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SUMMARY

Antibodies (Ab) recognizing G-protein coupled receptors, such as β1 and β2 adrenergic (anti-β1-AR and anti-β2-AR,
respectively) and muscarinic cholinergic receptors (anti-M2-CR) may contribute to cardiac damage, however their role in
chronic chagasic cardiomyopathy is still controversial. We describe that Trypanosoma cruzi-infected C3H/He mice show
increased P and QRS wave duration, and PR and QTc intervals, while the most significant ECG alterations in C57BL/6
are prolonged P wave and PR interval. Echocardiogram analyses show right ventricle dilation in infected animals of both
mouse lineages. Analyses of heart rate variability (HRV) in chronically infected C3H/He mice show no alteration of the
evaluated parameters, while C57BL/6 infected mice display significantly lower values of HRV components, suggesting
autonomic dysfunction. The time-course analysis of anti-β1-AR, anti-β2-AR and anti-M2-CR Ab titres in C3H/He
infected mice indicate that anti-β1-AR Ab are detected only in the chronic phase, while anti-β2-AR and anti-M2-CR are
observed in the acute phase, diminish at 60 dpi and increase again in the chronic phase. Chronically infected C57BL/6
mice presented a significant increase in only anti-M2-CRAb titres. Furthermore, anti-β1-AR, anti-β2-AR and anti-M2-CR,
exhibit significantly higher prevalence in chronicallyT. cruzi-infected C3H/Hemice when compared with C57BL/6. These
observations suggest that T. cruzi infection leads to host-specific cardiac electric alterations.

Key words: Trypanosoma cruzi, muscarinic receptors, adrenergic receptors, chronic Chagas disease.

INTRODUCTION

Chagas disease (CD) is a serious public health
problem which currently affects about 7·7 million
people, mainly in the poorest endemic rural areas in
Latin America (World Health Organization, 2010).
It is caused by the protozoan parasite Trypanosoma
cruzi, which is transmitted by blood-feeding triato-
mine bugs. Although the transmission of CD has
been controlled in several endemic countries, the
prevalence of chronic T. cruzi infections in non-
endemic areas, such as the USA, Japan and Europe
has increased substantially in the past 20 years,
mainly due to blood transfusion from infected
immigrants (Gascon et al. 2007; Bern and

Montgomery, 2009; Perez-Molina et al. 2012). The
disease is clinically divided into acute and chronic
phases. The initial acute phase lasts 8–10 weeks and
is followed by a chronic phase, which is divided into
indeterminate, cardiac, digestive or cardio-digestive
forms. The indeterminate form is characterized by
reactive serology and/or demonstration of the parasite
in the blood and also by the absence of clinical and
pathological manifestation of heart and/or digestive
disorders. Around 30% of infected individuals pro-
gress to disease associated with cardiac and/or diges-
tive disorders (Bilate and Cunha-Neto, 2008). The
cardiac form, named chronic chagasic cardiomyo-
pathy (CCC), is the most threatening and frequent
manifestation of chronic CD (Rassi et al. 2000).
CCC is characterized by severe myocarditis, T cell-
rich lymphomononuclear infiltrates (Reis et al. 1993;
Brener and Gazzinelli, 1997), interstitial fibrosis
(Rossi, 1991; Prata, 2001), autonomic dysfunction
(Ribeiro et al. 2001) and cardiomyocyte hypertrophy
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that can lead to dilated cardiomyopathy, end-stage
heart failure and sudden death (Prata et al. 1986;
Ribeiro et al. 2001).

Several hypotheses have been proposed to account
for the pathogenesis of CCC; among these are
parasite persistence in target tissues (Higuchi, 1995)
and autoimmune events (Cunha-Neto et al. 2006).
The parasite persistence theory affirms that tissue
parasitism is directly related to tissue damage and
would be a prerequisite for the development of
CCC. The relatively low number of parasites in the
myocardium and the presence of auto-reactive
antibodies (Ab) support the autoimmune theory.
These Ab can be derived by molecular mimicry
between parasite and host antigens or by antigen
exposure due to cardiac damage (Cossio et al. 1974;
Kierszenbaum, 1985; Leon and Engman, 2003; Iwai
et al. 2005). The emergence of these Ab can be
responsible for the destruction of cardiac conduc-
tion tissues and cardiac autonomic nerves observed
during the chronic state of the disease (Koberle,
1970; Thiers et al. 2012).

