
Theory and Practice of Logic Programming 2 (1): 25–84, January 2002.

Printed in the United Kingdom c© 2002 Cambridge University Press

25

Sequence-based abstract interpretation of
Prolog

BAUDOUIN LE CHARLIER

Institut d’Informatique, University of Namur,

21 rue Grandgagnage, B-5000 Namur, Belgium

SABINA ROSSI

Dipartimento di Informatica, Università di Venezia,

via Torino 155, 30172 Venezia, Italy

PASCAL VAN HENTENRYCK

Department of Computer Science, Brown University,

P.O. Box 1910, Providence RI 02912, USA

Abstract

Abstract interpretation is a general methodology for systematic development of program anal-

yses. An abstract interpretation framework is centered around a parametrized non-standard

semantics that can be instantiated by various domains to approximate different program prop-

erties. Many abstract interpretation frameworks and analyses for Prolog have been proposed,

which seek to extract information useful for program optimization. Although motivated by

practical considerations, notably making Prolog competitive with imperative languages, such

frameworks fail to capture some of the control structures of existing implementations of the

language. In this paper, we propose a novel framework for the abstract interpretation of

Prolog which handles the depth-first search rule and the cut operator. It relies on the notion

of substitution sequence to model the result of the execution of a goal. The framework consists

of (i) a denotational concrete semantics, (ii) a safe abstraction of the concrete semantics

defined in terms of a class of post-fixpoints, and (iii) a generic abstract interpretation algo-

rithm. We show that traditional abstract domains of substitutions may easily be adapted to

the new framework, and provide experimental evidence of the effectiveness of our approach.

We also show that previous work on determinacy analysis, that was not expressible by existing

abstract interpretation frameworks, can be seen as an instance of our framework. The ideas

developed in this paper can be applied to other logic languages, notably to constraint logic

languages, and the theoretical approach should be of general interest for the analysis of many

non-deterministic programming languages.

KEYWORDS: Prolog, static analysis, abstract interpretation

1 Introduction

Abstract interpretation (Cousot and Cousot, 1977) is a general methodology for

systematic development of program analyses. It has been applied to various for-

malisms and paradigms including flow-charts and imperative, functional, logic, and

constraint programming.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

26 B. Le Charlier and others

Abstract interpretation of Prolog and, more generally, of logic programming was

initiated by Mellish (1987) and further developed by numerous researchers, e.g.

Bruynooghe (1991), Cousot and Cousot (1992a), Jones and Søndergaard (1987), Le

Charlier et al. (1991), Marriott and Søndergaard (1989b). Many different kinds of

practical analyses and optimizations have been proposed, a detailed description of

which can be found in (Cousot and Cousot, 1992a; Getzinger, 1994). Briefly, mode

(Cortesi et al., 1991; Debray, 1989; Debray and Warren, 1988; Somogyi, 1987),

type (Barbuti and Giacobazzi, 1992; Cortesi et al., 1995; Gang and Zhiliang, 1986;

Janssens and Bruynooghe, 1992; Kanamori and Horiuchi, 1985; Kieburtz, 1983;

Kluźniak, 1987; Leivant, 1983; Mycroft and O’Keefe, 1984; Xu and Warren, 1988;

Yardeni and Shapiro, 1991), and aliasing (Codish et al., 1991; Jacob and Langen,

1989) analyses collect information about the state of variables during the execution

and are useful to speed up term unification and make memory allocation more

efficient (Hermenegildo et al., 1992; Warren et al., 1988). Sharing analysis (Corsini,

1991; Cortesi and Filè, 1991; Kluźniak, 1988; Muthukumar and Hermenegildo,

1991) is similar to aliasing except that it refers to the sharing of memory structures

to which program variables are instantiated; it is useful to perform compile-time

garbage collection (Jensen and Mogensen, 1990; Kluźniak, 1988; Mulkers et al.,

1990) and automatic parallelization (Cabeza Gras and Hermenegildo, 1994; Chang

et al., 1985; Giacobazzi and Ricci, 1990; Jacob and Langen, 1992). Reference chain

analysis (Marien et al., 1989; Van Roy and Despain, 1992) attempts to determine

an upper bound to the length of the pointer chain for a program variable. Trailing

analysis (Taylor, 1989) aims at detecting variables which do not need to be trailed.

Liveness analysis (Mulkers, 1991) determines when memory structures can be reused

and is useful to perform update-in-place.

All these analyses approximate the set of values (i.e. terms or memory structures)

to which program variables can be instantiated at some given program point. It

is thus not surprising that almost all frameworks for the abstract interpretation of

Prolog, e.g. (Barbuti et al., 1993; Bruynooghe, 1991; Jones and Søndergaard, 1987;

Marriott, 1993; Marriott and Søndergaard, 1989b; Mellish, 1987; Nilsson, 1990), are

based on abstractions of sets of substitutions. Such traditional frameworks ignore

important control features of the language, like the depth-first search strategy and

the cut operator. The reason is that these control features are difficult to model

accurately, and yet not strictly necessary for a variable level analysis. However,

modeling Prolog control features has two main advantages. First, it allows one to

perform so-called predicate level analyses, like determinacy (Giacobazzi and Ricci,

1992; Sahlin, 1991; Ueda, 1987; Van Roy et al., 1987; Van Roy and Despain, 1992)

and local stack (Marien and Demoen, 1989; Maier, 1991) analyses. These analyses

are not captured by traditional abstract interpretation frameworks; they usually

rely on some ad hoc technique and require special-purpose proofs of correctness,

e.g. (Debray and Warren, 1989; Sahlin, 1991), which may be rather involved. They

are useful to perform optimizations, such as the choice point removal and the

simplification of environment creation. Second, the analysis of some classes of

programs, like programs containing multi-directional procedures which use cuts and

meta-predicates to select among different versions, may be widely improved. This

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 27

may provide the compiler with more chances to perform important optimizations

such as dead-code elimination.

Abstract interpretation of Prolog with control has been investigated by other

authors. In particular, we know of three main different approaches. The approach of

Barbuti et al. (1993) is based on an abstract semantics for logic programs with control

which is parametric with respect to a ‘termination theory’. The latter is intended

to be provided from outside, for instance by applying proofs procedures. Filè and

Rossi (1993) propose an operational and non-compositional abstract interpretation

framework for Prolog with cut consisting of a tabled interpreter to visit OLDT

abstract trees decorated with information about sure success or failure of goals.

Finally, Spoto (2000) define an abstract goal-independent denotational semantics

for Prolog handling control rules and cut. Program denotations are adorned with

‘observability’ constraints giving information about divergent computations and cut

executions. We know of no experimental results validating the effectiveness of these

approaches.

In this paper, we present a novel abstract interpretation framework for Prolog

which models the depth-first search rule and the cut operator. It relies on the

notion of substitution sequence which allows us to collect the solutions to a goal

together with information such as sure success and failure, the number of solutions,

and/or termination. The framework that we propose can be applied to perform

predicate level analyses, such as determinacy, which were not expressible by classical

frameworks, and can be also used to improve the accuracy of existing analyses.

Experiments on a sample analysis, namely cardinality analysis, will be discussed.

1.1 Some motivating examples

In this section we illustrate, by means of small examples, the functionality of our

static analyzer and we discuss how it improves on previous abstract interpretation

frameworks. Experimental results on medium-size programs will be reported later.

The first two examples show that predicate level properties, such as determinacy,

which are out of the scope of traditional abstract interpretation frameworks can

be captured by our analyzer. To the best of our knowledge, does not exist any

specific analysis which can infer determinacy of all the programs that are discussed

hereafter.

Consider first the procedure is last:

is last(X,[X]).

is last(X,[|T]) :- is last(X,T).

When given the input pattern is last(var,ground), where var and ground

denote the set of all variables and the set of all ground terms respectively, our analy-

sis returns the abstract sequence 〈is last(ground,[ground|ground]),0,1,pt〉,
where is last(ground,[ground|ground]) is the pattern characterizing the output

substitutions, 0 and 1 are, respectively, the minimum and the maximum number of

returned output substitutions, and pt stands for ‘possible termination’.

Consider now the following two versions of the procedure partition.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

28 B. Le Charlier and others

partition([],P,[],[]).

partition([S|T],P,[S|Ss],Bs) :- S 6 P, !, partition(T,P,Ss,Bs).

partition([B|T],P,Ss,[B|Bs]) :- partition(T,P,Ss,Bs).

partition([],P,[],[]).

partition([S|T],P,[S|Ss],Bs) :- leq(S,P), partition(T,P,Ss,Bs).

partition([B|T],P,Ss,[B|Bs]) :- gt(B,P), partition(T,P,Ss,Bs).

leq(K1-V1,K2-V2) :- K1 6 K2.

gt(K1-V1,K2-V2) :- K1 > K2.

Note that the second version of the procedure calls arithmetic predicates through

an auxiliary predicate and is appropriate for a key sort. Given an input pat-

tern partition(ground,ground,var,var), our analysis returns in both cases the

abstract sequence 〈partition(ground,ground,ground,ground),0,1,pt〉. Input/

output patterns are used to determine that the first clause and the two others are

mutually exclusive in both programs, while the cut (in the first version) and the

abstraction of arithmetic predicates (in the second version) determine the mutual

exclusion of the second and the third clause. Thus we can infer determinacy of both

versions of the procedure partition.

As stated above, we don’t know of any static analysis for logic programs which

can infer determinacy of all these programs. For instance, the analysis developed

by Debray and Warren (1989) to detect functional computations of a logic pro-

gram cannot infer determinacy of the procedure is last; the determinacy analysis

proposed by Dawson et al. (1993), while it can handle the second version of the

procedure partition, it cannot handle the first version of it since it does not deal

with the cut; for the same reason, the analysis of Giacobazzi and Ricci (1992) can-

not treat the first version of the procedure partition; and the cardinality analysis

defined by Sahlin (1991) cannot handle any of the examples discussed above since

it ignores predicate arguments.

The next example shows that the use of abstract sequences can improve on the

analysis of variable level properties such as modes.

Consider the procedure compress(L,Lc), which relates two lists Lc and L such

that Lc is a compressed version of L. For instance, the compressed version of the list

[a, b, b, c, c, c] is [a, 1, b, 2, c, 3]. A library can contain the definition

of a single procedure to handle both compression and decompression as follows:

compress(A,B):- var(A), !, decmp(A,B).

compress(A,B):- cmp(A,B).

cmp([],[]).

cmp([C],[C,1]).

cmp([C1,C2|T],[C1,1,C2,N|Rest]):- C1<>C2, cmp([C2|T],[C2,N|Rest]).

cmp([C1,C1|T],[C1,N1|Rest]):- cmp([C1|T],[C1,N|Rest]), N1 := N + 1.

decmp([],[]).

decmp([C],[C,1]).

decmp([C1,C2|T],[C1,1,C2,N|Rest]):-decomp([C2|T],[C2,N|Rest]),C1 <> C2.

decmp([C1,C1|T],[C1,N1|Rest]):-N1>1, N:=N1-1,

decmp([C1|T],[C1,N|Rest]).

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 29

Given the input patterns compress(ground,var) and compress(var,ground),

our analysis returns the abstract sequence 〈compress(ground,ground),0,1,pt〉
for both the inputs. This example illustrates many of the functionalities of our

system, including input/output patterns, abstraction of arithmetic and meta-pre-

dicates, and the cut, all of which are necessary to obtain the optimal precision.

In addition, it shows that taking the cut into account improves the analysis of

modes. Indeed, a mode analysis ignoring the cut would return the output pattern

compress(novar, ground) for the input pattern compress(var,ground), losing the

groundness information. None of the abstract interpretation algorithms for logic

programs we know of can handle this example with an optimal result. Moreover, if

a program only uses the input pattern compress(var,ground), our analysis detects

that the second clause of compress is dead code without any extra processing since

no input/output pattern exists for comp. The second clause, the test var, and the

cut of the first clause can then be removed by an optimizer.

Notice that there exist implemented tools for the static analysis of Prolog programs,

such as PLAI (Muthukumar and Hermenegildo, 1992), which can achieve as accurate

success and dead-code information as our analyzer. However, such tools usually

integrate several analyses based on different techniques which are not all justified

by the abstract interpretation framework. The example of the procedure compress

shows that our analyzer can handle control features of the language within the

abstract interpretation framework without the need of any extra consideration.

1.2 Sequence-based abstract interpretation of Prolog

An abstract interpretation framework (Cousot and Cousot, 1992b) is centered

around the definition of a non-standard semantics approximating a concrete se-

mantics of the language.

Most top-down abstract interpretation frameworks for logic programs, see, for in-

stance, (Bruynooghe, 1991; Codognet and Filè, 1992; Jones and Søndergaard, 1987;

Le Charlier and Van Hentenryck, 1994; Marriott and Søndergaard, 1989a; Mellish,

1987; Muthukumar and Hermenegildo, 1992; Nilsson, 1990; Warren, 1992; Wins-

borough, 1992), can be viewed as abstractions of a concrete structural operational

semantics (Plotkin, 1981). Such a semantics defines the meaning of a program as

a transition relation described in terms of transition rules of the form 〈θ, o〉 7−→ θ′,
where the latter expresses the fact that θ′ is a possible output from the execution of

the construct o (i.e. a procedure, a clause, etc.) called with input θ. This structural

operational semantics can easily be rephrased as a fixpoint semantics mapping any

input pattern 〈θ, o〉 to the set of all corresponding outputs θ′. The fixpoint seman-

tics can then be lifted to a collecting semantics that maps sets of inputs to sets of

outputs and is defined as the least fixpoint of a set-based transformation. The non-

standard (or abstract) semantics is identical to the collecting one except that it uses

abstract values instead of sets and abstract operations instead of operations over

sets. Finally, an abstract interpretation algorithm can be derived by instantiating a

generic fixpoint algorithm (Le Charlier and Van Hentenryck, 1993) to the abstract

semantics.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

30 B. Le Charlier and others

The limitations of traditional top-down frameworks for Prolog stem from the fact

that structural operational semantics are unable to take the depth-first search rule

into account. Control operators such as the cut cannot be modeled and are thus

simply ignored. To overcome these limitations, we propose a concrete semantics of

Prolog which describes the result of program executions in terms of substitution se-

quences. This allows us to model the depth-first search rule and the cut operator. The

semantics is defined in the denotational setting to deal with sequences resulting from

the execution of infinite computations. Moreover, it is still compositional allowing

us to reuse most of the material of our previous works, i.e. the abstract domains and

the generic algorithm (Le Charlier and Van Hentenryck, 1994). However, technical

problems arise when applying the abstract interpretation approach described above.

Let us informally explain the main ideas behind the definition of our framework.

First, we define a concrete semantics as the least fixpoint of a concrete transfor-

mation TCB mapping every so-called concrete behavior 7−→ to another concrete

behavior
TCB7−→. The notion of concrete behavior is our denotation choice for a Pro-

log program: it is a function that maps pairs of the form 〈θ, p〉 to a substitution

sequence S , which intuitively represents the sequence of computed answer substitu-

tions returned by the query p(x1, . . . , xn)θ. The fixpoint construction of the concrete

semantics relies on a suitable ordering v defined on sequences.

Secondly, a collecting transformation TCD is obtained by lifting the concrete

transformation TCB to sets of substitutions and sets of sequences. The transforma-

tion TCD is monotonic with respect to set inclusion. However, its least fixpoint does

not safely approximate the concrete semantics. In fact, the least set with respect to

inclusion, that is the empty set {}, does not contain the least substitution sequence

with respect to v, which is a special sequence denoted by < ⊥ >. The problem relies

on the fact that an ordering on sets of sequences that ‘combines’ both the ordering

v on sequences and the ordering ⊆ on sets is needed. This is an instance of the

power domain construction problem (Schmidt, 1988), which is difficult in general.

We choose a more pragmatic solution which consists in restricting to chain-closed

sets of sequences, i.e. sets containing the limit of every increasing chain, with respect

to v, of their elements. We also introduce the notion of pre-consistent collecting

behavior which, roughly speaking, contains a lower approximation, with respect to

v, of the concrete semantics (the least fixpoint of TCB). The transformation TCD

maps pre-consistent collecting behaviors to other pre-consistent ones. Moreover,

assuming that sets of sequences are chain-closed, any pre-consistent post-fixpoint,

with respect to set inclusion, of TCD safely approximates the concrete semantics.

These results imply that a safe collecting behavior can be constructed by iterating

on TCD from any initial pre-consistent collecting behavior and by applying some

widening techniques (Cousot and Cousot, 1992c) to reach a post-fixpoint.

Thirdly, the abstract semantics is defined exactly as the collecting one except that

it is parametric with respect to the abstract domains. In fact, we do not explicitly

distinguish between the collecting and the abstract semantics: in our presentation,

the collecting transformation TCD is just a particular instance of the (generic)

abstract transformation TAB.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 31

Finally, a generic abstract interpretation algorithm is derived from the abstract

semantics. The algorithm is essentially an instantiation of the universal fixpoint

algorithm described in Le Charlier and Van Hentenryck (1993).

1.3 Plan of the paper

The paper is organized as follows. Sections 2 and 3 describe, respectively, our

concrete and abstract semantics for pure Prolog augmented with the cut. The

generic abstract interpretation algorithm is discussed in section 4. Section 5 is a

revised and extended version of (Braem et al., 1994). It describes an instantiation of

our abstract interpretation framework to approximate the number of solutions to a

goal. Experimental results are reported. In section 6 we consider related works on

determinacy analysis. Section 7 concludes the paper.

2 Concrete semantics

This section describes a concrete semantics for pure Prolog augmented with the cut.

The concrete semantics is the link between the standard semantics of the language

and the abstract one. Our concrete semantics is denotational and is based on the

notion of substitution sequence. Correctness of the concrete semantics with respect

to Prolog standard semantics, i.e., OLD-resolution, is discussed. Most proofs are

omitted here; all details can be found in Le Charlier et al. (1996).

2.1 Syntax

The abstract interpretation framework presented in this paper assumes that pro-

grams are normalized according to the abstract syntax given in figure 1. The variables

occurring in a literal are distinct; distinct procedures have distinct names; all clauses

of a procedure have exactly the same head; if a clause uses m different program

variables, these variables are x1, . . . , xm.

P ∈ Programs P ::= pr | pr P

pr ∈ Procedures pr ::= c | c pr

c ∈ Clauses c ::= h :- g.

h ∈ ClauseHeads h ::= p(x1, . . . , xn)

g ∈ ClauseBodyPrefixes g ::= <> | g , l

l ∈ Literals l ::= p(xi1 , . . . , xin) | b

b ∈ Built-ins b ::= xi=xj | xi1 =f(xi2 , . . . , xin) | !

p ∈ ProcedureNames

f ∈ Functors

xi ∈ ProgramVariables (PV)

Fig. 1. Abstract syntax of normalized programs.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

32 B. Le Charlier and others

2.2 Basic semantic domains

This section presents the basic semantic domains of substitutions. Note that we

assume a preliminary knowledge of logic programming; see, for instance, Apt (1997)

and Lloyd (1987).

Variables and Terms. We assume the existence of two disjoint and infinite sets of

variables, denoted by PV and SV . Elements of PV are called program variables

and are denoted by x1, x2, . . . , xi, The set PV is totally ordered; xi is the i-th

element of PV . Elements of SV are called standard variables and are denoted by

letters y and z (possibly subscripted). Terms are built using standard variables only.

Standard Substitutions. Standard substitutions are substitutions in the usual sense

which use standard variables only. The set of standard substitutions is denoted by

SS . Renamings are standard substitutions that define a permutation of standard

variables. The domain and the codomain of a standard substitution σ are denoted

by dom(σ) and codom(σ), respectively. We denote by mgu(t1, t2) the set of standard

substitutions that are a most general unifier of terms t1 and t2.

Program Substitutions. A program substitution is a set {xi1/t1, . . . , xin/tn}, where

xi1 , . . . , xin are distinct program variables and t1, . . . , tn are terms. Program substitu-

tions are not substitutions in the usual sense; they are best understood as a form of

program store which expresses the state of the computation at a given program point.

It is meaningless to compose them as usual substitutions or to use them to express

most general unifiers. The domain of a program substitution θ = {xi1/t1, . . . , xin/tn},
denoted by dom(θ), is the set of program variables {xi1 , . . . , xin}. The codomain of θ,

denoted by codom(θ), is the set of standard variables occurring in t1, . . . , tn. Program

and standard substitutions cannot be composed. Instead, standard substitutions

are applied to program substitutions. The application of a standard substitution

σ to a program substitution θ = {xi1/t1, . . . , xin/tn} is the program substitution

θσ = {xi1/t1σ, . . . , xin/tnσ}. The set of program substitutions is denoted by PS . The

application xiθ of a program substitution θ to a program variable xi is defined

only if xi ∈ dom(θ); it denotes the term bound to xi in θ. Let D be a finite subset

of PV and θ be a program substitution such that D ⊆ dom(θ). The restriction of

θ to D, denoted by θ/D , is the program substitution such that dom(θ/D) = D and

xi(θ/D) = xiθ, for all xi ∈ D. We denote by PSD the set of program substitutions

with domain D.

