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Abstract We study the structure and compute the stable rank of C∗-algebras of finite higher-rank
graphs. We completely determine the stable rank of the C∗-algebra when the k-graph either contains no
cycle with an entrance or is cofinal. We also determine exactly which finite, locally convex k-graphs yield
unital stably finite C∗-algebras. We give several examples to illustrate our results.
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Introduction

Stable rank is a non-commutative analogue of topological dimension for C∗-algebras
introduced by Rieffel in the early 1980s [34], and widely used and studied ever since (see,
for example [3, 8, 11, 12, 15, 18, 24, 30, 33, 36, 44, 46]). The condition of having stable
rank 1, meaning that the invertible elements are dense in the C∗-algebra, has attracted
significant attention, in part due to its relevance to the classification of C∗-algebras.
Specifically, all separable, simple, unital, nuclear, Z-stable C∗-algebras in the UCT class
are classified by their Elliott invariant [6, 13, 19, 29, 40], and stable rank distinguishes
two key cases: the stably finite C∗-algebras in this class have stable rank 1 [36, Theorem
6.7], while the remainder are Kirchberg algebras with stable rank infinity [34, Proposition
6.5]. It follows that a simple C∗-algebra whose stable rank is finite but not equal to 1
does not belong to the class of C∗-algebras classified by their Elliott invariants.

Higher rank graphs (or k-graphs) Λ are generalizations of directed graphs. They give
rise to an important class of C∗-algebras C∗(Λ) due to their simultaneous concreteness of
presentation and diversity of structure [9, 22, 26]. They provide good test cases for general
theory [5, 43] and have found unexpected applications in general C∗-algebra theory. For
example, the first proof that Kirchberg algebras in the UCT class have nuclear dimension
1 proceeded by realizing them as direct limits of 2-graph C∗-algebras [39]. Nevertheless,
and despite their deceptively elementary presentation in terms of generators and relations,
k-graph C∗-algebras, in general, remain somewhat mysterious – for example, it remains
an unanswered question whether all simple k-graph C∗-algebras are Z-stable and hence
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classifiable. This led us to investigate their stable rank. In this paper, we shed some light
on how to compute the stable rank of k-graph C∗-algebras; though unfortunately, the
simple C∗-algebras to which our results apply all have stable rank either 1 or ∞, so we
obtain no new information about Z-stability or classifiability.

This paper focuses on unital k-graph C∗-algebras. For k = 1, i.e., for directed graph
C∗-algebras (unital or not), a complete characterization of stable rank has been obtained
[10, 17, 18]. In this paper, our main contribution is for k ≥ 2, a characterization of stable
rank for C∗-algebras associated with

(1) finite k-graphs that have no cycle with an entrance, and

(2) finite k-graphs that are cofinal.

In the first case (1), we prove that such k-graphs are precisely the ones for which
the associated C∗-algebra is stably finite. Partial results on how to characterize stably
finite k-graph C∗-algebras have appeared in the past, see [7, 28, 41]. It turns out that
in the unital situation, all such C∗-algebras are direct sums of matrix algebras over
commutative tori of dimension at most k; the precise dimensions of the tori are determined
by the degrees of certain cycles (called initial cycles) in the k-graph. Their C∗-algebraic
structure is therefore independent of the factorization property that determines how the
one-dimensional subgraphs of a k-graph fit together to give it its k-dimensional nature.

We also settle the second case (2) where the k-graphs are cofinal using our characteri-
zation of stable finiteness in combination with a technical argument on the von Neumann
equivalence of (direct sums of) vertex projections. We initially obtained this result for
selected 2-graphs using Python.

We now give a brief outline of the paper; Figure 1 may also help the reader to navigate.
In § 1, we introduce terminology, including the notion (and examples) of an initial cycle.
In § 2, we consider the stably finite case. In Proposition 2.7, we prove that the stable
finiteness of C∗(Λ) is equivalent to the condition that no cycle in the k-graph Λ has an
entrance. In Theorem 2.5, we characterize the structure of C∗(Λ) in the stably finite case
and compute the stable rank of such algebras in Corollary 2.9. In § 3, we characterize
which k-graphs yield C∗-algebras with stable rank 1 (Theorem 3.1 and Corollary 3.4)
and show how the dimension of the tori that form the components of their spectra can
be read off from (the skeleton of) the k-graph, see Proposition 3.3.

In § 4, we look at k-graphs which are cofinal. Firstly, in Proposition 4.1, we study the
special case when C∗(Λ) is simple. Then, in Theorem 4.4, we compute stable rank when
Λ is cofinal and contains a cycle with an entrance (so C∗(Λ) is not stably finite). In § 5,
we illustrate the difficulty in the remaining case where Λ is not cofinal and contains a
cycle with an entrance by considering 2-vertex 2-graphs with this property. We are able
to compute the stable rank exactly for all but three classes of examples, for which the
best we can say is that the stable rank is either 2 or 3.

1. Background

In this section, we recall the definition of stable rank, and the notions of stably finite and
purely infinite C∗-algebras. We also recall the definitions of k-graphs and their associated
C∗-algebras. We discuss the path space of a locally convex k-graph and describe initial
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Figure 1. Overview of some of our results. The ‘?’ indicates unknown stable rank.

cycles and their periodicity group. The reader familiar with these terms can skim through
or skip this section.

1.1. Stable rank of C∗-algebras

Let A be a unital C∗-algebra. Following [2], let

Lgn(A) :=

{
(xi)n

i=1 ∈ An : ∃(yi)n
i=1 ∈ An such that

n∑
i=1

yixi = 1

}
.

The stable rank of A, denoted sr(A), is the smallest n such that Lgn(A) is dense in An,
or ∞ if there is no such n. For a C∗-algebra A without a unit, we define its stable rank
to be that of its minimal unitization Ã.

A C∗-algebra A has stable rank one if and only if the set A−1 of invertible elements
in A is dense in A. We will make frequent use of the following key results concerning the
stable rank of C∗-algebras of functions on tori, matrix algebras, stable C∗-algebras and
direct sums later in the paper:

(1) sr(C(T�)) = ��/2� + 1;

(2) sr(Mn(A)) = �(sr(A) − 1)/n	 + 1;

(3) sr(A ⊗K) = 1 if sr(A) = 1, and sr(A ⊗K) = 2 if sr(A) �= 1; and

(4) sr(A ⊕ B) = max(sr(A), sr(B)).

Stable rank is in general not preserved under Morita equivalence (unless the stable
rank is one). For more details, see [34].
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1.2. Stably finite and purely infinite C*-algebras

A projection in a C∗-algebra is said to be infinite if it is (von Neumann) equivalent
to a proper subprojection of itself. If a projection is not infinite, it is said to be finite. A
unital C∗-algebra A is said to be finite if its unit is a finite projection, and stably finite
if Mn(A) is finite for each positive integer n [37, Definition 5.1.1]. We refer to [7, 41] for
results about stably finite graph C∗-algebras.

A simple C∗-algebra A is purely infinite if every non-zero hereditary sub-C∗-algebra of
A contains an infinite projection. For the definition when A is non-simple, we refer the
reader to [20].

1.3. Higher rank graphs

Following [21, 25, 32], we recall some terminology for k-graphs. For k ≥ 1, a k-graph
is a non-empty, countable, small category equipped with a functor d : Λ → N

k satisfying
the factorisation property : For all λ ∈ Λ and m, n ∈ N

k such that d(λ) = m + n there
exist unique μ, ν ∈ Λ such that d(μ) = m, d(ν) = n, and λ = μν. When d(λ) = n we say
λ has degree n, and we define Λn := d−1(n). If k = 1, then Λ is isomorphic to the free
category generated by the directed graph with edges Λ1 and vertices Λ0. The generators
of N

k are denoted e1, . . . , ek, and ni denotes the ith coordinate of n ∈ N
k. For m, n ∈ N

k,
we write m ≤ n if mi ≤ ni for all i, and we write m ∨ n for the coordinatewise maximum
of m and n, and m ∧ n for the coordinatewise minimum of m and n.

If Λ is a k-graph, its vertices are the elements of Λ0. The factorization property implies
that the vertices are precisely the identity morphisms, and so can be identified with the
objects. For each λ ∈ Λ the source s(λ) is the domain of λ, and the range r(λ) is the
codomain of λ (strictly speaking, s(λ) and r(λ) are the identity morphisms associated
with the domain and codomain of λ). Given λ, μ ∈ Λ, n ∈ N

k and E ⊆ Λ, we define

λE:={λν : ν ∈ E, r(ν) = s(λ)},
Eμ:={νμ : ν ∈ E, s(ν) = r(μ)},

Λ≤n:={λ ∈ Λ : d(λ) ≤ n and s(λ)Λei = ∅ whenever d(λ) + ei ≤ n}.

We say that a k-graph Λ is row-finite if |vΛn| < ∞ is finite for each n ∈ N
k and v ∈ Λ0,

finite if |Λn| < ∞ for all n ∈ N
k, and locally convex if for all distinct i, j ∈ {1, . . . , k},

and all paths λ ∈ Λei and μ ∈ Λej such that r(λ) = r(μ), the sets s(λ)Λej and s(μ)Λei

are non-empty.