Several authors have reported the presence of
circulating Ab in the sera of animals and patients
affected by CCC (de Oliveira et al. 1997; Labovsky
et al. 2007; Hernandez et al. 2008) and dilated
cardiomyopathy (Jahns et al. 1999, 2004; Stork
et al. 2006; Dandel et al. 2012). These Ab are able
to interact with the second extracellular loop of
G-protein coupled receptors, such as β1 and β2
adrenergic (anti-β1-AR and anti-β2-AR, respectively)
and muscarinic cholinergic receptors of the myocar-
dium (anti-M2-CR) (Wallukat et al. 1995; Elies et al.
1996; Jahns et al. 1999; Escobar et al. 2006) and
ultimately lead to receptor activation (Iwata et al.
2001; Feldman et al. 2005). The presence of such
functionally active, receptor-stimulating Ab is asso-
ciated with a markedly worse prognosis in dilated
cardiomyopathy (Schulze et al. 2005). The continu-
ous stimulation of the receptors by the Ab could
induce desensitization and/or down-regulation of
the receptor, explaining the progressive loss of func-
tion and consequent autonomic disturbance observed
in CD patients (Sterin-Borda and Borda, 2000). In
fact, the presence of muscarinic cholinergic receptor
activating antibodies in patients’ sera have been
shown to induce complex cardiac arrhythmias and
AV conduction block in isolated rabbit hearts (de
Oliveira et al. 1997). Ribeiro et al. (2007) showed that
vagal impairment, evidenced by reduced indexes
of heart rate variability (HRV), occurs early in the
course of infection, i.e. before the appearance of left
ventricle (LV) dysfunction, and that it is correlated
to the levels of anti-M2-CR Ab. Circulating auto-
antibodies with partial muscarinic cholinergic agon-
istic activity have also been found in CD patients in
the indeterminate form, in the absence of ECG and
X-ray alterations (Borda and Sterin-Borda, 1996).
Together, these data suggest that the circulating

reactive Ab can have a causal role in the cardiac
alterations and dysautonomia observed in Chagasic
patients.

To investigate more rigorously the relation be-
tween the presence of the Ab and the occurrence of
cardiac disturbances, and the influence of the host
in disease pathogenesis in the present report we:
(a) investigated using ELISA the time-course of
anti-β1-AR, anti-β2-AR and anti-M2-CR Ab appear-
ance in the sera of C3H/He T. cruzi-infected mice
in the acute and chronic phases of the disease and
(b) determined the levels of reactivity to β1-AR,
β2-AR and M2-CR of the serum of chronically
infected C3H/He and C57BL/6 mice and their
correlation to cardiac function evaluated by histo-
pathological alterations, echocardiography (ECHO),
electrocardiography (ECG) and heart rate variability
indexes (HRV).

MATERIALS AND METHODS

Animals and parasite infection

All experiments were performed with 5–7-week-
old female C3H/He (H-2K) or C57BL/6 (H-2) mice
from our animal facilities (CECAL, Oswaldo Cruz
Foundation, Rio de Janeiro, Brazil). The animals
were maintained under standard conditions and
treated according to institutional guidelines regard-
ing ethics of animal usage (CEUA-Fiocruz, protocol
#161/03). Mice were infected intraperitoneally with
100 blood trypomastigote forms of the low virulence
T. cruzi Colombian strain isolated from a Colombian
chagasic patient obtained by serial passages from
mouse to mouse (Marino et al. 2004). Parasitaemia
was estimated from 5 μL of tail vein blood and
established as a parameter for acute and chronic
phases (dos Santos et al. 2001). Analyses in the acute
phase were done at 30 and 60 days post infection (dpi)
and included histopathology and ELISA; while the
chronic phase analyses (120–150 dpi) included histo-
pathology, ELISA, ECG, ECHO and HRV indexes
(see descriptions below).

Histopathology

Left ventricles (LV) were excised and fixed in 10%
buffered formalin, embedded in paraffin and sec-
tioned. The sections were stained with haemotoxylin
and eosin (H&E) and with picrosirius and evaluated
by light microscopy.