Canonical Program Substitutions. We say that two program substitutions θ and θ′ are

equivalent if and only if there exists a renaming ρ such that θρ = θ′. We assume that,

for each program substitution θ, we are given a canonical representative, denoted by

[[θ]], of the set of all program substitutions that are equivalent to θ. We denote by

CPS the set of all canonical program substitutions [[θ]]. For any finite set of program

variables D, we denote by CPSD the set PSD ∩ CPS .

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 33

2.3 Program substitution sequences

Program substitution sequences are intended to model the sequence of computed

answer substitutions returned by a goal, a clause, or a procedure.

Program Substitution Sequences. Let us denote by N? the set of positive natural

numbers. A program substitution sequence is either a finite sequence of the form

< θ1, . . . , θn > (n > 0) or an incomplete sequence of the form < θ1, . . . , θn,⊥ >

(n > 0) or an infinite sequence of the form < θ1, . . . , θi, . . . > (i∈N?), where the θi are

program substitutions with the same domain. We use the notation < θ1, . . . , θi, >

to represent a program substitution sequence when it is not known whether it is

finite, incomplete or infinite. Let S be a program substitution sequence. We denote

by Subst(S) the set of program substitutions that are elements of S . The domain of

S is defined when S 6=<> and S 6=< ⊥ >. In this case, dom(S) is the domain of

the program substitutions belonging to Subst(S). The set of all program substitution

sequences is denoted by PSS. Let D be a finite set of program variables. We denote

by PSSD the set of all program substitution sequences with domain D augmented

with <> and < ⊥ >. Let S ∈ PSSD be a sequence < θ1, . . . , θi, > and D′ ⊆ D.

The restriction of S to D′, denoted by S/D′ , is the program substitution sequence

< θ1/D′ , . . . , θi/D′ , >. The number of elements of S , including the special element ⊥,

is denoted by Ne(S). The number of elements of S that are substitutions is denoted

by Ns(S). Sequence concatenation is denoted by :: and it is used only when its first

argument is a finite sequence.

Canonical Substitution Sequences. The canonical mapping [[·]] is lifted to sequences

as follows. Let S be a program substitution sequence < θ1, . . . , θi, >. We define

[[S]] =< [[θ1]], . . . , [[θi]], >. We denote by CPSS the set of all canonical substitution

sequences [[S]] and by CPSSD the set PSSD ∩ CPSS , for any finite subset D of PV.

CPO’s of Program Substitution Sequences. The sets PSS, PSSD , CPSS and CPSSD
can be endowed with a structure of pointed CPO as described below.

Definition 2.1 (Relation v on Program Substitution Sequences)

Let S1, S2∈PSS . We define

S1 v S2 iff either S1 = S2

or there exists S, S ′ ∈PSS such that S is finite,

S1 = S ::< ⊥ > and S2 = S :: S ′.

The relation v on program substitution sequences is an ordering and the pairs

〈PSS ,v〉, 〈CPSS ,v〉, 〈PSSD,v〉, and 〈CPSSD,v〉 are all pointed CPOs.

We denote by (Si)i∈N an increasing chain, S0 v S1 v . . . v Si v . . . in PSS; whereas

we denote by {Si}i∈N a, non necessarily increasing, sequence of elements of PSS.

Lazy Concatenation. Program substitution sequences are combined through the

operation 2 and its extensions 2nk=1 and 2∞k=1 defined below.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

34 B. Le Charlier and others

Definition 2.2 (Operation 2)

Let S1, S2∈PSS .

S12S2 = S1 :: S2 if S1 is finite

= S1 if S1 is incomplete or infinite.

Definition 2.3 (Operation 2nk=1)

Let {Sk}k∈N? be an infinite sequence of program substitution sequences (not neces-

sarily a chain). For any n > 1, we define:

20
k=1Sk = < >

2nk=1Sk = (2n−1
k=1Sk)2Sn.

Definition 2.4 (Operation 2∞k=1)

Let {Sk}k∈N? be an infinite sequence of program substitution sequences. The infinite

sequence {S ′i }i∈N where S ′i = (2ik=1Sk)2 < ⊥ > (i ∈ N) is a chain. So we are allowed

to define:

2∞k=1Sk = t∞i=0S
′
i = t∞i=0((2ik=1Sk)2 < ⊥ >).

The operation 2 is associative; hence, it is meaningful to write S12 . . .2Sn instead

of 2nk=1Sk . Operations 2, 2nk=1, and 2∞k=1 are continuous with respect to the ordering

v on program substitution sequences.

Program Substitution Sequences with Cut Information. Program substitution se-

quences with cut information are used to model the result of a clause together

with information on cut executions.

Let CF be the set of cut flags {cut , nocut}. A program substitution sequence with

cut information is a pair 〈S, cf〉 where S ∈PSS and cf∈CF .

Definition 2.5 (Relation v on Substitution Sequences with Cut Information)

Let 〈S1, cf 1〉, 〈S2, cf 2〉∈PSS × CF . We define

〈S1, cf 1〉 v 〈S2, cf 2〉 iff either S1 v S2 and cf 1 = cf 2

or S1 =< ⊥ > and cf 1 = nocut .

The relation v on program substitution sequences with cut information is an

ordering. Moreover, the pairs 〈PSS ×CF ,v〉, 〈PSSD×CF ,v〉, 〈CPSS ×CF ,v〉 and

〈CPSSD × CF ,v〉 are all pointed cpo’s.

We extend the definition of the operation 2 to program substitution sequences

with cut information. The extension is continuous in both the arguments.

Definition 2.6 (Operation 2 with Cut Information)

Let 〈S1, cf 〉∈PSS × CF and S2∈PSS . We define

〈S1, cf 〉2S2 = S12S2 if cf = nocut

S1 if cf = cut.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 35

2.4 Concrete behaviors

The notion of concrete behavior provides a mathematical model for the input/output

behavior of programs. To simplify the presentation, we do not parameterize the

semantics with respect to programs. Instead, we assume a given fixed underlying

program P.

Definition 2.7 (Concrete Underlying Domain)

The concrete underlying domain, denoted by CUD, is the set of all pairs 〈θ, p〉 such

that p is the name of a procedure pr of P and θ∈CPS {x1 ,...,xn}, where x1, . . . , xn are

the variables occurring in the head of every clause of pr.

Concrete behaviors are functions but we denote them by the relation symbol 7−→
in order to stress the similarities between the concrete semantics and a structural

operational semantics for logic programs defined in Le Charlier and Van Hentenryck

(1995).

Definition 2.8 (Concrete Behaviors)

A concrete behavior is a total function 7−→: CUD −→ CPSS mapping every pair

〈θ, p〉 ∈CUD to a canonical program substitution sequence S such that, for every

θ′ ∈ Subst(S), there exists a standard substitution σ such that θ′ = θσ. We denote

by 〈θ, p〉 7−→ S the fact that 7−→ maps the pair 〈θ, p〉 to S . The set of all concrete

behaviors is denoted by CB.

The ordering v on program substitution sequences is lifted to concrete behaviors

in a standard way (Schmidt, 1988).

Definition 2.9 (Relation v on Concrete Behaviors)

Let 7−→1, 7−→2∈CB . We define

7−→1v7−→2 iff (〈θ, p〉 7−→1 S1 and 〈θ, p〉 7−→2 S2) imply S1 v S2,

for all 〈θ, p〉∈CUD .

The following result is straightforward.

Proposition 2.10

〈CB ,v〉 is a pointed CPO, i.e.

1. the relation v on CB is a partial order;

2. CB has a minimum element, which is the concrete behavior 7−→⊥ such that

for all 〈θ, p〉∈CUD , 〈θ, p〉 7−→⊥< ⊥ >;

3. every chain (7−→i)i∈N in CB has a least upper bound, denoted by t∞i=0 7−→i;

t∞i=0 7−→i is the concrete behavior 7−→ such that, for all 〈θ, p〉∈CUD , 〈θ, p〉 7−→
t∞i=0Si, where 〈θ, p〉 7−→i Si (∀i∈N).

2.5 Concrete operations

We specify here the concrete operations which are used in the definition of the

concrete semantics. The choice of these particular operations is motivated by the

fact that they have useful (i.e. practical) abstract counterparts (see sections 3, 4

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

36 B. Le Charlier and others

and 5). The concrete operations are polymorphic since their exact signature depends

on a clause c or a literal l or both.

Let c be a clause, D = {x1, . . . , xn} be the set of all variables occurring in the head

of c, and D′ = {x1, . . . , xm} (n 6 m) be the set of all variables occurring in c.

Extension at Clause Entry : EXTC(c, ·) : CPSD → (CPSSD′ × CF)

This operation extends a substitution θ on the set of variables in D to the set of

variables in D′. Let θ∈CPSD:

EXTC(c, θ) = 〈< [[θ′]] >, nocut〉

where xiθ
′ = xiθ (∀i : 1 6 i 6 n) and xn+1θ

′, . . . , xmθ
′ are distinct standard variables

not belonging to codom(θ).

Restriction at Clause Exit : RESTRC(c, ·) : (CPSSD′ × CF)→ (CPSSD × CF)

This operation restricts a pair 〈S, cf 〉, representing the result of the execution of c

on the set of variables in D′, to the set of variables in D. Let 〈S, cf 〉∈ (CPSS ′D×CF):

RESTRC(c, 〈S, cf 〉) = 〈[[S ′]], cf 〉 where S ′ = S/D .

Let l be a literal occurring in the body of c, D′′ = {xi1 , . . . , xir} be the set of

variables occurring in l, and D′′′ be equal to {x1, . . . , xr}.
Restriction before a Call : RESTRG(l, ·) : CPSD′′ → CPSD′′′

This operation expresses a substitution θ on the parameters xi1 , . . . , xir of a call l in

terms of the formal parameters x1, . . . , xr of l. Let θ∈CPSD′′:

RESTRG(l, θ) = [[{x1/xi1θ, . . . , xr/xir θ}]].

Extension of the Result of a Call : EXTG(l, ·, ·) : CPSD′ × CPSSD′′′ 6→ CPSSD′

This operation extends a substitution θ with a substitution sequence S representing

the result of executing a call l on θ. Hence, it is only used in contexts where

the substitutions that are elements of S are (roughly speaking) instances of θ. Let

θ ∈ CPSD′ . Let S ∈ CPSSD′′′ be of the form < θ′σ1, . . . , θ
′σi, > where xjθ

′ = xij θ

(1 6 j 6 r) and the σi are standard substitutions such that dom(σi) ⊆ codom(θ′).
Let {z1, . . . , zs} = codom(θ) \ codom(θ′). Let yi,1, . . . , yi,s be distinct standard variables

not belonging to codom(θ)∪ codom(σi) (1 6 i 6 Ns(S)). Let ρi be a renaming of the

form {z1/yi,1, . . . , zs/yi,s, yi,1/z1, . . . , yi,s/zs}:
EXTG(l, θ, S) = [[< θρ1σ1, . . . , θρiσi, >]].

It is easy to see that the value of EXTG(l, θ, S) does not depend on the choice of

the yi,j . Moreover, it is not defined when S is not of the above mentioned form.

Unification of Two Variables : UNIF-VAR: CPS {x1 ,x2} → CPSS {x1 ,x2}
Let θ∈CPS {x1 ,x2}. This operation unifies x1θ with x2θ:

UNIF-VAR(θ) = <> if x1θ and x2θ are not unifiable,

= [[< θσ >]] where σ∈mgu(x1θ, x2θ), otherwise.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 37

Unification of a Variable and a Functor : UNIF-FUNC(f, ·) : CPSD → CPSSD

Given a functor f of arity n−1 and a substitution θ∈CPSD where D = {x1, . . . , xn},
the UNIF-FUNC operation unifies x1θ with f(x2, . . . , xn)θ.

UNIF-FUNC(f, θ) = <> if x1θ and f(x2, . . . , xnθ) are not unifiable,

= [[< θσ >]] where σ∈mgu(x1θ, f(x2, . . . , xn)θ), otherwise.

All operations above are monotonic and continuous. We assume that sets of

program substitutions are endowed with the ordering v such that θ v θ′ iff θ = θ′.

2.6 Concrete semantic rules

The concrete semantics of the underlying program P is the least fixpoint of a conti-

nuous transformation on CB (the set of concrete behaviors). This transformation is

defined in terms of a set of semantic rules that naturally extend a concrete behavior

to a continuous function defining the input/output behavior of every prefix of the

body of a clause, every clause, every suffix of a procedure and every procedure of

P . This function is called extended concrete behavior and maps each element of the

extended concrete underlying domain to a substitution sequence, possibly with cut

information, as defined below.

Definition 2.11 (Extended Concrete Underlying Domain)

The extended concrete underlying domain, denoted by ECUD, consists of:

1. all triples 〈θ, g, c〉, where c is a clause of P , g is a prefix of the body of c, and

θ is a canonical program substitution over the variables in the head of c;

2. all pairs 〈θ, c〉, where c is a clause of P and θ is a canonical program

substitution over the variables in the head of c;

3. all pairs 〈θ, pr〉, where pr is a suffix of a procedure of P and θ is a canonical

program substitution over the variables in the head of the clauses of pr.

Definition 2.12 (Extended Concrete Behaviors)

An extended concrete behavior is a total function from ECUD to the set CPSS ∪
(CPSS × CF) such that

1. every triple 〈θ, g, c〉 from ECUD is mapped to a program substitution sequence

with cut information 〈S, cf 〉 such that dom(S) is the set of all variables in c;

2. every pair 〈θ, c〉 from ECUD is mapped to a program substitution sequence

with cut information 〈S, cf 〉 such that dom(S) is the set of variables in the

head of c;

3. every pair 〈θ, pr〉 from ECUD is mapped to a program substitution sequence

S such that dom(S) is the set of variables in the head of the clauses of pr.

The set of extended concrete behaviors is endowed with a structure of pointed

cpo in the obvious way. It is denoted by ECB; its elements are denoted by 7−→.

Let 7−→ be a concrete behavior. The concrete semantic rules depicted in Figure 2

define an extended concrete behavior derived from 7−→. This extended concrete

behavior is denoted by the same symbol 7−→. This does not lead to confusion since

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

38 B. Le Charlier and others

the inputs of the two functions belong to different sets. The definition proceeds by

induction on the syntactic structure of P .

The concrete semantic rules model Prolog operational semantics through the

notion of program substitution sequence. Rule R1 defines the program substitution

sequence with cut information at the entry point of a clause. Rules R2 and R3 define

the effect of the execution of a cut at the clause level. Rules R4, R5 and R6 deal

with execution of literals; procedure calls are solved by using the concrete behavior

7−→ as an oracle. Rule R7 defines the result of a clause. Rules R8 and R9 define

the result of a procedure by structural induction on its suffixes. Rule R8 deals with

the suffix consisting of the last clause only: it simply forgets the cut information,

which is not meaningful at the procedure level. Rule R9 combines the result of a

clause with the (combined) result of the next clauses in the same procedure: it deals

with the execution of a cut at the procedure level. The expression 2Ne(S)
k=1 Sk used in

Rules R4, R5 and R6 deserves an explanation: when the sequence S is incomplete,

it is assumed that S
Ne(S)

=< ⊥ >. This convention is necessary to propagate the

non-termination of g′ to g.

The following results are instrumental for proving the well-definedness of the

concrete semantics.

Proposition 2.13 (Properties of the Concrete Semantic Rules)

1. Given a concrete behavior, the concrete semantic rules define a unique extended

concrete behavior, i.e. a unique mapping from CB to ECB. This mapping is

continuous.

2. Rules R1 to R6 have a conclusion of the form 〈θ, g, c〉 7−→ 〈S, cf 〉. In all cases,

S is of the form < θ′σ1, . . . , θ
′σi, >, where the σi are standard substitutions

and 〈θ′, nocut〉 = EXTC(c, θ).

Rules R7 to R9 have a conclusion of the form 〈θ, ·〉 7−→ S . In all cases, S is of

the form < θσ1, . . . , θσi, >, where the σi are standard substitutions.

2.7 Concrete semantics

The concrete semantics of the underlying program P is defined as the least fixpoint

of the following concrete transformation.

Definition 2.14 (Concrete Transformation)

The transformation TCB : CB → CB is defined as follows: for all 7−→∈ CB ,

pr is a procedure of P

p is the name of pr

〈θ, pr〉 7−→ S

T1

〈θ, p〉 TCB7−→ S

where
TCB7−→ stands for TCB (7−→). Remember that 〈θ, pr〉 7−→ S is defined by means

of the previous rules which use the concrete behavior 7−→ as an oracle to solve the

procedure calls.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 39

g ::= <>

R1

〈θ, g, c〉 7−→ EXTC(c, θ)

g ::= g’ , !

〈θ, g′, c〉 7−→ 〈S, cf 〉
S ∈ {< ⊥ >,<>}

R2

〈θ, g, c〉 7−→ 〈S, cf 〉

g ::= g’ , !

〈θ, g′, c〉 7−→ 〈S, cf 〉
S =< θ′ >:: S ′

R3

〈θ, g, c〉 7−→ 〈< θ′ >, cut〉

g ::= g’ , l

l ::= xi=xj
〈θ, g′, c〉 7−→ 〈S, cf 〉
S =< θ1, . . . , θi, >
θ′k = RESTRG(l, θk)

S
′
k = UNIF-VAR(θ′k)
Sk = EXTG(l, θk, S

′
k)

(1 6 k 6 Ns(S))

R4

〈θ, g, c〉 7−→ 〈2Ne(S)
k=1 Sk, cf 〉

g ::= g’ , l

l ::= xi1 =f(xi2 , . . . , xin)

〈θ, g′, c〉 7−→ 〈S, cf 〉
S =< θ1, . . . , θi, >
θ′k = RESTRG(l, θk)

S
′
k = UNIF-FUNC(f, θ′k)
Sk = EXTG(l, θk, S

′
k)

(1 6 k 6 Ns(S))

R5

〈θ, g, c〉 7−→ 〈2Ne(S)
k=1 Sk, cf 〉

g ::= g’ , l

l ::= p(xi1 , . . . , xin)

〈θ, g′, c〉 7−→ 〈S, cf 〉
S =< θ1, . . . , θi, >
θ′k = RESTRG(l, θk)

〈θ′k, p〉 7−→ S
′
k

Sk = EXTG(l, θk, S
′
k)

(1 6 k 6 Ns(S))

R6

〈θ, g, c〉 7−→ 〈2Ne(S)
k=1 Sk, cf 〉

c ::= h :- g.

〈θ, g, c〉 7−→ 〈S, cf 〉
R7

〈θ, c〉 7−→ RESTRC(c, 〈S, cf 〉)

pr ::= c

〈θ, c〉 7−→ 〈S, cf 〉
R8

〈θ, pr〉 7−→ S

pr ::= c pr’

〈θ, c〉 7−→ 〈S, cf 〉
〈θ, pr ′〉 7−→ S ′

R9

〈θ, pr〉 7−→ 〈S, cf 〉2S ′

Fig. 2. Concrete semantic rules.

The transformation TCB is well-defined and continuous.

Definition 2.15 (Concrete Semantics)

The concrete semantics of the underlying program P is the least concrete behavior

7−→ such that

7−→ =
TCB7−→ .

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

40 B. Le Charlier and others

2.8 Correctness of the concrete semantics

Since OLD-resolution (Lloyd, 1987; Tamaki, 1986) is the standard semantics of

pure Prolog augmented with cut, our concrete semantics and OLD-resolution have

to be proven equivalent. The proof is fairly complex because OLD-resolution is

not compositional. Consequently, the two semantics do not naturally match. The

equivalence proof is given in Le Charlier et al. (1996). In this section, we only give

the principle of the proof.

1. We assume that OLD-resolution uses standard variables to rename clauses

apart. The initial queries are also assumed to contain standard variables only.

2. The notion of incomplete OLD-tree limited to depth k is defined (IOLDk-tree,

for short). Intuitively, an IOLDk-tree is an OLD-tree modified according to

the following rules:

(a) procedure calls may be unfolded only down to depth k;

(b) branches that end at a node whose leftmost literal may not be unfolded

are called incomplete;

(c) a depth-first left-to-right traversal of the tree is performed in order to

determine the cuts that are reached by the standard execution and to

prune the tree accordingly; see Lloyd (1987);

(d) the traversal ends when the whole tree has been visited or when a node

that may not be unfolded is reached;

(e) the branches on the right of the left-most incomplete branch are pruned

(if such a branch exists).

3. Assuming a query of the form p(t1, . . . , tn) and denoting the concrete behavior

TCB k(7−→⊥) by 7−→k , it can be shown that the sequence of computed answer

substitutions < σ1, . . . , σi, > for the IOLDk-tree of p(t1, . . . , tn) is such that

〈θ, p 〉 7−→k [[< θσ1, . . . , θσi, >]] where θ = {x1/t1, . . . , xn/tn}.
4. The equivalence of our concrete semantics and OLD-resolution is a simple

consequence of the previous result.

