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Abstract Dolfi, Guralnick, Praeger and Spiga asked whether there exist infinitely many primitive groups
of twisted wreath type with non-trivial coprime subdegrees. Here, we settle this question in the affir-
mative. We construct infinite families of primitive twisted wreath permutation groups with non-trivial
coprime subdegrees. In particular, we define a primitive twisted wreath group G(m, q) constructed from
the non-abelian simple group PSL(2, q) and a primitive permutation group of diagonal type with socle
PSL(2, q)m, and determine many subdegrees for this group. A consequence is that we determine all
values of m and q for which G(m, q) has non-trivial coprime subdegrees. In the case where m = 2 and

q /∈ {7, 11, 29}, we obtain a full classification of all pairs of non-trivial coprime subdegrees.
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1. Introduction

If G is a transitive permutation group acting on a finite set Ω and we fix some point
α ∈ Ω, a subdegree of G relative to α is defined as the size of a Gα-orbit. These are the
sizes of the sets βGα where β ∈ Ω or, equivalently, the values of |Gα : Gα ∩ Gβ |. The
subdegree is said to be trivial if it corresponds to the Gα-orbit {α}, and non-trivial
otherwise. If G is primitive and not cyclic, and of prime order, then the only subdegree
equal to 1 is the trivial subdegree, so all non-trivial subdegrees are greater than 1. The
study of subdegrees is a classical topic in permutation group theory. Probably the most
famous result is the verification of the Sims conjecture [3] that bounds the order of point
stabilizers in primitive groups in terms of the subdegrees.

Primitive groups are classified into eight types by the O’Nan–Scott theorem (following
the subdivision in [15]). The primitive groups of twisted wreath type (TW) are the most
mysterious and commonly misunderstood. We refer the reader to [1] and [5, § 4.7] for
detailed treatments and provide more information in § 2. This paper deals with subdegrees
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of twisted wreath groups, a topic that does not appear very often in the literature. The
published results include a paper by Giudici, Li, Praeger, Seress and Trofimov [10], which
proves bounds on the minimal subdegrees and explicitly constructs such a Gα-orbit of
minimal size witnessing the smallest subdegree. A result by Fawcett in her PhD thesis
[8, p. 59] shows that if the point stabilizer Gα acts primitively on the set of simple direct
factors of the socle of G, then there is a subdegree of size |Gα|.

The study of coprime subdegrees dates back to the work of Marie Weiss in 1935, who
proved that if G is primitive with coprime subdegrees m and n, then G has a subdegree
dividing mn that is greater than or equal to both m and n. Moreover, if G has k pairwise
coprime subdegrees then G has rank at least 2k (see [14, pp. 92–93]). The motivation
behind the present paper was a result of Dolfi, Guralnick, Praeger and Spiga [6] that
is proven in [7], stating that the maximal size of a set of pairwise coprime non-trivial
subdegrees of a finite primitive permutation group is at most 2. Dolfi et al. also showed
that if a primitive permutation group has a pair of non-trivial coprime subdegrees, then
its type is almost simple (AS), product action (PA) or TW. For types AS and PA, they
constructed infinite families with non-trivial coprime subdegrees, but only one example
for type TW is known.

The initial motivation for the work in this paper was to find infinite families of TW
groups with non-trivial coprime subdegrees. To do this, we construct new subdegrees for
TW groups, focusing on TW groups which arise from primitive groups of diagonal type.
In § 2 we provide examples for the structure of two-point stabilizers in twisted wreath
groups; this enables us to find sufficient conditions for specified subdegrees of a TW
group to exist. The culmination of our work in this section is Theorem 2.12, which gives
a sufficient condition to find an infinite family of TW groups having non-trivial coprime
subdegrees. Interestingly, the easiest way for the conditions to be satisfied would be to
have a factorization of a non-abelian finite simple group as a product of centralizers—
which cannot occur because of the validity of the Szep conjecture (see Remark 2.14).

In § 3 we therefore focus on a more specific family of TW groups, which we denote
G(m, q). The group G(m, q) is constructed from the non-abelian simple group PSL(2, q)
and a primitive permutation group of diagonal type with socle PSL(2, q)m. The group
G(2, 7) is the example given in [6] of a primitive TW group with non-trivial coprime
subdegrees. For the full definition of G(m, q), see § 4. The main reason to focus on G(m, q)
is that we have a comprehensive understanding of the subgroup structure of PSL(2, q)
(going back to work of Dickson [4] and Moore [12]), and this allows us to apply results
from § 2 to obtain many subdegrees of G(m, q), listed in Table 1. This yields the following
theorem, which answers the question of Dolfi et al. in the positive.

Theorem 1.1. Table 2 exhibits infinitely many integers m and prime powers q for
which the group G(m, q) has a pair of non-trivial coprime subdegrees.

As mentioned above, we expect the existence of non-trivial coprime subdegrees to be
rare. We therefore go further with our analysis to discover precisely when the group
G(m, q) may have non-trivial coprime subdegrees. We obtain the following result.

Theorem 1.2. The group G(m, q) has non-trivial coprime subdegrees if and only if
one of the following holds:
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Table 1. Some subdegrees of G(m, q).

Row m q d

1 m � 3 all (q + 1)m

m = 2 q ≡ 1 (mod 4) (q + 1)2

2 q ≡ 1 (mod 4)
(

1
2q(q + 1)

)m

q ≡ 3 (mod 4)
(

1
2q(q − 1)

)m

3 even
(

1
2q(q − 1)

)m

4 odd (q(q − 1))m

odd and q � 7 (q(q + 1))m

even (q(q − 1))m and (q(q + 1))m

5 all
(

1
(2,q−1)

(q2 − 1)
)m

6 q ≡ ±1 (mod 8) and q is prime
( |T |

24

)m

7 q ≡ ±1 (mod 10) and q is prime,
( |T |

60

)m

or q = p2 where p > 3 is prime and
p ≡ ±3 (mod 10)

8 m � 6 q = 9 6m

Table 2. Nontrivial coprime subdegrees of G(m, q).

m q d1 d2

m = 2 q ≡ 3 (mod 4)
(

1
2q(q − 1)

)2
divides 2(q + 1)2

m � 3 q ≡ 3 (mod 4)
(

1
2q(q − 1)

)m
(q + 1)m

m � 3 even
(

1
2q(q − 1)

)m
or (q(q − 1))m (q + 1)m

q = 29 30m 203m

q = 7 7m 24m

q = 11 11m 60m

(1) q ≡ 3 (mod 4) or q = 29;

(2) q is even and m � 3.

Finally, in § 7 we analyse the m = 2 case in more detail to determine all pairs of
non-trivial coprime subdegrees.
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Table 3. Classification of non-trivial coprime subdegrees of G(2, q).

q Hf Hg |H : Hf | |H : Hg|

≡ 3 (mod 4) P1 × P1 Dq+1 � S2 2(q + 1)2
(

1
2q(q − 1)

)2

7 C7 × C7 � Hf S4 � S2 divides 2(242) 72

11 C11 × C11 � Hf A5 � S2 divides 2(602) 112

11 P1 × P1 A4 � S2 2(122) 552

19 P1 × P1 A5 � S2 2(202) 572

23 P1 × P1 S4 � S2 2(242) 2532

29 X × X � Hf where |P1 : X| = 2 A5 � S2 divides 2(602) 2032

59 P1 × P1 A5 � S2 2(602) 17112

Theorem 1.3. For q /∈ {7, 11, 29} the pair (a,b) is a non-trivial pair of coprime subde-
grees of G(2, q) if and only if (a, b) = (|H : Hg|, |H : Hf |) for some pair Hg, Hf appearing
in Table 3.

Remarkably, we find that if q ≡ 3 (mod 4) and q > 19, then (up to multiplicity) G(2, q)
has exactly one pair of non-trivial coprime subdegrees. We make no attempt to investigate
the multiplicities of the non-trivial coprime subdegrees, but this in itself is an interesting
problem.

2. Twisted wreath groups

We now describe the construction of the twisted wreath product as introduced by Neu-
mann in [13]. Let T and H be arbitrary non-trivial groups. For any subset X of H, let TX

denote the set of functions from X to T , which is a group under pointwise multiplication.
Let id denote the function defined by id(x) = 1 for all x ∈ X. It can be shown that H
acts as a group of automorphisms on TH by fx(z) = f(xz) for all f ∈ TH and x, z ∈ H.
Now let L be a subgroup of H, and let R be a set of left coset representatives of L in H.
Let φ : L → Aut(T ) be a homomorphism. Set

N = {f ∈ TH | f(z�) = f(z)φ(�) for all z ∈ H and � ∈ L}.

We can show that N is a subgroup of TH and that N ∼= TR. Furthermore, the group N
is invariant under the action of H, so H acts as a group of automorphisms on N .

Definition 2.1. We define the twisted wreath product determined from (T,H, φ) to be
the group G = N � H. The group G acts on Ω = N with N acting by right multiplication
and H acting by automorphisms, that is, αnh = (αn)h for all α ∈ Ω, n ∈ N and h ∈ H.

Lemma 2.2. The non-trivial subdegrees of G are the values of |H : Hf | for f ∈ N \
{id}. Also, if G is primitive, then no non-trivial subdegree of G is equal to 1.

Proof. We can verify that Gid = H, so the non-trivial subdegrees of G are of the form
|Gid : Gid ∩ Gf | = |H : Hf | for some f ∈ N \ {id}. Now suppose that G is primitive. If
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some non-trivial subdegree of G is equal to 1, then G must have prime order and so either
T or H must be trivial, a contradiction. �

The following result from [5, Lemma 4.7A] gives a set of sufficient conditions for a
twisted wreath product to be primitive.