Anti-β1-AR, anti-β2-AR and anti-M2-CR Ab
detection

ELISA plates were coated with 20 μgmL−1 of
synthetic peptides comprising the second extracel-
lular loops of the β1, β2 or M2 cardiac receptors
(Ribeiro et al. 2010; Daliry et al. 2014) in 0·1 M
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Na2CO3 or buffer alone for 16 h at 4 °C. After
saturation of the wells with PBS/0·1% Tween/2%
BSA, mouse sera from control or from infected
animals were diluted 1:100 in PBS/0·05% Tween
and added to the wells. After incubation for 2 h at
room temperature (RT), bound antibodies were
detected by a secondary anti-mouse IgG antibody
labelled with peroxidase, diluted 1:5000 in PBS/0·1%
Tween/2% BSA. Between each step, plates were
washed 4× with PBS/0·05% Tween. Afterwards,
100 μL of TMB substrate solution was dispensed into
the wells. The plates were covered and incubated for
5min at RT, in a dark room. The enzyme reaction
was stopped by addition of 100 μL stop solution
(1 N HCL) to each well. The absorbance was read at
450 nm. ELISAvalues were expressed as the ratio (R)
between the optical densities (OD) determined for
each sample and cut-off values. Cut-off was the mean
OD of non-infected animals plus 2 standard devia-
tions (S.D.). Positivity was defined as R>1·2 (Daliry
et al. 2014).

Electrocardiography

For the analysis of P duration, PR interval, QRS
duration and QTc in the infected animals during the
chronic phase the following methodology was used:
all mice were intraperitoneally injected with diaze-
pam (10mg kg−1) and the electrodes were carefully
placed subcutaneously according to the chosen
preferential derivation (DII). ECGs were recorded
for at least 2 min using a digital system Power Lab
2/20 that was connected to a bio-amplifier (PanLab
Instruments, Barcelona, Spain). Filters were stan-
dardized to 0·1–100Hz and traces were analysed
using the Scope software for Windows V3.6.10
(PanLab Instruments, Barcelona, Spain). Heart
rate (HR) (in beats per minute, bpm) and duration
of P wave, QRS, PR and QT intervals (in milli-
seconds, ms) were measured. The relationship
between the QT interval and the RR interval in
the mouse was assessed in all animals. To obtain
physiologically relevant values for the heart rate-
corrected QT interval (QTc) in units of time (rather
than time to a power that is not equal to 1), the
observed RR interval (RR0) was first expressed
as a unitless multiple of 100ms, yielding a normal-
ized RR interval, RR100 =RR0/100ms. Next, the
value of the exponent (y) in the relationship
QT0 =QTc×RR100y was assessed, with QT0 in-
dicating the observed QT (in ms) and the unit for
QTc being milliseconds. The natural logarithm
was computed for each side of this relationship [ln
(QT0) = In (QTc)+y ln (RR100)]. Thus, the slope of
the linear relationship between the log-transformed
QT and RR100 defined the exponent to which the
RR interval ratio should be raised to correct QT for
HR (Silverio et al. 2012).

For the analysis of the HRV indexes the ECG
recordings used were acquired based on the follow-
ing methodology: recording was carried out in
conscious animals by a non-invasive method.
Electrodes were positioned in DI derivation and
connected by flexible cables to a differential AC
amplifier (model 1700, A-M Systems, USA), with
signal low-pass filtered at 500Hz and digitized at
1 kHz by a 16-bit A/D converter (Minidigi 1-D,
Axon Instruments, USA) using Axoscope 9.0 soft-
ware (Axon Instruments, USA). Data were stored in
a PC for offline processing.

Transthoracic echocardiography (ECHO)

For analysis of cardiac function, mice were anaes-
thetized with 1·5% isoflurane in 100% O2, trichoto-
mized in the precordial region and examined with a
Vevo 770 ultrasound apparatus from Visual Sonics
(Canada) coupled to a 30MHz transducer. Left
ventricular ejection fractions (LVEF) were deter-
mined using Simpson’s method, and left and right
ventricular area (LV and RV) were obtained in
B-mode using a short axis view at the level of the
papillary muscles.