Standing Assumption. We have two standing assumptions. The first is that all of
our k-graphs Λ are finite. This implies, in particular, that they are row-finite. The second
is that all of our k-graphs Λ are locally convex.

A vertex v is called a source if there exist i ≤ k such that vΛei = ∅. The term cycle,
distinct from ‘generalised cycle’ [14], will refer to a path λ ∈ Λ \ Λ0 such that r(λ) = s(λ).

We will occasionally illustrate k-graphs as k-coloured graphs. We refer to [16] for the
details, but in short there is a one-to-one correspondence between k-graphs and k-coloured
graphs together with factorization rules for bi-coloured paths of length 2 satisfying an
associativity condition [16, Equation (3.2)].
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1.4. Higher rank graph C∗-algebras

Let Λ be a row-finite, locally convex k-graph. Following [32], a Cuntz–Krieger Λ-family
in a C∗-algebra B is a function s : λ �→ sλ from Λ to B such that

(1) {sv : v ∈ Λ0} is a collection of mutually orthogonal projections;

(2) sμsν = sμν whenever s(μ) = r(ν);

(3) s∗λsλ = ss(λ) for all λ ∈ Λ; and

(4) sv =
∑

λ∈vΛ≤n sλs∗λ for all v ∈ Λ0 and n ∈ N
k.

The C∗-algebra C∗(Λ) is the universal C∗-algebra generated by a Cuntz–Krieger Λ-family.
It is unital if and only if |Λ0| < ∞, in which case 1 =

∑
v∈Λ0 sv. The universal family in

C∗(Λ) is denoted {sλ : λ ∈ Λ}.

1.5. The path space of a k-graph

Let Λ be a k-graph. For each path λ ∈ Λ, and m ≤ n ≤ d(λ), we denote by λ(m, n) the
unique element of Λn−m such that λ = λ′λ(m, n)λ′′ for some λ′, λ′′ ∈ Λ with d(λ′) = m
and d(λ′) = d(λ) − n. We abbreviate λ(m, m) by λ(m). A k-graph morphism between
two k-graphs is a degree preserving functor.

Following [14], for each m ∈ (N ∪ {∞})k, we define a k-graph Ωk,m by Ωk,m = {(p, q) ∈
N

k × N
k : p ≤ q ≤ m} with range map r(p, q) = (p, p), source map s(p, q) = (q, q), and

degree map d(p, q) = q − p. We identify Ω0
k,m with {p ∈ N

k : p ≤ m} via the map (p, p) �→
p. Given a k-graph and m ∈ N

k there is a bijection from Λm to the set of morphisms
x : Ωk,m → Λ, given by λ �→ ((p, q) �→ λ(p, q)); the inverse is the map x �→ x(0, m). Thus,
for each m ∈ N

k, we may identify the collection of k-graph morphisms from Ωk,m to Λ
with Λm. We extend this idea beyond m ∈ N

k as follows: Given m ∈ (N ∪ {∞})k \ N
k,

we regard each k-graph morphism x : Ωk,m → Λ as a path of degree m in Λ and write
d(x):=m and r(x):=x(0); we denote the set of all such paths by Λm. We denote by WΛ

the collection
⋃

m∈(N∪{∞})k Λm of all paths in Λ; our conventions allow us to regard Λ as
a subset of WΛ. We call WΛ the path space of Λ. We set

Λ≤∞ =
{
x ∈ WΛ : x(n)Λei = ∅ whenever n ≤ d(x) and ni = d(x)i

}
,

and for v ∈ Λ0, we define vΛ≤∞ := {x ∈ Λ≤∞ : r(x) = v}. Given a cycle τ , we define τ∞

(informally written as τ∞:=τττ . . .) to be the unique element of WΛ such that d(τ∞)i

is equal to ∞ when d(τ)i > 0 and equal to 0 when d(τ)i = 0, and such that (τ∞)(n ·
d(τ), (n + 1) · d(τ)) = τ for all n ∈ N.

1.6. Initial cycles and their periodicity group

In this section, we introduce initial cycles and their associated periodicity group. As
we will see in Corollary 2.9 and Theorem 3.1, the periodicity group plays an important
role in the characterization of stable rank.

Let λ be a cycle in a row-finite, locally convex k-graph Λ. We say λ is a cycle with an
entrance if there exists τ ∈ r(λ)Λ such that d(τ) ≤ d(λ∞) and τ �= λ∞(0, d(τ)).
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Definition 1.1 (Evans and Sims [14]). Let Λ be a finite, locally convex k-graph
that has no cycle with an entrance. We call μ ∈ Λ an initial cycle if r(μ) = s(μ) and if
r(μ)Λei = ∅ whenever d(μ)i = 0.

Remark 1.2. While the wording of Definition 1.1 differs from that of [14], we will
show (in Proposition 2.7) that for any k-graph Λ, a path μ ∈ Λ is an initial cycle in the
sense of Definition 1.1 if and only if it is an initial cycle in the sense of [14].

Remark 1.3. An initial cycle may be trivial, in the sense that it has degree 0, so it is
in fact a vertex. This vertex must then be a source, as for example, w4 in Figure 5. It is
not true that every source is an initial cycle; for example, w3 in Figure 5 is a source but
not an initial cycle.

As in [14], we let IC(Λ) denote the collection of all initial cycles in Λ; if Λ0 is finite and
Λ has no cycle with an entrance, then IC(Λ) is non-empty – see Lemma 2.2. A vertex
v ∈ Λ0 is said to be on the initial cycle μ if v = μ(p) for some p ≤ d(μ)*. We let (μ∞)0

denote the collection of all vertices on an initial cycle μ and let ∼ be the equivalence
relation on IC(Λ) given by μ ∼ ν ⇔ (μ∞)0 = (ν∞)0.

Remark 1.4. For a finite, locally convex k-graph that has no cycle with an entrance,
each initial cycle is an ‘initial segment’ in the following sense:

(1) Every path with range on the initial cycle is in the initial cycle, so paths can not
‘enter’ an initial cycle (see Lemma 2.1).

Without the assumption that Λ0 is finite and Λ has no cycle with an entrance property
(1) might fail. This is, for example, the case for the 1-graph with one vertex and two edges
representing the Cuntz algebra O2. This suggests that, in general, a different terminology
should perhaps be used.

As in [14], we associate a group Gμ to each initial cycle μ. Let Λ be a finite, locally
convex k-graph that has no cycle with an entrance. Let μ be an initial cycle in Λ. If μ is
not a vertex, we define

Gμ:={m − n : n,m ≤ d(μ∞), μ∞(m) = μ∞(n)}, (1.1)

otherwise, we let Gμ:={0}.

Definition 1.5. By [14, Lemma 5.8], Gμ is a subgroup of Z
k, and hence isomorphic

to Z
�μ for some �μ ∈ {0, . . . , k}: we often refer to �μ as the rank of Gμ.

Remark 1.6. It turns out that �μ = |{i ≤ k : d(μ)i > 0}| – see Proposition 3.3.

* This is not the definition in [14, p. 202], but we expect this was the intended definition.
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Figure 2. Two 2-graphs Λ1, Λ2, each containing lots of initial cycles, but only one such up to ∼
- equivalence.

1.7. Examples of initial cycles

Figure 2 illustrates† two examples of 2-graphs Λ1 and Λ2 containing lots of initial
cycles. In fact, a cycle in either Λ1 or Λ2 is an initial cycle precisely if it contains edges of
both colours. Each initial cycle in either Λi visits every vertex, so any two initial cycles
in Λi are ∼ - equivalent. A computation shows that for each initial cycle μ in either Λi,
Gμ

∼= Z
2. Notice that each vertex on a cycle in either Λi has exactly one red (dashed)

and one blue (solid) incoming and outgoing edge and exactly one infinite path with range
at that vertex.

Below, we illustrate how the stable rank of each C∗(Λi) can be computed. For this, we
need some definitions and a lemma.

(1) Fix an integer n ≥ 1, let Ln denote the connected 1-graph with n vertices
v0, . . . , vn−1 and n morphisms f0, . . . , fn−1 of degree 1 such that s(fi) =
vi+1(mod n) and r(fi) = vi for 0 ≤ i ≤ n − 1.

(2) Let (Λ1, d1) and (Λ2, d2) be k1-, k2-graphs respectively, then (Λ1 × Λ2, d1 ×
d2) is a (k1 + k2)-graph where Λ1 × Λ2 is the product category and d1 ×
d2 : Λ1 × Λ2 → N

k1+k2 is given by d1 × d2(λ1, λ2) = (d1(λ1), d2(λ2)) ∈ N
k1 × N

k2

[21, Proposition 1.8].

(3) Let f : N
� → N

k be a monoid morphism. If (Λ, d) is a k-graph we may form the �-
graph f∗(Λ) as follows: f∗(Λ) = {(λ, n) : d(λ) = f(n)} with d(λ, n) = n, s(λ, n) =
s(λ) and r(λ, n) = r(λ) [21, Example 1.10].