Theorem 2.3. Let T be a non-abelian finite simple group, and suppose that H is
a primitive permutation group with point stabilizer L. Suppose that the group of inner
automorphisms of T is contained in the image of φ, but Im φ is not a homomorphic image
of H. Then the twisted wreath product determined from (T,H, φ) is a primitive group
with regular socle N , and N ∼= Tm where m = |H : L|.

We will deal with a class of primitive TW groups constructed from a group of diagonal
type.

Lemma 2.4. Let T be a finite non-abelian simple group, let H = T � Sm and let L =
{(x, . . . , x)σ | x ∈ T, σ ∈ Sm}. Define φ : L → Aut(T ) by setting φ((x, . . . , x)σ) = ix for
all x ∈ T and σ ∈ Sm, where ix denotes the automorphism of T induced by conjugation
by x. Then the construction in Definition 2.1 yields a primitive TW permutation group
G(m,T ) with socle isomorphic to T |T |m−1

and point stabilizer isomorphic to T � Sm.

Proof. The group H acts primitively on the set of right cosets of L. Note that Inn(T ) =
Im φ and that Inn(T ) is not a homomorphic image of H. All the conditions of Theorem 2.3
have been satisfied, so G(m,T ) is indeed a primitive group of type TW. Since

|H : L| =
|T |m · m!
|T | · m!

= |T |m−1,

the socle is of the form T |T |m−1
. �

We note that G(2,PSL(2, 7)) is the primitive TW group in [6, pp. 12–14] with non-
trivial coprime subdegrees.

Throughout, we will let H,L and φ be as defined in Lemma 2.4. Let

N = {f ∈ TH | f(z�) = f(z)φ(�) for all z ∈ H and � ∈ L}

be the set of functions that G(m,T ) acts on.
We now construct some g ∈ N which is very similar to the function used by Dolfi

et al. [6] and Giudici et al. [10].

Lemma 2.5. Let D be a subgroup of H. Suppose there exists t ∈ H such that
(η, . . . , η)σ ∈ Z(Dt ∩ L) with η �= 1. Then g ∈ TH defined by

g(z) =

{
ηφ(�) if z = dt�, for some d ∈ D and � ∈ L,

1 if z ∈ H \ DtL
(2.1)

is well defined. Moreover, g is a non-constant function, g ∈ N and D � CH(g).
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Proof. First, we show that g is well defined. If z = d1t�1 = d2t�2 for d1, d2 ∈ D
and �1, �2 ∈ L, then �2�

−1
1 = t−1d−1

2 d1t ∈ Dt ∩ L. Hence �2 = u�1 with u ∈ Dt ∩ L.
Let u = (ρ, . . . , ρ)τ . Since (η, . . . , η)σ ∈ Z(Dt ∩ L), it follows that (ρη, . . . , ρη)τσ =
(ηρ, . . . , ηρ)στ . In particular, ρη = ηρ and thus ηφ(u) = ηiρ = η. Hence

ηφ(�1) = ηφ(u)φ(�1) = ηφ(u�1) = ηφ(�2)

and so g(z) does not depend on the representation z = dit�i of z.
Next, we show that g ∈ N . If z = dt� for d ∈ D and � ∈ L, then

g(z�1) = g(dt��1) = ηφ(��1) = ηφ(�)φ(�1) = g(z)φ(�1)

for each �1 ∈ L. If z /∈ DtL, then z� /∈ DtL, so g(z�) = 1 = g(z)φ(�). Hence g ∈ N . Now
suppose for a contradiction that g is constant. Then ηφ(�) = ηφ(1) = η for all � ∈ L, and
since Inn(T ) � Im φ we have η ∈ Z(T ) = 1, a contradiction. Thus, g is non-constant.

Finally, we show that for each d ∈ D and z ∈ H, we have gd(z) = g(dz) = g(z), by
considering the z ∈ DtL and z /∈ DtL cases. If z = d1t�1 for d1 ∈ D and �1 ∈ L, then
g(dz) = g(dd1t�1) = ηφ(�1) = g(d1t�1) = g(z). If z /∈ DtL, then it also follows that dz /∈
DtL, so g(dz) = g(z) = 1. Thus D centralizes g. �

Lemma 2.6. Let D be a maximal subgroup of H. If there exists t ∈ H such that
Z(Dt ∩ L) contains an element (η, . . . , η)σ with η �= 1, then |H : D| is a subdegree of
G(m,T ).

Proof. Define g as in Equation (2.1). Then by Lemma 2.5, D � CH(g). Since D is
maximal in H, we conclude that CH(g) = D or H. If CH(g) = H, then for each h ∈ H, we
have that g(hz) = gh(z) = g(z), and thus g is a constant function, contradicting η �= 1 and
Lemma 2.5. So CH(g) = D. Hence |H : CH(g)| = |H : D| is a subdegree of G(m,T ). �

Corollary 2.7. Let K be a maximal subgroup of T and let D = K � Sm. If there exists
t ∈ H such that Z(Dt ∩ L) contains an element (η, . . . , η)σ with η �= 1, then |T : K|m is
a subdegree of G(m,T ).

Proof. By Corollary 1.5A and Lemma 2.7A in [5], it follows that D is maximal in H.
The result now follows from applying Lemma 2.6. �

Corollary 2.8. Let K be maximal in T with Z(K) �= 1. Then |T : K|m is a subdegree
of G(m,T ).

Proof. Let D = K � Sm. Then D ∩ L ∼= K × Sm, so Z(D ∩ L) ∼= Z(K) × Z(Sm). Since
Z(K) �= 1, we can apply Corollary 2.7 with t = 1, and thus |T : K|m is a subdegree of
G(m,T ). �

Corollary 2.9. Suppose m � 3. Let K be a maximal subgroup of T such that there
exists s ∈ T \ K with Z(K ∩ Ks) �= 1. Then |T : K|m is a subdegree of G(m,T ).
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Proof. Let D = K � Sm and set t = (1, . . . , 1, s). Then

Dt ∩ L = {(1, . . . , 1, s−1)(k1, . . . , km)σ(1, . . . , 1, s) | ki ∈ K,σ ∈ Sm} ∩ L

= {(1, . . . , 1, s−1)(k1, . . . , km) (1, . . . , s, . . . , 1)︸ ︷︷ ︸
s in the mσ−1

th component

σ | ki ∈ K,σ ∈ Sm} ∩ L.

If mσ−1 �= m then, since m � 3, one component of the product will be of the form kis,
while another will be of the form kj . But kis �= kj since s /∈ K, so the product is not in
L. So

Dt ∩ L = {(1, . . . , 1, s−1)(k1, . . . , km)(1, . . . , 1, s)σ | ki ∈ K,mσ = m} ∩ L

= {(k1, . . . , km−1, k
s
m)σ | ki ∈ K,mσ = m} ∩ L

∼= (K ∩ Ks) × Sm−1.

Hence
Z(Dt ∩ L) ∼= Z(K ∩ Ks) × Z(Sm−1)

and since Z(K ∩ Ks) �= 1, we can apply Corollary 2.7 to conclude that |T : K|m is a
subdegree of G(m,T ). �

Corollary 2.10. Let K be maximal in T and assume that there exists s ∈ T \ K such
that K ∩ Ks ∼= C2. Then |T : K|m is a subdegree of G(m,T ).

Proof. If m � 3, we are immediately done by Corollary 2.9 as K ∩ Ks is abelian. So
suppose m = 2 and let D = K � S2. Let M = {(x, x) | x ∈ T} and set t = (1, s). Then
Dt ∩ M ∼= K ∩ Ks ∼= C2. Since M � L it follows that Dt ∩ M � Dt ∩ L, and so Dt ∩
M � Z(Dt ∩ L). So, by Corollary 2.7, we see that |T : K|2 is a subdegree of G(m,T ). �

The following lemma is inspired by the construction in [6] of the subdegree 242 in the
group G(2,PSL(2, 7)).

Lemma 2.11. Let γ be a non-trivial element of T . Then( |T |
|CT (γ)|

)m

= |γT |m

is a subdegree of G(m,T ).

Proof. Let D = CT (γ) � Sm. Define h ∈ TH by

h(z) =

{
γφ(�) if z = d�, for some d ∈ D and � ∈ L,

1 if z ∈ H \ DL.
(2.2)

That is, h is defined as in Equation (2.1) with t = 1 and (γ, . . . , γ) being a non-trivial
element in Z(D ∩ L). Thus Lemma 2.5 implies that h is well defined, h ∈ N and D �
CH(h). We cannot use maximality as before to conclude that D = CH(h), but we can
prove this another way. Let h1 ∈ CH(h) and suppose that h1 /∈ DL. Then γ = h(1) =
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hh1(1) = h(h1) = 1, a contradiction. Thus, h1 = d� for some d ∈ D and � ∈ L. Since D �
CH(h), we have � = d−1h1 ∈ CH(h). Let φ(�) = ix, that is, � = (x, . . . , x)σ for some x ∈ T
and σ ∈ Sm. Then γ = h(1) = h�(1) = h(�) = γix , so x ∈ CT (γ). Hence � ∈ D and h1 ∈
D, so D = CH(h). Thus

|H : CH(h)| = |H : D| =
( |T |
|CT (γ)|

)m

= |γT |m

is a subdegree of G(m,T ). �

We now explain how the above results could be used to construct infinite families of
primitive TW groups with non-trivial coprime subdegrees. If G is a finite group with
subgroups A and B, we say G = AB is a coprime factorization if |G : A| and |G : B| are
coprime. If A and B are maximal in G, we say G = AB is a maximal coprime factorization.