For every query p(t1, . . . , tn), < σ1, . . . , σi, > is the sequence of computed

answer substitutions of p(t1, . . . , tn) according to OLD-resolution if and only

if 〈θ, p 〉 7−→ [[< θσ1, . . . , θσi, >]] where θ = {x1/t1, . . . , xn/tn} and 7−→ is the

concrete behavior of the program according to our concrete semantics.

In fact, the correctness of our concrete semantics should be close to obvious

to anyone who knows about both Prolog and denotational semantics. So, the

equivalence proof is a formal technical exercise, which adds little to our basic

understanding of the concrete semantics.

2.9 Related work

Denotational semantics for Prolog have been proposed before (De Bruin and

De Vink, 1989; Debray and Mishra, 1988; Jones and Mycroft, 1984). Our concrete

semantics is not intended to improve on these works from the language understand-

ing standpoint. Instead, it is merely designed as a basis for an abstract interpretation

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 41

framework; in particular, it uses concrete operations that are as close as possible to

the operations used by the structural operational semantics presented in Le Charlier

and Van Hentenryck (1995) upon which our previous frameworks are based. This al-

lows us to reuse much of the material from our existing abstract domains and generic

algorithms (Englebert et al., 1993; Le Charlier et al., 1991; Le Charlier and Van Hen-

tenryck, 1994; Le Charlier and Van Hentenryck, 1995). The idea of distinguishing be-

tween finite, incomplete, and infinite sequences is originally due to Baudinet (1992).

3 Abstract semantics

As we have already explained in the introduction, our abstract semantics is not

defined as a least fixpoint of an abstract transformation but instead as a set of post-

fixpoints that fulfill a safety requirement, namely pre-consistency. Moreover, the

abstract domains are assumed to represent so-called chain-closed sets of concrete

elements as specified below.

3.1 Abstract domains

We state here the mathematical assumptions that are required to be satisfied by the

abstract domains. Specific abstract domains will be described in section 5.

Abstract Substitutions. For every finite set D of program variables, we denote by

CSD the set ℘(PSD). A domain of abstract substitutions is a family of sets ASD in-

dexed by the finite sets D of program variables. Elements of ASD are called abstract

substitutions; they are denoted by β. Each set ASD is endowed with a partial order

6 and a monotonic concretization function Cc : ASD → CSD associating to each

abstract substitution β the set Cc(β) of program substitutions it denotes.

Abstract Sequences. For every finite set D of program variables, we denote by CSSD

the set ℘(PSSD). Abstract sequences denote chain-closed subsets of CSSD .

A domain of abstract sequences is a family of sets ASSD indexed by the finite sets

D of program variables. Elements of ASSD are called abstract sequences; they are

denoted by B. Each set ASSD is endowed with a partial order 6 and a monotonic

concretization function Cc : ASSD → CSSD . Moreover, the following properties are

required to be satisfied: (1) every ASSD contains an abstract sequence B⊥ such that

< ⊥ >∈ Cc(B⊥); (2) for every B ∈ ASSD , Cc(B) is chain-closed, i.e., for every chain

(Si)i∈N of elements of Cc(B), the limit t∞i=0Si also belongs to Cc(B). The disjoint

union of all the ASSD is denoted by ASS .

Abstract Sequences with Cut Information. Let CSSCD denote ℘(PSSD×CF). A do-

main of abstract sequences with cut information is a family of sets ASSCD indexed

by the finite sets D of program variables. Elements of ASSCD are called abstract

sequences with cut information; they are denoted by C . Every set ASSCD is endowed

with a partial order 6 and a monotonic concretization function Cc : ASSCD →
CSSCD . The disjoint union of all the ASSCD is denoted by ASSC .

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

42 B. Le Charlier and others

Abstract Behaviors. Abstract behaviors are the abstract counterpart of the concrete

behaviors introduced in section 2.4. They are endowed with a weaker mathematical

structure as described below. As in the case of concrete behaviors, a fixed underlying

program P is assumed.

Definition 3.1 (Abstract Underlying Domain)

The abstract underlying domain, denoted by AUD, is the set of all pairs 〈β, p〉 such

that p is a procedure name in P of arity n and β∈AS {x1 ,...,xn}.

Definition 3.2 (Abstract Behaviors)

An abstract behavior is a total function sat : AUD −→ ASS mapping each pair

〈β, p〉∈AUD to an abstract sequence B with B ∈ ASS {x1 ,...,xn}, where n is the arity of

p. The set of all abstract behaviors is denoted by AB. The set AB is endowed with

the partial ordering 6 such that, for all sat1, sat2 ∈ AB :

sat1 6 sat2 iff sat1〈β, p〉 6 sat2〈β, p〉, ∀〈β, p〉 ∈ AUD .

It would be reasonable to assume that abstract behaviors are monotonic functions

but this is not necessary for the safety results. The notation sat stands for ‘set of

abstract tuples’. It is used because the abstract interpretation algorithm, derived

from the abstract semantics, actually computes a set of tuples of the form 〈β, p, B〉,
i.e. a part of the table of an abstract behavior.

3.2 Abstract operations

In this section, we give the specification of the primitive abstract operations used

by the abstract semantics. The specifications are safety assumptions which, roughly

speaking, state that the abstract operations safely simulate the corresponding con-

crete ones. In particular, operations EXTC, RESTRG, RESTRC, UNIF-VAR, UNIF-FUNC

are faithful abstract counterparts of the corresponding concrete operations. Hence,

their specification simply states that, if some concrete input belongs to the con-

cretization of their (abstract) input, then the corresponding concrete output belongs

to the concretization of their (abstract) output. Moreover, overloading the operation

names is natural in these cases. Operation AI-CUT deals with the cut; its specifica-

tion is also straightforward. Operations EXTGS and CONC are related to the concrete

operations EXTG and 2 in a more involved way. We will discuss them in more detail.

Finally, operations SUBST and SEQ are simple conversion operations to convert an

abstract domain into another.

Let us specify the operations, using the notations of section 2.5.

Extension at Clause Entry : EXTC(c, ·) : ASD → ASSCD′

Let β ∈ ASD and θ ∈ CPSD . The following property is required to hold.

θ ∈ Cc(β) ⇒ EXTC(c, θ) ∈ Cc(EXTC(c, β)).

Restriction at Clause Exit : RESTRC(c, ·) : ASSCD′ → ASSCD

Let C ∈ ASSCD′ and 〈S, cf 〉 ∈ (CPSS ′D × CF).

〈S, cf 〉 ∈ Cc(C) ⇒ RESTRC(c, 〈S, cf 〉) ∈ Cc(RESTRC(c, C)).

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 43

Restriction before a Call : RESTRG(l, ·) : ASD′′ → ASD′′′

Let β ∈ ASD′′ and θ ∈ CPSD′′ .

θ ∈ Cc(β) ⇒ RESTRG(l, θ) ∈ Cc(RESTRG(l, β)).

Unification of Two Variables : UNIF-VAR: AS {x1 ,x2} → ASS {x1 ,x2}
Let β ∈ AS {x1 ,x2} and θ ∈ CPS {x1 ,x2}.

θ ∈ Cc(β) ⇒ UNIF-VAR(θ) ∈ Cc(UNIF-VAR(β)).

Unification of a Variable and a Functor : UNIF-FUNC(f, ·) : ASD → ASSD

Let β ∈ ASD and θ ∈ CPSD . Let also f be a functor of arity n− 1.

θ ∈ Cc(β) ⇒ UNIF-FUNC(f, θ) ∈ Cc(UNIF-FUNC(f, β)).

Abstract Interpretation of the Cut : AI-CUT: ASSCD′ → ASSCD′

Let C ∈ ASSCD′ , θ ∈ CPSD′ , S ∈ CPSSD′ , cf ∈ CF .

〈<>, cf 〉 ∈ Cc(C) ⇒ 〈<>, cf 〉 ∈ Cc(AI-CUT(C)),

〈< ⊥ >, cf 〉 ∈ Cc(C) ⇒ 〈< ⊥ >, cf 〉 ∈ Cc(AI-CUT(C)),

〈< θ >:: S, cf 〉 ∈ Cc(C) ⇒ 〈< θ >, cut〉 ∈ Cc(AI-CUT(C)).

Extension of the Result of a Call : EXTGS(l, ·, ·) : ASSCD′ × ASSD′′′ → ASSCD′

The specification of this operation is more complex because it abstracts in a single

operation the calculation of all sequences Sk = EXTG(l, θk, S
′
k) and of their concatena-

tion 2Ne(S)
k=1 Sk , performed by the rules R4, R5, R6 (see figure 2). At the abstract level,

it may be too expensive or even impossible to simulate the execution of l for all

elements of S , as defined in the rules. Therefore, we abstract S to its substitutions,

losing the ordering. The abstract execution will be the following. Assuming that C

abstracts the program substitution sequence with cut information 〈S, cf 〉 before l,

we compute β = SUBST(C); then we compute β′ = RESTRG(l, β) and, subsequently,

we get the abstract sequence B resulting from the abstract execution of l with

input β′. The set Cc(B) contains all sequences S ′k of rules R4, R5, R6. Then, an

over approximation of the set of all possible values 2Ne(S)
k=1 Sk is computed from the

information provided by C and B. This is realized by the following operation EXTGS.

Let C ∈ ASSCD′ , B ∈ ASSD′′′ , 〈S, cf 〉 ∈ (CPSSD′ ×CF) and S ′1, . . . , S ′Ns(S) ∈ CPSSD′′′ .

〈S, cf 〉 ∈ Cc(C),

S =< θ1, . . . , θi, >,(∀k : 1 6 k 6 Ns(S) : S ′k ∈ Cc(B)

and Sk = EXTG(l, θk, S
′
k)

)
 ⇒ 〈2Ne(S)

k=1 Sk, cf 〉 ∈ Cc(EXTGS(l, C, B)).

Abstract Lazy Concatenation : CONC : (ASD × ASSCD × ASSD)→ ASSD

This operation is the abstract counterpart of the concatenation operation 2. It

is however extended with an additional argument to increase the accuracy. Let

B′ = CONC(β, C, B) where β describes a set of input substitutions for a procedure; C

describes the set of substitution sequences with cut information obtained by executing

a clause of the procedure on β; B describes the set of substitution sequences obtained

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

44 B. Le Charlier and others

by executing the subsequent clauses of the procedure on β. Then, B′ describes the

set of substitution sequences obtained by concatenating the results according to the

concrete concatenation operation 2.

Let us discuss a simple example to understand the role of β. Assume that

Cc(C) = {〈<>, nocut〉, 〈< {x1/a} >, nocut〉} and Cc(B) = {<>,< {x1/b} >}.
If the input mode of x1 is unknown, it must be assumed that all combinations of

elements in Cc(C) and Cc(B) are possible. Thus,

Cc(B′) = {<>,< {x1/a} >,< {x1/b} >,< {x1/a}, {x1/b} >}.
On the contrary, if the input mode of x1 is known to be ground, the outputs

〈< {x1/a} >, nocut〉 and < {x1/b} > are incompatible since x1 cannot be bound to

both a and b in the input substitution. In this case, we have

Cc(B′) = {<>,< {x1/a} >,< {x1/b} >}.
The first argument β of the operation CONC provides information on the input

values: it may be useful to improve the accuracy of the result. The above discussion

motivates the following specification of operation CONC. Note that the statement

(∃σ ∈ SS : θ′ = θσ) is abbreviated by θ′ 6 θ in the specification. Let β ∈ ASD ,

C ∈ ASSCD , B ∈ ASSD , θ ∈ CPSD , 〈S1, cf 〉 ∈ (CPSSD × CF) and S2 ∈ CPSSD .

θ ∈ Cc(β),

〈S1, cf 〉 ∈ Cc(C),

S2 ∈ Cc(B),

∀θ′ ∈ Subst(S1) ∪ Subst(S2) : θ′ 6 θ

 ⇒ 〈S1, cf 〉2S2 ∈ Cc(CONC(β, C, B)).

Operation SEQ : ASSCD → ASSD

This operation forgets the cut information contained in an abstract sequence with

cut information C . It is applied to the result of the last clause of a procedure before

combining this result with the results of the other clauses.

Let C ∈ ASSCD and 〈S, cf 〉 ∈ (CPSSD × CF).

〈S, cf 〉 ∈ Cc(C) ⇒ S ∈ Cc(SEQ(C)).

Operation SUBST : ASSCD′ → ASD′

This operation forgets still more information. It extracts the ‘abstract substitution

part’ of C . It is applied before executing a literal in a clause. See operation EXTGS.

Let C ∈ ASSCD′ and 〈S, cf 〉 ∈ (CPSSD′ × CF).

〈S, cf 〉 ∈ Cc(C) ⇒ Subst(S) ⊆ Cc(SUBST(C)).

3.3 Abstract semantics

We are now in position to present the abstract semantics. Note that we are not

concerned with algorithmic issues here: they are dealt with in section 4.

Extended Abstract Behaviors. Extended abstract behaviors are the abstract counter-

part of the concrete extended behaviors defined in section 2.6.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 45

Definition 3.3 (Extended Abstract Underlying Domain)

The extended abstract underlying domain, denoted by EAUD, consists of

1. all triples 〈β, g, c〉, where c is a clause of P , g is a prefix of the body of c,

β ∈ ASD , and D is the set of variables in the head of c;

2. all pairs 〈β, c〉, where c is a clause of P , β ∈ ASD , and D is the set of variables

in the head of c;

3. all pairs 〈β, pr〉, where pr is a procedure of P or a suffix of a procedure of P ,

β ∈ ASD , and D is the set of variables in the head of the clauses of pr.

Definition 3.4 (Extended Abstract Behaviors)

An extended abstract behavior is a function from EAUD to ASS ∪ ASSC such that

1. every triple 〈β, g, c〉 from EAUD is mapped to an abstract sequence with cut

information C ∈ ASSCD′ , where D′ is the set of all variables in c;

2. every pair 〈β, c〉 from EAUD is mapped to an abstract sequence with cut

information C ∈ ASSCD , where D is the set of variables in the head of c;

3. every pair 〈β, pr〉 from EAUD is mapped to an abstract sequence B ∈ ASSD ,

where D is the set of variables in the head of the clauses of pr.

The set of extended abstract behaviors is endowed with a structure of partial

order in the obvious way. It is denoted by EAB and its elements are denoted by esat.

Abstract Transformation. The abstract semantics is defined in terms of two semantic

functions that are depicted in figure 3. The first function E : AB → EAB maps

abstract behaviors to extended abstract behaviors. It is the abstract counterpart

of the concrete semantic rules of figure 2. The second function TAB : AB → AB

transforms an abstract behavior into another abstract behavior. It is the abstract

counterpart of Rule T1 in Definition 2.14.

Abstract Semantics. The abstract semantics is defined as the set of all abstract

behaviors that are both post-fixpoints of the abstract transformation TAB and

pre-consistent. The corresponding definitions are given first; then the rationale

underlying the definitions is discussed.

Definition 3.5 (Post-Fixpoints of TAB)

An abstract behavior sat ∈ AB is called a post-fixpoint of TAB if and only if

TAB (sat) 6 sat , i.e. if and only if

TAB (sat)〈β, p〉 6 sat〈β, p〉, ∀〈β, p〉 ∈ AUD .

Definition 3.6 (Pre-Consistent Abstract Behaviors)

Let 7−→ be the concrete semantics of the underlying program, according to Defi-

nition 2.15. An abstract behavior sat ∈ AB is said to be pre-consistent with respect

to 7−→ if and only if there exists a concrete behavior 7−→′ such that

7−→′ v7−→

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

46 B. Le Charlier and others

TAB (sat)〈β, p〉 = E(sat)〈β, pr〉
where pr is the procedure defining p,

E(sat)〈β, pr〉 =SEQ(C)

where C = E(sat)〈β, c〉 if pr ::= c

E(sat)〈β, pr〉 = CONC(β, C, B)

where B = E(sat)〈β, pr ′〉
C = E(sat)〈β, c〉 if pr ::= c,pr′

E(sat)〈β, c〉 = RESTRC(c, C)

where C = E(sat)〈β, g, c〉
g is the body of c

E(sat)〈β,<>, c〉 = EXTC(c, β)

E(sat)〈β, (g, !), c〉 = AI-CUT(C)

where C = E(sat)〈β, g, c〉

E(sat)〈β, (g, l), c〉 = EXTGS(l, C, B)

where B = UNIF-VAR(β′) if l ::= xi=xj
UNIF-FUNC(f, β′) if l ::= xi=f(. . .)

sat〈β′, p〉 if l ::= p(. . .)

β′ = RESTRG(l, β′′)
β′′ = SUBST(C)

C = E(sat)〈β, g, c〉.

Fig. 3. The abstract transformation.

and such that, for all 〈β, p〉 ∈ AUD and 〈θ, p〉 ∈ CUD ,

θ ∈ Cc(β),

〈θ, p〉 7−→′ S
}
⇒ S ∈ Cc(sat〈β, p〉).

In the next section, we show that any pre-consistent post-fixpoint sat of TAB is a

safe approximation of the concrete semantics, i.e. it is such that for all 〈β, p〉 ∈ AUD

and 〈θ, p〉 ∈ CUD ,

θ ∈ Cc(β),

〈θ, p〉 7−→ S

}
⇒ S ∈ Cc(sat〈β, p〉).

The abstract semantics is defined as the set of all pre-consistent post-fixpoints.

Indeed, under the current hypotheses on the abstract domains, there is no straightfor-

ward way to choose a ‘best’ abstract behavior among all pre-consistent post-fixpoints.

Thus, we consider the problem of computing a reasonably accurate post-fixpoint

as a pragmatic issue to be solved at the algorithmic level. In fact, the abstract

interpretation algorithm presented in Section 4 is an improvement of the following

construction: define the abstract behavior sat⊥ by

sat⊥〈β, p〉 = B⊥, ∀〈β, p〉 ∈ AUD .

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 47

Assume that the domain of abstract sequences is endowed with an upper-bound

operation UB : ASSD × ASSD → ASSD (not necessarily a least upper bound). For

every sat1, sat2 ∈ AB , we define UB(sat1, sat2) by

UB(sat1, sat2)〈β, p〉 = UB(sat1〈β, p〉, sat2〈β, p〉), ∀〈β, p〉 ∈ AUD .

Let j be an arbitrarily chosen natural number. An infinite sequence of pre-consistent

abstract behaviors sat0, . . . , sat i, . . . is defined as follows:

sat0 = sat⊥,
sat i+1 = TAB (sat i) (0 6 i < j),

sat i+1 = UB(sat i,TAB (sat i)) (j 6 i).

The abstract behaviors sat i are all pre-consistent because sat⊥ is pre-consistent

by construction, every application of TAB maintains pre-consistency (as proven in

the next section), and each application of UB produces an abstract behavior whose

concretization contains the concretizations of the arguments. Moreover, assuming

that every partial order ASSD is finite or satisfies the finite ascending chain proper-

ty, the sequence sat0, . . . , sat i, . . . has a least upper bound which is the desired

pre-consistent post-fixpoint. In case the ASSD contains chains with infinitely many

distinct elements, UB must be a widening operator (Cousot and Cousot, 1992c).

The sequence from sat0 to sat j is not ascending in general. In fact, sat⊥ is

not the minimum of AB and TAB is not necessarily monotonic nor extensive (i.e.

sat 6 TAB (sat) does not always hold). From step 0 to j, the computation of the sat i
simulates as closely as possible the computation of the least fixpoint of the concrete

transformation. From step j to convergence, all iterates are ‘lumped’ together. All

concrete behaviors 7−→j , 7−→j+1, . . . of the Kleene sequence of the concrete semantics,

are thus included in the concretization of the final post-fixpoint sat. So, sat describes

properties that are true not only for the concrete 7−→ semantics but also for its

approximations 7−→j , 7−→j+1, The choice of j is a compromise: a low value

ensures a faster convergence while a high value provides a better accuracy. The

abstract interpretation algorithm presented in section 4 does not iterate globally

over TAB. It locally iterates over E for every needed input pattern 〈β, p〉 and uses

different values of j for different input patterns. Depending on the particular abstract

domain, the value can be guessed more or less cleverly. This is the role of the special

widening operator of Definition 4.1. A sample widening operator is described in

section 5.2, showing how the value of j can be guessed in the case of a practical

abstract domain.

3.4 Safety of the abstract semantics

We prove here the safety of our abstract semantics. First, we formally define the no-

tion of safe approximation. Then, we show that the abstract transformation is safe in

the sense that, whenever sat safely approximates 7−→, TAB (sat) safely approximates
TCB7−→ (Theorem 3.8). From this basic result, we deduce that TAB transforms pre-

consistent abstract behaviors into other pre-consistent abstract behaviors (Theorem

3.10), and that, when sat is a post-fixpoint of the abstract transformation which

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

48 B. Le Charlier and others

safely approximates a concrete behavior 7−→, it also safely approximates the con-

crete behavior
TCB7−→ (Theorem 3.11). Theorem 3.12 states that abstract behaviors are,

roughly speaking, chain-closed with respect to concrete behaviors. Finally, Theorem

3.13 states our main result, i.e. every pre-consistent post-fixpoint of the abstract

transformation safely approximates the concrete semantics.

