) and (36), we have

Pn[1� 2] ≤ (σ ′σ)2((1 − ε)(1 + ε2)Pn[L1 ≤ (1 − ε)σ ′σn]
+ (1 + ε2)2(1 − Pn[L1 ≤ (1 − ε)σ ′σn])) + o(1)

≤ (σ ′σ)2(1 + ε(4ε − Pn[L1 ≤ (1 − ε)σ ′σn])) + o(1)

and by comparison with (30) this shows that

lim sup
n→∞

Pn[L1 ≤ (1 − ε)σ ′σn] ≤ 4ε.

Together with (37) and the fact that L1 ≤ max(N>K, K), this gives us the first part of (1) and
of (3).
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Since L2 ≤ max(N>K − L1, K), for n > K/(2ε2σ ′σ) with ε, K as in (37), we have

Pn

[
L2

n
> 2ε2σ ′σ

]
≤ Pn

[
N>K − L1

n
> 2ε2σ ′σ

]

≤ Pn

[
N>K

n
> (1 + ε2)σ ′σ

]
+ Pn

[
L1

n
< (1 − ε2)σ ′σ

]
,

which tends to 0 by (37) and the first part of (1) or (3). This shows that L2/n
P−→0, which is the

second part of (1) and of (3). �
Proof of Theorem 3. Suppose that (5) fails. Then we can find a sequence of distributions

Fn ∈ Mbn such that lim supn→∞ supF∈Mbn
d(n−1L1(Gn,Fn), σ

′(μFn)σ (Fn)) > 0. By taking
a subsequence, we may assume that Fn converges to a limiting distribution F on Z+ ∪ {∞}
and μFn converges to a (possibly infinite) limit μ∞. But then we would have a contradiction
of Theorem 2.

This gives us (5). The proof of (6), and of the stated results for L2(Gn) and L2(G̃n), is
similar. �
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