Theorem 2.12. Let T = AB be a maximal coprime factorization of the finite non-
abelian simple group T , and suppose m � 3. If there exist s, t ∈ T such that Z(A ∩ As) �=
1 and Z(B ∩ Bt) �= 1, then the group G(m,T ) has non-trivial coprime subdegrees |T : A|m
and |T : B|m.

Proof. This follows from Corollary 2.8 when s or t lie in K, and from Corollary 2.9
when s or t lie in T \ K. �

The simple group T = PSL(2, 7) admits a maximal coprime factorization as T = AB
with A ∼= D8 and B ∼= F21. Since B is maximal in T and NT (P ) ∼= S3 for P a Sylow
3-subgroup of B, for any involution t ∈ NT (P ) we have B ∩ Bt = P . Thus, for m � 3, we
can apply the above theorem with s = 1 and this choice of t to produce the pair of non-
trivial coprime subdegrees (21m, 8m) of G(m,PSL(2, 7)). This gives us our first infinite
family of coprime subdegrees.

Remark 2.13. Theorem 2.12 is a very powerful result as [6] contains a list of all the
maximal coprime factorizations of finite non-abelian simple groups.

Remark 2.14. Let T be a finite non-abelian simple group. If T = AB is a maximal
coprime factorization such that both A and B have non-trivial centres, then we have
an infinite family of primitive TW groups with non-trivial coprime subdegrees (this is a
special case of Theorem 2.12 with s = t = 1). It is a conjecture of Szep that T can never
be written as AB for any (not necessarily maximal) subgroups A and B of T with non-
trivial centre. This conjecture was proven in [9], meaning that, in fact, this idea cannot
be used to construct an infinite family.

Remark 2.15. By Lemma 2.11, if there exist two non-trivial conjugacy classes of
coprime size, then we have an infinite family of primitive TW groups with non-trivial
coprime subdegrees. However, as observed in [9], this is not possible and is an immediate
corollary of the Szep conjecture.
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3. Results about PSL(2, q)

We begin with the following standard lemma.

Lemma 3.1. Let K be a maximal subgroup of a simple group T and let R be a
subgroup of K. Let x be the number of conjugates of R in T that are contained in K,
and let y be the number of conjugates of K in T whose intersection with K contains R.
Then

y =
x · |NT (R)|

|K| .

Proof. We will count the number of pairs (X,Y ) of subgroups of T , with X conjugate
to R, Y conjugate to K, and X � Y . By fixing X and considering the possibilities for Y ,
and then by fixing Y and considering the possibilities for X, we obtain

(#conjugates of R in T )(#conjugates of K in T containing R)

= (#conjugates of R in T that are contained in K)(#conjugates of K in T ).

Hence

|T |
|NT (R)| · y = x · |T |

|NT (K)| .

Now K � NT (K) � T , so by the maximality of K it follows that NT (K) = K or T .
However, the simplicity of T implies that K is not normal in T , so NT (K) = K. Thus

y =
x · |NT (R)|

|K| . �

Corollary 3.2. We use the same notation as in Lemma 3.1. Also, suppose that there
is only one conjugacy class of subgroups isomorphic to R in K. Then

y =
|NT (R)|
|NK(R)| .

Proof. Since there is only one conjugacy class of subgroups isomorphic to R in K, we
have that x = (|K|)/(|NK(R)|) and the result follows. �

We will be working a lot with the projective special linear groups. Information about
their subgroups and maximal subgroups will prove to be useful. The list in Dickson [4]
is the most commonly cited but contains an error about the number of conjugacy classes
of dihedral groups. In particular, it states that for a divisor d > 2 of (q ± 1)/(2, q − 1),
there is one conjugacy class of subgroups isomorphic to D2d for d odd, and two conjugacy
classes if d is even. However, it is actually the case that there are two conjugacy classes
for d odd, and one conjugacy class for d even. We point the reader to [12], which states
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the correct number of conjugacy classes in each case. For the rest of this section we set

V = GF(q)2

T = PSL(2, q)

P1 = T〈v〉, 0 �= v ∈ V.

Thus P1 is a point stabilizer in the degree q + 1 action of T on the set P1(V ) of one-
dimensional subspaces of V . We begin with a lemma concerning involutions in cosets
of P1.

Lemma 3.3. For all s ∈ T such that s /∈ P1, the coset P1s contains an involution.

Proof. With 〈v〉 the one-dimensional subspace of V stabilized by P1, let 〈w〉 = 〈v〉s.
Since s /∈ P1, it follows that {v, w} is a basis of V . Take the element g ∈ SL(2, q) such that
vg = w and wg = −v. Any element of V can be written as αv + βw for some α, β ∈ GF(q),
and we can show that (αv + βw)g2

= −αv − βw, so g2 = −I2. Thus, the permutation h
induced by g on P1(V ) is an involution and 〈v〉h = 〈vg〉 = 〈w〉 = 〈v〉s. Thus, h ∈ P1s and
so the coset P1s contains an involution. �

The next few lemmas deal with possible intersections of conjugate subgroups of T . We
now introduce some notation. Let K be a subgroup of T . For any R � K, let f(R) denote
the number of conjugates of K whose intersection with K contains R, and let g(R) denote
the number of conjugates of K whose intersection with K is equal to R. Note that for R
maximal in K, we have f(R) = g(R) + 1.

Lemma 3.4. Suppose that q ≡ ±1 (mod 10), and q is a prime or q = p2 for some
prime p ≡ ±3 (mod 10). Let K ∼= A5 be a subgroup of T . If q > 11 then there exists
t ∈ T such that K ∩ Kt ∼= C2.

Proof. Let R ∼= C2 be a subgroup of K. It is easy to calculate that, inside K, R is
contained in two subgroups isomorphic to D10, two subgroups isomorphic to D6 and one
subgroup isomorphic to C2

2 . We want to show that g(R) = f(C2) − 2g(D10) − 2g(D6) −
f(C2

2 ) = f(C2) − 2f(D10) − 2f(D6) − f(C2
2 ) + 4 is positive, where the second equality

follows from the fact that D10 and D6 are maximal in A5.
For R = C2,D10,D6 and C2

2 there is only one conjugacy class of subgroups isomorphic
to R in K, so by Corollary 3.2, we have

f(R) =
|NT (R)|
|NK(R)| .

It is easy to prove that |NK(C2)| = 4, |NK(D10)| = 10, |NK(D6)| = 6 and |NK(C2
2 )| =

12. Choose ε ∈ {−1, 1} such that (q + ε)/2 is even. Then we have NT (C2) = Dq+ε,
so |NT (C2)| � q − 1. By looking through the list of maximal subgroups of T , we
see that NT (C2

2 ) � C2
2 , A4, S4 or Dq±1. If C2

2
∼= D4 � NT (D4) � Dq±1, then NT (D4) =

NDq±1(D4) = D4 or D8. So |NT (C2
2 )| � 24. For n = 6 or 10, we use the list of maximal

subgroups of T given in [12] to see that Dn � NT (Dn) � Dq±1, A5 or S4. In the last two
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cases, if Dn is a subgroup, it must be maximal, and hence NT (Dn) = Dn. In the first
case, we have NT (Dn) = NDq±1(Dn) = Dn or D2n. So |NT (Dn)| � 2n for n = 6 and 10.

Putting all this together, we obtain f(C2) � (q − 1)/4, f(C2
2 ) � 24

12 = 2, f(D6) � 12
6 =

2 and f(D10) � 20
10 = 2. It now follows that g(C2) � (q − 1)/4 − 2 × 2 − 2 × 2 − 2 + 4 > 0

for q > 25. Taking into account the restrictions on q, it remains to consider the q = 19 case
in more detail. Here, f(C2) = (q + 1)/4 = 5. Also, there is no D12 in T , so NT (D6) = D6

and f(D6) = 1. Then g(C2) � 5 − 2 × 2 − 2 × 1 − 2 + 4 > 0, as desired. �

Lemma 3.5. Suppose that q ≡ ±1 (mod 8) is prime. Let K ∼= S4 be a subgroup of
T . Then there exists t ∈ T such that K ∩ Kt ∼= C2

2 . Moreover, if q � 17, then there exists
t ∈ T such that K ∩ Kt ∼= C2.

Proof. Let X be a subgroup of K isomorphic to C2
2 such that X is not normal in K.

Note that there is a unique subgroup Y such that X < Y < K. Moreover, Y ∼= D8. Thus
g(X) = f(X) − f(D8), which we want to show is positive.

There is only one conjugacy class of subgroups isomorphic to D8 in K, so by
Corollary 3.2 we have

f(D8) =
|NT (D8)|
|NK(D8)| =

|NT (D8)|
8

.

From the list of maximal subgroups of T we have D8 � NT (D8) � Dq±1 or S4. In the first
case, we have NT (D8) = NDq±1(D8) = D8 or D16. In the second case, we have NT (D8) =
D8, as D8 is maximal and not normal in S4. So |NT (D8)| � 16. This implies that f(D8) �
16
8 = 2.

We claim that NT (X) ∼= S4. There are two conjugacy classes of subgroups isomorphic
to S4 in T , so let J be a subgroup of T isomorphic to S4 that is not conjugate to K. Let
P and Q be the normal subgroups of J and K that are isomorphic to C2

2 , respectively.
Now there are two conjugacy classes of subgroups isomorphic to C2

2 in T . Since the
normalizers of P and Q in T (J and K, respectively) are not conjugate, the subgroups P
and Q cannot be conjugate. Hence X is conjugate to either P or Q. Thus, the normalizer
of X is conjugate to the normalizer of either P or Q, both of which are isomorphic to S4.
This proves that NT (X) ∼= S4.

