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CONVERGENCE RATES OF SUMS OF
α-MIXING TRIANGULAR ARRAYS:

WITH AN APPLICATION TO
NONPARAMETRIC DRIFT FUNCTION
ESTIMATION OF CONTINUOUS-TIME

PROCESSES
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The convergence rates of the sums of α-mixing (or strongly mixing) triangular arrays
of heterogeneous random variables are derived. We pay particular attention to the
case where central limit theorems may fail to hold, due to relatively strong time-series
dependence and/or the nonexistence of higher-order moments. Several previous stud-
ies have presented various versions of laws of large numbers for sequences/triangular
arrays, but their convergence rates were not fully investigated. This study is the first
to investigate the convergence rates of the sums of α-mixing triangular arrays whose
mixing coefficients are permitted to decay arbitrarily slowly. We consider two kinds
of asymptotic assumptions: one is that the time distance between adjacent observa-
tions is fixed for any sample size n; and the other, called the infill assumption, is that
it shrinks to zero as n tends to infinity. Our convergence theorems indicate that an
explicit trade-off exists between the rate of convergence and the degree of depen-
dence. While the results under the infill assumption can be seen as a direct extension
of those under the fixed-distance assumption, they are new and particularly useful for
deriving sharper convergence rates of discretization biases in estimating continuous-
time processes from discretely sampled observations. We also discuss some exam-
ples to which our results and techniques are useful and applicable: a moving-average
process with long lasting past shocks, a continuous-time diffusion process with weak
mean reversion, and a near-unit-root process.
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1. INTRODUCTION

The purpose of this paper is to investigate the convergence rates of the sums of
α-mixing (or strongly mixing) triangular arrays of heterogeneous random vari-
ables. We specifically consider the case where the degree of dependence is rela-
tively strong (allowing for any arbitrarily slow decay rate of mixing coefficients),
its higher-order moments do not exist, and, thus, the central limit theorem (CLT)
may fail to hold. For such cases, several versions of the laws of large numbers
(LLN) for sequences/triangular arrays are known, but, in contrast, the conver-
gence rates of the sums have not been fully investigated in the literature.

The LLN states that the sum of a zero-mean array divided by its sample size n
converges to zero. The CLT, on the other hand, tells us that its convergence rate
is the order of n−1/2. While the weak LLN imposes no decay rate on the mixing
coefficients (see Example 4 of Andrews, 1988, and Remark 2 below), requiring
only that they converge to zero, the CLT requires that the decay rate is faster
than a particular rate and the higher-order moments exist.1 There is a gap be-
tween these two results: the convergence rates of the sums (or the sample means)
are unknown when the CLT may fail to hold due to the slow decay of mixing
coefficients and/or nonexistence of the higher-order moments. In related studies,
Davidson and de Jong (1997) and de Jong (1998) analyzed the convergence rates
of the sums of mixingale arrays/sequences, considering such intermediate cases.2

Analyses of this sort for α-mixing arrays have not been fully conducted in the
literature. Since α-mixing processes are also mixingale, given a certain moment
condition, the results of Davidson and de Jong are also applicable to the α-mixing
case. However, convergence rates obtained from such mixingale results are gener-
ally not sharp for α-mixing arrays. This is because the mixingale size of a mixing
array/sequence is generally shown to be lower than its mixing size (see subse-
quent discussions: “Comparison with previous mixingale LLN results”). Our
results, which aim at α-mixing arrays, may lead to sharper rates. This comple-
ments the work of Davidson and de Jong. This study is the first to investigate the
convergence rates of the sums of α-mixing triangular arrays whose mixing coef-
ficients are allowed to decay arbitrarily slowly. We present an explicit trade-off
between the rate of convergence and the degree of dependence, suggesting that
stronger dependence implies slower convergence of the sums.

Our results also complement previous studies concerning convergence rates
in the LLNs for α-mixing (or some other dependent) sequences/arrays. These
studies include Shao (1993), Liebscher (1996), Louhichi (2000), and Louhichi
and Soulier (2000). We take an approach similar to that in Liebscher (1996),
relying on the Bernstein-type inequality derived in Rio (1995). All of these,
including Liebscher’s, consider strong LLNs and focus on the case where the
degree of dependence is (relatively) weak, typically assuming that the decay rate
of mixing coefficients is fast enough. In contrast, we work under a weak notion of
the convergence in probability. This seems the price of allowing for (relatively)
strong dependence. Additionally, our results (as in the previous studies) exhibit a
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trade-off between the rate of convergence and the order of the moment, that is, if
the higher order moment exists, the convergence of the sum occurs more quickly.