† We have illustrated Λ1 and Λ2 as 2-coloured graphs, we refer to [16] for details on how to visualize
k-graphs as colours graphs.

https://doi.org/10.1017/S0013091521000626 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000626


Structure theory and stable rank 829

(4) Let Λ be a k–graph and define gi : N → N
k by gi(n) = nei for 1 ≤ i ≤ k (so � = 1).

The 1-graphs Λi := g∗i (Λ) are called the coordinate graphs of Λ.

Lemma 1.7 (Kumjian and Pask [21, Proposition 1.11, Corollary 3.5(iii),
Corollary 3.5(iv)]).

(1) Let (Λi, di) be ki-graphs for i = 1, 2, then C∗(Λ1 × Λ2) ∼= C∗(Λ1) ⊗ C∗(Λ2) via the
map s(λ1,λ2) �→ sλ1 ⊗ sλ2 for (λ1, λ2) ∈ Λ1 × Λ2.

(2) Let Λ be a k-graph and f : N
� → N

k a surjective monoid morphism. Then
C∗(f∗(Λ)) ∼= C∗(Λ) ⊗ C(T�−k).

Let Λ be a 1-graph and define f1 : N
2 → N by (m1, m2) �→ m1 + m2. Then f∗

1 (L6)
is isomorphic to the 2-graph Λ shown on the left in Figure 2. The 2-graph L6 × L1

is isomorphic to the 2-graph shown on the right in Figure 2. Using Lemma 1.7 and
that C∗(L6) ∼= M6(C(T)) [1, Lemma 2.4], we get C∗(Λi) ∼= C∗(L6) ⊗ C(T) ∼= M6(C(T2)),
i = 1, 2, so both have stable rank 2 as discussed in § 1.1.

2. Structure and stable rank in the stably finite case

In this section, we study finite k-graphs whose C∗-algebras are stably finite, corresponding
to boxes 1 and 2 in Figure 1. In Proposition 2.7, we show that stable finiteness is equivalent
to the lack of infinite projections and provide a characterization in terms of properties
of the k-graph. We also provide a structure result and compute stable rank of such C∗-
algebras – see Theorems 2.5 and 2.6. We begin with four technical lemmas needed to
prove Theorem 2.5.

Lemma 2.1. Let Λ be a finite, locally convex k-graph that has no cycle with an
entrance. Let v ∈ Λ0 be a vertex on an initial cycle μ ∈ Λ. Then

(1) there exist paths ιv, τv ∈ Λ such that μ = ιvτv and s(ιv) = v = r(τv);

(2) the path μv:=τvιv satisfies r(μv) = s(μv), and r(μv)Λei = ∅ whenever d(μv)i = 0;

(3) if f ∈ Λei is an edge with range v on μ, then f = μv(0, ei) and μ = ν′fν′′ for some
ν′, ν′′ ∈ Λ;

(4) if n ≤ d(μ) and λ ∈ vΛ≤n, then λ = μv(0, d(λ)); and

(5) sτv
s∗τv

= sv and s∗τv
sτv

= ss(μ).

Proof. (1). Since v is a vertex on μ, we have v = μ(p) for some p ≤ d(μ). Set
ιv:=μ(0, p) and τv:=μ(p, d(μ)). Then μ = ιvτv and s(ιv) = v = r(τv).

(2). By property (1), s(ιv) = v = r(τv), so the path μv:=τvιv ∈ Λ satisfies r(μv) =
s(μv). Suppose r(μv)Λei is non-empty, say α ∈ r(μv)Λei . Then (ιvα)(0, ei) ∈ r(μ)Λei .
Since μ is an initial cycle, it follows that d(μ)i �= 0.

(3). Suppose f ∈ Λei is an edge with range v on μ. Since r(f) = v = r(μv), we have
f ∈ r(μv)Λei . Now property (2) ensures that d(μv)i �= 0. Since d(μv)i > 0, there exists a
path λ ∈ s(f)Λ≤d(μv)−ei . Hence fλ ∈ Λ≤eiΛ≤d(μv)−ei = Λ≤d(μv). Now using that μv ∈ vΛ
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is a cycle and that Λ has no cycle with an entrance, it follows that vΛ≤d(μv) = {μv}.
Hence μv = fλ. Since fλ = μv = τvιv, we get f = τv(0, ei) if d(τv)i > 0 and f = ιv(0, ei)
if d(τv)i = 0.

(4). Fix n ≤ d(μ) and λ ∈ vΛ≤n. If d(λ) = 0 then λ = v and the statement is trivial, so
we may assume that λ �∈ Λ0. Write d(λ) = ei1 + . . . + eim

where i1 . . . , im ∈ {1, . . . , k}.
By the factorization property λ = λ1 . . . λm for some λj ∈ Λeij . Repeated applications
of part (3) give λj = μr(λj)(0, eij

) for j ≤ m. Since d(λ) ≤ d(μ), it follows that λ =
μv(0, d(λ)).

(5). Since s(τv) = s(μ) we have s∗τv
sτv

= ss(μ). For n:=d(τv) notice that n ≤ d(μ). Fix
λ ∈ vΛ≤n. Using part (4) we have λ = μv(0, d(λ)). Since τv ∈ vΛ≤n and since d(λ) ≤ n,
we have τv = μv(0, n) = λμv(d(λ), n). But both τv and λ belong to Λ≤n, so τv = λ.
Consequently vΛ≤n = {τv} and sτv

s∗τv
=
∑

λ∈vΛ≤n sλs∗λ = sv. �

Lemma 2.2. Let Λ be a finite, locally convex k-graph that has no cycle with an
entrance. Let N :=(|Λ0|, . . . , |Λ0|) ∈ N

k. Then

(1)
∑

λ∈Λ≤N sλs∗λ = 1C∗(Λ); and

(2) for every λ ∈ Λ≤N , s(λ) is a vertex on an initial cycle.

Proof. For part (1) use 1 =
∑

v∈Λ0 sv =
∑

v∈Λ0

∑
λ∈vΛ≤N sλs∗λ =

∑
λ∈Λ≤N sλs∗λ. For

part (2), we refer to the second paragraph of the proof of [14, Proposition 5.9]. �

Recall that (μ∞)0 denotes the collection of all vertices on an initial cycle μ. For the
terminology τv, v ∈ Λ0 in the following lemma, see Lemma 2.1.

Lemma 2.3. Let Λ be a finite, locally convex k-graph that has no cycle with an
entrance. Fix an initial cycle μ ∈ Λ. Let N :=(|Λ0|, . . . , |Λ0|) ∈ N

k and for each λ, ν ∈
Λ≤N (μ∞)0 set (using Lemma 2.1)

θλ,ν :=sλτs(λ)s
∗
ντs(ν)

.

Then the θλ,ν are matrix units, i.e., θ∗λ,ν = θν,λ and θλ,νθγ,η = δν,γθλ,η in C∗(Λ).

Proof. Firstly, note that each θλ,ν makes sense because the source of λ ∈ Λ≤N (μ∞)0

is a vertex on μ and τs(λ) is a path on the initial cycle μ with range s(λ).
Fix λ, ν, γ, η ∈ Λ≤N (μ∞)0. Clearly, θ∗λ,ν = θν,λ. We claim that θλ,νθγ,η = δν,γθλ,η. To

see this let v:=r(μ). Then

s∗ντs(ν)
sγτs(γ) = s∗τs(ν)

s∗νsγsτs(γ) (2.1)

is non-zero only if r(ν) = r(γ). Since sr(ν) =
∑

α∈r(ν)Λ≤N sαs∗α, we have (sνs∗ν)(sγs∗γ) =
δν,γsνs∗ν , so if (2.1) is non-zero, then ν = γ and then

s∗ντs(ν)
sγτs(γ) = δν,γs∗ντs(ν)

sγτs(γ) = δν,γss(ντs(ν)) = δν,γss(τs(ν)) = δν,γsv.

Hence θλ,νθγ,η = sλτs(λ)(δν,γsv)s∗ητs(η)
= δν,γθλ,η as claimed. �
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The next lemma is of general nature. See [22, Lemma 3.3] for a special case of this
result.

Lemma 2.4. Suppose that {e(k)
ij : 1 ≤ k ≤ r, 1 ≤ i, j ≤ nk} is a system of matrix units

in a unital C∗-algebra A, in the sense that

(1) e
(k)
ij e

(k)
jl = e

(k)
il ;

(2) e
(k)
ij e

(l)
mn = 0 if k �= l or if j �= m;

(3) (e(k)
ij )∗ = e

(k)
ji ; and

(4)
∑r

k=1

∑nk

i=1 e
(k)
ii = 1.

For k ≤ r let p(k):=
∑nk

i=1 e
(k)
ii . Suppose that for each a ∈ A, a =

∑r
k=1 p(k)ap(k). Then,

for 1 ≤ k ≤ r, each e
(k)
11 is a projection and A ∼=

⊕r
k=1 Mnk

(e(k)
11 Ae

(k)
11 ).