The conjugacy class of X in K has size 3, so the number of conjugates of X in T
contained in K is at least 3. Then Lemma 3.1 implies that

f(X) � 3 · 24
24

= 3.

Putting all this together yields g(X) � 3 − 2 > 0. This proves the first part of the
lemma.

For the second part of the lemma, we verify the q = 17 case by a Magma [2] calculation.
We now show that if q > 17 then there exists t ∈ T such that K ∩ Kt = Z, where Z is
a subgroup of X isomorphic to C2. Since the only subgroups of K that contain Z as
a maximal subgroup are X and the subgroups isomorphic to S3, we need to show that
g(Z) = f(Z) − f(X) − 2g(S3) is positive. Since S3 is maximal in K, we have g(S3) =
f(S3) − 1, and thus g(Z) = f(Z) − f(X) − 2f(S3) + 2.

There is only one conjugacy class of subgroups isomorphic to Z in T , so the number
of conjugates of Z in T that are contained in K is equal to the number of subgroups
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isomorphic to C2 in K, which is equal to 9. Now choose ε ∈ {−1, 1} such that (q + ε)/2
is even. Then NT (Z) ∼= Dq+ε. By Lemma 3.1 we have

f(Z) =
9(q + ε)

24
� 3(q − 1)

8
.

There is only one conjugacy class of subgroups isomorphic to S3 in K, so by
Corollary 3.2 we have

f(S3) =
|NT (S3)|
|NK(S3)| =

|NT (S3)|
6

.

Now from the list of maximal subgroups of T as given in [12], we have S3 � NT (S3) �
Dq±1, S4 or A5. In the first case, we have NT (S3) = NT (D6) = NDq±1(D6) = D6 or D12.
In the second and third cases, we have NT (S3) = S3, as S3 is maximal and not normal
in S4 and A5. So |NT (S3)| � 12. Thus f(S3) � 12

6 = 2.
There are four subgroups isomorphic to C2

2 in K, and earlier in this proof we calculated
|NT (X)| = 24. So by Lemma 3.1 we get

f(X) � 4 · 24
24

= 4.

So g(Z) � (3(q − 1))/8 − 4 − 2 × 2 + 2 > 0 for q > 17. Thus the second part of the lemma
holds. �

Lemma 3.6. Let q = 2f for some f � 2 and suppose that K ∼= D2(q+1) is a subgroup
of T . Then there exists t ∈ T such that K ∩ Kt ∼= C2.

Proof. Let y ∈ K be an involution. Since q + 1 is odd all involutions of K are conju-
gate and CK(y) = 〈y〉. Moreover, all involutions in T are conjugate and T contains an
elementary abelian subgroup of order 2f � 4. Hence there exists t ∈ CT (y) with t /∈ K.
Thus y ∈ K ∩ Kt �= K. We show that K ∩ Kt = 〈y〉. Let x ∈ K have odd order. Then by
the maximality of K in T we have that K = NT (〈x〉). If we also have x ∈ Kt then by the
same argument we have Kt = NT (〈x〉), contradicting K �= Kt. Thus |K ∩ Kt| is a power
of 2 and we are done. �

4. When T = PSL(2, q)

Recall the group G(m,T ) defined in Lemma 2.3. From now on, we let T = PSL(2, q), a
non-abelian simple group, so for convenience we write G(m, q) = G(m,PSL(2, q)) where
m � 2 and q � 4. Recall H = T � Sm and L = {(x, . . . , x)σ | x ∈ T, σ ∈ Sm}.

The first lemma deals with the m = 2 case. We shall write S2 = 〈ι〉, so that H =
T � S2 = (T × T ) � 〈ι〉.

Lemma 4.1. Suppose m = 2. Let D = P1 � S2 = (P1 × P1) � 〈ι〉 and suppose that t =
(1, s) ∈ H such that s /∈ P1 is an involution. Then

Dt ∩ L ∼= D2(q−1)/(2,q−1)

and ι /∈ Dt ∩ L.
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Proof. We have P1 ∩ P s
1
∼= C(q−1)/(2,q−1) and 〈P1 ∩ P s

1 , s〉 ∼= D2(q−1)/(2,q−1). Let M =
{(x, x) | x ∈ T}. Then Dt ∩ M ∼= P1 ∩ P s

1 . Moreover, ι(1,s) = (s, s)ι ∈ Dt ∩ L. Since |L :
M | = 2, it follows that |Dt ∩ L : Dt ∩ M | = 2 and so

Dt ∩ L = 〈{(x, x) | x ∈ P1 ∩ P s
1 }, (s, s)ι〉 ∼= 〈P1 ∩ P s

1 , s〉 ∼= D2(q−1)/(2,q−1).

Moreover, note that ι /∈ Dt ∩ L. �

Theorem 4.2. Each row of Table 1 gives a triple (m, q, d) such that d is a subdegree
of G(m, q). Unless stated otherwise, we assume m � 2 and q � 4.

Proof. We begin by proving Row 1. When m � 3, this follows from setting K = P1 in
Corollary 2.9 and noting that for any s ∈ T \ P1, we have P1 ∩ P s

1
∼= Cq−1/(2,q−1), which

has non-trivial centre. When m = 2 and q ≡ 1 (mod 4), set D = (P1 × P1) � 〈ι〉 and note
that P1 is maximal in T . By Lemma 4.1 there exists t ∈ H such that Dt ∩ L ∼= Dq−1 and
ι /∈ Dt ∩ L. So Z(Dt ∩ L) ∼= C2 contains an element (η, η)σ with η �= 1 and we can finish
by Corollary 2.7.

Next, we prove Row 2. Let γ ∈ T be an involution. If q ≡ 1 (mod 4) then CT (γ) =
Dq−1, and if q ≡ 3 (mod 4) then CT (γ) = Dq+1. Hence Lemma 2.11 yields the subdegrees
listed.

Row 3 follows from letting K = D2(q+1) in Corollary 2.10 and using Lemma 3.6 to
guarantee the existence of t ∈ T such that K ∩ Kt ∼= C2.

Now consider Row 4. If q is odd, then there exists γ ∈ T of order (q + 1)/2. If q
is odd and q � 7, then there exists γ ∈ T of order (q − 1)/2. Finally, if q is even and
ε ∈ {−1, 1}, then there exists γ ∈ T of order q + ε. In each of these cases it can be shown
that CT (γ) = 〈γ〉, so by Lemma 2.11 we are done.

To see why Row 5 holds, let Z be the set of elements in SL(2, q) that are in the centre
of GL(2, q) and set

γ =
[
1 1
0 1

]
Z,

an element of T . Then CT (γ) has order q and so Lemma 2.11 implies that( |T |
q

)m

=
(

q2 − 1
(2, q − 1)

)m

is a subdegree of G(m, q).
If m � 3, then Row 6 holds by letting K = S4 in Corollary 2.9 and using Lemma 3.5,

which guarantees the existence of t ∈ T such that K ∩ Kt ∼= C2
2 . It remains to consider

the m = 2 case. The q = 7 case is done in [6]. If q > 7, then the restrictions on q imply
that q � 17, and then by Lemma 3.5 there exists s ∈ T such that K ∩ Ks ∼= C2. So by
Corollary 2.10 it follows that |T : K|2 = (|T |/24)2 is a subdegree of G(2, q).

Finally, we consider Rows 7 and 8. Let K be a subgroup of T isomorphic to A5 (such
a subgroup exists and is maximal for the values of q in Row 7). Suppose first that
q � 19. By Lemma 3.4, there is t ∈ T such that K ∩ Kt ∼= C2 and so Corollary 2.10
shows that Row 7 holds for q � 19. Suppose now that q ∈ {9, 11} and first consider the
case where m � 6. By Magma [2], for all t ∈ T with t /∈ K, K ∩ Kt = A4 if q = 9 and
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K ∩ Kt ∼= S3 if q = 11. On the other hand, there are r, s ∈ T such that K ∩ Kr ∩ Ks ∼= C3

if q = 9 and K ∩ Kr ∩ Ks ∼= C2 if q = 11. By our choice of r and s, we have K ∩ Kr �=
K ∩ Kr ∩ Ks �= K ∩ Ks, and so neither of the elements r, s or sr−1 can be contained
in K. Set h = (s, r, r, 1 . . . , 1) = (a1, . . . , am) and let us compute Dh ∩ L. Suppose x =
((k1, . . . , km)σ)h ∈ Dh ∩ L for some ki ∈ K and σ ∈ Sm. Now

x = ((k1, . . . , km)σ)h = h−1(k1, . . . , km)σh

= h−1(k1, . . . , km)hσ−1
σ

= (s−1, r−1, r−1, 1, . . . , 1)(k1, . . . , km)(a1σ , . . . , amσ )σ

= (s−1k1a1σ , r−1k2a2σ , r−1k3a3σ , k4a4σ , . . . , kmamσ )σ.

Suppose σ does not fix the set {1, . . . , 3}. Then, since m � 6, there exist i, j such that
4 � i, j � m and aiσ �= ajσ . Since x ∈ L, we have kiaiσ = kjajσ and aiσ (ajσ )−1 = k−1

i kj ∈
K. But aiσ (ajσ )−1 = r, s, sr−1 or the inverse of one of these, none of which lie in K, a
contradiction. Hence σ must fix {1, 2, 3} setwise. Suppose now that σ does not fix {2, 3}
setwise. Then a2σ �= a3σ . Since x ∈ L, we have r−1k2a2σ = r−1k3a3σ and a2σ (a3σ )−1 =
k−1
3 k2 ∈ K. But this means that sr−1 or rs−1 = (sr−1)−1 lies in K, which is not true, so

σ must fix {2, 3} setwise. Thus

x = (ks
1, k

r
2, k

r
3, k4, . . . , km)σ

and so, with P ∼= C2 × Sm−3 the subgroup of Sm consisting of all permutations fixing
{2, 3} and {4, . . . , m} setwise, we have

Dh ∩ L = {(ks
1, k

r
2, k

r
3, k4, . . . , km)σ | ki ∈ K,σ ∈ P} ∩ L

∼= (Ks ∩ Kr ∩ K) × P.