Definition 3.7 (Safe Approximation)

Let 7−→∈ CB and sat ∈ AB . The abstract behavior sat safely approximates the

concrete behavior 7−→ if and only if, for all 〈θ, p〉 ∈ CUD and 〈β, p〉 ∈ AUD , the

following implication holds:

θ ∈ Cc(β),

〈θ, p〉 7−→ S

}
⇒ S ∈ Cc(sat〈β, p〉).

Similarly, let 7−→∈ ECB and esat ∈ EAB . The extended abstract behavior esat

safely approximates 7−→ if and only if, for all 〈θ, pr〉, 〈θ, c〉, 〈θ, g, c〉 ∈ ECUD and

〈β, pr〉, 〈β, c〉, 〈β, g, c〉 ∈ EAUD , the following implications hold:

θ ∈ Cc(β),

〈θ, pr〉 7−→ S

}
⇒ S ∈ Cc(esat〈β, pr〉),

θ ∈ Cc(β),

〈θ, c〉 7−→ 〈S, cf 〉
}
⇒ 〈S, cf 〉 ∈ Cc(esat〈β, c〉),

θ ∈ Cc(β),

〈θ, g, c〉 7−→ 〈S, cf 〉
}
⇒ 〈S, cf 〉 ∈ Cc(esat〈β, g, c〉).

Theorem 3.8 (Safety of the Abstract Transformation)

Let 7−→∈ CB and sat ∈ AB . If sat safely approximates 7−→, then TAB (sat) safely

approximates
TCB7−→.

We first establish the following result. Remember that if 7−→∈ CB , its extension

in ECB is also denoted by 7−→ (see section 2.6).

Lemma 3.9 (Safety of E)

Let 7−→∈ CB and sat ∈ AB . If sat safely approximates 7−→, then E(sat) safely

approximates 7−→ (the extension of 7−→ in ECB).

Proof of Lemma 3.9

We prove the lemma by structural induction on the syntax of the underlying

program. It uses the concrete semantic rules of figure 2, the definition of E in

figure 3, and the specifications of the abstract operations given in section 3.2. The

proof is straightforward due to the close correspondence of the concrete and the

abstract semantics. We only detail the reasoning for the base case and for the case of

a goal (g, l) where l is an atom of the form p(xi1 , . . . , xin). The other cases are similar.

Base case. Let 〈θ,<>, c〉 ∈ ECUD and 〈β,<>, c〉 ∈ EAUD . Assume that θ ∈Cc(β)

and 〈θ,<>, c〉 7−→ 〈S, cf 〉. It must be proven that

〈S, cf 〉 ∈ Cc(E(sat)〈β,<>, c〉).

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 49

This relation holds because of the three following facts:

〈S, cf 〉 = EXTC(c, θ) (by R2),

EXTC(c, θ) ∈ Cc(EXTC(c, β)) (by specification of EXTC),

E(sat)〈β,<>, c〉 = EXTC(c, β) (by definition of E).

Induction step. Let 〈θ, (g, l), c〉 ∈ ECUD and 〈β, (g, l), c〉 ∈ EAUD , where l is an

atom of the form p(xi1 , . . . , xin). Assume that θ ∈ Cc(β) and 〈θ, (g, l), c〉 7−→ 〈S, cf 〉.
It must be proven that

〈S, cf 〉 ∈ Cc(C), where C = E(sat)〈β, (g, l), c〉.
By Rule R6, there exist program substitutions and program sequences such that

〈θ, g, c〉 7−→ 〈S ′, cf 〉 (C1)

S ′ =< θ1, . . . , θi, > (C2)

θ′k = RESTRG(l, θk) (1 6 k 6 Ns(S)) (C3)

〈θ′k, p〉 7−→ S
′
k (1 6 k 6 Ns(S)) (C4)

Sk = EXTG(l, θk, S
′
k) (1 6 k 6 Ns(S)) (C5)

S = 2
Ne(S)
k=1 Sk (C6)

Moreover, by definition of E(sat), there exist abstract values such that

C = EXTGS(l, C ′, B) (A1)

B = sat〈β′, p〉 (A2)

β′ = RESTRG(l, β′′) (A3)

β′′ = SUBST(C ′) (A4)

C ′ = E(sat)〈β, g, c〉 (A5)

The following assertions hold. By A5, C1, and the induction hypothesis,

〈S ′, cf 〉 ∈ Cc(C ′) (B1).

By A4, B1, C2, and the specification of SUBST,

θk ∈ Cc(β′′) (1 6 k 6 Ns(S)) (B2).

By A3, B2, C3, and the specification of RESTRG,

θ′k ∈ Cc(β′) (1 6 k 6 Ns(S)) (B3).

By A2, B3, C4, and the hypothesis that sat safely approximates 7−→,

S ′k ∈ Cc(B) (1 6 k 6 Ns(S)) (B4).

Finally, by A1, B1, B4, C2, C5, C6, and the specification of EXTGS,

〈S, cf 〉 ∈ Cc(C). q

Proof of Theorem 3.8

The result follows from the definition of TAB in figure 3, the definition of TCB in

section 2.14, and Lemma 3.9. q

The next theorem states that the transformation TAB maintains pre-consistency.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

50 B. Le Charlier and others

Theorem 3.10

Let sat ∈ AB . If sat is pre-consistent, then TAB (sat) is also pre-consistent.

Proof

Let 7−→ be the concrete semantics of the underlying program. Since sat is pre-

consistent, there exists a concrete behavior 7−→′ such that

1. 7−→′ v 7−→, and

2. sat safely approximates 7−→′.
The first condition implies that

TCB

7−→′ v 7−→,
since TCB is monotonic and

TCB7−→ = 7−→. The second condition and Theorem 3.8

imply that

TAB (sat) safely approximates
TCB7−→′ .

The result follows from the two implied statements and Definition 3.6. q

The next two theorems state closure properties of abstract behaviors, which are

used to prove the safety of the abstract semantics.

Theorem 3.11

Let sat be a post-fixpoint of TAB. Let 7−→∈ CB . If sat safely approximates 7−→,

then sat also safely approximates
TCB7−→.

Proof

Assume that sat safely approximate 7−→. Let 〈θ, p〉 ∈ CUD and 〈β, p〉 ∈ AUD . It

must be proven that

θ ∈ Cc(β),

〈θ, p〉 TCB7−→ S

}
⇒ S ∈ Cc(sat〈β, p〉).

Assume that the left part of the implication holds. Theorem 3.8 implies that

S ∈ Cc(TAB (sat)〈β, p〉).
Since sat is a post-fixpoint and Cc is monotonic,

Cc(TAB (sat)〈β, p〉) ⊆ Cc(sat〈β, p〉),
and then

S ∈ Cc(sat〈β, p〉). q
Theorem 3.12

Let (7−→i)i∈N be a chain of concrete behaviors. Let sat ∈ AB . If sat safely approxi-

mates 7−→i, for all i ∈ N, then sat safely approximates (t∞i=0 7−→i).

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 51

Proof

Let us abbreviate (t∞i=0 7−→i) by 7−→. It is sufficient to prove that, for any 〈β, p〉 ∈
AUD and any 〈θ, p〉 ∈ CUD ,

θ ∈ Cc(β),

〈θ, p〉 7−→ S

}
⇒ S ∈ Cc(sat〈β, p〉).

Fix 〈β, p〉, 〈θ, p〉, and S satisfying the left part of the implication. By Theorem 2.10,

S = t∞i=0Si where 〈θ, p〉 7−→i Si ∀i ∈ N.

Since sat safely approximates every 7−→i,

Si ∈ Cc(sat〈β, p〉) for all i ∈ N.

Finally, since Cc(sat〈β, p〉) is chained-closed,

S ∈ Cc(sat〈β, p〉). q
The last theorem states our main result.

Theorem 3.13 (Safety of the Abstract Semantics)

Let sat be a pre-consistent post-fixpoint of TAB. Then sat safely approximates 7−→
where 7−→ is the concrete semantics of the underlying program.

We first establish the following statement.

Lemma 3.14

Let sat be a pre-consistent post-fixpoint of TAB. There exists a chain of concrete

behaviors (7−→i)i∈N such that sat safely approximates 7−→i, for all i ∈ N and

(t∞i=0 7−→i) = 7−→ where 7−→ is the concrete semantics of the underlying program.

Proof of Lemma 3.14

The proof is in three steps. First we construct a sequence {7−→′i}i∈N of lower-

approximations of 7−→ which is not necessarily a chain; then we modify it to get

a chain (7−→i)i∈N; finally, we show that (t∞i=0 7−→i) = 7−→. The proof uses the

following property of program substitution sequences, whose proof is left to the

reader. If S1, S2 and S are program substitution sequences such that S1 v S and

S2 v S , then S1 and S2 have a least upper-bound, which is either S1 or S2. The least

upper-bound is denoted by S1 t S2 in the proof.

1. Since sat is pre-consistent, there exists a concrete behavior 7−→′ such that sat

safely approximate 7−→′ and 7−→′ v 7−→. The sequence {7−→′i}i∈N is defined by

7−→′0 = 7−→′ and 7−→′i+1 =
TCB7−→′i (i ∈ N).

Since 7−→′ v 7−→, TCB is monotonic and 7−→ is a fixpoint of TCB, it follows

that

7−→′i v 7−→ (∀i ∈ N).

Moreover, by Theorem 3.11, sat safely approximates every 7−→′i.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

52 B. Le Charlier and others

2. (7−→i)i∈N is now constructed by induction over i. The correctness of the

construction process requires to prove that, after each induction step, the

relation 7−→i v 7−→ holds. We first define

7−→0 = 7−→′0 .
Let i ∈ N. Assume, by induction, that 7−→0 v . . . v 7−→i v 7−→. For every

〈θ, p〉 ∈ CUD , we define

〈θ, p〉 7−→i+1 (S1 t S2) where

{ 〈θ, p〉 7−→i S1,

〈θ, p〉 7−→′i+1 S2.

Since 7−→′i+1 v 7−→ and 7−→i v 7−→, we have that 7−→i+1 is well-defined and

7−→i+1 v 7−→. Moreover, since sat safely approximates 7−→i (by induction) and

7−→′i+1, and S1 t S2 is equal either to S1 or S2, in the definition of 7−→i+1, we

have that sat safely approximates every 7−→i+1.

3. The Kleene sequence of the concrete semantics is a chain (7−→′′i)i∈N defined as

follows:

7−→′′0 = 7−→⊥ and 7−→′′i+1 =
TCB7−→′′i (i ∈ N).

Since 7−→⊥ v 7−→′ and TCB is monotonic, it follows, by induction, that

7−→′′i v 7−→′i v 7−→i v 7−→ (∀i ∈ N).

Therefore, by definition of the least upper bound and since the least fixpoint

is the limit of the Kleene sequence,

7−→ = (t∞i=0 7−→′′i) v (t∞i=0 7−→i) v 7−→ .

Thus,

7−→ = (t∞i=0 7−→i). q

Proof of Theorem 3.13

The result is an immediate consequence of Theorem 3.12 and Lemma 3.14. q

3.5 Related work

In this section we first discuss the mathematical approach underlying our abstract

semantics and relate it with the higher-order abstract interpretation frameworks

advocated by Cousot and Cousot (1994). Then, we compare our approach with the

abstract semantics for Prolog with control proposed by Barbuti et al. (1993), Filè

and Rossi (1993), and Spoto (2000).

Cousot and Cousot’s Higher-order Abstract Interpretation Frameworks. As mentioned

in the introduction, the traditional approach to abstract interpretation can not

be applied to approximate the concrete semantics of section 2. Indeed, we can

define a set-based collecting transformation by lifting the concrete semantics to

sets of program substitution sequences. However, the least fixpoint of the collecting

transformation does not safely approximate the concrete semantics. The problem can

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 53

be solved by restricting to sets of ℘(CPSD) and ℘(CPSSD) that enjoy some closure

properties ensuring safeness of the least fixpoint. This solution is similar to the

choice of a power-domain structure in denotational semantics (Schmidt, 1988; Stoy,

1977): the needed constructions can in fact be viewed as power-domains. However

there is no best way to choose the closure properties. Different closure properties

are adequate for different sorts of information. It is therefore advocated by Cousot

and Cousot (1994) that, for higher-order languages, different collecting semantics

should be defined for the same language depending on the kind of properties to be

inferred. In our case, at least two dual collecting semantics could be defined. Both

of them use sets of program substitution sequences that are chain-closed.

1. The first semantics considers downwards-closed sets of program substitution

sequences, i.e. such that for any S, S ′ ∈ CPSSD ,

S ∈ Σ,

S ′ v S
}
⇒ S ′ ∈ Σ.

This domain is ordered by inclusion and its minimum is {< ⊥ >}. It is adequate

to infer non-termination and upper bounds to the length of sequences. In

particular, it is adequate for determinacy analysis. However, it is unable to

infer termination since < ⊥ > belongs to any set of sequences.

2. The second semantics considers upwards-closed sets of program substitution

sequences, i.e. such that for any S, S ′ ∈ CPSSD ,

S ∈ Σ,

S v S ′
}
⇒ S ′ ∈ Σ.

This domain is ordered by Σ 6 Σ′ ⇔ Σ′ ⊆ Σ and its minimum is CPSSD .

It is able to infer termination and lower bounds to the length of sequences.

It is less adequate than the previous one to infer precise information about

the substitutions in the sequences because its least fixpoint corresponds to a

greatest fixpoint in a traditional framework ignoring the sequence structure.

In both cases, the least fixpoint is well-defined because the collecting versions of

the operations are monotonic, since they have to ensure the closure properties.

Moreover, the least fixpoint of the collecting semantics safely approximates the

concrete semantics because all iterates are pre-consistent and the sets are chain-

closed. Nevertheless, our formalization has some advantages.

1. It can be more efficient: a single analysis is able to infer all the information

that can be inferred by the two collecting semantics.

2. It can be more accurate: there are pre-consistent post-fixpoints that are more

precise than the intersection of the two collecting semantics.

Barbuti et al.’s Abstract Semantics. The abstract semantics proposed by Barbuti et

al. (1993) aims at modeling control aspects of logic programs such as search strate-

gy and selection rule. Their semantics is parametric with respect to a ‘termination

theory’. The meaning of a program is obtained by composing the meaning of its

‘logic component’ together with a corresponding ‘termination theory’ (the ‘control

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

54 B. Le Charlier and others

component’). The latter can be provided either by applying techniques of abstract

interpretation or by applying proof procedures. In all cases, control information

is deduced from outside in the form of a separated termination analysis. This is

the main difference with our framework, where control information, i.e. information

relative to termination or non-termination, is modeled within the semantic domains

through the notion of substitution sequence.

Filè and Rossi’s Abstract Interpretation Framework. The framework proposed by

Filè and Rossi (1993) consists of a tabled interpreter which explores OLDT abstract

trees decorated with control information about sure success or failure of the goals.

Such information is used by the cut operation to prune the OLDT-tree whenever

a cut is reached. Sure success is modeled in our framework by abstract sequences

representing only non-empty sequences. The abstract semantics defined by Filè and

Rossi is operational and non-compositional while ours is compositional and based

on the fixpoint approach. Moreover, the abstract execution of a goal (g, !) is different.

Whenever is known that g surely succeeds, their framework stops after generating

the first ‘sure’ solution, while ours computes the entire abstract sequence for g and

then cuts it to maintain at most one solution. Our approach may thus imply some

redundant work. However, if g is used in several contexts, their framework should

recognize this situation and expand the OLDT-tree further.

Spoto’s Denotational Abstract Semantics. The related work closest to ours is the

denotational abstract semantics proposed by Spoto (2000). He defines a goal-

independent and compositional abstract semantics of Prolog modeling the depth-first

search rule and the cut. His semantics associates to any Prolog program a sequence

of pairs consisting of a ‘kernel’ constraint and its ‘observability’ part. Intuitively,

kernel constraints denote computed answers, while observability constraints give

information about divergent computations and cut executions. The main difference

with our approach is that his semantics is goal-independent while ours is not. This

is due to the fact that our abstract semantics is functional, i.e. it associates to

each program P a function (an abstract behavior) mapping every pair 〈β, p〉 to an

abstract sequence B. However, this choice is unrelated to our concrete semantics:

we could as well abstract the concrete semantics by a relational abstract semantics

(Cousot and Cousot, 1992b), making it possible to express dependencies between

input substitutions and the corresponding output substitution sequences. This is the

approach of Le Charlier et al. (1999) where we express dependencies between the

size of input terms and the number of corresponding output substitutions. We will

go back to this issue at the end of section 6.2.

4 Generic abstract interpretation algorithm

A generic abstract interpretation algorithm is an algorithm that is parametric with

respect to the abstract domains. It can be instantiated by various domains to obtain

different data-flow analyses. Several such algorithms have been proposed for Prolog

(Bruynooghe, 1991; Englebert et al., 1993; Le Charlier et al., 1991; Le Charlier et al.,

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 55

1993; Le Charlier and Van Hentenryck, 1994; Le Charlier and Van Hentenryck,

1995; Mellish, 1987; Muthukumar and Hermenegildo, 1992), but they do not handle

the control features of the language such that Prolog search rule and cut.

The algorithm presented here is essentially an instantiation of the universal

fixpoint algorithm described in Le Charlier and Van Hentenryck (1993) to the

abstract semantics of section 3. In particular, it is quite similar to the algorithm

presented in Le Charlier et al. (1991) and Le Charlier and Van Hentenryck (1994): in

fact, the abstract semantics of section 3 can be viewed as a proper generalization of

the abstract semantics described in those papers, where the sequences of computed

answer substitutions are no longer abstracted to sets of substitutions. The universal

algorithm in Le Charlier and Van Hentenryck (1993) is top-down, i.e. it computes

a subset of the fixpoint (in the form of a set of tuples) containing the output

value corresponding to a distinguished input together with all the tuples needed to

compute it. Top-down algorithms are naturally used to perform data-flow analyses,

where one is interested in collecting the abstract information corresponding to a class

of initial queries described by the distinguished input. It is more efficient in general

to compute a part of the fixpoint only and this allows one to use infinite abstract

domains, which are more expressive (Cousot and Cousot, 1992c). Although the

instantiation of Le Charlier and Van Hentenryck (1993) to our abstract semantics is

as mechanical as in our previous works (a slightly more general widening operator

is needed however), the correctness of the algorithm involves some new theoretical

issues: the pre-consistency of the post-fixpoint has now to be proven. Nevertheless,

since the novel algorithm is in practice very similar to the algorithm presented in Le

Charlier and Van Hentenryck (1994), we only discuss here the extended widening

operator which ensures a good compromise between efficiency and accuracy. A

detailed description of the algorithm and its correctness proof can be found in Le

Charlier et al. (1997).

4.1 Extended widening

The extended widening operation used by the novel algorithm is defined as follows.

Definition 4.1 (Extended Widening)

An extended widening on abstract sequences is a (polymorphic1) operation ∇ :

ASSD × ASSD → ASSD that enjoys the following properties. Let {Bi}i∈N be a

sequence of elements of ASSD . Consider the sequence {B′i}i∈N defined by

B′0 = B0,

B′i+1 = Bi+1∇B′i (i ∈ N).

The following conditions hold:

1. B′i > Bi (i ∈ N);

2. the sequence {B′i}i∈N is stationary, i.e. there exists j > 0 such that B′i = B′j for

all i such that j 6 i.

1 It is parametrized over D.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

56 B. Le Charlier and others

An extended widening is slightly more general than a widening (Cousot and

Cousot, 1992c) because the sequence {B′i}i∈N is not required to be a chain.

Let us now explain how the extended widening is used by the algorithm. Given

an input pair 〈β, p〉, the algorithm iterates on the computation of TAB (sat)〈β, p〉
until convergence, and concurrently updates sat, as follows (recursive calls – which

also modify sat – are ignored in the discussion):

1. B′0 = B⊥ is stored in the initial sat as the output for 〈β, p〉;
2. Bi results from the i-th execution of TAB (sat)〈β, p〉;
3. B′i = Bi∇B′i−1 is stored in the current sat after the i-th execution of

TAB (sat)〈β, p〉;
4. the loop is exited when Bi+1 6 B′i .