HRV indexes

For HRV analyses, stable 60 s segments were
extracted from 180s ECGs acquired in the conscious
state, and, in order to allow for a more accurate
R wave peak detection process, all signals were
resampled by cubic spline interpolation at 10 kHz.
Baseline drift was subtracted from the 10 kHz
ECG signals and, after R wave peak detection, 60 s
tachograms were generated, containing all heart
period fluctuations within this time segment. In the
time domain, the following indexes were obtained:
HR, standard deviation of the RR intervals (SDNN)
and square root of the mean squared differences of
successive RR intervals (RMSSD). For spectral
(frequency domain) analysis of HRV, beat-by-beat
HR time series were resampled to equal intervals by
the spline cubic interpolation method, at 20Hz, and
the linear trend was removed. Power spectrum was
obtained using a fast Fourier transform-based meth-
od (Welch’s periodogram: 512 points, 50% overlap
and Hanning window), and high-frequency power
(HF: 1–8Hz) was estimated as the area under the
spectrum within this frequency range, being ex-
pressed as ln bpm2.

Statistical analysis

Data are expressed as mean±S.D. Analysis was per-
formed using GraphPrism (GraphPad, San Diego,
CA, USA). Comparison between groups was carried
out by analysis of variance (ANOVA) followed by
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Bonferroni’s post-test or Student’s t-test were in-
dicated. Probability values were considered sign-
ificant when P<0·05.

RESULTS

Figure 1a shows the experimental design of the
present study. We first evaluated the number of
mononuclear cells in the myocardium of T. cruzi-
infected-C3H/He mice during the course of infec-
tion (Fig. 1b and d) and in chronically infected
C57BL/6 mice (Fig. 1c and e). During the acute
infection (30 dpi), we detected intense mononuclear

inflammatory infiltrates in the myocardium of C3H/
He mice. These inflammatory infiltrates persisted at
60 dpi and decreased in intensity in the chronic phase
of infection, although were still significantly higher
than non-infected controls (Fig. 1b and d). A similar
increase in inflammatory infiltrates was observed in
chronically infected C57BL/6 mice (Fig. 1c and e)
when compared with C3H/He mice at the same stage
of infection.

The fibrotic area was evaluated by collagen
deposition (picrosirius staining), which in T. cruzi-
infected C3H/He mice showed a significant increase
in the acute and chronic phases of infection (Fig. 2a

days post infection

Fig. 1. Histopathological analysis of the cardiac tissue of T. cruzi-infected mice. Panel (a) shows the general scheme of
the study; (b) representative photomicrography of left ventricle of T. cruzi-infected C3H/He mice showing mononuclear
inflammatory cells (Bar = 50 μm); (c) representative photomicrography of left ventricle of T. cruzi-infected C57BL/6
mice at the chronic phase showing mononuclear inflammatory cells (scale bar = 50 μm); (d) quantification of the number
of mononuclear inflammatory cells of left ventricle of T. cruzi-infected C3H/He mice at 30, 60 and 120–150 days post
infection (d.p.i.) and (e) quantification of the number of mononuclear cells of left ventricle of T. cruzi-infected C57BL/6
mice at 120–150 d.p.i. Data are represented as mean±S.D. ***P<0·001 vs non-infected (NI) group, ###P<0·001 vs
30 dpi, §§§P<0·001 vs 60 dpi. Abbreviations: Electrocardiography (ECG), echocardiography (ECHO) and heart rate
variability analyses (HRV).
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and b). The percentage of picrosirius positive area
was higher at 60 dpi in C3H/He infected mice
(Fig. 2b). In chronically infected C57BL/6 mice,
there was also a significant increase in fibrotic area
in comparison with non-infected controls (Fig. 2c
and d).
We then analysed the ECG alterations induced

by T. cruzi infection in the chronic phase in both
mouse strains (Fig. 3a–d). Trypanosoma cruzi-
infected C3H/He mice showed a substantial increase
in P wave and QRS duration, and prolonged PR and
QTc intervals (Fig. 3a, b, c and –d, respectively). In
contrast, C57BL/6 mice only showed a significant
increase in P wave duration and PR interval (Fig. 3a
and b, respectively).
The analyses of HRV of chronically T. cruzi-

infected C3H/He mice showed no alteration in
any of the evaluated parameters (Fig. 4a–d), while
infected C57BL/6 mice showed significantly lower
values of many components of HRV: HR (Fig. 4a),
SDNN (Fig. 4b), RMSSD (Fig. 4c) and HF
(Fig. 4d).