Since K ∩ Kr ∩ Ks = C2 or C3, it follows that Z(Dt ∩ L) contains an element (η, . . . , η)σ
with η �= 1. Thus Corollary 2.7 implies |T : K|m = (|T |/60)m is a subdegree of G(m, q).

If 2 � m � 5 and q = 11, then computations in Magma [2] show there is t ∈ H such
that Z(Dt ∩ L) contains a suitable element to apply Corollary 2.7. For q = 9 and 2 �
m � 5, there is no such element, hence the restriction m � 6 in Row 8. �

We can also make use of Lemma 2.5 by allowing D not to be maximal in H. In this
case we do not get an exact subdegree, but we do prove that there exists a subdegree
dividing some number. This will prove to be useful in constructing an infinite family with
non-trivial coprime subdegrees.

Lemma 4.3. Let D be a subgroup of H. Suppose there exists t ∈ H such that
(η, . . . , η)σ ∈ Z(Dt ∩ L) with η �= 1. Then G(m,T ) has a non-trivial subdegree dividing
|H : D|.

Proof. Define g as in Equation (2.1). Then by Lemma 2.5, D � CH(g), so the
subdegree |H : CH(g)| divides |H : D|. To show that this subdegree is non-trivial,
it suffices to show that g �= id, which is true, as by Lemma 2.5 we have that g is
non-constant. �
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Corollary 4.4. The group G(2, q) has a non-trivial subdegree dividing 2(q + 1)2.

Proof. Let D = P1 × P1 and let t = (1, s) for some s /∈ P1. Then Dt ∩ L ∼= P1 ∩ P s
1
∼=

C(q−1)/(2,q−1) has non-trivial centre. Since Dt ∩ L � T 2, it follows that the conditions in
Lemma 4.3 have been satisfied, so G(2, q) has a subdegree dividing |H : D| = 2(q + 1)2.

�

We now present some infinite families of primitive TW groups with non-trivial coprime
subdegrees and so prove Theorem 1.1.

Theorem 4.5. Each row of Table 2 gives a quadruple (m, q, d1, d2) such that d1 and
d2 are non-trivial coprime subdegrees of G(m, q).

Proof. This follows from using the data in Lemma 4.2, apart from using Corollary 4.4
to construct the subdegree dividing 2(q + 1)2 in Row 1. �

5. Characterization results

Recall the action of H = T � Sm on N = {f ∈ TH | f(z�) = f(z)φ(�) ∀z ∈ H, � ∈ L},
where L = {(x, . . . , x)σ | x ∈ T, σ ∈ Sm}, and φ((x, . . . , x)σ) = ix for all (x, . . . , x)σ ∈ L
(ix denotes the automorphism induced on T by conjugation by x). We will investigate
this action in more detail. Also, define the projection maps πi : Tm → T for all 1 � i � m
by πi((t1, . . . , tm)) = ti for all t1, . . . , tm ∈ T .

Lemma 5.1. Let f ∈ TH . Then f ∈ N if and only if

f((t1, . . . , tm)σ) = [f((t1t−1
m , . . . , tm−1t

−1
m , 1))]tm

for all t1, . . . , tm ∈ T and σ ∈ Sm.

Proof. Let f ∈ N . For all t1, . . . , tm ∈ T and σ ∈ Sm with z = (t1t−1
m , . . . , tm−1t

−1
m , 1)

and � = (tm, . . . , tm)σ we have

f((t1, . . . , tm)σ) = f(z�)

= f(z)φ(�)

= [f((t1t−1
m , . . . , tm−1t

−1
m , 1))]tm .

Conversely, suppose that f((t1, . . . , tm)σ) = [f((t1t−1
m , . . . , tm−1t

−1
m , 1))]tm holds for all

t1, . . . , tm ∈ T and σ ∈ Sm. Then for any z = (a1, . . . , am)σ1 ∈ H and � = (t, . . . , t)σ2 we
have

f(z�) = f((a1t, . . . , amt)σ1σ2) = [f((a1a
−1
m , . . . , am−1a

−1
m , 1))]amt

= [f((a1, . . . , am)σ1)]t

= f(z)φ(�),

so f ∈ N . �
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Lemma 5.2. If for some f ∈ N we have Tm � Hf , then f = id.

Proof. Define a function α : Tm−1 → T by α((x1, . . . , xm−1)) = f((x1, . . . , xm−1, 1))
for all xi ∈ T . We will use Lemma 5.1 in the following series of manipulations. We have
(t1, . . . , tm) ∈ Hf for all t1, . . . , tm ∈ T if and only if for all ti, ai ∈ T and σ ∈ Sm we have

f (t1,...,tm)((a1, . . . , am)σ) = f((a1, . . . , am)σ)

⇐⇒ f((t1a1, . . . , tmam)σ) = f((a1, . . . , am)σ)

⇐⇒ [f((t1a1a
−1
m t−1

m , . . . , tm−1am−1a
−1
m t−1

m , 1))]tm = f((a1a
−1
m , . . . , am−1a

−1
m , 1)).

This is equivalent to

[α((t1s1t
−1
m , . . . , tm−1sm−1t

−1
m ))]tm = α((s1, . . . , sm−1)) ∀ ti, si ∈ T.

By setting tm and the si to be 1, and varying t1, . . . , tm−1, we see that α is a constant
function. Suppose the value of α is always equal to y ∈ T . Then y = ytm for all tm ∈ T ,
so y ∈ Z(T ) = 1. Thus α((x1, . . . , xm−1)) = 1 for all xi ∈ T . By Lemma 5.1, we have
f = id. �

Lemma 5.3. Let X be a subgroup of H = T � Sm that does not contain Tm. Then
|H : X| is divisible by |T : K| for some maximal subgroup K of T .

Proof. Since Tm is normal in H, it follows that |X : X ∩ Tm| divides |H : Tm|. Now

|H : X| =
|H : X ∩ Tm|
|X : X ∩ Tm| =

|H : Tm||Tm : X ∩ Tm|
|X : X ∩ Tm| ,

so |H : X| is divisible by |Tm : X ∩ Tm|. It suffices to show that for any proper subgroup
Y of Tm, we have that |Tm : Y | is divisible by |T : K| for some maximal subgroup K of T .

Suppose there exists i such that πi(Y ) < T , and assume without loss of generality
that π1(Y ) < T . Then there exists a maximal subgroup K of T such that π1(Y ) � K.
So Y � K × T × · · · × T , and |Tm : Y | is divisible by |Tm : K × T × · · · × T | = |T : K|.
Thus we are done in this case. If πi(Y ) = T for all i, then Y ∼= T k for some k < m.
Then |Tm : Y | = |T |m−k is divisible by |T | and thus |T : K| for any maximal subgroup
K of T . �

Corollary 5.4. Let f ∈ N \ {id}. Then |H : Hf | is divisible by |T : K| for some
maximal subgroup K of T .

Proof. This follows immediately from Lemmas 5.2 and 5.3. �

If m � 3, then the results we have from the previous sections are enough to determine
all q such that G(m, q) has non-trivial coprime subdegrees.

Theorem 5.5. Suppose m � 3. Then G(m, q) has non-trivial coprime subdegrees if
and only if either q is even or q ≡ 3 (mod 4) or q = 29.

Proof. By the results in § 4 we see that for all these values of q the group G(m, q)
has non-trivial coprime subdegrees. Now suppose that the group G(m, q) has non-trivial
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coprime subdegrees. Then there exist f, g ∈ N \ {id} such that |H : Hf | and |H : Hg|
are coprime. By Corollary 5.4 there exist K1 and K2 maximal in T such that |H : Hf |
is divisible by |T : K1| and |H : Hg| is divisible by |T : K2|. Since |T : K1| and |T : K2|
are coprime, it follows from Lemma 3.16 in [11] that T = K1K2 is a maximal coprime
factorization. By the list in [6] it follows that either q is even, or q ≡ 3 (mod 4) or
q = 29. �

6. Maximal subgroups of H = T � S2 and T × T

To address the m = 2 case, we will need information about the maximal subgroups of
H = T � S2 and T × T , where T is a non-abelian simple group. The following lemma is
part of the proof of the O’Nan–Scott theorem on primitive groups. We separate it out
and include a proof for completeness.

Lemma 6.1. Let X be a maximal subgroup of H = T � S2 = (T × T ) � 〈ι〉. Then up
to conjugacy X has one of the following three types:

(1) X = T 2 = T × T and |H : X| = 2;

(2) X = 〈S, (a, b)ι〉 where S = {(t, tσ) | t ∈ T} for some σ ∈ Aut(T ) and a, b ∈ T such
that (ab)σ = ba and σibσ = ia, and |H : X| = |T |;

(3) X = K � S2 for some K maximal in T , and |H : X| = |T : K|2.

Proof. Let M be a proper subgroup of H. If M � T 2, then M is contained in the
proper subgroup T 2, which is of type (2.1).

If M � T 2, there exists (a, b)ι ∈ M for some a, b ∈ T . Thus |M : M ∩ T 2| = 2 and 〈M ∩
T 2, (a, b)ι〉 = M . Also note that ((a, b)ι)2 = (ab, ba) ∈ M ∩ T 2. Moreover, for any t1, t2 ∈
T we have (t1, t2)(a,b)ι = (tb2, t

a
1), so π2(M ∩ T 2) = (π1(M ∩ T 2))a.