Proof. Clearly A ∼=
⊕r

k=1 p(k)Ap(k) via a �→ (p(1)ap(1), . . . , p(r)ap(r)) and inverse
(a(1), . . . , a(r)) �→

∑r
k=1 a(k). Routine calculations show that for each k ∈ {1, . . . , r}, the

elements vi:=e
(k)
i1 , i = 1, . . . , nk, satisfy

v∗
i vj = δi,je

(k)
11 for 1 ≤ i, j ≤ nk, and p(k) =

nk∑
i=1

viv
∗
i .

By [22, Lemma 3.3], p(k)Ap(k) ∼= Mnk
(e(k)

11 Ae
(k)
11 ) completing the proof. �

We now characterize the structure of k-graph C∗-algebras C∗(Λ) such that Λ is finite
and has no cycle with an entrance. For the notions of IC(Λ), ∼, (μ∞)0, and �μ see § 1.6.
We note that in Theorem 2.5, IC(Λ) �= ∅ and �μ = |{i ≤ k : d(μ)i > 0}| (see Lemma 2.2(2)
and Proposition 3.3).

Theorem 2.5 (Structure theorem). Let Λ be a finite, locally convex k-graph that
has no cycle with an entrance. For N :=(|Λ0|, . . . , |Λ0|) ∈ N

k,

C∗(Λ) ∼=
⊕

[μ]∈IC(Λ)/∼
MΛ≤N (μ∞)0(sr(μ)C

∗(Λ)sr(μ)),

and each sr(μ)C
∗(Λ)sr(μ)

∼= C(T�μ).

Proof. Evidently, IC(Λ)/∼ is finite since Λ0 is finite. Let I be a maximal collection of
initial cycles satisfying (μ∞)0 ∩ (ν∞)0 = ∅ for any μ �= ν ∈ I. For each initial cycle μ ∈ I

let {θ(μ)
λ,ν} be the matrix units of Lemma 2.3. We first prove that {θ(μ)

λ,ν : μ ∈ I} is a system
of matrix units, i.e.,

(1) θ
(μ)
λλ′θ

(μ)
λ′λ′′ = θ

(μ)
λλ′′ ;

(2) θ
(μ)
λλ′θ

(ν)
ηη′ = 0 if μ �= ν or if λ′ �= η;
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(3) (θ(μ)
λλ′)∗ = θ

(μ)
λ′λ; and

(4)
∑

μ∈I

∑
λ∈Λ≤N (μ∞)0 θ

(μ)
λλ = 1.

We start with property (4). Fix μ ∈ I and λ ∈ Λ≤N (μ∞)0. Using Lemma 2.1(5), we
have sτs(λ)s

∗
τs(λ)

= ss(λ). Hence θ
(μ)
λ,λ = sλτs(λ)s

∗
λτs(λ)

= sλs∗λ. Lemma 2.2(1) now gives

1 =
∑

λ∈Λ≤N

sλs∗λ =
∑
μ∈I

∑
λ∈Λ≤N (μ∞)0

sλs∗λ =
∑
μ∈I

∑
λ∈Λ≤N (μ∞)0

θ
(μ)
λλ . (2.2)

Properties (1)–(3) follow from Lemma 2.2 and that θ
(μ)
λλ θ

(ν)
λλ = 0 whenever μ �= ν in I (the

latter is a consequence of property (4)).
For each μ ∈ I, define p(μ):=

∑
λ∈Λ≤N (μ∞)0 θ

(μ)
λλ . Then (2.2) gives

∑
μ∈I p(μ) = 1. We

claim that

A :=

⎧⎨⎩a ∈ C∗(Λ) : a =
∑
μ∈I

p(μ)ap(μ)

⎫⎬⎭
is all of C∗(Λ). Clearly A is a closed linear subspace of C∗(Λ). Fix α, β ∈ Λ≤N such that
s(α) = s(β). Using Lemma 2.2(2), it follows that s(α) ∈ (μ∞)0 for some μ ∈ I. Since
sαs∗α ≤ p(μ), we get

sα = p(μ)sαs∗αsα = p(μ)sα, and sαs∗β = p(μ)sαs∗βp(μ),

so sαs∗β ∈ A. Using that span{sαs∗β : α, β ∈ Λ≤N , s(α) = s(β)} is dense in C∗(Λ), we get
A = C∗(Λ) as claimed.

For each μ ∈ I, Lemma 2.1(3)–(4) implies that r(μ)Λ≤N contains exactly one path
which we denote by λμ. As in the proof of (4), we have θ

(μ)
λμ,λμ

= sλμ
s∗λμ

, so sr(μ) =∑
λ∈r(μ)Λ≤N sλs∗λ = θ

(μ)
λμ,λμ

. Identifying I with IC(Λ)/∼ via the map μ �→ [μ], Lemma 2.4
provides an isomorphism

C∗(Λ) ∼=
⊕

μ∈IC(Λ)/∼
MΛ≤N (μ∞)0(sr(μ)C

∗(Λ)sr(μ)).

To see that each sr(μ)C
∗(Λ)sr(μ)

∼= C(T�μ), see the proof of [14, Proposition 5.9]. �

The main result of this section is the characterization of stable rank for k-graph C∗-
algebras C∗(Λ) such that Λ is finite and has no cycle with an entrance. Recall the notion
of the floor and ceiling functions: for x ∈ R, we write �x�:= max{n ∈ Z : n ≤ x} and
�x	:= min{n ∈ Z : n ≥ x}.

Theorem 2.6. Let Λ be a finite, locally convex k-graph that has no cycle with an
entrance. For N :=(|Λ0|, . . . , |Λ0|) ∈ N

k,

sr(C∗(Λ)) = max
[μ]∈IC(Λ)/∼

⎡⎢⎢⎢
⌊

�μ

2

⌋
|Λ≤N (μ∞)0|

⎤⎥⎥⎥+ 1.
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Proof. By Theorem 2.5 and property (4) from § 1.1,

sr(C∗(Λ)) = max
[μ]∈IC(Λ)/∼

MΛ≤N (μ∞)0(sr(μ)C
∗(Λ)sr(μ)),

and each sr(μ)C
∗(Λ)sr(μ)

∼= C(T�μ). Now using property (2) from § 1.1, we get

sr(C∗(Λ)) = max
[μ]∈IC(Λ)/∼

⌈
sr(sr(μ)C

∗(Λ)sr(μ)) − 1
Λ≤N (μ∞)0

⌉
+ 1.

Finally, property (1) from § 1.1, gives sr(sr(μ)C
∗(Λ)sr(μ)) − 1 = ��μ/2� for each [μ] ∈

IC(Λ)/∼, completing the proof. �

Our next Proposition 2.7 characterizes stable finiteness of C∗-algebras of finite, locally
convex k-graphs. For other results on stable finiteness of C∗-algebras associated with
row-finite k-graphs with no sources, see [7, 14]. Note that the C∗-algebras satisfying the
hypotheses of Proposition 2.7 are exactly those shown in Figure 1 in boxes 3 and 4.

We briefly introduce relevant terminology. Following [31], we write MCE(μ, ν):=μΛ ∩
νΛ ∩ Λd(μ)∨d(ν) for the set of all minimal common extensions of μ, ν ∈ Λ. The cycle λ is a
cycle with an entrance in the sense of [14, Definition 3.5] if there exists a path τ ∈ r(λ)Λ
such that MCE(τ, λ) = ∅‡.

Proposition 2.7. Let Λ be a finite, locally convex k-graph. With notation as above,
the following are equivalent:

(1) Λ has a cycle μ with an entrance;

(2) Λ has a cycle μ with an entrance in the sense of [14, Definition 3.5];

(3) C∗(Λ) contains an infinite projection; and

(4) C∗(Λ) is not stably finite.

Proof. To prove (1)⇒(2) let μ be a cycle with an entrance τ , so τ ∈ r(μ)Λ satis-
fies d(τ) ≤ d(μ∞) and τ �= μ∞(0, d(τ)). Fix n ≥ 1 such that nd(μ) ≥ d(τ). Clearly τ ∈
r(μn)Λ. Then τ �= μ∞(0, d(τ)) = μn(0, d(τ)), so MCE(μn, τ) = (μnΛ ∩ Λd(μn)∨d(τ)) ∩
τΛ ⊆ {μn} ∩ τΛ = ∅. For the proof of (2)⇒(3), see [14, Corollary 3.8].

The implication (3)⇒(4) follows from [37, Lemma 5.1.2]. It remains to prove (4)⇒(1).
We establish the contrapositive. Suppose that condition (1) does not hold, that is Λ has
no cycle with an entrance. Theorem 2.5 gives that C∗(Λ) is isomorphic to a direct sum of
matrix algebras over commutative C∗-algebras, hence stably finite, so condition (4) does
not hold. �

Remark 2.8. Our main results are for finite k-graphs so Proposition 2.7 is stated in
that context, but some of the implications hold more generally.