The echocardiogram analyses were performed
in chronically infected mice from both lineages
(Fig. 5a–c). The LVEF and left ventricular area
(LV) were not affected by T. cruzi-infection in
mice of both lineages (Fig. 5a and b, respectively),
but there was a significant enlargement of the
right ventricle in chronically infected C3H/He and
C57BL/6 mice (Fig. 5c).
We further analysed the anti-β1-AR, anti-β2-AR

and anti-M2-CR Ab titres of C3H/He infected
mice during the course of infection (Fig. 6a–c,
respectively). Significantly higher levels of anti-
β1-AR Ab were detected only in the chronic phase
in C3H/He mice (Fig. 6a). However, much higher
levels of anti-β2-AR and anti-M2-CR Ab were
observed in the acute phase (30 dpi), diminishing
to non-significant levels at 60 dpi and increasing
again in the chronic phase (Fig. 6b and c). Analyses
of Ab titres in C57BL/6 mice were performed
only in the chronic phase of infection (Fig. 6a–c).
There were no differences in anti-β1-AR and anti-
β2-AR Ab titres in T. cruzi-infected C57BL/6

Fig. 2. Histopathological analysis of fibrotic area of cardiac tissue of T. cruzi-infected mice stained with picrosirius
red: (a) representative photomicrography of left ventricle of T. cruzi-infected C3H/He mice showing fibrotic
area; (b) quantification of the fibrotic area of the T. cruzi-infected C3H/He mice at 30, 60 and 120–150 d.p.i.;
(d) representative photomicrography of left ventricle of T. cruzi-infected C57BL/6 mice at the chronic phase
showing fibrotic area and (e) quantification of the fibrotic area of left ventricle of T. cruzi-infected C57BL/6 mice at
120–150 d.p.i. Data are represented as mean±S.D. ***P<0·001 vs non-infected (NI) group, +++P<0·001 vs 30 dpi,
§§§P<0·001 vs 60 dpi.
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mice when compared with the non-infected group
(Fig. 6a and b, respectively), but anti-M2-CR Ab
titres were higher in T. cruzi-infected C57BL/6
mice when compared with their respective non-
infected controls (Fig. 6c). Comparing Ab titres
in T. cruzi-infected mice of both mouse lineages
in the chronic phase all three Ab evaluated, namely
anti-β1-AR, anti-β2-AR and anti-M2-CR, pres-
ented significantly higher prevalence in infected
C3H/He mice when compared with C57BL/6
(Fig. 6a–c).

DISCUSSION

The physiopathology of Chagas disease, particularly
with regard to chagasic cardiomyopathy, is very
complex and not completely understood. It is well
accepted that the balance between parasite invasive-
ness and the host immune response plays a major
role in the development and evolution of the acute
and chronic manifestations of CD. Additionally the
presence of auto-reactive antibodies that recognize
cardiac epitopes adds even more complexity to the
disease. However, the exact contribution of each of

the components of the disease – parasite invasive-
ness, inflammatory responses and autoimmunity –

is difficult to evaluate, especially in human patients.
Trying to help understand this issue, we infected two
different lineages of mice – C3H/He and C57BL/6 –

with the same T. cruzi strain and the same number
of parasites, and evaluated heart morphology and
function, HRV indexes and their relation to anti-
muscarinic and anti-adrenergic Ab levels.

During the chronic phase, cardiac inflammatory
infiltrates, fibrotic area deposition and echocardio-
gram parameters in both lineages presented similar
patterns in response to parasite infection. ECG
analyses showed prolonged P wave and PR interval
in infected mice of both lineages, which is a common
finding in experimental infection and in human
patients with CD (Williams-Blangero et al. 2007;
Eickhoff et al. 2010). Interestingly, QRS and
corrected QT (QTc) intervals significantly increased
only in infected C3H/He mice. The differences in
ECG abnormalities between the mouse lineages
infected with the same T. cruzi strain shown here,
suggest that the degree of electrical cardiac dysfunc-
tion is dependent not only on the T. cruzi strain

Fig. 3. Electrocardiographic analyses of T. cruzi-infected C3H/He and C57BL/6 mice: (a) P duration (ms); (b) PR
interval (ms); (c) QTc (ms) and (d) QRS duration (ms). ***P<0·001 vs non-infected (NI) group, **P<0·01 vs NI
group and *P<0·05 vs NI group.
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(Eickhoff et al. 2010; Daliry et al. 2014) but also on
the host genetic background.
We next detected the presence and titres of anti-β1-