If π1(M ∩ T 2) = π2(M ∩ T 2) = T , then M ∩ T 2 = T 2 or M ∩ T 2 ∼= T . If M ∩ T 2 = T 2,
then since M contains an element outside T 2 we must have M = H, a contradiction. So
M ∩ T 2 ∼= T . Thus M ∩ T 2 = {(t, tσ) | t ∈ T} = S, where α ∈ Aut(T ). Since (ab, ba) ∈
M ∩ T 2, it follows that (ab)σ = ba. Since M ∩ T 2 � M , we have that (a, b)ι normalizes
M ∩ T 2. If we let ix denote the automorphism of T induced by conjugation by x, we have
(t, tσ)(a,b)ι = (tσib , tia) ∈ M ∩ T 2 for all t ∈ T , so σibσ = ia. Thus, M is a subgroup of
type (2.2) and since |M : M ∩ T 2| = 2 we have that |H : M | = |T |.

Finally, if π1(M ∩ T 2) < T , let K be maximal in T such that π1(M ∩ T 2) � K.
Then π2(M ∩ T 2) � Ka. So M = 〈M ∩ T 2, (a, b)ι〉 � 〈K × Ka, (a, b)ι〉. Moreover, since
(ab, ba) ∈ M ∩ T 2 we have that ab ∈ K. Then (1, ((ab)−1)a)(a, b)ι = (a, a−1)ι, so 〈K ×
Ka, (a, b)ι〉 = 〈K × Ka, (a, a−1)ι〉. Now ((K × K) � 〈ι〉)(1,a) = 〈K × Ka, (a, a−1)ι〉, so up
to conjugacy K is contained in a subgroup of type (7.1).

Hence each subgroup M of H is contained in a type (2.1), (2.2) or (7.1) subgroup.
Observe that a type (i) subgroup cannot be contained in a type (j) subgroup if i �= j,
and that a type (i) subgroup cannot be properly contained in another type (i) sub-
group. Hence the subgroups stated in the lemma are precisely the maximal subgroups
of H. �
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Lemma 6.2. The maximal subgroups of T 2 are of one of the following two types:

(1) K × T or T × K for some K maximal in T ;

(2) {(t, tσ) | t ∈ T} where σ ∈ Aut(T ).

Proof. Let M be a proper subgroup of T 2. If π1(M) < T , then let K be maximal in
T such that π1(M) � K. Then M � K × T . Similarly, if π2(M) < T then there exists
K maximal in T such that M � T × K. So if there exists i such that πi(M) is a proper
subgroup of T , it follows that M is contained in a type (2.1) subgroup. If π1(M) =
π2(M) = T , then M ∼= T , so M is equal to (and thus contained in) a type (2.2) subgroup.
So in all cases, M is contained in a type (2.1) or (2.2) subgroup.

It is easy to show that a type (i) subgroup cannot be contained in a type (j) subgroup
if i �= j, and that a type (i) subgroup cannot be properly contained in another type (i)
subgroup. So type (2.1) and type (2.2) subgroups are maximal in T 2. �

7. The m = 2 case

We now address the m = 2 case. Since PSL(2, 4) ∼= PSL(2, 5), it follows that G(2, 4) ∼=
G(2, 5). So, from now on, suppose that q �= 5. Recall that H = T � S2 and L = {(x, x)σ |
x ∈ T, σ ∈ S2}.

Lemma 7.1. Suppose that |H : Hf | and |H : Hg| are non-trivial coprime subdegrees
of G(2, q). Let R1 and R2 be maximal subgroups of H such that Hf � R1 and Hg � R2.
Then one of the following holds:

(1) R1 and R2 are of type (7.1) in Lemma 6.1;

(2) after reordering, R1 = T 2 and Hf is contained in a subgroup of type (2.1) in
Lemma 6.2, R2 is of type (7.1) in Lemma 6.1 and |H : R2| is odd.

Proof. By Lemma 5.4, neither R1 nor R2 can be of type (2.2) as |T | and |T : K| are
never coprime for any K maximal in T . If both R1 and R2 are of type (7.1) in Lemma 6.1,
we obtain the first case. Now assume without loss of generality that R1 is of type (2.1)
and so R1 = T 2. Then by Lemma 5.2 we have Hf �= T 2, so Hf is strictly contained in T 2.
Thus Hf is contained in a maximal subgroup of T 2, say M . Then |H : Hf | is divisible
by |H : M |. If M is of type (2.2) in Lemma 6.2, then |H : M | = 2|T |, so by Lemma 5.4
it is not possible for |H : Hf | and |H : Hg| to be coprime. Thus M is of type (2.1) in
Lemma 6.2. It is not possible for R2 to be of type (2.1) or (2.2) as then both |H : R1|
and |H : R2| will be even. Thus R2 is of type (7.1) in Lemma 6.1. We note that |H : R2|
is odd since |H : M | is even. �

Lemma 7.2. Suppose that Case (2.2) of Lemma 7.1 holds. Let Hf be contained in a
subgroup of type (2.1) in Lemma 6.2 constructed from K1. Let R2 be constructed from
K2. Then the possibilities for K1 and K2 are as follows:

(1) q is even, K1 = D2(q+1) and K2 = P1;

(2) q ≡ 3 (mod 4) with q > 7, K1 = P1 and K2 = Dq+1;
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(3) q ∈ {7, 23}, K1 = P1 and K2 = S4;

(4) q ∈ {11, 19, 29, 59}, K1 = P1 and K2 = A5.

Proof. We need |H : M | = 2|T : K1| to be coprime to |H : R2| = |T : K2|2, where
Hf � M = T × K1 or K1 × T . In particular, |T : K1| must be coprime to |T : K2| so
we can systematically work through the list of maximal coprime factorizations in [6], to
obtain the possibilities mentioned above. �

We will do some detailed analysis of the possibilities for Hf and Hg when |H : Hf | and
|H : Hg| are non-trivial coprime subdegrees of G(2, q). Since Hh

f = Hfh for all h ∈ H, it
suffices to consider Hf up to conjugacy in H. We begin with a lemma about subgroups
of T × P1 that will help simplify our casework later.

Lemma 7.3. Let q ≡ 3 (mod 4). Let X be a subgroup of M = T × P1 such that |M :
X| is coprime to 1

2q(q − 1). Then X = M or X = P t
1 × P1 for some t ∈ T .

Proof. If π1(X) = T , then T = π1(X) ∼= X/kerπ1, so |X| = |T ||kerπ1|. Now

|M : X| =
|T ||P1|

|T ||kerπ1| =
|P1|

|kerπ1|
divides |P1| = 1

2q(q − 1), so we must have X = M .
Now suppose that π1(X) < T . Then |X| � |π1(X)||P1|. Note that |M | = |T ||P1| =

|P1|2(q + 1), and every prime factor of |P1|2 is clearly a prime factor of 1
2q(q − 1) = |P1|,

so for |M : X| to be coprime to 1
2q(q − 1) we require |X| � |P1|2. Combining this with

|X| � |π1(X)||P1| we obtain |π1(X)| � |P1|. We cannot have q = 7 and π1(X) = S4

as then |M : X| would be divisible by |M : S4 × P1| = 7, which is not coprime to
1
2q(q − 1) = 21. Similarly, we cannot have q = 11 and π1(X) = A5 as then |M : X| would
be divisible by |M : A5 × P1| = 11, which is not coprime to 1

2q(q − 1) = 55. So it follows
from [12] that π1(X) ∼= P1. Since |X| � |P1|2 it follows that X = P t

1 × P1. �

Lemma 7.4. If |H : Hf | and |H : Hg| are non-trivial coprime subdegrees of G(2, q),
then up to reordering one of the possibilities in Table 4 holds.

Proof. Suppose that |H : Hf | and |H : Hg| are non-trivial coprime subdegrees of
G(2, q). Let R1 and R2 be maximal subgroups of H such that Hf � R1 and Hg � R2.
According to Lemma 7.1, we can split our analysis into two cases.

Case 1. R1 and R2 are of type (7.1) in Lemma 6.1 and are constructed from K1 and
K2, respectively.

Then |T : K1|2 and |T : K2|2 are the indices of R1 and R2, so they must be coprime.
Thus |T : K1| and |T : K2| are coprime, so T = K1K2 is a maximal coprime factorization
by Lemma 3.16 in [11]. We will work through the list in [6], and assume without loss of
generality that K1 = P1.

Subcase 1a. q is even and K2 = D2(q+1).
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Table 4. Possibilities for Hf and Hg.

Row q Hf Hg

1a even P1 � S2 Cq+1 × Cq+1 � Hg

1b P1 � S2 |T × D2(q+1) : Hg| is

coprime to (q + 1)2

2 ≡ 3 (mod 4) P1 � S2, T × P1 or P1 × P1 Dq+1 � S2

3a 7 C7 × C7 � Hf S4 � S2

3b P1 � S2, T × P1 or P1 × P1 D8 � S2

4a 11 C11 × C11 � Hf A5 � S2

4b P1 � S2, T × P1 or P1 × P1 A4 � S2

5 19 P1 � S2, T × P1 or P1 × P1 A5 � S2

6 23 P1 � S2, T × P1 or P1 × P1 S4 � S2

7 29 X × X � Hf where |P1 : X| = 2 A5 � S2

8 59 P1 � S2, T × P1 or P1 × P1 A5 � S2

Since |R1 : Hf | is coprime to |H : R2| = (1
2q(q − 1))2 and divides |R1| = 2(q(q − 1))2,

it follows that Hf = R1. Since |H : R1| = (q + 1)2, we have that |H : Hg| = |H : R2||R2 :
Hg| = (1

2q(q − 1))2|R2 : Hg| is coprime to (q + 1)2. Thus |R2 : Hg| is coprime to (q + 1)2

so Cq+1 × Cq+1 � Hg and we are in Row 1a of Table 4.