(1) Only the proof of (4) =⇒ (1) uses that Λ is finite. The proofs of the implications
(1) =⇒ (2) =⇒ (3) =⇒ (4) are valid for any locally convex row-finite k-graph.

‡ Formally, if λ is a cycle, then (λ, r(λ)) is a generalized cycle in the sense of [14, Definition 3.1], and
an entrance to (λ, r(λ)) is a path τ ∈ s(r(λ))Λ such that MCE(r(λ)τ, λ) = ∅.
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Figure 3. An example of a 2-graph Λ with C∗(Λ) of stable rank 2.

(2) Similarly, while (1) and (2) are not equivalent for arbitrary k-graphs, they are
equivalent for locally convex k-graphs, whether finite or not. To see this, suppose
that λ is a cycle in a locally convex k-graph and τ ∈ r(λ)Λ satisfies MCE(λ, τ) = ∅.
Let I = {i ≤ k : d(λ)i > 0}, let mI =

∑
i∈I d(τ)iei and m′ := d(τ) − mI , and fac-

torize τ = τIτ
′ with d(τI) = mI . If τI �= (λ∞)(0, mI), then λ is a cycle with an

entrance as required, so we may assume that τI = (λ∞)(0, mI). So replacing λ
with (λ∞)(mI , mI + d(λ)) and τ with τ ′ we may assume that d(τ) ∧ d(λ) = 0.
Since Λ is locally convex, a quick inductive argument shows that there exists μ ∈
s(τ)Λd(λ) �= ∅. Factorise τμ = αβ with d(α) = d(μ) = d(λ). Since MCE(τ, λ) = ∅,
we must have α �= λ and in particular d(α) = d(λ) < d(λ∞) and α �= (λ∞)(0, d(α)).
So once again λ is a cycle with an entrance.

Corollary 2.9. Let Λ be a finite, locally convex k-graph. Suppose that Λ has no cycle
with an entrance (i.e., C∗(Λ) is stably finite). For N :=(|Λ0|, . . . , |Λ0|) ∈ N

k,

sr(C∗(Λ)) = max
[μ]∈IC(Λ)/∼

⎡⎢⎢⎢
⌊

�μ

2

⌋
|Λ≤N (μ∞)0|

⎤⎥⎥⎥+ 1.

Remark 2.10. A cycle with an incoming edge may fail to be a cycle with an entrance.
This is, for example, the case for any of the red (dashed) cycles in Figure 3.

Example 2.11. In this example, we consider the 2-graph Λ in Figure 3. As before,
we refer to [16] for details on how to illustrate 2-graphs as a 2-coloured graph. Here
we use blue (solid) and red (dashed) as the first and second colour. We use our results
to compute the structure and stable rank of C∗(Λ). Firstly, notice that red the cycle
ν ∈ vΛe2 based at v is not an initial cycle because d(ν)1 = 0 but r(ν)Λe1 �= ∅. However,
the cycle μ ∈ v0Λe1+e2 is an initial cycle. There are many other initial cycles, but they are
all ∼-equivalent to μ. So IC(Λ)/∼= {[μ]}. Since the vertices on a path λ ∈ v0Λ alternate
between v0 and v1 as we move along the path, it follows that μ∞(m) = vm1+m2 (mod 2)

for each m ∈ N
2. Hence

Gμ = {m − n : n,m ≤ d(μ∞), μ∞(m) = μ∞(n)}

= {m − n : n,m ∈ N
2, vm1+m2 (mod 2) = vn1+n2 (mod 2)}
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Figure 4. Another three examples of 2-graphs with lots of initial cycles, but only one such up
to ∼ - equivalence.

= {(m1 − n1,m2 − n2) : ni,mi ∈ N,m1 − n1 = −(m2 − n2) (mod 2)}
= {(k1, k2) : ki ∈ Z, k1 = −k2 (mod 2)}

= {k ∈ Z
2 : k1 + k2 is even}

= Z(1, 1) + Z(0, 2),

∼= Z
2.

We deduce that �μ = rank(Gμ) = 2. Now set N = (|Λ0|, |Λ0|) = (3, 3). As mentioned,
modulo ∼, there is only one initial cycle μ, so any path in Λ≤N has its source on μ. Hence
Λ≤N (μ∞)0 = Λ≤N = vΛ≤N � v0Λ≤N � v1Λ≤N . By Lemma 2.1, |v0Λ≤N | = |v1Λ≤N | = 1.
Using the factorization property to push the red edges to the start of a path and unique-
ness of such paths on μ, we have |vΛ≤N | = |vΛ(3,3)| = |vΛ(3,0)| = |vΛ(1,0)| = 2. Hence
C∗(Λ) ∼= M4(C(T2)) and sr(C∗(Λ)) =

⌈⌊
2
2

⌋
/4
⌉

+ 1 = 2 by Theorem 2.6.

Example 2.12. In the following let Λ1, Λ2 and Λ3, Λ4, Λ5 be the 2-graphs in Figure 2
and Figure 4 respectively. Up to a swap of the colours these five examples make up all
the examples of 2-graphs on 6 vertices with only one initial cycle up to ∼ - equivalence
and with all vertices on that initial cycle. Let μi denote such an initial cycle in Λi. For
0 ≤ j ≤ n − 1 define fj : N

2 → N by fj(m1, m2) = m1 + jm2. With the terminology of
§ 1.7 one can show that Λ3 = f∗

5 (L6), that Λ4 = L2 × L3, and that Λ5 = f∗
2 (L6). Hence

C∗(Λi) ∼= M6(C(T�μi )) and sr(C∗(Λ)) = �μi
= 2 for each i = 1, . . . , 5.

In particular C∗(Λi) ∼= C∗(Λj) for all i, j. These five examples indicate how the number
of colours and vertices impacts the structure of the corresponding C∗-algebras. The next
Proposition 2.13 verifies this.

In the following, ‘the number of vertices’ on an initial cycle μ means |(μ∞)0|, and
‘the number of colours’ means |{i ≤ k : d(μ)i > 0}|. The proof borrows material from an
independent result (Proposition 3.3).

Proposition 2.13. Let Λ be a finite, locally convex k-graph on n = |Λ0| vertices.
Suppose that Λ has no cycle with an entrance and Λ has exactly one initial cycle, up to

https://doi.org/10.1017/S0013091521000626 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000626


836 D. Pask, A. Sierakowski and A. Sims

∼ - equivalence, with n vertices and � colours. Then

C∗(Λ) ∼= Mn(C(T�)), and sr(C∗(Λ)) = ���/2�/n	 + 1.

Proof. Let μ be an initial cycle in Λ. By Theorem 2.5 and Theorem 2.6, we have

sr(C∗(Λ)) =

⎡⎢⎢⎢
⌊

�μ

2

⌋
|Λ≤(n,...,n)|

⎤⎥⎥⎥+ 1, C∗(Λ) ∼= MΛ≤(n,...,n)(C(T�μ)),

where �μ is the rank of the periodicity group associated with μ (Definition 1.5). By the
factorization property Λ has no sources, so Λ≤(n,...,n) = Λ(n,...,n). Lemma 2.1(3) implies
that |Λ(n,...,n)| = n. By Proposition 3.3, �μ = �. Combining these results gives C∗(Λ) ∼=
Mn(C(T�)), and sr(C∗(Λ)) = ���/2�/n	 + 1. �

Remark 2.14. To keep the statement of Proposition 2.13 short and clean, we insisted
that (μ∞)0 = Λ0, but more general results can be obtained using Theorem 2.5 and
Theorem 2.6.

3. Stable rank one

In this section, we characterize which finite k-graphs have C∗-algebras of stable rank
1 – see Theorem 3.1 and Corollary 3.4. We note that Theorem 3.1 is in large contained
in [14] and we have structured the proof accordingly.

Theorem 3.1. Let Λ be a finite, locally convex k-graph. Then sr(C∗(Λ)) = 1 if and
only if C∗(Λ) is (stably) finite and maxμ∈IC(Λ) �μ = 1.