The results are useful when we consider time series with high persistence,
such as financial asset returns. As argued in Chen, Hansen, and Carrasco (2010),
some Markov processes, which look like long memory type processes, exhibit
this property. These processes, whose mixing coefficients decay very slowly, are
in the scope of our results. Heavy-tailed distributions may also be a key feature
in a financial time series. Our results may be applied to processes with such a
feature, like processes with infinite variance. We present some examples to which
our results are relevant and applicable for both discrete and continuous time cases.
Note that we do not assume the stationarity of the processes, allowing for some
form of heterogeneity and/or nonstationarity. However, we can only deal with
minor nonstationarity in that strongly nonstationary processes, such as unit-root
and null-recurrent processes, are excluded. Our theorems are stated for triangular
arrays and can be used to investigate the convergence rates of estimators/statistics
in situations where distributions of random variables may vary with the sample
size n. Such situations naturally arise, e.g., when estimating time varying models
(e.g., Dahlhaus and Rao, 2006), using kernel-based methods (see, e.g., Chapters
5 and 6 of Fan and Yao, 2003), and investigating limit properties of near-unit-
root processes (e.g., Stock, 1991; Elliott, Rothenberg, and Stock, 1996; Phillips
and Magdalinos, 2007). We discuss the last two cases in detail (in Section 3 and
Example 3, respectively).

We consider two kinds of asymptotic assumptions: one is that the time distance
between the adjacent observations is fixed for any sample size n and the other
is that it shrinks to zero as n tends to infinity. The latter is called infill asymp-
totics and is often necessary to estimate continuous-time models from discretely
sampled data (e.g., Florens-Zmirou, 1989; Bandi and Phillips, 2003; Kristensen,
2010). An original suggestion and exploration of infill asymptotics were given in
Phillips’ (1987) seminal paper on time series regression with a unit root (see his
Section 6 of “Continuous Record Asymptotics”).3 We do not consider a unit root
case but share the motivation for infill asymptotics with Phillips (1987). These
may provide a reasonable approximation to analyze high-frequency data. While
several previous studies have investigated infill asymptotics, their derivations of
limit theorems have often relied on a sort of (semi) martingale assumption, as in
Phillips (1987) and in recent papers on volatility estimation (such as Barndorff-
Nielsen and Shephard, 2002). In contrast, we intend to explore infill-asymptotic
results under the mixing (and ergodic) environment without such a martingale
assumption. Given the nature of infill asymptotics, the dependence between con-
secutive observations typically becomes stronger as n → ∞. This leads to slower
convergence rates of the sums (relative to those obtained under the fixed-distance
assumption).

While our results for the infill case can be seen as a direct extension of results
for the fixed-distance case, they are new and particularly useful to derive sharper
convergence rates of estimators for continuous-time processes from discretely
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sampled observations. For this infill case, we also assume that the time horizon of
an observation period tends to infinity (the long-span assumption). This double-
asymptotic scheme is important for estimating continuous-time processes, where
we note that the long-span assumption is often necessary for the drift estimation
(see p. 243 of Bandi and Phillips, 2003; Section 5 of Kristensen, 2010). While
certain parts of a model structure (such as volatility) may be identified and consis-
tently estimated under only the infill assumption (over a fixed time span), several
economically interesting parameters, including risk-attitude parameters and the
market price of risk (e.g., Stanton, 1997), can be identified only through agents’
behavior or price movement in the long run, necessitating the long-span assump-
tion. Estimation of such parameters often requires the presence and estimation of
drift components. We discuss and exemplify the usefulness of our convergence
results for the infill case in a nonparametric drift estimation problem. We specif-
ically consider a kernel-based estimator for Park’s (2009) martingale regression
model, which encompasses a wide class of continuous-time models found in the
economics/finance literature, and we show that our new results lead to a sharper
convergence rate of the nonparametric estimator’s discretization bias.

In Section 2, we introduce our basic framework and derive our primary con-
vergence results for both the fixed-distance and infill cases. We also compare
the previous mixingale results with ours and present some examples of processes
to which our results are applicable. In Section 3, we consider the drift function
estimation of continuous-time processes and discuss the usefulness of the derived
results. Section 4 provides some concluding remarks. Proofs, as well as auxiliary
discussions and results, can be found in the Appendix.

2. PRIMARY CONVERGENCE RESULTS

2.1. Basic Setup

Let (�,F ,Pr) denote a probability space and let {Xn,i } := {Xn,i : i = 1, . . . ,n}
(for n ∈ N) be a triangular array of random variables on (�,F ,Pr). Let nFk

j
be the σ -algebra generated by Xn, j ,Xn,( j+1), . . . ,Xn,k and define the α-mixing
coefficients of {Xn,i } by

αn(m) := sup
1≤k≤n−m

sup
{|Pr(A ∩ B)− Pr(A)Pr(B)| : A ∈ nFn

m+k, B ∈ nFk
1

}
.