Subcase 1b. q ≡ 3 (mod 4) with q > 7 and K2 = Dq+1.

We have |H| = |R1||R2|, so Hf = R1 and Hg = R2. Thus we are in Row 2.

Subcase 1c. q ∈ {7, 23} and K2 = S4.

Suppose q = 7. Since |R2 : Hg| is coprime to |H : R1| = 82 and divides |R2| = 2(242),
it follows that |R2 : Hg| is a power of 3. Thus Hg = R2 or Hg

∼= D8 � S2. In either case,
|R1 : Hf | is coprime to |H : R2| = 72, so Hf contains the subgroup of R1 isomorphic to
C7 × C7. If Hg = R2, we are in Row 3a. Furthermore, if Hg = D8 � S2, then since |R1 : Hf |
is coprime to |H : Hg| = 212 and divides |R1| = 2(212), we must have |R1 : Hf | = 1 or 2.
Thus Hf = R1 or Hf = P1 × P1 and we are in Row 3b.

If q = 23, we have |H| = |R1||R2|, so Hf = R1 and Hg = R2. Thus we are in Row 6.

Subcase 1d. q ∈ {11, 19, 29, 59} and K2 = A5.

If q = 11, then since |R2 : Hg| is coprime to |H : R1| = 122 and divides |R2| = 2(602), it
follows that |R2 : Hg| must be a power of 5. Thus Hg = R2 or Hg = A4 � S2. In either case,
|R1 : Hf | is coprime to |H : R2| = 112, so Hf contains the subgroup of R1 isomorphic to
C11 × C11. If Hg = R2, we are in Row 4a. Furthermore, if Hg = A4 � S2, then |R1 : Hf | is
coprime to |H : Hg| = 552 and divides |R1| = 2(552), so |R1 : Hf | = 1 or 2. Thus Hf = R1

or Hf = P1 × P1 and we are in Row 4b.
Suppose q = 19. Then |R1 : Hf | divides |R1| = 2(1712) and is coprime to |H : R2| =

572, so |R1 : Hf | = 1 or 2. This means that Hf = R1 or Hf = P1 × P1. Also, |R2 : Hg|
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divides |R2| = 2(602) and is coprime to |H : R1| = 202, so |R2 : Hg| is a power of 3. This
can only happen if Hg = R2, so we are in Row 5.

If q = 29, then since |R2 : Hg| is coprime to |H : R1| = 302 and divides |R2| = 2(602),
we must have Hg = R2. Then since |R1 : Hf | is coprime to |H : R2| = 2032 and divides
|R1| = 2(4062), it follows that |R1 : Hf | is a power of 2. This can only happen if Hf

contains the subgroup X × X of R1, where X is the index 2 subgroup of P1, and we get
Row 7.

If q = 59, we are again in the situation when |H| = |R1||R2|, so Hf = R1 and Hg = R2.
Thus we are in Row 8.

Case 2. R1 = T 2 and Hf is contained in a subgroup M of type (2.1) in Lemma 6.2,
and R2 is of type (7.1) in Lemma 6.1.

Suppose that M is constructed from K1 and R2 is constructed from K2. We work
through the possibilities for K1 and K2 outlined in Lemma 7.2.

Subcase 2a. q is even, K1 = D2(q+1) and K2 = P1.

Since |R2 : Hg| divides |R2| = 2(q(q − 1))2 and is coprime to |H : M | = q(q − 1), it
follows that Hg = R2. Since |H : R2| = (q + 1)2, we have that |H : Hf | = |H : M ||M :
Hf | is coprime to (q + 1)2. Thus |M : Hf | is coprime to (q + 1)2, so after interchanging
f and g we are in Row 1b.

Subcase 2b. Any one of Cases 2, 3 or 4 in Lemma 7.2 holds.

Then K1 = P1 and M = T × P1. Hence |H : Hf | = |H : M ||M : Hf | = 2(q + 1)
|M : Hf | is coprime to |H : Hg| = |H : R2||R2 : Hg|, and so 2(q + 1) is coprime to
|R2 : Hg|. Now |R2 : Hg| divides |R2| = 2|K2|2, and we can check that in all cases apart
from Case 3 with q = 7 and Case 4 with q ∈ {11, 19}, the prime factors of 2|K2|2 are the
same as the prime factors of 2(q + 1). So if we are in Case 2 or 3 with q = 23, or Case
4 with q ∈ {29, 59}, we must have Hg = R2. We claim that this is also true in Case 4
with q = 19. Indeed, 2(q + 1) = 20 is coprime to |R2 : Hg|, which divides |R2| = 2(602),
so |R2 : Hg| is a power of 3, which can only happen if Hg = R2.

Suppose we are in either Case 2 or 3 with q = 23, or Case 4 with q ∈ {19, 59}. Then
from the above argument we have Hg = R2 = X � S2 and Hf � M = T × P1. So |H :
Hg| = |T : X|2 is coprime to |M : Hf |. We can check that in all these cases the prime
factors of |T : X| are the same as the prime factors of 1

2q(q − 1), so by Lemma 7.3 we
have Hf = P1 × P1 or Hf = M . Thus we are in Row 2, 5, 6 or 8.

Consider Case 4 with q = 29. We have that |M : Hf | is coprime to |H : Hg| = 2032.
Moreover, |M | = 2032 · 120 so |M : Hf | divides 120. This can only happen if Hf contains
a subgroup of M isomorphic to X × X where X has index 2 in P1, yielding Row 7.

Next, consider Case 3 with q = 7. Then |R2 : Hg| is coprime to 2(q + 1) = 16 and
divides |R2| = 2(242), so |R2 : Hg| is a power of 3. This means that Hg = R2 or Hg

∼=
D8 � S2. In either case, |M : Hf | is coprime to |H : R2| = 72, so Hf contains a subgroup
of M isomorphic to C7 × C7. If Hg = D8 � S2, then |M : Hf | is coprime to |H : Hg| = 212

and divides |M | = 212 · 7, so |M : Hf | is a power of 2 and Hf = M or Hf = P1 × P1.
Thus we are in Row 3b.
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Finally, consider Case 4 with q = 11. Then |R2 : Hg| is coprime to 2(q + 1) = 24 and
divides |R2| = 2(602), so |R2 : Hg| is a power of 5. This means that Hg = R2 or Hg =
A4 � S2. In either case, |M : Hf | is coprime to |H : R2| = 112, so Hf contains a subgroup of
M isomorphic to C11 × C11. If Hg = A4 � S2, then |M : Hf | is coprime to |H : Hg| = 552

and divides |M | = 552 · 12; it follows that |M : Hf | divides 12. This can only happen if
Hf = M or Hf = P1 × P1 and we are in Row 4b. �

Now we determine some specific conditions for Hf to contain certain subgroups
of H. Recall the action of H on N = {f ∈ TH | f(z�) = f(z)φ(�) ∀z ∈ H, � ∈ L},
where H = (T × T ) � 〈ι〉, L = {(x, x) | x ∈ T}〈ι〉, and φ((x, x)ιk) = ix for all (x, x)ιk ∈ L
(ix denotes the automorphism induced on T by conjugation by x).

Lemma 7.5. Let f ∈ N and set α(t) = f((t, 1)) for all t ∈ T . Let X and Y be
subgroups of T . Then X × Y � Hf if and only if the following conditions hold:

• α(xt) = α(t) for all x ∈ X, t ∈ T ;

• α(ty) = α(t)y for all y ∈ Y , t ∈ T .

In particular, α(x) = α(1) for all x ∈ X.

Proof. We will use Lemma 5.1 here. We have (x, y) ∈ Hf for all x ∈ X, y ∈ Y if and
only if

f (x,y)((a, b)ιk) = f((a, b)ιk) ∀a, b ∈ T,∀x ∈ X,∀y ∈ Y,∀k ∈ {0, 1}
⇐⇒ f((xa, yb)ιk) = f((a, b)ιk) ∀a, b ∈ T,∀x ∈ X,∀y ∈ Y,∀k ∈ {0, 1}
⇐⇒ f((xab−1y−1, 1))yb = f((ab−1, 1))b ∀a, b ∈ T,∀x ∈ X,∀y ∈ Y

⇐⇒ α(xty−1)y = α(t) ∀t ∈ T,∀x ∈ X,∀y ∈ Y.

We claim that this final condition is equivalent to

α(xt) = α(t) and α(t)y = α(ty) ∀t ∈ T, x ∈ X, y ∈ Y. (7.1)

Indeed, if α(xty−1)y = α(t) for all t ∈ T , x ∈ X and y ∈ Y , we can set y = 1 and x = 1,
respectively, to obtain the equations in (7.1). Conversely, if the equations in (7.1) hold,
then for any t ∈ T , x ∈ X and y ∈ Y we have

α(t) = α(xt) = α(xty−1y) = α(xty−1)y.

So X × Y � Hf if and only if the equations in (7.1) hold. �

Lemma 7.6. Let K be a subgroup of T . If a function α : T → T satisfies α(kt) = α(t)
and α(tk) = α(t)k for all k ∈ K and t ∈ T , then K ∩ Kt is contained in CT (α(t)) for all
t ∈ T .