Proof. Suppose that sr(C∗(Λ)) = 1. Then sr(Mn(C∗(Λ))) = 1 for each positive inte-
ger n [34, Theorem 6.1]. Hence each Mn(C∗(Λ)) is finite [2, V.3.1.5], which implies
that C∗(Λ) is stably finite. Since C∗(Λ) is finite, it does not contain any infinite
projections [37, Lemma 5.1.2]. Hence by [14, Proposition 5.9], there exist n ≥ 1 and
l1, . . . , ln ∈ {0, . . . , k} such that C∗(Λ) is stably isomorphic to

⊕n
i=1 C(Tli). Since

sr(C∗(Λ)) = 1, we deduce that sr(
⊕n

i=1 C(Tli)) = 1, because stable rank 1 for unital C∗-
algebras is preserved my stable isomorphism [34, Theorem 3.6]. By property 4 in § 1.1,
we have sr(

⊕n
i=1 C(Tli)) = maxn

i=1 C(Tli). For each i = 1, . . . , n we use [34, Proposition
1.7] to deduce that sr(C(Tli)) = �li/2� + 1, where �·� denotes ‘integer part of’. Hence
maxn

i=1 li = 1.
By inspection of the proof of [14, Proposition 5.9], it is clear that each of the integers li

is the rank of μ for some μ ∈ IC(Λ), so maxμ∈IC(Λ) �μ ≥ maxn
i=1 li = 1. For each μ, ν ∈

IC(Λ) define Pν :=
∑

v∈(ν∞)0 sv and μ ∼ ν ⇔ (μ∞)0 = (ν∞)0. Since Pν = Pμ whenever
μ ∼ ν, the proof of [14, Proposition 5.9] implies that for each μ ∈ IC(Λ), we have �μ = li
for some i ∈ {1, . . . , n}. Consequently, maxμ∈IC(Λ) �μ = maxn

i=1 li.
Conversely, suppose C∗(Λ) is finite and maxμ∈IC(Λ) �μ = 1. By [37, Lemma 5.1.2],

C∗(Λ) has no infinite projections. So [14, Corollary 5.7] implies that C∗(Λ) is sta-
bly isomorphic to

⊕n
i=1 C(Tli) for some n ≥ 1 and l1, . . . , ln ∈ {0, . . . , k} such that
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Figure 5. Two examples of 2-graphs with a C∗-algebra of stable rank one.

maxμ∈IC(Λ) �μ = maxn
i=1 li. By the properties in § 1.1, it follows that

sr(C∗(Λ)) = sr

(
n⊕

i=1

C(Tli)

)
= max

i=1,...,n
�li/2� + 1 = 1.

�

Remark 3.2. It turns out that C∗-algebras of finite k-graphs with k > 1 rarely have
stable rank one: the condition maxμ∈IC(Λ) �μ = 1 is rather strict. As Proposition 3.3
indicates, if Λ0 is finite and sr(C∗(Λ)) = 1 (hence stably finite), then any initial cycle in
Λ has at most one colour. Using Lemma 2.2(2) and the factorization property, it follows
that any cycle in Λ has at most one colour.

Figure 5 illustrates two examples of 2-graphs Λ with C∗(Λ) of stable rank one. The first
example, illustrated on the left, has two vertices v1, v2, a single edge red (dashed) loop
based at v1, and single edge blue (solid) loop based at v2. The second example, shown
on the right in Figure 5, is different in that it is connected and contains no loops.

Following [14], for n ∈ N
k there is a shift map σn : {x ∈ WΛ : n ≤ d(x)} → WΛ such

that d(σn(x)) = d(x) − n and σn(x)(p, q) = x(n + p, n + q) for 0 ≤ p ≤ q ≤ d(x) − n
where we use the convention ∞− a = ∞ for a ∈ N. For x ∈ WΛ and n ≤ d(x), we then
have x(0, n)σn(x) = x. We now show an easy way to compute �μ, using only the degree
of μ.

Proposition 3.3. Let Λ be a finite, locally convex k-graph such that Λ has no cycle
with an entrance. Then for each μ ∈ IC(Λ),

�μ = |{i ≤ k : d(μ)i > 0}||.

Proof. Let I = {i ≤ k : d(μ)i > 0}. We must show that �μ = |I|. If I = ∅ then �μ =
0 = |I|, so assume that I is non-empty. By (1.1),

Gμ = {m − n : n,m ≤ d(μ∞), μ∞(m) = μ∞(n)}.

Since each n, m ≤ d(μ∞) satisfy n, m ∈ spanN{ei : i ∈ I}, the rank of Gμ is at most |I|.
Consequently, it suffices to show Gμ contains a subgroup of rank |I|.

Let v:=μ∞(0). We claim that for each colour i ∈ I, there exists a positive integer
mi such that μ∞(0, miei) = v. Indeed, since Λ0 is finite there exists m < n such that
μ∞(mei) = μ∞(nei). Now using that μ∞ ∈ Λ≤∞ (see Lemma 2.1) and that for every
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vertex w on μ there is a unique path in wΛ≤∞ (see § 1.7) we get that σmei(μ∞) =
σnei(μ∞). Now for N :=md(μ) it follows that σN (μ∞) = μ∞. Since

μ∞ = σN (μ∞) = σN−mei+mei(μ∞) = σN−mei+nei(μ∞) = σ(n−m)ei(μ∞),

we get (μ∞)((n − m)ei) = v. Hence μ∞ contains a cycle of degree (n − m)ei based at v.
In particular, we can use mi:=n − m.

By the preceding paragraph, {miei : i ∈ I} ⊆ Gμ is a Z-linearly independent set
generating a rank-|I| subgroup of Gμ. So the rank of Gμ is |I|. �

Corollary 3.4. Let Λ be a finite, locally convex k-graph. Then sr(C∗(Λ)) = 1 if and
only if Λ has no cycle with an entrance and no initial cycle with more than one colour.

Proof. Combine Proposition 2.7, Theorem 3.1, and Proposition 3.3. �

Remark 3.5. A graph trace on a locally convex row-finite k-graph Λ is a function
g : Λ0 → R

+ satisfying the graph trace property, g(v) =
∑

λ∈vΛ≤n g(s(λ)) for all v ∈ Λ0

and n ∈ N
k. It is faithful if it is non-zero on every vertex in Λ [27, 45].

It can be shown that Corollary 3.4 remains valid if we replace ‘has no cycle with
an entrance’ by ‘admits a faithful graph trace’. Indeed, the C∗-algebra of a row-finite
and cofinal k-graph Λ with no sources is stably finite if and only if Λ admits a faith-
ful graph trace [7, Theorem 1.1], and for Λ0 finite, this remains true without ‘cofinal’
and with ‘locally convex’ instead of ‘no sources’ (by virtue of Theorem 2.5 and [28,
Lemma 7.1]).

4. Stable rank in the simple and cofinal case

In this section, we focus on stable rank of k-graph C∗-algebras for which the k-graph is
cofinal, corresponding to boxes 1 and 3 in Figure 1. Since simple k-graph C∗-algebras
constitute a sub-case of this situation (as illustrated below), we consider those first.

Let Λ be a row-finite, locally convex k-graph. Following [42], Λ is cofinal if for all pairs
v, w ∈ Λ0 there exists n ∈ N

k such that s(wΛ≤n) ⊆ s(vΛ). Following [35], Λ has local
periodicity m, n at v if for every x ∈ vΛ≤∞, we have m − (m ∧ d(x)) = n − (n ∧ d(x)) and
σm∧d(x)(x) = σn∧d(x)(x). If Λ fails to have local periodicity m, n at v for all m �= n ∈ N

k

and v ∈ Λ0, we say that Λ has no local periodicity. By [35, Theorem 3.4],

Λ is cofinal and has no local periodicity if and only if C∗(Λ) is simple.

The stable rank of 1-graph C∗-algebras is well understood (see [10, Theorem 3.4], [18,
Theorem 3.3] and [17, Theorem 3.1]), but the following is new for k > 1. Recall that a
cycle is a path λ ∈ Λ \ Λ0 such that r(λ) = s(λ).

Proposition 4.1. Let Λ be a finite, locally convex k-graph. Suppose that Λ is cofinal
and has no local periodicity (i.e., C∗(Λ) is simple). Then

sr(C∗(Λ)) =

{
1 if Λ contains no cycles

∞ otherwise.
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Figure 6. Example of 2-graph with a C∗-algebra of stable rank infinity.

Proof. If Λ contains no cycles then [14, Corollary 5.7] gives C∗(Λ) ∼= MΛv(C) for some
vertex v ∈ Λ0. Using [34, Proposition 1.7 and Theorem 3.6], we obtain that sr(C∗(Λ)) = 1.

If Λ contains a cycle, then another application of [14, Corollary 5.7] (see also [4, Remark
5.8]) gives that C∗(Λ) is purely infinite. Since C∗(Λ) is unital, simple and purely infi-
nite, it contains two isometries with orthogonal ranges, so [34, Proposition 6.5] gives
sr(C∗(Λ)) = ∞. �

In conclusion, the stable rank of a unital simple k-graph C∗-algebra is completely
determined by the presence or absence of a cycle in the k-graph.

4.1. The cofinal case

We now consider the cofinal case. We start by recalling a result of Jeong, Park and
Shin about directed graphs (or 1-graphs). We refer to [18] for the terminology involved.

Proposition 4.2 (Jeong et al. [18, Proposition 3.7]). Let E be a locally finite
directed graph. If E is cofinal then either sr(C∗(E)) = 1 or C∗(E) is purely infinite
simple.