AR, β2-AR andM2-CR Ab in the sera of the infected
animals. We found that anti-β1, anti-β2 and anti-M2

Ab titres were higher in chronically infected C3H/He
mice than in C57BL/6 mice and non-infected
controls, while only anti-M2 titres were significantly
high in infected C57BL/6 animals when compared
with non-infected controls. Since the number of

ECG alterations was higher in infected C3H/He
mice, our findings suggest that the degree of ECG
abnormalities could be related to the presence of
circulating levels of those Ab. This hypothesis is
reinforced by our previous study with T. cruzi-
infected dogs (Daliry et al. 2014). The correlation
between Ab presence and ECG alterations can be
attributed to the arrhythmic effect of those Ab in
CCC, as previously shown (Iwata et al. 2001; Jahns
et al. 2004; Medei et al. 2008). Escobar et al. (2006)

Fig. 5. Cardiac function assessed by echocardiogram of T. cruzi-infected C3H/He and C57BL/6 mice: (a) Percentage of
left ventricle ejection fraction (% LVEF); (b) left ventricle area (mm2) and (c) right ventricle area (mm2). **P<0·01 vs
non-infected (NI) group.

Fig. 4. Heart rate variability (HRV) analysis of T. cruzi-infected C3H/He and C57BL/6 mice: (a) Heart rate (bpm);
(b) standard deviation of NN intervals (SDNN) (ms); (c) root mean square of successive differences (RMSSD) (ms) and
(d) HF power (ln bpm2). ***P<0·001 vs non-infected (NI) group, **P<0·01 vs NI group and *P<0·05 vs NI group.
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found that anti-β2-AR reactivity induced conduction
blocks in isolated heart mouse preparations, suggest-
ing that these antibodies could be responsible for
ventricular arrhythmias (Escobar et al. 2006).

It is interesting to note that the sameT. cruzi strain
induced production of distinct levels of circulating
antibodies recognizing the β1-AR, β2-AR andM2-CR
in the two mouse lineages. This indicates that there is
not only a T. cruzi strain-specific modulation of
antibody titres – observed previously in infected dogs
(Daliry et al. 2014) – but also a mouse lineage-specific
modulation of Ab production.

Although presenting positivity for anti-β1, anti-β2
and anti-M2 in the chronic phase, T. cruzi-infected
C3H/He animals did not show any HRV index
alteration. Chronically infected C57BL/6 mice,
which displayed only anti-M2-CR Ab, presented a
decrease in all HRV indexes analysed, suggestive of
dysautonomia. Several reports have shown the
presence of circulating anti-M2 Ab concomitant
with autonomic dysfunction, suggesting that those
Ab could have a causal effect on clinical manifesta-
tions of CD (Goin et al. 1994, 1999; Talvani et al.
2006; Ribeiro et al. 2007). In fact, autonomic
disorders have been described before the occurrence
of LV dysfunction in patients and even in the
indeterminate phase of CD, suggesting that it appears
early during the infection, before any cardiac
structural and functional alteration can be detected
(Ribeiro et al. 2007). In agreement with that, we
detected anti-M2 Ab in the serum of C3H/He
T. cruzi-infected mice at 30 dpi, and similarly in a
canine model of CD infected with three different
T. cruzi strains (Daliry et al. 2014).

Another interesting finding of the present report
is that the presence of anti-β1 and anti-β2-CR Ab,
concomitant with anti-M2 Ab, did not alter HRV
indexes, suggesting that the presence of both anti-
adrenergic and anti-cholinergic Ab may balance
each other’s effects, resulting in no autonomic
dysfunction.

There are two possible explanations for the effect of
anti-M2 Ab on lowering HRV indexes: (1) impair-
ment of vagal-mediated autonomicmodulation of the
heart and (2) enhanced parasympathetic modulation
of the sinus node. Since we found a significant HR
reduction in T. cruzi-C57BL/6 infected mice, this
could only result from parasympathetic hyper-
stimulation. However, in chagasic patients Ribeiro
et al. (2007) found that reduced HRV was not
accompanied by reduced HR and that anti-M2-CR
Ab titres did not correlate with basal HR. Based on
these findings they stated that vagal enhancement
remains a theoretical hypothesis that still needs
demonstration. Additional experiments are necessary
to establish if these differences are due to species-
specific effects.
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