Proof. Take any k ∈ K ∩ Kt. Then tkt−1 ∈ K, so

α(t)k = α(tk) = α((tkt−1)t) = α(t).

Thus K ∩ Kt � CT (α(t)). �
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Lemma 7.7. Let T = PSL(2, q) for q � 4. Suppose a function α : T → T satisfies
α(pt) = α(t) and α(tp) = α(t)p for all p ∈ P1 and t ∈ T . Then α(t) = 1 for all t ∈ P1.

Proof. By Lemma 7.6 we get P1 � CT (α(1)). This can only happen if α(1) = 1 and
so α(t) = 1 for all t ∈ P1. �

Corollary 7.8. Let T = PSL(2, q) for q � 4. Then there does not exist f ∈ N such
that Hf = T × P1.

Proof. Suppose for a contradiction that such an f exists. Set α(t) = f((t, 1)) for all
t ∈ T . Then by Lemma 7.5 we have α(xt) = α(t) and α(tp) = α(t)p for all x ∈ T , p ∈ P1

and t ∈ T . We can apply Lemma 7.7 to get α(1) = 1. Then since α(xt) = α(t) for all
x ∈ T and t ∈ T , it follows that α is a constant function, so α(t) = 1 for all t ∈ T . This
is a contradiction as then Hf = H. �

Lemma 7.9. Let f ∈ N and set α(t) = f((t, 1)) for all t ∈ T . Let K be a maximal
subgroup of T . Then Hf = K � S2 = (K × K) � 〈ι〉 if and only if the following conditions
hold:

• α(kt) = α(t) for all k ∈ K, t ∈ T ;

• α(t) = α(t−1)t for all t ∈ T ;

• there exists t ∈ T such that α(t) �= 1.

Proof. By Lemma 7.5 we obtain K × K � Hf if and only if

α(kt) = α(t) and α(t)k = α(tk) ∀t ∈ T, k ∈ K. (7.2)

We now determine an equivalent set of conditions for (K × K)ι ⊆ Hf to hold. By
Lemma 5.1 we obtain (k1, k2)ι ∈ Hf for all k1, k2 ∈ K if and only if

f (k1,k2)ι((a, b)ιx) = f((a, b)ιx) ∀a, b ∈ T,∀k1, k2 ∈ K,∀x ∈ {0, 1}
⇐⇒ f((k1b, k2a)ιx+1) = f((a, b)ιx) ∀a, b ∈ T,∀k1, k2 ∈ K,∀x ∈ {0, 1}
⇐⇒ f((k1ba

−1k−1
2 , 1))k2 = f((ab−1, 1))ba−1 ∀a, b ∈ T,∀k1, k2 ∈ K

⇐⇒ α(k1tk
−1
2 )k2 = α(t−1)t ∀t ∈ T,∀k1, k2 ∈ K.

We claim that this final condition is equivalent to

α(kt) = α(t) and α(tk−1)k = α(t−1)t ∀t ∈ T, k ∈ K. (7.3)

Indeed, if α(k1tk
−1
2 )k2 = α(t−1)t for all t ∈ T and k1, k2 ∈ K, we can set k1 = 1 to obtain

the second equation in (7.3). By setting k2 = 1 and comparing this with the equation
where k1 = k2 = 1, we obtain the first equation in (7.3). Conversely, if the equations in
(7.3) hold then for any t ∈ T and k1, k2 ∈ K we have

α(k1tk
−1
2 )k2 = α(tk−1

2 )k2 = α(t−1)t.

So (K × K)ι ⊆ Hf if and only if the equations in (7.3) hold.
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Putting everything together, we get (K × K) � 〈ι〉 � Hf if and only if

α(kt) = α(t), α(t)k = α(tk) and α(tk−1)k = α(t−1)t ∀t ∈ T, k ∈ K. (7.4)

Next, we show that these conditions are equivalent to

α(kt) = α(t) and α(t) = α(t−1)t ∀t ∈ T, k ∈ K. (7.5)

Indeed, (7.5) follows from (7.4) as the first equation is the same in both, and setting k = 1
in the third equation of (7.4) yields the second equation in (7.5). Conversely, suppose (7.5)
holds. Then

α(tk) = α(k−1t−1)tk = α(t−1)tk = α(t)k ∀t ∈ T, k ∈ K,

proving the second equation of (7.4). Also,

α(tk−1)k = α(kt−1)(tk
−1)k = α(kt−1)t = α(t−1)t ∀t ∈ T, k ∈ K,

proving the third equation in (7.4). This proves the claim that (K × K) � 〈ι〉 � Hf if
and only if the equations in (7.5) hold.

By Lemma 6.1 we have that (K × K) � 〈ι〉 is maximal in H, and so Hf = (K × K) �
〈ι〉 if and only if (K × K) � 〈ι〉 � Hf and Hf < H. Now Hf < H if and only if there
exists some h ∈ H such that f(h) �= 1, by Lemma 2.2. By Lemma 5.1, this is equivalent
to the existence of t ∈ T with α(t) �= 1. Thus, Hf = (K × K) � 〈ι〉 if and only if the
equations in (7.5) hold and there exists t ∈ T such that α(t) �= 1. �

Lemma 7.10. Let T = PSL(2, q) where q � 4 and either q is even or q ≡ 3 (mod 4).
Then no f ∈ N exists such that Hf = P1 � S2.

Proof. Suppose for a contradiction that such an f exists. Define α : T → T by α(t) =
f((t, 1)) for all t ∈ T . Then, since P1 × P1 � Hf , Lemma 7.5 implies that α(pt) = α(t)
and α(tp) = α(t)p for all p ∈ P1 and t ∈ T . By Lemma 7.7 we conclude that α(t) = 1 for
all t ∈ P1.

Now let t be an involution in T that is not contained in P1. By Lemma 7.9 we
have α(t)t = α(t−1)t = α(t), so t ∈ CT (α(t)). So Lemma 7.6 implies that P1 ∩ P t

1 <
〈P1 ∩ P t

1 , t〉 � CT (α(t)). Now X = 〈P1 ∩ P t
1 , t〉 ∼= D2(q−1)/(2,q−1), which we can see by

observing that t normalizes P1 ∩ P t
1
∼= Cq−1/(2,q−1) and consulting the listed subgroups

of PSL(2, q) in [12]. Hence if X � CT (α(t)) then α(t) ∈ Z(X) = 1 as q �≡ 1 (mod 4). By
Lemma 3.3 it follows that α(t) = 1 for all t /∈ P1, as α is constant on the right cosets of P1

in T . Since we previously showed that α(t) = 1 for all t ∈ P1, we conclude that α(t) = 1
for all t ∈ T . But then Hf = H, a contradiction, so no such f exists. �

Lemma 7.11. Let T = PSL(2, q) where q � 4 and either q is even or q ≡ 3 (mod 4).
Let f ∈ N \ {id}. Then whenever P1 × P1 � Hf , we have P1 × P1 = Hf .

Proof. The only proper subgroups of H containing P1 × P1 are T 2, P1 × P1, P1 �
S2, T × P1 and P1 × T . Recall that the last three were disproved in Lemma 7.10 and
Corollary 7.8 by noting that T × P1 and P1 × T are conjugate in H. Finally, we cannot
have Hf = T 2 by Lemma 5.2. �
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Remark 7.12. We can now say more about the exact value of the subdegree in
Corollary 4.4. If q is even or q ≡ 3 (mod 4) then we claim that the subdegree equals
2(q + 1)2. Indeed, the proof of Corollary 4.4 implies there exists f ∈ N \ {id} such that
P1 × P1 � Hf . Then by Lemma 7.11 we must have P1 × P1 = Hf , so the subdegree is
|H : Hf | = 2(q + 1)2.

Theorem 7.13. The group G(2, q) has non-trivial coprime subdegrees if and only
if q ≡ 3 (mod 4) or q = 29. Furthermore, |H : Hf | and |H : Hg| are non-trivial coprime
subdegrees if and only if, up to reordering, one of the possibilities in Table 3 holds.
Moreover, in each of these cases there exist f, g ∈ N such that Hf and Hg are as in
Table 3.

Proof. We refer to Table 4, and use Lemmas 7.10 and 7.8 to eliminate all the cases
where Hf = P1 � S2 or Hf = T × P1. This leaves us with the cases in Table 3, and it
is easy to check that in each of these cases we obtain non-trivial coprime subdegrees.
Thus, if G(2, q) has non-trivial coprime subdegrees, then q ≡ 3 (mod 4) or q = 29, and
Theorem 4.5 shows that for all these values of q, the group G(2, q) has non-trivial coprime
subdegrees. So the first part of this theorem has been proven.

To see that in each of these cases there exist f, g ∈ N such that Hf and Hg are as
shown in Table 3, refer to Remark 7.12 and § 2 and § 4. �

Remark 7.14. Suppose that q ≡ 3 (mod 4). Then G(2, q) has the pair of non-trivial
coprime subdegrees (2(q + 1)2, ( 1

2q(q − 1))2). If q �= {7, 11, 19}, this is the only such pair.
If q ∈ {7, 11}, there are at least two such pairs; if q = 19, there are exactly two such pairs,
the other pair being (2(20)2, 572).

We have made no attempt to determine the multiplicity of the subdegrees appearing
in Table 3 (which we believe would be incredibly difficult); therefore, we have no precise
information regarding the multiplicities of the pairs of coprime subdegrees. However, the
group G(2, 11) has a pair of coprime subdegrees (288, 3025) that occurs with multiplicity
at least two—appearing in Row 1 and Row 4 of Table 3. We note that this is a genuine
occurrence of multiplicity greater than one, because the 2-point stabilizers giving rise to
the suborbits of size 288 are non-isomorphic.
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