Remark 4.3. We illustrate why for k-graphs we can not hope for a result similar to
Proposition 4.2. Consider the 2-graph Λ in Figure 6 with two blue edges a, b ∈ Λe1 and
one red edge e ∈ Λe2 and the factorization property ae = ea, be = eb. Since Λ has only
one vertex, it is automatically cofinal. However, C∗(Λ) neither has stable rank one nor is
purely infinite simple as the following discussion shows:

The C∗-algebra C∗(Λ) fails to have stable rank one because it is not stably finite
(containing a cycle with an entrance). It is not simple, so, in particular, not purely
infinite simple because

for every x ∈ vΛ≤∞ we have σe2(x) = x, (4.1)

so Λ has local periodicity p = e2, q = 0 at v and C∗(Λ) is non-simple.
Because of our particular choice of factorization rules ae = ea, be = eb Lemma 1.7

implies that C∗(Λ) ∼= O2 ⊗ C(T). If we instead used the factorization ae = eb, be = ea,
then Lemma 1.7 would not apply but we would still have σ2e2(x) = x for each x ∈ vΛ≤∞

making C∗(Λ) non-simple.

Remark 4.3 notwithstanding, we are able to provide a characterization of stable rank in
the cofinal case. Given a C∗-algebra A, we write a ⊕ b for the diagonal matrix diag(a, b)
in M2(A) and write ∼ for the von Neumann equivalence relation between elements in
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matrix algebras over A. A unital C∗-algebra A is properly infinite if 1 ⊕ 1 ⊕ r ∼ 1 for
some projection r in some matrix algebra over A (for more details, see [38]).

Theorem 4.4. Let Λ be a cofinal, finite, locally convex k-graph. Suppose that Λ
contains a cycle with an entrance. Then C∗(Λ) is properly infinite and has stable rank
∞.

Proof. Let μ be a cycle with an entrance τ , that is

τ ∈ r(μ)Λ, d(τ) ≤ d(μ∞), and τ �= μ∞(0, d(τ)).

Fix n ≥ 1 such that m := d(μ)n ≥ d(τ). Since τ �= μ∞(0, d(τ)) = μn(0, d(τ)), there exists
β ∈ s(τ)Λ such that μn and τβ are distinct elements of r(μ)Λ≤m. Write r(μ)Λ≤m =
{ν1, . . . , νN} with ν1 = μn and ν2 = τβ. For each i = 1, . . . , N set vi = s(νi) and let
x = (sν1 , . . . , sνN

). Then xx∗ =
∑

λ∈v1Λ≤m sλs∗λ = sv1 . Moreover for i �= j, s∗νi
sνj

= 0, so

sv1 = xx∗ ∼ x∗x = diag(s∗ν1
sν1 , . . . , s

∗
νN

sνN
) = sv1 ⊕ · · · ⊕ svN

.

We claim that for any pair of vertices u, v ∈ Λ0 there exist a constant Mu,v and a
projection pu,v in some matrix algebra over C∗(Λ) such that⎛⎝Mu,v⊕

l=1

su

⎞⎠ ∼ sv ⊕ pu,v. (4.2)

To see this, fix u, v ∈ Λ0. Since Λ is cofinal there exists n ∈ N
k such that s(vΛ≤n) ⊆

s(uΛ). Writing vΛ≤n = {μ1, . . . , μMu,v
} and ui = s(μi), we have sv ∼ su1 ⊕ · · · ⊕ suMu,v

.
Since s(vΛ≤n) = {ui : i ≤ Mu,v} ⊆ s(uΛ), for each i ≤ Mu,v there exists λi ∈ uΛ such
that s(λi) = ui. Let mi = d(λi) for each i. Then for each i = 1, . . . , Mu,v,

su =
∑

λ∈uΛ≤mi

sλs∗λ ∼ sui
⊕ pi

for some projection pi in a matrix algebra over C∗(Λ). With pu,v =
⊕

i pi, we obtain⎛⎝Mu,v⊕
l=1

su

⎞⎠ ∼

⎛⎝Mu,v⊕
i=1

sui

⎞⎠⊕ pu,v ∼ sv ⊕ pu,v,

which establishes the claim.
Applying (4.2) to u = v2 and v = v1, we get⎛⎝Mv2,v1⊕

l=1

sv2

⎞⎠ ∼ sv1 ⊕ pv2,v1 .

Recall that sv1 ∼ sv1 ⊕ sv2 ⊕ (
⊕N

i=3 svi
). Let q:=pv2,v1 ⊕ (

⊕Mv2,v1
l=1

⊕N
i=3 svi

), meaning
that if N = 2 then q = pv2,v1 ⊕ 0. Then

sv1 ∼ sv1 ⊕

⎛⎝Mv2,v1⊕
l=1

sv2

⎞⎠⊕

⎛⎝Mv2,v1⊕
l=1

N⊕
i=3

svi

⎞⎠ ∼ sv1 ⊕ sv1 ⊕ q. (4.3)

https://doi.org/10.1017/S0013091521000626 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000626


Structure theory and stable rank 841

Applying (4.2) to u = v1 and to each v ∈ Λ0 \ {v1} at the second equality, and putting
L := 2 +

∑
v∈Λ0\{v1} Mv1,v, we calculate:

1 ⊕ 1 ⊕

⎛⎝ ⊕
v∈Λ0\{v1}

pv1,v

⎞⎠ ∼ 1 ⊕ sv1 ⊕

⎛⎝ ⊕
v∈Λ0\{v1}

(sv ⊕ pv1,v)

⎞⎠
∼ 1 ⊕ sv1 ⊕

⎛⎝ ⊕
v∈Λ0\{v1}

⎛⎝Mv1,v⊕
i=1

sv1

⎞⎠⎞⎠
∼

⎛⎝ ⊕
v∈Λ0\{v1}

sv

⎞⎠⊕ sv1 ⊕ sv1 ⊕

⎛⎝ ⊕
v∈Λ0\{v1}

⎛⎝Mv1,v⊕
i=1

sv1

⎞⎠⎞⎠
∼

⎛⎝ ⊕
v∈Λ0\{v1}

sv

⎞⎠⊕

⎛⎝ L⊕
j=1

sv1

⎞⎠ .

Using (4.3), we have sv1 ∼ sv1 ⊕ (
⊕L−1

j=1 sv1) ⊕ (
⊕L−1

j=1 q), so r = (
⊕

v∈Λ0\{v1} pv1,v) ⊕
(
⊕L−1

j=1 q) satisfies
1 ⊕ 1 ⊕ r ∼ 1.

Hence 1 is properly infinite. Now [34, Proposition 6.5] gives sr(C∗(Λ)) = ∞. �

With Proposition 4.2 in mind, the following is a dichotomy for the C∗-algebras
associated with cofinal finite k-graphs.

Corollary 4.5. Let Λ be a cofinal, finite, locally convex k-graph. Then either C∗(Λ)
is stably finite and sr(C∗(Λ)) is given by Corollary 2.9, or C∗(Λ) is properly infinite and
sr(C∗(Λ)) = ∞.

Proof. If C∗(Λ) is not stably finite then Λ contains a cycle with an entrance by
Proposition 2.7. Hence C∗(Λ) is properly infinite and sr(C∗(Λ)) = ∞ by Theorem 4.4.
Conversely, if C∗(Λ) is properly infinite, then it is also infinite, so C∗(Λ) is not finite and
hence not stably finite. If C∗(Λ) is stably finite then Corollary 2.9 applies. �

Remark 4.6. Theorem 4.4 includes cases not covered by any of our preceding results.
Consider, for example, the 2-graph Λ in Figure 6. By Theorem 4.4, the associated C∗-
algebra has stable rank infinity.

Example 4.7. By Corollary 4.5, we can compute the stable rank of k-graph C∗-
algebras in boxes 1 to 3 in Figure 1. It, therefore, makes sense to consider the range of
stable rank achieve by these C∗-algebra. In box 3, stable rank infinity can be obtained
as in Remark 4.3. For finite stable rank, Table 1 lists a few 4n-graphs Λ together with
their associated C∗-algebra and its stable rank (we use a multiple of 4 because it makes
the formulas for the stable rank simpler).

Except for the last 4n-graph, each black edge represents exactly 4n edges of different
colours, one of each colour; the last 4n-graph has 2n loops at v2, one each of the first 2n
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Table 1. A few examples of 4n-graphs.

4n-graph Λ |Λ≤N | C∗(Λ) sr(C∗(Λ))

1 C(T4n) 2n + 1

2 M2(C(T4n)) n + 1

3 M3(C(T4n))

⌈
2n

3

⌉
+ 1

m + 1 Mm+1(C(T4n))

⌈
2n

m + 1

⌉
+ 1

(4n
2

)
M(4n

2 )(C(T4n))

⌈
2n(4n
2

)⌉ + 1

2 M2(C(T4n)), n + 1

colours and 2n edges from v1 to v2, one each of the remaining 2n colours. Each example
admits a unique factorization rule, so each illustration in Table 1 represents a unique
4n-graph.

5. Stable rank in the non-stably finite, non-cofinal case

So far we have looked at the stably finite case (including stable rank one) and the cofinal
case (including the simple case). Here, we study the remaining case corresponding to box
4 in Figure 1.
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We start by revisiting the cofinality condition for row-finite locally convex k-graphs.
Following [35], a subset H ⊆ Λ0 is hereditary if s(HΛ) ⊆ H. We say H is saturated if for
all v ∈ Λ0,

{s(λ) : λ ∈ vΛ≤ei} ⊆ H for some i ∈ {1, . . . , k} =⇒ v ∈ H.

or equivalently, if v �∈ H implies that for each n ∈ N
k, s(vΛ≤n) �⊆ H (see Lemma 5.1). The

relevant characterization of cofinal is included in Lemma 5.2 below with a short proof
based on [23, 42]. Since this paper focuses on unital k-graph C∗-algebras, it is worth
pointing out that Lemmas 5.1 and 5.2 do not assume that |Λ0| < ∞.