The loop terminates because there must be some i such that B′i+1 = B′i (otherwise

Condition 2 of Definition 4.1 would be violated), and, hence, Bi+1 6 B′i since

B′i+1 > Bi+1 by Condition 1. The loop can be resumed later on because some

values in sat have been updated (Step 1 is omitted in these subsequent executions);

all re-executions of the loop terminate for the same reasons as the first one;

moreover, the loop can only be resumed finitely many times because no element

in sat can be improved infinitely many often, since there is a j such that B′i = B′j
for all i greater or equal to j. Note that a local post-fixpoint is attained each

time the loop is exited. Thus a global post-fixpoint is obtained when all loops

are terminated for all values in sat. The formal characterization of Definition

4.1 elegantly captures the idea that the algorithm sticks as closely as possible to

the abstract semantics during the first iterations, and starts lumping the results

together only when enough accuracy is obtained, in order to ensure convergence.

The advantage of this characterization is that no particular value of j is fixed. So we

can think of ‘intelligent’ extended widenings that observe how the successive iterates

behave and that enforce convergence exactly at the right time. The extended widening

used in our experimental evaluation is based on this intuitive idea (see section 5.2).

5 Cardinality analysis

The abstract interpretation framework for Prolog presented in previous sections has

been instantiated by a domain of abstract sequences to perform so-called cardinality

analysis; see Braem et al. (1994). Cardinality analysis approximates the number of

solutions to a goal and is useful for many purposes such as indexing, cut insertion

and elimination (Debray, 1989; Sahlin, 1991), dead code elimination, and memory

management and scheduling in parallel systems (Bueno and Hermenegildo, 1991;

Hermenegildo, 1986). The analysis subsumes traditional determinacy analysis such

as those of Dawson et al. (1993), Debray (1989), Giacobazzi and Ricci (1992) and

Sahlin (1991).

This section is organized as follows. First we describe how a generic abstract

domain for cardinality analysis, which is parametric with respect to any domain of

abstract substitutions, can be built. Then, we instantiate this generic domain to the

domain of abstract substitutions Pattern (Le Charlier and Van Hentenryck, 1994).

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 57

Finally, we discuss experimental evaluations of the analysis from both accuracy and

efficiency standpoints.

5.1 Generic abstract domains for cardinality analysis

In this section, generic domains of abstract sequences and abstract sequences with

cut information are built. The domains are generic with respect to the information

on the substitutions in the sequences, but they provide specific information about

the sequence structure. The latter consists of lower and upper bounds to the num-

ber of substitutions in the sequences and information about the nature (i.e. finite,

incomplete or infinite) of the sequences. This information allows us to perform

non-termination analysis and a limited form of termination analysis. Predicate level

analyses, like determinacy and functionality (Debray and Warren, 1989), which were

previously considered falling outside the scope of abstract interpretation, can be

performed.

Abstract Substitutions. The substitution part of our generic domain of abstract se-

quences is assumed to be an element of an arbitrary domain of abstract substitutions

ASD . The only requirement on ASD is that it contains a minimum element β∅ such

that Cc(β∅) = ∅. An abstract domain can always be enhanced with such an element.

Abstract Sequences. The generic domain of abstract sequences manipulates termina-

tion information whose domain is defined below.

Definition 5.1 (Termination Information)

A termination information t is an element of the set TI = {st , snt , pt} endowed

with the ordering 6 defined by

t1 6 t2 ⇔ either t1 = t2 or t2 = pt ∀t1, t2 ∈ TI .

The symbol st stands for ‘sure termination’ and it characterizes finite sequences; snt

stands for ‘sure non termination’ and characterizes incomplete and infinite sequences;

pt stands for ‘possible termination’ and corresponds to absence of information.

The domain of abstract substitution sequences is defined as follows.

Definition 5.2 (Abstract Sequences)

Let D be a finite set of program variables. We denote by ASSD the set of all 4-tuples

〈β, m,M, t〉 such that β ∈ ASD , m ∈ N, M ∈ N ∪ {∞}, and t ∈ TI .

Informally, β describes all substitutions in the sequences, m and M are lower

and upper bounds on the number of substitutions in the sequences, and t is an

information on termination.

The ordering on abstract sequences is defined as follows.

Definition 5.3 (Ordering on Abstract Sequences)

Let B1, B2 ∈ ASSD .

B1 6 B2 iff β1 6 β2 and m1 > m2 and M1 6M2 and t1 6 t2.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

58 B. Le Charlier and others

The set of program substitution sequences described by an abstract sequence B is

formally defined as follows.

Definition 5.4 (Concretization for Abstract Sequences)

Let B=〈β, m,M, t〉∈ASSD . We define

Cc(B) = Sseq1(β) ∩ Sseq2(m,M) ∩ Sseq3(t)

where

Sseq1(β) = {S : S ∈ PSSD and Subst(S) ⊆ Cc(β)},
Sseq2(m,M) = {S : S ∈ PSS and m 6 Ns(S) 6M},
Sseq3(snt) = {S : S ∈ PSS and S is incomplete or infinite},
Sseq3(st) = {S : S ∈ PSS and S is finite},
Sseq3(pt) = PSS .

Monotonicity of the concretization function is a simple consequence of the defi-

nition.

We denote by B⊥ the special abstract sequence 〈β∅, 0, 0, snt〉 which is such that

Cc(B⊥) = {< ⊥ >} as required in section 3.1. It is easy to prove that for all abstract

sequences B ∈ ASSD , the set Cc(B) is chain-closed; see Le Charlier et al. (1997).

Abstract Sequences with Cut Information. Abstract sequences with cut information

are obtained by enhancing abstract sequences with information about execution of

cuts.

Let us first define the abstract domain for cut information.

Definition 5.5 (Abstract Cut Information)

An abstract cut information acf is an element of the set ACF = {cut , nocut ,weakcut}.
Definition 5.6 (Abstract Sequences with Cut Information)

Let D be a finite set of program variables. We denote by ASSCD the set of pairs

〈B, acf 〉 where B ∈ ASSD and acf ∈ ACF .

Informally, cut indicates that a cut has been executed in all sequences, nocut that

no cut has been executed in any sequence, and weakcut that a cut has been executed

for all sequences producing at least one solution. More formally, the concretization

of an abstract sequence with cut information is defined as follows.

Definition 5.7 (Concretization for Abstract Sequences with Cut Information)

Let B ∈ ASSD . We define

Cc(〈B, cut〉) = {〈S, cut〉 : S ∈ Cc(B)},
Cc(〈B, nocut〉) = {〈S, nocut〉 : S ∈ Cc(B)},
Cc(〈B,weakcut〉) = {〈S, cut〉 : S ∈ Cc(B)}∪

{〈S, nocut〉 : S ∈ Cc(B) and S ∈ {<>,< ⊥ >}}.

5.2 Abstract operations

Our next task is to provide definitions of all abstract operations specified in sec-

tion 3.2. For space reasons, we describe here a subset of the operations, i.e. extended

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 59

widening, unification, operation treating cut, and concatenation. The other opera-

tions are described in the appendix. The reader is referred elsewhere (Le Charlier

et al., 1997) for the correctness proofs.

The operations on abstract substitutions which are used in the definition of the

operations on abstract sequences will be recalled when needed.

Extended Widening: ∇ : ASSD × ASSD → ASSD

We require that the abstract domain ASD is equipped with a widening operation

∇′ : ASD × ASD → ASD . It can be an extended widening, a normal widening, or,

if ASD is finite or enjoys the finite ascending chain property, any upper bound

operation. The widening on sequences is obtained by taking the least upper bound

of the termination components, the minimum of the lower bounds and setting

the upper bound to infinity. Assume that Bold = 〈βold , mold ,Mold , told 〉 and Bnew =

〈βnew , mnew ,Mnew , tnew 〉. The operation ∇ : ASSD × ASSD → ASSD is defined as

follows.

Bnew∇Bold = 〈βnew∇′βold , mnew ,Mnew , tnew 〉 if βnew 66 βold

= 〈βold , mnew ,Mnew , pt〉 if βnew 6 βold and tnew 66 told

= 〈βold ,min(mnew , mold),∞, told 〉 if βnew 6 βold and tnew 6 told and

(mnew <mold or Mnew >Mold)

= Bold if Bnew 6 Bold .

The first case makes sure that the algorithm iterates until the abstract substitution

part stabilizes. When it is stable, the widening is applied on sequences.

Example. Consider the following program:

repeat.

repeat :- repeat.

The concrete semantics of this program maps the input 〈ε, repeat〉, where ε is

the empty substitution, to the infinite sequence < ε, . . . , ε, . . . >.

On this example, because the program has no variables, our domain of abstract

substitutions only contains two values, say β∅ and β>, such that

Cc(β∅) = ∅
Cc(β>) = {ε}.
Let B⊥ = 〈β∅, 0, 0, snt〉. Starting from B⊥, the algorithm computes the abstract

sequences

B0 = B⊥ B′0 = B⊥
B1 = 〈β>, 1, 1, snt〉 B′1 = B1∇B′0 = 〈β>, 1, 1, snt〉
B2 = 〈β>, 2, 2, snt〉 B′2 = B2∇B′1 = 〈β>, 1,∞, snt〉
B3 = 〈β>, 2,∞, snt〉
Notice that the widening on sequences is applied when the abstract substitution

part stabilizes, i.e. after the computation of the abstract sequence B2. The next iterate

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

60 B. Le Charlier and others

B3 satisfies the property that B3 6 B′2. Hence, according to the discussion in Section

4.1, the execution terminates returning the final value

B′2 = 〈β>, 1,∞, snt〉.
Observe that B′2 safely approximates the concrete infinite sequence < ε, . . . , ε, . . . >.

Moreover, it expresses the fact that the execution of repeat surely succeeds at least

once and surely does not terminate2.

Unification of Two Variables: UNIF-VAR: AS {x1 ,x2} → ASS {x1 ,x2}
Given an abstract substitution β with domain {x1, x2}, this operation returns an

abstract sequence which represents a set of substitution sequences of length 0 or 1

(depending upon the success or failure of the unification). The terms bound to

x1 and x2 are unified in all these sequences. The operation UNIF-VAR on abstract

sequences uses an upgraded version of the operation UNIF-VAR on abstract substi-

tutions defined in Le Charlier et al. (1991) and Le Charlier and Van Hentenryck

(1994). The latter, in addition to the resulting abstract substitution, produces now

two flags indicating whether the unification always succeeds, always fails, or can

both succeed and fail. The additional information is expressed by the boolean values

ss and sf as specified below.

Operation UNIF-VAR: AS {x1 ,x2} → (AS {x1 ,x2} × Bool × Bool)

Let β ∈ AS {x1 ,x2} and 〈β′, ss , sf 〉 = UNIF-VAR(β). The following conditions hold:

1. ∀θ ∈ Cc(β) : ∀σ ∈ SS : (σ ∈ mgu(x1θ, x2θ) ⇒ [[θσ]] ∈ Cc(β′));
2. ss = true ⇒ (∀θ ∈ Cc(β) : x1θ and x2θ are unifiable);

3. sf = true ⇒ (∀θ ∈ Cc(β) : x1θ and x2θ are not unifiable).

Based on the upgraded operation UNIF-VAR for abstract substitutions, we provide

an implementation of the operation UNIF-VAR for abstract sequences, which is

correct with respect to the corresponding specification given in section 3.2.

The operation UNIF-VAR: AS {x1 ,x2} → ASS {x1 ,x2} on abstract sequences is de-

fined as follows. Let β ∈ AS {x1 ,x2} and 〈β′′, ss , sf 〉 = UNIF-VAR(β). We have that

UNIF-VAR(β) = B′ where B′ is the abstract sequence 〈β′, m′,M ′, t′〉 such that

β′ = β′′
m′ = if ss then 1 else 0

M ′ = if sf then 0 else 1

t′ = st .

Abstract Interpretation of the Cut: AI-CUT: ASSCD′ → ASSCD′

Let C = 〈〈β, m,M, t〉, acf 〉. AI-CUT(C) = 〈〈β′, m,′M ′, t′〉, acf ′〉 where

2 This example also shows that our framework can express non-failure properties such as the ones
described in Bossi and Cocco (1999) and Debray et al. (1997).

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 61

β′ = β

m′ = min(1, m)

M ′ = min(1,M)

t′ = st if m > 1 or t = st

= snt if M = 0 and t = snt

= pt otherwise

acf ′ = cut if m > 1 or acf = cut

= nocut if M = 0 and acf = nocut

= weakcut otherwise.

Example. Consider the program

p(X) :- q(X), !.

q(X) :- X = a.

q(X) :- X = b.

For the sake of simplicity we use a simple domain of abstract substitutions which

can be seen as the mode component of the Pattern domain (Le Charlier et al.,

1999; Le Charlier and Van Hentenryck, 1994). The example is intended to illustrate

the abstract execution of the operation AI-CUT. Hence, we do not enter here into

the details of the other operations, but the reader is referred to the appendix for

their definition.

The abstract execution of the procedure p called with its argument being a variable

is as follows. Let

β = X 7→ var

be the initial abstract substitution. Let c be the clause of the program defining p.

First, the abstract sequence with cut information C is computed by

C = EXTC(c, β) = 〈〈X 7→ var, 1, 1, st〉, nocut〉.
Then, the procedure q that occurs in the body of c is executed with β = SUBST(C)

returning the abstract sequence

B = 〈X 7→ ground, 2, 2, st〉.
Hence, the abstract sequence with cut information C ′ is computed as follows:

C ′ = EXTGS(q(X), C, B) = 〈〈X 7→ ground, 2, 2, st〉, nocut〉.
Now, the operation AI-CUT(C ′) is applied. Following the definition above, one

obtains

AI-CUT(C ′) = 〈〈X 7→ ground, 1, 1, st〉, cut〉
expressing the fact that a cut in the body of c is surely executed. The final result is

B′ = SEQ(C ′) = 〈X 7→ ground, 1, 1, st〉
stating that the execution of p called with its argument being a variable surely

terminates and succeeds exactly once.

Consider now the abstract execution of the procedure p called with a ground

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

62 B. Le Charlier and others

argument. Let

β = X 7→ ground

be the initial abstract substitution. In this case, the abstract sequence with cut

information C is first computed by

C = EXTC(c, β) = 〈〈X 7→ ground, 1, 1, st〉, nocut〉.
Then, the procedure q is executed with β = SUBST(C) returning

B = 〈X 7→ ground, 0, 1, st〉.
The abstract sequence with cut information C ′ is computed as follows:

C ′ = EXTGS(q(X), C, B) = 〈〈X 7→ ground, 0, 1, st〉, nocut〉.
The operation AI-CUT(C ′) returns

AI-CUT(C ′) = 〈〈X 7→ ground, 0, 1, st〉,weakcut〉
expressing the fact that, in this case, the computation either fails without executing

the cut or succeeds once after executing the cut. The final result is

B′ = SEQ(C ′) = 〈X 7→ ground, 0, 1, st〉
stating that the execution of p called with a ground argument succeeds at most once

and surely terminates.

The Pattern domain used in our experiments is more elaborated than the simple

domain of abstract substitutions used in this example. However, it does not provide

more precision in these cases. A more sophisticated domain where an abstract

sequence is represented as 〈< β1, . . . , βn >,m,M, t〉 with < β1, . . . , βn > being an

explicit sequence of abstract substitutions could return in the first case a more

precise result. Indeed, one could obtain B = 〈{X 7→ a}, {X 7→ b}, 2, 2, st〉 and then

B′ = 〈{X 7→ a}, 1, 1, st〉. However, such a domain could not improve the result in the

second case since the fact that the output substitution can be either X 7→ a or X 7→ b

would be represented by X 7→ ground as we have done above.

Abstract Lazy Concatenation. The implementation of the operation CONC is compli-

cated here, in order to get accurate results when the domain ASD is instantiated

to the domain Pattern. The implementation works on enhanced sets of abstract

sequences which allow us to keep individual structural information about the results

of every clause in order to detect mutual exclusion of the clauses.

Let us motivate the lifting of abstract sequences to enhanced abstract sequences.

Lifting an abstract domain to its power set (see, for instance, Cousot and Cousot

(1979) and Filé and Ranzato (1994)) is sometimes useful when the original abstract

domain is not expressive enough to gain a given level of accuracy. Replacing

an abstract domain by its power set is computationally expensive however; see

Van Hentenryck et al. (1993). Sometimes, the accuracy is lost only inside a few

operations; thus, a good compromise can be to lift the domain only locally, when

these operations are executed, and to go back to the simple domain afterwards.

This is exactly what we are going to do for the operation CONC. The lifted version

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 63

of the abstract domain that we are about to define is useful when the abstract

domain is able to express definite, but not disjunctive, structural information about

terms. In such a domain, for instance, the principal functor of the term bound

to a program variable can be either definitely known or not known at all; it is

not possible to express that it belongs to a given finite set. The domain Pattern

used in our experiments is an abstract domain of this kind. Disjunctive structural

information is however essential to implement the operation CONC accurately: it

allows us to detect mutually exclusive abstract sequences, i.e. abstract sequences that

should not be ‘abstractly concatenated’ since they correspond to different concrete

inputs. In order to keep disjunctive structural information, our implementation of

CONC works on a finite set of abstract sequences. This set is ‘normalized’ in some

way, to simplify the case analysis in the implementation. Basically, we differentiate

between “surely empty” abstract sequences, approximating only sequences of the

form <> or < ⊥ >, and ‘surely non empty’ abstract sequences, approximating only

sequences of the form < θ >:: S . This is useful because sequences such as <> or

< ⊥ > are possible outputs for any input, while sequences of the form < θ >:: S

are only possible for some inputs. Therefore, we only have to check incompatibility

of ‘surely non empty’ abstract sequences. This discussion motivates the following

definitions of semi-simple abstract sequences and simple abstract sequences.

Definition 5.8 (Semi-Simple Abstract Sequences)

Let B ∈ ASSD . We say that B is a semi-simple abstract sequence if

1. either, β = β∅ and m = M = 0

2. or, β 6= β∅ and 1 6 m 6M.

Definition 5.9 (Simple Abstract Sequences)

Let B ∈ ASSD . We say that B is a simple abstract sequence if it is semi-simple and

t ∈ {snt , st}.
Semi-simple abstract sequences formalize our idea of distinguishing between

‘surely empty’ and ‘surely non empty’ abstract sequences. Note that, assuming that

β∅ is the only abstract substitution such that Cc(β∅) = ∅, we have that Cc(B) 6= ∅
for any semi-simple abstract sequence B.

Definition 5.10 (Enhanced Abstract Sequences)

Let D be a finite set of program variables. We denote by ASS enh
D the set of all sets of

the form {B1, . . . , Bn}, where n > 0 and B1, . . . , Bn are semi-simple abstract sequences

from ASSD . Elements of ASS enh
D are called enhanced abstract sequences; they are

denoted by SB in the following. The concretization function Cc : ASS enh
D → CSSD

is defined by Cc(SB) =
⋃
B∈SB Cc(B).

The operation SPLIT1 transforms an arbitrary abstract sequence into an equivalent

enhanced abstract sequence.

Operation SPLIT1 : ASSD → ASS enh
D

This operation is required to satisfy the property that for every B ∈ ASSD ,

Cc(SPLIT1(B)) = Cc(B). Let B = 〈β, m,M, t〉. We define SB ′ = SPLIT1(B) as

SB ′ = SB1 ∪ SB2 where

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

64 B. Le Charlier and others

SB 1 = {〈β∅, 0, 0, t〉} if m = 0

= ∅ otherwise

SB 2 = {〈β,max(1, m),M, t〉} if β 6= β∅ and max(1, m) 6M
= ∅ otherwise.

The operation MERGE is the converse of SPLIT1: it transforms an enhanced abstract

sequence into a plain abstract sequence. Most of the time, this operation loses part

of the information expressed by the enhanced abstract substitution sequence; but it

does not lose any information when the enhanced abstract sequence results from a

single application of SPLIT1.

Operation MERGE : ASS enh
D → ASSD

The operation MERGE satisfies the following properties:

1. For every SB ∈ ASS enh
D , Cc(SB) ⊆ Cc(MERGE(SB))

2. For every B ∈ ASSD , Cc(MERGE(SPLIT1(B))) = Cc(B).

The definition of MERGE requires choosing a particular abstract sequence B∅ such

that Cc(B∅) = ∅. We decide that B∅ = 〈β∅, 1, 0, st〉. This choice is arbitrary since

there is no best (least) representation of the empty set of abstract sequences in this

domain. Moreover, it uses the binary operation UNION : (ASD×ASD)→ ASD , which

is inherited from our previous framework. The latter is extended to finite sequences

of abstract substitutions as follows:

UNION(<>) = β∅
UNION(< β >) = β, for every β ∈ AS D

UNION(< β1, . . . , βn >) = UNION(β1, UNION(< β2, . . . , βn >)),

for all β1, . . . , βn ∈ AS D (n > 2).

The operation MERGE can now be defined. Let t denote the least upper bound on

TI. Let SB ∈ ASS enh
D such that SB = {B1, . . . , Bn} and Bi = 〈βi, mi,Mi, ti〉 (1 6 i 6 n).

The abstract sequence B′ = MERGE(SB) is such that

B′ = B∅ if n = 0

= B1 if n = 1

= 〈UNION(< β1, . . . , βn >),min(m1, . . . , mn),

max(M1, . . . ,Mn), t1 t . . . t tn〉 if n > 2.

The notion of simple abstract sequence with cut information is also useful to

simplify the case analysis in the implementation of CONC.

Definition 5.11 (Simple Abstract Sequences with Cut Information)

Let B ∈ ASSD and acf ∈ ACF . The abstract sequence with cut information 〈B, acf 〉
is said to be simple if B is simple and acf ∈ CF .

The operation SPLIT2 converts an arbitrary abstract sequence with cut informa-

tion into an equivalent set of simple abstract sequences with cut information.

Operation SPLIT2 : ASSCD → ℘(ASSCD)

The operation SPLIT2 satisfies the following properties. For every C ∈ ASSCD ,

1.
⋃
C ′∈SPLIT2(C) Cc(C ′) = Cc(C);

2. all abstract sequences with cut information in SPLIT2(C) are simple.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 65

Its definition is simple. We first apply the operation SPLIT1 to the abstract sequence

part of C . Then we split the cut information. Finally, we split the termination

information. Formally, SPLIT2(C) is defined as follows:

1. Let C = 〈B, acf 〉 ∈ ASSCD . We define

SPLIT2(C) =
⋃
B′∈SPLIT1(B) SPLIT2(〈B′, acf 〉).

2. Let B = 〈β, m,M, t〉 ∈ ASSD . Assume that B is semi-simple. We define

SPLIT2(〈B,weakcut〉) = SPLIT2(〈B, nocut〉) ∪ SPLIT2(〈B, cut〉) if m = 0

= SPLIT2(〈B, cut〉) if m > 1.

(Remember that, by Definition 5.8, we also have β = β∅ and M = 0, in the

first case, and β 6= β∅ and m 6M, in the second case.)

3. Let B = 〈β, m,M, t〉 ∈ ASSD and cf ∈ CF . Assume that B is semi-simple. We

define

SPLIT2(〈B, cf 〉) = {〈B, cf 〉} if t ∈ {snt , st};
= {〈〈β, m,M, snt〉, cf 〉, 〈〈β, m,M, st〉, cf 〉} if t = pt .

Before presenting the implementation of CONC, we still need to specify the operation

EXCLUSIVE, which is aimed at detecting incompatible outputs. An implementation

of this operation for the domain Pattern is given in section 5.3.

Operation EXCLUSIVE : (ASD × ASD × ASD)→ Bool

The operation EXCLUSIVE satisfies the following property. For all β, β1, β2 ∈ ASD ,

EXCLUSIVE(β, β1, β2) ⇒ ¬(∃θ ∈ Cc(β), θ1 ∈ Cc(β1), θ2 ∈ Cc(β2), σ1, σ2 ∈ SS :

θσ1 = θ1 and θσ2 = θ2).

We are now ready to describe the operation CONC.

Operation CONC : (ASD × ASSCD × ASS enh
D)→ ASS enh

D .

Let β ∈ ASD , C1 ∈ ASSCD and SB2 ∈ ASS enh
D . SB ′ = CONC(β, C1, SB2) is defined as

follows. We assume that Bi = 〈βi, mi,Mi, ti〉.
1. Let us assume first that C1 = 〈B1, acf 1〉 is simple and SB2 = {B2}.

(a) Suppose that acf 1 = cut or t1 = snt . In this case, we define

SB ′ = {B1}.
(b) Suppose, on the contrary, that acf 1 = nocut and t1 = st . We define

SB ′ = {B2} if M1 = 0

= {〈β1, m1,M1, t2〉} if M1 > 1 and M2 = 0

= {〈UNION(β1, β2), m1 + m2,M1 +M2, t2〉} if M1 > 1 and M2 > 1

and ¬EXCLUSIVE(β, β1, β2)

= ∅ if M1 > 1 and M2 > 1

and EXCLUSIVE(β, β1, β2).

2. In the general case, we define

SB ′ =
⋃

C∈SPLIT2(C1)
B∈SB2

CONC(β, C, {B}).

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

66 B. Le Charlier and others

5.3 Instantiation to Pattern

The domain of abstract substitutions Pattern has been introduced by Musumbu

(1990), and it has been used in many of our previous works (Englebert et al.,

1993; Le Charlier and Van Hentenryck, 1995). The reader is referred elsewhere (Le

Charlier and Van Hentenryck, 1994) for a detailed description of the domain and

of its abstract operations.

The Abstract Domain Pattern. The version of Pattern used in the experimental

evaluation of section 5.4 can be best viewed as an instantiation of the generic

pattern domain Pat(R) (Cortesi et al., 1994; Cortesi et al., 2000) with mode, sha-

ring, and arithmetic components.

The key intuition behind Pat(R) is to represent information on some subterms

occurring in a substitution instead of information on terms bound to variables only.

More precisely, Pat(R) may associate the following information with each conside-

red subterm: its pattern, which specifies the main functor of the subterm (if any)

and the subterms which are its arguments; its properties, which are left unspecified

and are given in the domain R. In addition to the above information, each variable

in the domain of the substitution is associated with one of the subterms. It can be

expressed that two arguments have the same value (and hence that two variables are

bound together) by associating both arguments with the same subterm. It should

be emphasized that the pattern information may be void. In theory, information

on all subterms could be kept but the requirement for a finite analysis makes this

impossible for almost all applications. As a consequence, the domain shares some

features with the depth-k abstraction (Kanamori and Kawamura, 1987), although

Pat(R) does not impose a fixed depth but adjusts it dynamically through upper

bound and widening operations. Note that the identification of subterms (and hence

the link between the structural components and the R-domain) is a somewhat

arbitrary choice. In Pat(R), subterms are identified by integer indices, say 1, . . . , n

if n subterms are considered, and we denote sets of indices by the symbol I .

More formally, the pattern and same-value component can be described as follows.

The pattern component is a partial function frm : I 6→ Pat I , from the set of indices

I to the set of patterns over I , i.e. elements of the form f(i1, . . . , in), where f ∈ F
is a functor symbol of arity n and i1, . . . , in ∈ I . When the pattern is undefined for

an index i, we write frm(i) = undef. The same-value component is a total function

sv : D → I , where D = {x1, . . . , xn} is the domain of the abstract substitution.

A pattern component frm : I 6→ Pat I denotes a set of families (ti)i∈I of terms as

defined below.

Cc(frm) = {(ti)i∈I | frm(i) = f(i1, . . . , in) ⇒ ti = f(ti1 , . . . , tin),∀i, i1, . . . , in ∈ I, ∀f ∈ F}.
To simulate unification with occur-check, we also assume that every pattern com-

ponent frm satisfies the following condition: the relation �⊆ I × I such that i � j if

and only if frm(i) is of the form f(. . . , j, . . .) must be well-founded.

A pair 〈sv , frm〉 with sv : D → I and frm : I 6→ Pat I is called structural abstract

substitution; it denotes a set of program substitutions as follows:

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 67

Cc(〈sv , frm〉) = {θ ∈ PS D | ∃(ti)i∈I ∈ Cc(frm) : xjθ = tsv (xj), ∀xj ∈ D}.
The R-domain is the generic part which specifies subterm information by descri-

bing properties of a set of tuples < t1, . . . , tn > where t1, . . . , tn are terms. As a

consequence, defining the R-domain amounts essentially to defining a traditional

domain on substitutions and its operations. We now describe the various components

of the R-domain which can be built as an open product (Cortesi et al., 1994; Cortesi

et al., 2000).

The mode component is described in (Le Charlier and Van Hentenryck, 1994) and

associates a mode from the set Modes ={var, ground, novar, noground, ngv, gv, any}
with each subterm. Formally, it is a total function mo : I → Modes whose concretiza-

tion is defined as

Cc(mo) = {(ti)i∈I | ti ∈ Cc(mo(i)), ∀i ∈ I}.
The sharing component maintains information about possible sharing between

pairs of subterms and is also described in Le Charlier and Van Hentenryck (1994).

Formally, it is a symmetrical relation ps ⊆ I × I whose concretization is defined as

Cc(ps) = {(ti)i∈I | var(ti) ∩ var(tj)⇒ ps(i, j), ∀i, j ∈ I}.
The arithmetic component is novel and aims at using arithmetic predicates to detect

mutual exclusion between clauses. It approximates information about arithmetic

relationships by rational order constraints, i.e. binary constraints of the form i δ j

and unary constraints of the form i δ c, where i, j are indices, δ ∈ {>,>,=, 6=,6, <}
and c is an integer constant. For instance, a built-in X > Y +2 is approximated by a

constraint X > Y . Formally, an element arithm is a set of rational order constraints

over indices, whose concretization is defined as follows (a constraint being satisfied

only if the terms are numbers).

Cc(arithm) = {(ti)i∈I | ∀ i δ j ∈ arithm : ti δ tj and ∀ i δ c ∈ arithm : ti δ c}.

The Operation EXCLUSIVE. We describe here the implementation of the operation

EXCLUSIVE on our domain of abstract substitutions. This operation was not present

in our previous works. It aims at detecting situations where two output abstract

sequences B1 and B2 are incompatible, given that they both originate from the same

abstract input substitution β. Only the abstract substitution components β1 and β2

of B1 and B2 are useful to detect such situations. Thus the operation EXCLUSIVE has

three arguments β, β1, and β2. (See its specification in section 5.2.)

Let us first introduce the notion of decomposition of a program substitution

with respect to a structural abstract substitution. It represents the family of terms,

occurring in the program substitution, that are given an index by the structural

abstract substitution.

Definition 5.12 (Decomposition of a Program Substitution)

Let 〈sv , frm〉 be a structural abstract substitution over domain D = {x1, . . . , xn} and

set of indices I . Let also θ ∈ Cc〈sv , frm〉. The decomposition of θ with respect to

〈sv , frm〉 is the (unique) family of terms (ti)i∈I such that

θ = {x1/tsv (x1), . . . , xn/tsv (xn)} and (ti)i∈I ∈ Cc(frm).

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

68 B. Le Charlier and others

Existence and unicity of the family (ti)i∈I can be proven by an induction argument

that uses the fact that the relation � over I is well-founded. Unicity holds conditional

to the fact that I does not contain any ‘useless’ element, i.e. for every i ∈ I , there exists

a variable xj ∈ D and a set of indices i1, . . . , ik such that i1 = sv (xj), i1 � . . . � ik ,

and ik = i. From now on we assume that this condition always holds.

The next definition models a property of the structural abstract substitutions ob-

tained by performing any number of abstract unification steps on another structural

abstract substitution.

Definition 5.13 (Instance of a Structural Abstract Substitution)

Let 〈sv , frm〉 and 〈sv ′, frm ′〉 be two structural abstract substitutions over the same

domain D = {x1, . . . , xn} and respective sets of indices I and I ′. Let also im : I → I ′
be a total function. We say that 〈sv ′, frm ′〉 is an instance of 〈sv , frm〉 with respect to

im if the following conditions hold:

1. sv ′ = im ◦ sv ;

2. for all i, i1, . . . , im ∈ I,
frm(i) = f(i1, . . . , im) ⇒ frm ′(im(i)) = f(im(i1), . . . , im(im)).

Moreover, we say that 〈sv ′, frm ′〉 is an instance of 〈sv , frm〉 if there exists a function

im such that the conditions hold.

The next property holds.

Property 5.14

Let 〈sv , frm〉 and 〈sv ′, frm ′〉 be two structural abstract substitutions, and let im :

I → I ′ be such that 〈sv ′, frm ′〉 is an instance of 〈sv , frm〉 with respect to im. Let

also θ ∈ Cc〈sv , frm〉, θ′ ∈ Cc〈sv ′, frm ′〉, and σ ∈ SS . Finally, let (ti)i∈I and (t′i)i∈I ′ be

the decompositions of θ and θ′ with respect to 〈sv , frm〉 and 〈sv ′, frm ′〉, respectively.

Then we have

θ′ = θσ ⇒ (tiσ)i∈I = (t′im(i))i∈I .

The proof is a simple induction on the well-founded relation �, induced on I by frm .

The next definitions and properties are instrumental to the implementation and

correctness proof of the operation EXCLUSIVE.

Definition 5.15 (Exclusive Pair of Indices)

Let frm1 and frm2 be two pattern components over sets of indices I and J , respec-

tively. Let also i ∈ I and j ∈ J:

1. We say that 〈i, j〉 is directly exclusive with respect to 〈frm1, frm2〉 iff frm1(i) =

f(i1, . . . , ip), frm2(j) = g(j1, . . . , jq) and either f 6= g or p 6= q.

2. We say that 〈i, j〉 is exclusive with respect to 〈frm1, frm2〉 iff 〈i, j〉 is directly exclu-

sive with respect to 〈frm1, frm2〉, or frm1(i) = f(i1, . . . , ip), frm2(j) = f(j1, . . . , jp)

and there exists k : 1 6 k 6 p such that 〈ik, jk〉 is exclusive with respect to

〈frm1, frm2〉.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 69

Property 5.16

Let frm1 and frm2 be two pattern components over sets of indices I and J , respec-

tively. Let (ti)i∈I ∈ Cc(frm1) and (tj)j∈J ∈ Cc(frm2). Let also i ∈ I and j ∈ J:

1. If the pair 〈i, j〉 is directly exclusive with respect to 〈frm1, frm2〉, then the terms

ti and tj are compound and they have distinct principal functors.

2. If the pair 〈i, j〉 is exclusive with respect to 〈frm1, frm2〉, then the terms ti and

tj are distinct (ti 6= tj).

We are now in position to provide the implementation of the operation EXCLUSIVE

for the domain Pattern. We just show here a partial implementation which only

uses the pattern, same-value, and mode components but it gives the idea behind

the complete implementation. For additional details, the reader is referred to Braem

and Modard (1994).

Operation EXCLUSIVE : Pattern× Pattern× Pattern→ Bool

Let β, β1, β2 be abstract substitutions over the same domain D and sets of indices

I , I1, and I2, respectively. Assume that 〈sv 1, frm1〉 and 〈sv 2, frm2〉 are instances of

〈sv , frm〉 with respect to im1 and im2, respectively. The value of EXCLUSIVE(β, β1, β2)

is true if and only if there exists i ∈ I such that

1. mo(i) ∈ {ngv, novar} and the pair 〈im1(i), im2(i)〉 is directly exclusive with

respect to 〈frm1, frm2〉, or

2. mo(i) = ground and the pair 〈im1(i), im2(i)〉 is exclusive with respect to

〈frm1, frm2〉.
Correctness of the implementation follows from Properties 5.14 and 5.16; see Le

Charlier et al. (1997).

Prolog’s Built-in Predicates. Prolog’s built-in predicates such as test predicates (var,

ground, and the like) or arithmetic predicates (is, <, . . .) can be handled in

essentially the same way as abstract unification. Our implementation actually in-

cludes abstract operations that deal with test and arithmetic predicates (Braem and

Modard, 1994). Other built-in predicates can be accommodated as well, including

the predicates assert and retract. However, the treatment of the latter predicates

assumes that dynamic predicates are disjoint from static predicates, i.e., it assumes

that the underlying program P is not modified. A more satisfactory treatment of

dynamic predicates requires to introduce a new abstract object representing the

dynamic program; this improvement is a topic for further work.

5.4 Experimental evaluation

The experimental results presented in this section provide evidence of the fact that

the approach presented in this paper allows one to integrate predicate level analysis

to existing variable level analysis at a reasonable implementation cost. Comparisons

with other cardinality and determinacy analyses can be found in section 6.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

70 B. Le Charlier and others

Table 1. Efficiency of the cardinality analysis

OR PC PCA

Programs I T I T IR TR I T IR TR

Qsort 13 0.08 17 0.12 1.31 1.50 13 0.08 1.00 1.00

Qsort2 15 0.08 19 0.12 1.27 1.50 15 0.09 1.00 1.13

Queens 15 0.07 18 0.08 1.20 1.14 18 0.10 1.20 1.43

Press1 532 11.77 581 13.11 1.09 1.11 581 13.45 1.09 1.14

Press2 197 3.27 200 3.56 1.02 1.09 200 3.56 1.02 1.09

Gabriel 78 0.90 84 1.00 1.08 1.11 84 0.98 1.08 1.09

Peep 132 3.21 131 18.85 0.99 5.87 131 19.08 0.99 5.94

Read 432 23.91 458 25.32 1.06 1.06 458 25.37 1.06 1.06

Kalah 115 1.90 121 2.09 1.05 1.10 120 2.11 1.04 1.11

Cs 79 2.19 91 3.05 1.15 1.39 90 3.02 1.14 1.38

Plan 36 0.21 38 0.30 1.06 1.43 38 0.27 1.06 1.29

Disj 64 1.95 68 2.14 1.06 1.10 68 2.12 1.06 1.09

Pg 38 0.32 40 0.36 1.05 1.13 39 0.35 1.03 1.09

Boyer 56 0.76 56 1.15 1.00 1.51 56 1.17 1.00 1.54

Credit 63 0.57 64 0.81 1.02 1.42 64 0.80 1.02 1.40

Mean 1.09 1.56 1.05 1.52

Benchmarks. Our experiments use our traditional benchmarks except that cuts have

been reinserted as in the original versions. In addition, some new programs have

been added. Boyer is a theorem-prover from the DEC-10 benchmarks, Credit is an

expert system from Sterling and Shapiro (1986). There are two versions of Qsort

which differ in procedure Partition which uses or does not use auxiliary predicates

for the arithmetic built-ins. All the benchmarks are available by anonymous ftp

from ftp://ftp.info.fundp.ac.be/pub/users/ble/bench.p. They have been run on a

SUN SS-10/20.

Efficiency. The efficiency results are reported in Table 1. Several algorithms are

compared: OR is the original GAIA algorithm on Pattern (Le Charlier and Van

Hentenryck, 1994), PC is the cardinality analysis with Pattern and PCA is PC with

the abstraction for arithmetic predicates. I, T, IR and TR are the number of ite-

rations, the execution time (in seconds), the iteration’s ratio and the time’s ratio

respectively. The first interesting point to notice is the slight increase (about 5% on

PCA) in iterations when moving from abstract substitutions to abstract sequences,

showing the effectiveness of our widening operator. Even more important perhaps

is the fact that the time overhead of the cardinality analysis is small with respect to

the traditional analysis: PCA is 1.52 slower than OR. Note that in fact most programs

enjoys an even smaller overhead but Peep is about six times slower than OR in PCA.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 71

Table 2. Accuracy of the cardinality analysis

P C PC PCA

Programs Query NP D %D D %D D %D D %D

Qsort qsort(g,v) 3 0 0 0 0 0 0 3 100
Qsort2 qsort(g,v) 5 2 40 2 40 2 40 5 100
Queens queens(g,v) 5 2 40 0 0 2 40 2 40
Press1 test press(v,v) 47 8 17 19 40 19 40 19 40
Press2 test press(v,v) 47 12 26 19 40 28 60 28 60
Gabriel main(v,v) 17 0 0 4 24 4 24 4 24
Peep comppeeppopt(g,v,g) 24 4 17 7 29 16 67 16 67
Read read(v,v) 46 11 24 27 59 31 67 31 67
Kalah play(v,v) 46 16 35 20 43 33 72 40 87
Cs pgenconfig(v) 32 11 34 7 22 11 34 13 41
Plan transform(g,g,v) 13 1 8 0 0 1 8 1 8
Disj top(v) 28 13 46 11 39 13 46 13 46
Pg pdsbm(g,v) 10 2 20 3 30 5 50 6 50
Boyer boyer(g) 24 0 0 20 83 20 83 20 83
Credit credit(a,a) 26 14 58 11 42 14 54 16 62

Mean 24 33 46 58

This comes from many procedures with many clauses, most of which being not

surely cut; much time is spent in the concatenation operation. Finally, note that

adding more functionality in the domain did not slow down the analysis by much.

Accuracy. The accuracy results are reported in Table 2. For each program we speci-

fy the initial query to which the abstract interpretation algorithm is applied (we

denote by a, g and v the modes any, ground and var, respectively). Several versions

of the algorithm are compared with respect to their ability to detect determinacy

of procedures, which was our primary motivation. P is using only the domain

Pattern (i.e. cuts are ignored), C is only using the cut (i.e. EXCLUSIVE always

returns false), and PC, PCA are defined as previously. In the table, NP stands for

the number of procedures and D and %D denote the number of procedures and

the percentage of procedures, respectively, that are detected to be deterministic by

the algorithms. There are several interesting points to notice. First, PCA detects that

58% of the procedures are deterministic, although many of these programs in fact

use heavily the nondeterminism of Prolog. Most of the results are optimal and a

nice example is the program Kalah. Secondly, the cut and input/output patterns are

really complementary to improve the analysis. Input/output patterns alone give 41%

of the deterministic procedures (i.e., those detected by PCA), while the cut detects

57% of the deterministic procedures. The abstraction of arithmetic predicates adds

21% of deterministic procedures3. The main lesson here is that all components are

of primary importance to obtain precise results.