Lemma 5.1. Let Λ be a row-finite locally convex k-graph. Then H ⊆ Λ0 is saturated
if and only if for all v ∈ Λ0, v �∈ H implies that for each n ∈ N

k, s(vΛ≤n) �⊆ H.

Proof. Fix v ∈ Λ0. Suppose v �∈ H. Since Λ is saturated, for all i ≤ k, {s(λ) :
λ ∈ vΛ≤ei} �⊆ H. Clearly s(vΛ≤m) �⊆ H for m = 0. Fix any m ∈ N

k \ {0}. Set
(n(0), v(0), λ(0)) = (m, v, v). Choose i such that n

(0)
i �= 0. Since v(0) �∈ H, there exists

μ(1) ∈ v(0)Λ≤ei \ ΛH. Set (n(1), v(1), λ(1)) = (n(0) − ei, s(μ(1)), λ(0)μ(1)). Choose i such
that n

(1)
i �= 0. Since v(1) �∈ H, there exists μ(2) ∈ v(1)Λ≤ei \ ΛH. Set (n(2), v(2), λ(2)) =

(n(1) − ei, s(μ(2)), λ(1)μ(2)).
For each step, |n(i)| = |m| − i, so l = |m| satisfies n(l) = 0. Notice that λ(0) ∈

vΛ≤(m−n(0)), λ(1) ∈ vΛ≤(m−n(1)), . . . , λ(l) ∈ vΛ≤(m−n(l)). Hence λ(l) ∈ vΛ≤m and
s(λ(l)) �∈ H so s(vΛ≤m) �⊆ H. �

Lemma 5.2 ([23, 42]). Let Λ be a row-finite locally convex k-graph. Then the
following are equivalent:

(1) Λ is cofinal;

(2) for all v ∈ Λ0, and (λi) with λi ∈ Λ≤(1,...,1), and s(λi) = r(λi+1) there exist i ∈ N

and n ≤ d(λi) such that vΛλi(n) �= ∅; and

(3) Λ0 contains no non-trivial hereditary saturated subsets.

Proof. Firstly, we show that (1)⇒(3). Suppose (1) and suppose that H ⊆ Λ0 is a
non-empty hereditary, saturated set. We show that H = Λ0. Fix v ∈ Λ0. Since H is non-
empty, there exists w ∈ H. By (1) there exists n ∈ N

k such that s(vΛ≤n) ⊆ s(wΛ). Since
H is hereditary, s(vΛ≤n) ⊆ s(HΛ) ⊆ H. Hence Lemma 5.1 gives v ∈ H.

Now we show that (3)⇒(2). Suppose that (2) fails, that is, there exist v ∈ Λ0, and a
sequence (λi) with λi ∈ Λ≤(1,...,1), s(λi) = r(λi+1) for all i such that for all i ∈ N and all
n ≤ d(λi), we have vΛλi(n) = ∅. Let

H = {w ∈ Λ0 : wΛλi(n) = ∅ for all i ∈ N and n ≤ d(λi)}.

Then H is non-trivial as v ∈ H and hereditary because if uΛw �= ∅ then s(wΛ) ⊆ s(uΛ).
To show that H is saturated take u ∈ Λ0 and j ≤ k such that s(uΛ≤ej ) ⊆ H. We must
show that u ∈ H. Assume otherwise for contradiction. We have u �∈ s(uΛ≤ej ) because
otherwise u = s(u) belongs to H, so uΛej �= ∅. Since u �∈ H, there exists λ ∈ uΛ such
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that s(λ) = λi(n) for some i, n. We claim that d(λ)j = 0. Indeed, if not, then λ = μμ′

for some μ ∈ uΛej . We then have s(μ) ∈ s(uΛej ) ⊆ H, so s(μ)Λλi(n) = ∅ contradicting
μ′ ∈ s(μ)Λλi(n). Since Λ is locally convex and d(λ)j = 0 and since uΛej �= ∅, we have
λi(n)Λej = s(λ)Λej �= ∅. Let β = λi(n, d(λi)). Since Λ is locally convex, either d(β)j �= 0
or s(λi)Λej �= ∅. Since λi+1 ∈ Λ≤(1,...,1) it follows that d(βλi+1) ≥ ej . Now λ′ := λβλi+1 ∈
uΛ satisfies s(λ′) = λi′(n′) for some i′, n′. But then, just as we got d(λ)j = 0, we deduce
d(λ′)j = 0, a contradiction. So H is saturated, so (3) does not hold.

Finally, we prove (2)⇒(1). Given (2), we suppose that (1) fails, and we derive a
contradiction. Since (1) fails, there exist v, w ∈ Λ0 such that for all n ∈ N

k, we have
s(wΛ≤n) �⊆ s(vΛ). Set

K = {u ∈ Λ0 : s(uΛ≤n) �⊆ s(vΛ) for all n ∈ N
k}.

Fix u ∈ K and j ≤ k. We claim that there exists μ ∈ uΛ≤ej such that s(μ) ∈ K. Indeed
if s(uΛ≤ej ) ⊆ Λ0 \ K, then for each μ ∈ uΛ≤ej there exists nμ ∈ N

k such that s(μΛnμ) ⊆
s(vΛ). Since s(vΛ) is hereditary, it follows that n =

∨
μ∈uΛ≤ej nμ satisfies s(uΛ≤n+ej ) =⋃

μ∈uΛ≤ej s(μΛ≤n) ⊆ s(vΛ), contradicting u ∈ K.
Since w ∈ K, we can construct a sequence (λi) such that each λi ∈ Λ≤(1,...,1), each

s(λi) = r(λi+1), and for each n ≤ d(λi), we have λi(n) ∈ K. By (2), there exist i and
n ≤ d(λi) such that vΛλi(n) �= ∅, i.e., such that s(λi(n)Λ≤0) ⊆ s(vΛ). So λi(n) �∈ K, a
contradiction. �

Remark 5.3. When a k-graph Λ has only one vertex, it is automatically cofinal, and
we deduce that the stable rank of C∗(Λ) is infinite if there exists j ≤ k such that |Λej | ≥ 2,
and is equal to �k/2� + 1 if each |Λej | = 1.

Remark 5.4. We now present all the 2-graphs Λ with |Λ0| = 2 for which we have been
unable to compute the stable rank of the associated C∗-algebra C∗(Λ) (see Figure 7). In
each case, the 2-graph Λ fails to be cofinal, because Λ0 contains one non-trivial hereditary
saturated subset, denoted H.

In Figure 7, for each 2-graph Λ the C∗-algebra C∗(Λ) is non-simple with H = {u}. In
the first case, we have C∗(HΛ) ∼= C(T), which has stable rank 1, and so IH has stable
rank 1 because stable rank 1 is preserved by stable isomorphism. In the remaining two
cases, if there is one loop of each colour at u then C∗(HΛ) ∼= C(T2) has stable rank 2,
and otherwise, Theorem 4.4 implies that C∗(HΛ) has stable rank ∞; either way, since
IH

∼= C∗(HΛ) ⊗K§, we have sr(IH) = 2 as discussed in § 1.1.
In all three cases, the quotient of C∗(Λ) by IH is C∗(Λ)/IH

∼= C∗(Λ \ ΛH) ∼= C(T2).
Hence, by [2, V.3.1.21], we deduce that sr(C∗(Λ)) ∈ {2, 3}, but we have been unable to
determine the exact value in any of these cases.

Perhaps the easiest-looking case is the 2-graph (top left) with one red (dashed) edge
from u to v. In this case C∗(Λ) ∼= T ⊗ C(T), where T is the Toeplitz algebra generated by

§ To see this, let X be the set {u} ∪ {μf : f ∈ vΛe2u and μ ∈ ΛNe2v}. Use the factorization property
and the Cuntz–Krieger relations to see that IH = span{sμas∗ν : μ, ν ∈ X and a ∈ suC∗(Λ)su}. It is rou-

tine that for any finite subset F ⊆ X, the set {sμs∗ν : μ, ν ∈ F} is a system of matrix units. So Lemma 2.4
gives span{sμas∗ν : μ, ν ∈ F and a ∈ suC∗(Λ)su} ∼= suC∗(Λ)su ⊗ M|F |(C). Taking the direct limit gives
IH

∼= suC∗(Λ)su ⊗K(�2(X)).
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Figure 7. Example of 2-graphs Λ with C∗(Λ) of stable rank two or three.

the unilateral shift. Despite knowing the stable rank of each of the components (sr(T ) = 2
and sr(C(T)) = 1), the stable rank of the tensor product is not known (there is no general
formula for stable rank of tensor products).
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