3 Notice that 24/58=0.41, 33/58=0.57 and (58-46)/58=0.21. The inequality 41+57+21 6=100 can be
understood by the fact that the analysis computed by P, C and A (the latter being the algorithm that
only considers the arithmetic predicates) are not completely exclusive.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

72 B. Le Charlier and others

6 Retaled work on determinacy analysis

Determinacy of logic programs in general and of Prolog programs in particular

is an important research topic because determinate programs can be implemented

more efficiently than non-determinate programs (often, much more efficiently). Sev-

eral forms of determinacy have been identified, which lead to different kinds of

optimizations. In this section, we review a few interesting papers on determinacy

analysis at the light of our novel framework for the abstract interpretation of Prolog.

The benefit of this study is twofold: first, it sheds new light on these analyses in the

context of abstract interpretation; second, it supports the claim that our proposal is

appropriate to integrate most existing analyses into a single framework.

6.1 Sahlin’s determinacy analysis for full Prolog

The analysis proposed by Sahlin (1991) aims at detecting procedures of a (full) Prolog

program that are determinate (i.e. they succeed at most once) or fully-determinate

(i.e. they succeed exactly once). The analysis is developed in the context of the

partial evaluator Mixtus (Sahlin, 1993) in order to detect situations where cuts can

be ‘executed’ or removed. Sahlin’s analysis is not based on abstract interpretation;

hence he provides a specific correctness proof for it. In this section, we show that

the determinacy analysis proposed by Sahlin (1991) is indeed an instance of our

framework over his abstract domain.

Abstract Domains. Sahlin’s analysis completely ignores information on program

variables. The abstract domains are concerned with the sequence structure only:

substitutions are completely ignored. Note that no abstract interpretation framework

available at the time of his writing was adequate to his needs.

Abstract Substitutions. Since program variables are ignored, we can assume a domain

AS consisting of an arbitrary single element.

Abstract Sequences. Sahlin’s analysis can be formalized in our framework by defi-

ning ASS = ℘(AASS), where AASS = {L, 0, 1, 1′, 2, 2′}4. We call elements of AASS,

atomic abstract sequences. Their concretization is defined as follows:

Cc(L) = {< ⊥ >}
Cc(0) = { <> }
Cc(1) = {S ∈ PSS | Ns(S) = 1 and S is finite}
Cc(1′) = {S ∈ PSS | Ns(S) = 1 and S is incomplete}
Cc(2) = {S ∈ PSS | Ns(S) > 1 and S is finite}
Cc(2′) = {S ∈ PSS | Ns(S) > 1 and S is incomplete or infinite}

The concretization function Cc : ASS → ℘(PSS) is defined by:

Cc(B) =
⋃
b∈B Cc(b).

The relation 6 on ASS is naturally defined as being set inclusion. The concretization

function is thus clearly monotonic.

4 We choose to denote the elements of AASS by the same symbols as in Sahlin (1991).

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 73

Abstract Sequences with Cut Information. We define the set ASSC as being equal to

℘(AASS ×CF). The elements of ASSC are denoted by Ln, 0n, 1n, 1′n, 2n, 2′n, Lc, 0c,

1c, 1′c, 2c, 2′c, in Sahlin (1991), where the index n stands for nocut, while the index c

stands for cut. The concretization function is defined in the obvious way.

Extended Widening. To instantiate our generic abstract interpretation algorithm

to the above domains, it remains to provide an implementation of the various

abstract operations. This can be done systematically from the specifications of the

operations and the domain definitions; we leave it as an exercise to the reader,

except for the extended widening, whose implementation is not obvious. The basic

intuition behind the extended widening is that it should ‘observe’ how the abstract

sequences evolve between the consecutive iterations in order to ensure convergence

when enough accuracy seems to be attained. In this abstract domain, the abstract

sequence Bi produced at step i may intuitively differ from Bi−1 by the fact that some

‘incomplete’ elements (i.e.L, 1′, 2′) can be removed and replaced by more ‘complete’

ones. Of course the computation starts with B0 = {L}. Thus the algorithm waits

until ‘enough incomplete elements have been removed’ and then accumulates the

next iteration results to enforce termination. This can be formalized by defining a

pre-order v over ASS such that B1 v B2 holds when B2 only contains elements

that are ‘more complete’ than some elements of B1 and when, conversely, B1 only

contains elements that are ‘less complete’ than some elements of B2. We first define

the relation is strictly less complete than between atomic abstract sequences by the

table:

L < 0 L < 1 L < 1′ L < 2 L < 2′ 1′ < 1 1′ < 2 1′ < 2′ 2′ < 2.

Then, for all atomic abstract sequences b1 and b2, we say that b1 is less complete

than b2, denoted by b1 v b2, if b1 = b2 or b1 < b2. This relation is lifted to general

abstract sequences as follows:

Definition 6.1 (Computational Pre-Ordering)

Let B1, B2 ∈ ASS . By definition,

B1 v B2 iff (∀b1 ∈ B1, ∃b2 ∈ B2 such that b1 v b2) and

(∀b2 ∈ B2, ∃b1 ∈ B1 such that b1 v b2).

We write B1 < B2 to denote the condition (B1 v B2 and B2 6v B1).

We are now in position to define the extended widening.

Definition 6.2 (Extended Widening for Sahlin’s Domain: B′ = Bnew∇Bold)
B′ = Bnew if Bold < Bnew ,

= Bnew ∪ Bold otherwise.

In fact, the above operation does not fulfil, strictly speaking, the requirements for

being an extended widening. It works however if we have Bold v Bnew each time it

is applied. This is normally the case if the other abstract operations are carefully

implemented, since each iteration of the abstract interpretation algorithm should

replace every element in Bold by one or several more complete elements. Before

stating what is it actually achieved by the operation ∇, we need two definitions.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

74 B. Le Charlier and others

Definition 6.3 (Equivalent Abstract Sequences)

Let B1, B2 ∈ ASS . By definition,

B1 ≈ B2 iff B1 v B2 and B2 v B1.

The relation ≈ is an equivalence because v is a pre-order. It can be shown that

≈ determines 42 equivalence classes, of which 28 are a singleton (e.g. {{L, 0, 1′}}),
10 have 2 elements (e.g. {{L, 0, 2′}, {L, 0, 1′, 2′}}), and four have four elements (e.g.

{{L, 0, 2}, {L, 0, 2, 2′}, {L, 0, 1′, 2}, {L, 0, 1′, 2, 2′}}). It is also important to note that

distinct equivalent abstract sequences always have different concretizations.

Definition 6.4 (Strengthened Computational Ordering)

Let B1, B2 ∈ ASS . By definition,

B1 � B2 iff B1 < B2 or (B1 ≈ B2 and B1 ⊆ B2).

The relation � is an order; every ascending sequence B1 � B2 � . . . � Bi . . . is

stationary since ASS is finite.

Property 6.5 (Conditional Convergence of the Extended Widening)

Let {Bi}i∈N and {B′i}i∈N be two sequences of elements of ASS such that

1. B′i v Bi+1, for all i ∈ N;

2. B′i+1 = Bi+1∇B′i , for all i ∈ N.

Then we have Bi 6 B′i , for all i ∈ N∗, and the sequence {B′i}i∈N is stationary.

Proof

The fact that Bi 6 B′i , for all i ∈ N∗, is a direct consequence of the definition of the

operation ∇. Moreover, the hypotheses on the sequences ensure that B′1 �B′2 � . . .�
B′i . . . ; thus the sequence {B′i}i∈N is stationary. q

If all abstract operations are congruent with respect to v 5, each iteration of the

abstract interpretation algorithm ensures that Bold v Bnew , where Bold is the current

value in sat and Bnew is the newly computed abstract sequence. Thus, Property 6.5

guarantees termination of the abstract interpretation algorithm. Congruence of the

abstract operations with respect to v is ensured if they are ‘as accurate as possible’

(which is achieved in Sahlin (1991)); however, proving this property entails a lot

of work. A simpler solution consists of testing whether Bold v Bnew actually holds

before each application of the extending widening. If the condition does not hold,

we switch to a cruder form of widening, which simply merges all successive results.

Comparison with our Cardinality Analysis. The determinacy information inferred by

means of Sahlin’s domain is in general less accurate than our cardinality analysis

(except maybe in some partial evaluation contexts). For instance, with the former

domain, it is not possible to detect mutually exclusive clauses except when cuts occur

in the clauses. As illustrated in section 5.3, the information provided by the abstract

5 We would have written monotonic if the relation v was an order, not a pre-order only.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 75

substitution component of our domain is instrumental to detect sure failure, sure

success, and mutual exclusion, which all contribute to improve the accuracy of the

determinacy (or cardinality) analysis. Nevertheless, the specific information about

the sequence structure is finer grained in Sahlin’s domain than in ours. Consider the

abstract sequence {L, 1}; it is approximated, in our domain, by 〈0, 1, pt〉, which is

actually equivalent to {L, 0, 1, 1′}. Thus, it could be interesting to design a domain for

abstract sequences similar to our cardinality domain, where the sequence component

coincides with Sahlin’s domain.

6.2 Giacobazzi and Ricci’s Analysis of Determinate Computations

The work of Giacobazzi and Ricci (1992), is also worth being reviewed in our context.

They propose an analysis of functional dependencies (Mendelzon, 1991) between

procedure arguments of the success set of pure logic programs. Their analysis is a

bottom-up abstract interpretation, based on Barbuti et al. (1993) and Falaschi et

al. (1989). The analysis also infers groundness information and is intended to be

used for parallel logic program optimization. In our comparison, we focus on the

functional dependencies and we simplify the presentation in order to concentrate on

the salient points. First, we provide a definition of functional dependency tailored

to our framework. The definitions use some notions from section 5.3.

Definition 6.6 (Functional Dependency)

Let 〈sv , frm〉 be a structural abstract substitution over domain D and set of indices

I . A functional dependency for 〈sv , frm〉, denoted by J → j, is a pair consisting of a

subset J of I and an index j ∈ I .
Let S ∈PSSD be a program substitution sequence such that Subst(S)⊆Cc〈sv , frm〉.

We say that the functional dependency J → j holds in S for 〈sv , frm〉, if for all fami-

lies of terms (ti)i∈I , (t′i)i∈I that are decompositions of some program substitutions of

Subst(S), the following implication is true:

(ti)i∈J = (t′i)i∈J ⇒ tj = t′j .

Then we define an abstract domain to express functional dependencies.

Definition 6.7 (Abstract Sequences with Functional Dependencies)

An abstract sequence with functional dependencies is a triple 〈sv , frm , fd〉 where

〈sv , frm〉 is a structural abstract substitution over domain D and set of indices I ,

and fd is a set of functional dependencies for 〈sv , frm〉. The concretization function

for abstract sequences with functional dependencies is defined by

Cc〈sv , frm , fd〉 =

 S ∈ PSS D

Subst(S) ⊆ Cc(〈sv , frm〉) and

J → j holds in S for 〈sv , frm〉,
for every J → j ∈ fd .

 .

In fact, the functional dependency component fd is best viewed as an additional

component to the cardinality domain defined in Section 5, since its usefulness

for determinacy analysis depends on the availability of mode information. Let

S ∈ CPSSD be a canonical program substitution sequence. We say that S is

functional if the set Subst(S) is empty or is a singleton. Such sequences model the

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

76 B. Le Charlier and others

behavior of procedures that cannot produce two or more distinct solutions. Assume

that S is the output sequence corresponding to the input substitution θ, for some

procedure p. Assume that θ ∈ Cc〈sv , frm〉 and S ∈ Cc〈sv ′, frm ′, fd ′〉 where 〈sv ′, frm ′〉
is more instantiated than 〈sv , frm〉infer that S is functional if there exists J ⊆ I ′ such

that fd ′ contains a functional dependency of the form J → i, for every i ∈ sv ′(D),

and if every term tj corresponding to an index j ∈ J in a program substitution of

S is not more instantiated than the corresponding term in θ. The latter information

is easily deduced if we know, for instance, that tj is ground or is a variable. Thus

adding a functional dependency component to our cardinality domain allows us to

infer that output program substitution sequences are functional.

It is important to point out that the new component fd expresses a property

of program substitution sequences, not a property of (single) program substitu-

tions. It is meaningless to use functional dependencies in a domain of abstract

substitutions, because a set of functional dependencies determines a (two valued)

condition on a set of program substitution. Either the set verifies the condition, then

no constraint is added, or it does not and the set is rejected as a whole. Thus, a

component fd defines a set of sets of program substitutions. As a consequence, func-

tional dependencies cannot be handled by previous top-down abstract interpretation

frameworks (Bruynooghe, 1991; Le Charlier and Van Hentenryck, 1994; Marriott

and Søndergaard, 1989a; Mellish, 1987; Muthukumar and Hermenegildo, 1992;

Warren, 1992; Winsborough, 1992). However, the abstract interpretation framework

used by Giacobazzi and Ricci (1992) is bottom-up and abstracts the success set of

the program. The result of an analysis represents a set of possible success sets, i.e.

a set of sets of output patterns, which is similar to a set of sets of program substi-

tutions. As far as we know, it is the first time that this difference of expressivity

between bottom-up and (previous) top-down abstract interpretation frameworks is

pointed out in the literature. The comparison usually concentrates on the fact that

bottom-up frameworks are goal independent, i.e. they provide information on the

program as a whole, while top-down frameworks are goal dependent, i.e. they pro-

vide information about the program and a given initial goal. We believe that a more

fundamental difference lies in the fact that top-down frameworks are functional, i.e.

they abstract the behavior of a program by a function between sets of sets, while

bottom-up frameworks are relational, i.e. they abstract the behavior of a program

by a set of relations. The difference between the two approaches has been previously

put forward by Cousot and Cousot (1992b), but not in the context of logic programs.

The functional approach can easily focus on small parts of the program behavior

but looses the dependencies between inputs and outputs; the converse holds for the

relational approach. Our novel framework is basically functional, but the domain

of abstract sequences is in some sense relational; thus the framework allows us to

combine the advantages of both approaches.

6.3 Debray and Warren’s analysis of functional computations

In the previous section, we have shown that functional dependencies are useful

to infer that an output program substitution sequence is functional, i.e. does not

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 77

contain two or more distinct program substitutions. Such a sequence may contain

several occurrences of the same program substitution, however. The importance of

functional computations for logic program optimization was advocated early by

Debray and Warren (1989). In this paper, these authors propose a sophisticated

algorithm to infer functional computations of a logic program. The analysis exploits

functional dependencies and mode information, as well as a set of sufficient condi-

tions to detect mutually exclusive clauses. Their algorithm is not based on abstract

interpretation and assumes that functional dependencies and mode information are

given from outside. Thus the algorithm considers an annotated program; it uses a

set {⊥, true, false} where ⊥ is an initializing value, true means that a procedure is

functional and false means that it is not known whether the procedure is functional.

Hence, the set can be viewed as a domain of abstract sequences, with concretization

function Cc : {⊥, true, false} → ℘(CPSS) defined by

Cc(⊥) = {< ⊥ >};
Cc(true) = {S ∈ CPSS | Subst(S) is empty or is a singleton.};
Cc(false) = CPSS .

All aspects of their analysis can be accommodated in our approach by providing

suitable abstract domains. An abstract domain consisting of our cardinality domain

augmented with a functional dependency component would probably be fairly

accurate. Moreover, in our approach, all analyses can be performed at the same

time and interact with each other, making it possible to get a better accuracy.

7 Conclusion

This paper has introduced a novel abstract interpretation framework, capturing

the depth-first search strategy and the cut operation of Prolog. The framework

is based on the notion of substitution sequences and the abstract semantics is

defined as a pre-consistent post-fixpoint of the abstract transformation. Abstract

interpretation algorithms need chain-closed domains and a special widening operator

to compute the semantics. This approach overcomes some of the limitations of

previous frameworks. In particular, it broadens the applicability of the abstract

interpretation approach to new analyses and can potentially improve the precision

of existing analyses. On the practical side, in this paper, we have only shown that

our approach allows one to integrate – efficiently and at a low conceptual cost – a

predicate level analysis (i.e. determinacy analysis) to variable level analyses classically

handled by abstract interpretation. However, the improvement on classical analyses

is marginal because, due to our design choices for the abstract sequence domain (i.e. a

simple extension of Pattern), the new system behaves almost as the previous version

of GAIA for variable level analyses. Nevertheless, the new framework opens a door

for defining and exploiting more sophisticated domains for abstract sequences.

Appendix

We complete here the description of the abstract operations started in section 5.2.

The correctness proofs of all the abstract operations can be found in Le Charlier

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

78 B. Le Charlier and others

et al. (1997). The definitions below have been added in order to allow the reader to

check the details of the examples in section 5.2.

Extension at Clause Entry: EXTC(c, ·) : ASD → ASSCD′

The implementation reuses the homonymous operation from the previous frame-

work, which is specified as follows.

Operation EXTC(c, ·) : ASD → ASD′

Let β ∈ ASD , θ ∈ CPSD , and θ′ ∈ PSD′ such that xiθ
′ = xiθ (∀i : 1 6 i 6 n) and

xn+1θ
′, . . . , xmθ

′ are distinct standard variables not belonging to codom(θ). Then

θ ∈ Cc(β) ⇒ [[θ′]] ∈ Cc(EXTC(c, β)).

Hence, the EXTC operation on sequences is defined by

EXTC(c, β) = 〈〈EXTC(c, β), 1, 1, st〉, nocut〉.

Restriction at Clause Exit: RESTRC(c, ·) : ASSCD′ → ASSCD

The treatment of this operation is similar to the previous one. We first specify the

abstract substitution version of the operation.

Operation RESTRC(c, ·) : ASD′ → ASD

Let β∈ASD′ and θ∈CPSD′ . We have

θ ∈ Cc(β) ⇒ [[θ|D]] ∈ Cc(RESTRC(c, β)).

Hence, the RESTRC operation on sequences is defined by

RESTRC(c, C) = 〈RESTRC(c, β), m,M, acf 〉.

Restriction before a Call: RESTRG(l, ·) : ASD′ → ASD′′′

This operation is simply inherited from the previous framework.

Unification of a Variable and a Functor: UNIF-FUNC(f, ·) : ASD → ASSD

The treatment of this operation is identical to the treatment of the UNIF-VAR ope-

ration and is thus omitted.

Extension of the Result of a Call: EXTGS(l, ·, ·) : ASSCD′ × ASSD′′′ → ASSCD′

This operation reuses the operation EXTG from the previous framework. The reused

operation has to fulfill the specification just below.

Operation EXTG(l, ·, ·) : ASD′ × ASD′′′ → ASD′

Let β1 ∈ ASD′ and β2 ∈ ASD′′′ . Let θ1 ∈ CPSD′ and θ2 ∈ PSD′′′ be such that

xij θ1 = xjθ2 (∀j : 1 6 j 6 n′). Let σ ∈ SS such that dom(σ) ⊆ codom(θ2). Let

{z1, . . . , zr} = codom(θ1) \ codom(θ2). Let y1, . . . , yr be distinct standard variables not

belonging to codom(θ1)∪ codom(σ). Let ρ = {z1/y1, . . . , zr/yr, y1/z1, . . . , yr/zr}. Under

these assumptions,

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 79

θ1 ∈ Cc(β1),

θ2σ ∈ Cc(β2)

}
⇒ [[θ1ρσ]] ∈ Cc(EXTG(l, β1, β2)).

The implementation of EXTGS is as follows.

β′ = EXTG(l, β1, β2);

m′ = m1m2 if t2 = st ,

= min(1, m1)m2 otherwise;

M ′ = min(1,M1)M2 if t2 = snt ,

= M1M2 otherwise;

t′ = snt if t1 = snt or (t2 = snt and m1 > 1),

= st if t1 = st and (t2 = st or M1 = 0),

= pt otherwise;

acf ′ = acf .

Operation SEQ : ASSCD → ASSD

We define

SEQ(〈B, acf 〉) = B.

Operation SUBST : ASSCD′ → ASD′

We define

SUBST(〈〈β, m,M, t〉, acf 〉) = β.

References

Apt, K. R. (1997) From Logic Programming to Prolog. International Series in Computer

Science, Prentice Hall.

Barbuti, R., Codish, M., Giacobazzi, R. and Levi, G. (1993) Modelling Prolog control. J.

Logic and Computation, 3(6), 579–603.

Barbuti, R. and Giacobazzi, R. (1992) A bottom-up polymorphic type inference in logic

programming. Science of Computer Programming, 19(3), 281–313.

Barbuti, R., Giacobazzi, R. and Levi, G. (1993) A general framework for semantics-based

bottom-up abstract interpretation of logic programs. ACM Trans. Programming Lang. and

Syst. (TOPLAS), 15(1), 133–181.

Baudinet, M. (1992) Proving termination properties of Prolog programs: a semantic approach.

J. of Logic Programming, 14(1&2), 1–29.

Bossi, A. and Cocco, N. (1999) Successes in logic Programs. In: P. Flener (ed.), Proc. 8th Int.

Workshop on Logic-Based Program Synthesis and Transformation (LOPSTR’98): Lecture

Notes in Computer Science 1559, pp. 219–239. Springer-Verlag.

Braem, C., Le Charlier, B., Modard, S. and Van Hentenryck, P. (1994) Cardinality analysis

of Prolog. In: M. Bruynooghe (ed.), Proc. Int. Logic Programming Symposium (ILPS’94),

pp. 457–471. MIT Press.

Braem, C. and Modard, S. (1994) Abstract interpretation for Prolog with cut: cardinality

analysis. Master’s thesis, Institut d’Informatique, University of Namur, Belgium.

Bruynooghe, M. (1991) A practical framework for the abstract interpretation of logic pro-

grams. J. Logic Programming, 10(2), 91–124.

Bueno, F. and Hermenegildo, M. (1991) Results on automatic translation from prolog to

the Andorra kernel language. Technical Report, Facultad Informatica UPM, Universidad

Politecnica de Madrid, Spain.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

80 B. Le Charlier and others

Cabeza Gras, D. and Hermenegildo, M. (1994) Extracting non-strict independent And-

parallelism using sharing and freeness information. In: Le Charlier (ed.), Proceedings 4th

Int. Static Analysis Symposium (SAS ’94): Lecture Notes in Computer Science 864, pp. 297–

313. Springer-Verlag.

Chang, J. H., Despain, A. M. and DeGroot, D. (1985) And-parallelism of logic programs based

on a static data dependency analysis. Proc. 30th IEEE Compcon Spring (COMPCON’85).

IEEE Press.

Codish, M., Dams, D. and Yardeni, E. (1991) Derivation and safety of an abstract unification

algorithm for groundness and aliasing analysis. In: K. Furukawa (ed.), Proc. 8th Int.

Conference on Logic Programming (ICLP’91), pp. 79–93. MIT Press.

Codognet, P. and Filè, G. (1992) Computations, abstractions and constraints in logic programs.

Proc. of IEEE International Conference on Computer Languages (ICCL’92). IEEE Press.

Corsini, M.-M. (1991) (Yet) an abstract domain and unification for accurate groundness

and sharing analysis based on graphs traversing. ICLP’91 Pre-Conference Workshop on

Semantics-Based Analysis of Logic Programs, INRIA, Rocquencourt.

Cortesi, A. and Filè, G. (1991) Abstract interpretation of logic programs: an abstract domain

for groundness, sharing, freeness and compoundness analysis. Proc. Symposium on Par-

tial Evaluation and Semantics-Based Program Manipulation (PEPM’91), SIGPLAN Notices,

26(9), 52–61.

Cortesi, A., Filè, G. and Winsborough, W. (1991) Prop revisited: propositional formula as

abstract domain for groundness analysis. Proc. 6th Annual IEEE Symposium on Logic in

Computer Science (LICS’91), pp. 322–327. IEEE Press.

Cortesi, A., Le Charlier, B. and Van Hentenryck, P. (1994) Combinations of abstract domains

for logic programming. Proc. 21st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’94), pp. 227–239. ACM Press.

Cortesi, A., Le Charlier, B. and Van Hentenryck, P. (1995) Type analysis of Prolog using type

graphs. J. Logic Programming, 22(3), 179–209.

Cortesi, A., Le Charlier, B. and Van Hentenryck, P. (2000) Combinations of abstract domains

for logic programming: open product and generic pattern construction. Sci. of Comput.

Programming, 38(1–3), 27–71.

Cousot, P. and Cousot, R. (1977) Abstract Interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. Proc. 4th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’77),

pp. 238–252. ACM Press.

Cousot, P. and Cousot, R. (1979) Systematic design of program analysis frameworks. Proc. 6th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’79),

pp. 269–282. ACM Press.

Cousot, P. and Cousot, R. (1992) Abstract interpretation and application to logic programs.

J. Logic Programming, 13(2&3), 103–179.

Cousot, P. and Cousot, R. (1992) Abstract interpretation frameworks. J. Logic and Computa-

tion, 2(4), 511–547.

Cousot, P. and Cousot, R. (1992) Comparing of the Galois connection and widen-

ing/narrowing approaches to abstract interpretation (invited paper). In: M. Bruynooghe

and M. Wirsing (eds.), Proc. 4th Int. Workshop on Programming Language Implementation

and Logic Programming (PLILP’92): Lecture Notes in Computer Science 631, pp. 269–295.

Springer-Verlag.

Cousot, P. and Cousot, R. (1994) Higher-order abstract interpretation (and application to

comportment analysis generalizing strictness, termination, projection and PER analysis of

functional languages). (Invited paper). Proc. IEEE International Conference on Computer

Languages (ICCL’94), pp. 95–112. IEEE Press.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 81

Dawson, S., Ramakrishnan, C. R., Ramakrishnan, I. V. and Sekar, R. C. (1993) Extracting

determinacy in logic programs. In: D. S. Warren (ed.), Proc. 10th International Conference

on Logic Programming (ICLP’93), pp. 424–438. MIT Press.

Debray, S. K. (1989) Static inference of modes and data dependencies in logic programs.

ACM Trans. Programming Lang. and Syst. (TOPLAS), 11(3), 418–450.

Debray, S. K., López-García, P. and Hermenegildo, M. (1997) Non-failure analysis for logic

programs. In: L. Naish (ed.), Proc. 14th International Conference on Logic Programming

(ICLP’97), pp. 48–62. MIT Press.

Debray, S. K. and Mishra, P. (1988) Denotational and operational semantics for Prolog. J.

Logic Programming, 5(1), 61–91.

Debray, S. K. and Warren, D. S. (1988) Automatic mode inference for logic programs. J.

Logic Programming, 5(3), 207–229.

Debray, S. K. and Warren, D. S. (1989) Functional computations in logic programs. ACM

Trans. Programming Lang. and Syst. (TOPLAS), 11(3), 451–481.

De Bruin, A. and De Vink, E. (1989) Continuation semantics for Prolog with cut. In:

J. Díaz and F. Orejas (eds.), Proc. Int. Joint Conference on Theory and Practice of Soft-

ware Development (TAPSOFT’89): Lecture Notes in Computer Science 351, pp. 178–192.

Springer-Verlag.

Englebert, V., Le Charlier, B., Roland, D. and Van Hentenryck, P. (1993) Generic abstract

interpretation algorithms for Prolog: two optimization techniques and their experimental

evaluation. Software–Practice and Experience, 23(4), 419–459.

Falaschi, M., Levi, G., Martelli, M. and Palamidessi, C. (1989) Declarative modeling of the

operational behaviour of logic languages. Theor. Comput. Sci., 69(3), 289–318.

Filè, G. and Ranzato, F. (1994) Improving abstract interpretations by systematic lifting to

the powerset. In: M. Bruynooghe (ed.), Proc. International Logic Programming Symposium

(ILPS’94), pp. 655–669. MIT Press.

Filè, G. and Rossi, S. (1993) Static analysis of Prolog with cut. In: A. Voronkov (ed.), Proc.

4th International Conference on Logic Programming and Automated Reasoning (LPAR’93):

Lecture Notes in Computer Science 698, pp. 134–145. Springer–Verlag.

Gang, Y. and Zhiliang, X. (1986) An efficient type system for Prolog. In: H. J. Kugler

(ed.), Proc. 10th IFIP World Computer Congress, Information Processing 86, pp. 355–359.

North-Holland/IFIP.

Getzinger, T. W. (1994) The costs and benefits of abstract interpretation-driven Prolog

optimization. In: Le Charlier (ed.), Proceedings 4th Int. Static Analysis Symposium (SAS

’94): Lecture Notes in Computer Science 864, pp. 1–25. Springer-Verlag.

Giacobazzi, R. and Ricci, L. (1990) Pipeline optimizations in AND-parallelism by abstract

interpretation. In: D. S. Warren and P. Szeridi (eds.), Proc. 7th International Conference on

Logic Programming (ICLP’90), pp. 291–305. MIT Press.

Giacobazzi, R. and Ricci, L. (1992) Detecting determinate computations by bottom-up ab-

stract interpretation. In: B. Krieg-Brückner (ed.), Proc. 4th European Symposium on Pro-

gramming, ESOP’92: Lecture Notes in Computer Science 582, pp. 167–181. Springer–Verlag.

Hermenegildo, M. V. (1986) An abstract machine for restricted AND-parallel execution of

logic programs. In: E. Y. Shapiro (ed.), Proc. 3rd Int. Conference on Logic Programming

(ICLP’86): Lecture Notes in Computer Science 225, pp. 25–40. Springer–Verlag.

Hermenegildo, M. V., Warren, R. and Debray, S. K. (1992) Global flow analysis as a practical

compilation tool. J. Logic Programming, 13(4), 349–367.

Jacobs, D. and Langen, A. (1989) Accurate and efficient approximation of variable aliasing in

logic programs. In: E. L. Lusk and R. A. Overbeek (eds.), Proc. North American Conference

on Logic Programming (NACLP’89), pp. 154–165. MIT Press.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

82 B. Le Charlier and others

Jacobs, D. and Langen, A. (1992) Static analysis of logic programs for independent AND

parallelism. J. Logic Programming, 13(2&3), 291–314.

Janssens, G. and Bruynooghe, M. (1992) Deriving descriptions of possible values of program

variables by means of abstract interpretation. J. Logic Programming, 13(2&3), 205–258.

Jensen, T. P. and Mogensen. T. Æ. (1990) A backwards analysis for compile-time garbage

collection. In: N. Jones (ed.), Proc. 3th European Symposium on Programming, (ESOP’90):

Lecture Notes in Computer Science 432, pp. 227–239. Springer–Verlag.

Jones, N. D. and Mycroft, A. (1984) Stepwise development of operational and denota-

tional semantics for Prolog. Proc. International Symposium on Logic Programming (SLP’84),

pp. 281–288. IEEE Press.

Jones, N. D. and Søndergaard, H. (1987) A semantic-based framework for the abstract

interpretation of Prolog. In: S. Abramsky and C. Hankin (eds.), Abstract Interpretation of

Declarative Languages, pp. 123–142. Ellis Horwood.

Kanamori, T. and Kawamura, T. (1987) Analysing success patterns of logic programs by

abstract hybrid interpretation. Technical Report 279, ICOT, Tokyo, Japan.

Kanamori, T. and Horiuchi, K. (1985) Type inference in Prolog and its application. In:

A. K. Joshi (ed.), Proc. 9th International Joint Conference on Artificial Intelligence (IJ-

CAI’85), pp. 704–709. Morgan Kaufmann.

Kieburtz, R. B. (1983) Precise typing of abstract data type specification. Proc. 10th ACM

Symposium on Principles of Programming Languages (POPL’83), pp. 109–116. ACM Press.

Kluźniak, F. (1987) Type synthesis for ground Prolog. In: J.-L. Lassez (ed.), Proc. 4th Int.

Conference on Logic Programming (ICLP’87), pp. 788–816. MIT Press.

Kluźniak, F. (1988) Compile-time garbage collection for ground Prolog. In: R. A. Kowal-

ski and K. A. Bowen (eds.), Proc. 5th Int. Conference on Logic Programming (ICLP’88),

pp. 1490–1505. MIT Press.

Le Charlier, B. (ed.) (1994) Proceedings 1st International Static Analysis Symposium (SAS’94):

Lecture Notes in Computer Science 864. Springer-Verlag.

Le Charlier, B., Degimbe, O., Michel, L. and Van Hentenryck, P. (1993) Optimization tech-

niques for general purpose fixpoint algorithms: practical efficiency for the abstract inter-

pretation of Prolog. In: P. Cousot, M. Falaschi, G. Filè and A. Rauzy (eds.), Proc. 3rd

International Workshop on Static Analysis (WSA’93): Lecture Notes in Computer Science

724, pp. 15–26. Springer–Verlag.

Le Charlier, B., Leclère, C., Rossi, S. and Cortesi, A. (1999) Automated verification of Prolog

programs. J. Logic Programming, 39(1–3), 3–42.

Le Charlier, B., Musumbu, K. and Van Hentenryck, P. (1991) A generic abstract interpreta-

tion algorithm and its complexity analysis. In: K. Furukawa (ed.), Proc. 8th International

Conference on Logic Programming (ICLP’91), pp. 64–78. MIT Press.

Le Charlier, B. and Rossi, S. (1996) Sequence-based abstract semantics of Prolog. Technical

Report RR-96-001, Facultés Universitaires Notre-Dame de la Paix, Institut d’Informatique,

Namur, Belgium.

Le Charlier, B., Rossi, S. and Van Hentenryck, P. (1994) An abstract interpretation framework

which accurately handles Prolog search-rule and the cut. In: M. Bruynooghe (ed.), Proc.

Int. Logic Programming Symposium (ILPS’94), pp. 157–171. MIT Press.

Le Charlier, B., Rossi, S. and Van Hentenryck, P. (1997) Sequence-based abstract interpretation

of Prolog. Technical Report RR-97-001, Facultés Universitaires Notre-Dame de la Paix,

Institut d’Informatique, Namur, Belgium.

Le Charlier, B. and Van Hentenryck, P. (1993) A general top-down fixpoint algorithm

(revised version). Technical Report RR-93-022, Facultés Universitaires Notre-Dame de la

Paix, Institut d’Informatique, Namur, Belgium.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

Sequence-based abstract interpretation of Prolog 83

Le Charlier, B. and Van Hentenryck, P. (1994) Experimental evaluation of a generic abstract

interpretation algorithm for Prolog. ACM Trans. Programming Lang. and Syst. (TOPLAS),

16(1), 35–101.

Le Charlier, B. and Van Hentenryck, P. (1995) Reexecution in abstract interpretation of

Prolog. Acta Informatica, 32(3), 209–270.

Leivant, D. (1983) Polymorphic type inference. Proc. 10th ACM Symposium on Principles of

Programming Languages (POPL’83), pp. 88–98. ACM Press.

Lloyd, J. W. (1987) Foundations of Logic Programming – 2nd ed. Springer Series: Symbolic

Computation–Artificial Intelligence. Springer-Verlag.

Marien, A. and Demoen, B. (1989) On the management of choicepoint and environment

frames in the WAM. In: E. L. Lusk and R. A. Overbeek (eds.) Proc. North American

Conference on Logic Programming (NACLP’89), pp. 1030–1047. MIT Press.

Marien, A., Janssens, G., Mulkers, A. and Bruynooghe. M. (1989) The impact of abstract

interpretation: an experiment in code generation. In: G. Levi and M. Martelli (eds.), Proc.

6th Int. Conference on Logic Programming (ICLP’89), pp. 33–47. MIT Press.

Marriott, K. (1993) Frameworks for abstract interpretation. Acta Informatica, 30(2), 103–129.

Marriott, K. and Søndergaard, H. (1989) Notes for a tutorial on abstract interpretation of

logic programs. North American Conference on Logic Programming (NACLP’89).

Marriott, K. and Søndergaard, H. (1989) Semantics-based dataflow analysis of logic programs.

In: G. Ritter (ed.), Proc. IFIP 11th World Computer Congress, Information Processing 89,

pp. 601–606. North-Holland/IFIP.

Meier, M. (1991) Recursion versus iteration in Prolog. In: K. Furukawa (ed.), Proc. 8th

International Conference on Logic Programming (ICLP’91), pp. 157–169. MIT Press.

Mellish, C. (1987) Abstract interpretation of Prolog programs. In: S. Abramsky and C. Hankin

(eds.), Abstract Interpretation of Declarative Languages, pp. 181–198. Ellis Horwood.

Mendelzon, A. O. and Wood, P. T. (1991) Functional dependencies in Horn Clause Queries.

ACM Trans. Database Systems (TODS), 16(1), 31–55.

Mulkers, A. (1991) Deriving live data structures in logic programs by means of abstract inter-

pretation. PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven,

Belgium.

Mulkers, A., Winsborough, W. and Bruynooghe, M. (1990) Analysis of shared data structures

for compile-time garbage collection in logic programs. In: D. S. Warren and P. Szeridi

(eds.), Proc. 7th International Conference on Logic Programming (ICLP’90), pp. 747–762.

MIT Press.

Musumbu, K. (1990) Interprétation abstraite de programmes Prolog. PhD thesis, Institute of

Computer Science, University of Namur, Belgium.

Muthukumar, K. and Hermenegildo, M. (1991) Combined determination of sharing and

freeness of program variables through abstract interpretation. In: K. Furukawa (ed.), Proc.

8th International Conference on Logic Programming (ICLP’91), pp. 49–63. MIT Press.

Muthukumar, K. and Hermenegildo, M. (1992) Compile-time derivation of variable depen-

dency using abstract interpretation. J. Logic Programming, 13(2&3), 315–347.

Mycroft, A. and O’Keefe, R. A. (1984) A polymorphic type system for Prolog. Artificial

Intelligence, 23(3), 295–307.

Nilsson, U. (1990) Systematic semantic approximations of logic programs. In: P. Deran-

sart and J. Ma luszyński (eds.), Proc. International Workshop on Programming Language

Implementation and Logic Programming (PLILP’90): Lecture Notes in Computer Science

456, pp. 293–306. Springer-Verlag.

Plotkin, G. D. (1981) A structural approach to operational semantics. Technical Report DAIMI

FN-19, CS Department, University of Aarhus.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

84 B. Le Charlier and others

Sahlin, D. (1991) Determinacy analysis for full Prolog. Proc. Symposium on Partial Evaluation

and Semantics-Based Program Manipulation (PEPM’91). (SIGPLAN Notices, 26(9), 23–30.)

Sahlin, D. (1993) Mixtus: an automatic partial evaluator for full Prolog. New Generation

Comput., 12(1), 7–51.

Schmidt, D. A. (1988) Denotational Semantics. Allyn and Bacon.

Somogyi, Z. (1987) A system of precise models for logic programs. In: E. Shapiro (ed.), Proc.

4th Int. Conference on Logic Programming (ICLP’87), pp. 769–787. MIT Press.

Spoto, F. (2000) Operational and goal-independent denotational semantics for Prolog with

cut. J. Logic Programming, 42(1), 1–46.

Sterling, L. and Shapiro, E. (1986) The Art of Prolog: Advanced Programming Techniques.

MIT Press.

Stoy, J. (1977) Denotational Semantics: The Scott–Strachey approach to programming lan-

guage theory. MIT Press.

Tamaki, H. and Sato, T. (1986) OLD-resolution with tabulation. In: E. Y. Shapiro (ed.), Proc.

3rd Int. Conference on Logic Programming (ICLP’86): Lecture Notes in Computer Science

225, pp. 84–98. Springer–Verlag.

Taylor, A. (1989) Removal of dereferencing and trailing in Prolog compilation. In: G. Levi and

M. Martelli (eds.), Proc. 6th Int. Conference on Logic Programming (ICLP’89), pp. 48–60.

MIT Press.

Ueda, K. (1987) Making exhaustive search programs deterministic, part II. In: J.-L. Lassez

(ed.), Proc. 4th Int. Conference on Logic Programming (ICLP’87), pp. 356–375. MIT Press.

Van Hentenryck, P., Degimbe, O., Le Charlier, B. and Michel, L. (1993) The impact of

granularity in abstract interpretation of Prolog. In: P. Cousot, M. Falaschi, G. Filè and

A. Rauzy (eds.), Proc. 3rd Int. Workshop on Static Analysis (WSA’93): Lecture Notes in

Computer Science 724, pp. 1–14. Springer–Verlag.

Van Roy, P., Demoen, B. and Willems, Y. D. (1987) Improving the execution speed of compiled

Prolog with modes, clause selection, and determinism. In: H. Ehrig, R. A. Kowalski, G. Levi

and U. Montanari (eds.), Proc. Int. Joint Conference on Theory and Practice of Software

Develpment (TAPSOFT’87): Lecture Notes in Computer Science 250, pp. 111–125. Springer-

Verlag.

Van Roy, P. and Despain, A. M. (1992) High-performance computing with the Aquarius

compiler. IEEE Computer, 25(1), 54–68.

Warren, D. S. (1992) Memoing for logic programs. Comm. ACM, 35(3), 93–111.

Warren, R., Hermenegildo, M. V. and Debray, S. K. (1988) On the practicality of global flow

Analysis of Logic Programs. In: R. A. Kowalski and K. A. Bowen (eds.), Proc. 5th Int.

Conference on Logic Programming (ICLP’88), pp. 349–366. MIT Press.

Winsborough, W. (1992) Multiple specialization using minimal-function graph semantics. J.

Logic Programming, 13(2&3), 259–290.

Xu, J. and Warren, D. S. (1988) A type inference system for Prolog. In: R. A. Kowalski and

K. A. Bowen (eds.), Proc. 5th Int. Conference on Logic Programming (ICLP’88), pp. 604–

619. MIT Press.

Yardeni, E. and Shapiro, E. (1991) A type System for logic programs. J. Logic Programming,

10(1/2/3&4), 125–153.

https://doi.org/10.1017/S1471068402001114 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001114