This is a standard definition of triangular arrays (see Bradley, 2005). The mixing
coefficients represent the degree of time-series dependence of {Xn,i }. We note that
the coefficients may depend on n, since nFn

m+k and nFk
1 are allowed to depend on

n. The dependence on n is relevant in this study, since we consider the cases where
the degree of time-series dependence between consecutive observations changes
with n (as in Example 2 of a near-unit-root process). It is also relevant to the
infill assumption under which we let time intervals between adjacent observations
shrink to zero as the sample size n tends to infinity. To accommodate this case,
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we suppose that there exists some function ᾱ(·) which does not depend on m and
n, such that αn(m)≤ ᾱ(m�), where�=�n := T/n(> 0) is the time interval of
adjacent observations and T (:= Tn) is the time horizon of the observation period.
We specifically consider two cases: (I) � is fixed; and (II) � shrinks to zero as
n → ∞. The array {Xn,i } is said to be α-mixing if ᾱ(m�) → 0 as m� → ∞.
The second case is often relevant in estimating continuous-time processes from
discretely sampled observations, where we need the infill assumption to kill biases
(due to the discretization) and achieve consistent estimation.4

We derive the rate of the sum
∑n

i=1 Xn,i for both cases. For our purposes, we
impose the following conditions:

A1. Let {Xn,i } be an α-mixing triangular array of mean-zero random variables
that are Lp-integrable with p ≥ 1. Its mixing coefficients satisfy

αn (m)≤ ᾱ (m�) := A (m�)−β , (1)

for some A > 0 and β > 0, where �(= T/n > 0) is the time interval
between the adjacent observations and T is the time horizon of the
observation period.

A2. For a triangular array {Xn,i }, there exist some sequences of positive real
numbers, {bn} and {ρn}, such that as n → ∞,

ρ−1
n

n∑
i=1

Xn,i 1{|Xn,i |> bn} = Op(1). (2)

If � is fixed in Condition A1, we can set � = 1 without loss of generality.
When we let �→ 0 (the infill assumption), we also let T → ∞ as n → ∞ (the
long-span assumption). If we impose an additional assumption, such as a sort of
martingale-difference or (semi) martingale one, it may be possible to establish
the LLN and explore the rate of the sum under infill asymptotics without long-
span asymptotics, as in volatility estimation (see, e.g., Barndorff-Nielsen and
Shephard, 2002; Kristensen, 2010). However, given fixed T , we cannot exploit
the asymptotic independence implied by the mixing condition, and it is uncertain
whether we could establish a sensible LLN result for general α-mixing arrays
under only infill asymptotics. We assume polynomial decay of αn(m) and its
dependence on n only through� in (1). This is only for simplicity. Our techniques
based on the Bernstein-type inequality work even without these assumptions, as
discussed and exemplified in Remark 1 and Example 2. The sequence {bn} in
Condition A2 is used for truncating random variables, by which we control tail
behavior of the sum of {Xn,i } when applying the Bernstein-type inequality. If
{Xn,i } is almost surely bounded uniformly over any n and i , then (2) is satisfied
by any ρn with bn = O(1).

2.2. Convergence Rates of Sums with Fixed Observation Intervals

Given the stated conditions, we can obtain the following theorem:
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THEOREM 1. Suppose that Conditions A1 and A2 hold and that� is a positive
constant. Then, for any sequences {ρn} and {bn} which satisfy (2) and

bn

ρn
=

⎧⎪⎨
⎪⎩

O
(
n−1/(1+β)) for β ∈ (0,1),

O
(
1/
√

n logn
)

for β ≥ 1,

O
(
1/

√
n
)

for β > 1,

(3)

it holds that
∑n

i=1 Xn,i = Op (ρn) as n → ∞.

The rate of ρn may be written without bn if the uniform moment bound of
{Xn,i } exists. Suppose that each Xn,i is Lp integrable with p > 1 and let

gn = gn (p)≥ max1≤i≤n ‖Xn,i‖p, (4)

where ‖·‖p := {E[| · |p]}1/p. Then, Condition A2 is satisfied under ng p
n /

ρnb p−1
n = O (1), since we have

Pr

(
ρ−1

n

n∑
i=1

Xn,i 1{|Xn,i |> bn} ≥ a

)
≤ a−1ρ−1

n E

[∣∣∣∣∣
n∑

i=1

Xn,i{1|Xn,i |> bn}
∣∣∣∣∣
]

≤ a−1ng p
n /ρnb p−1

n ,

which can be made arbitrarily small for any sufficiently large a > 0. In this case,
we can write ρn as:

ρn =
⎧⎨
⎩

n(p+β)/p(1+β)gn for β ∈ (0,1),
n(p+1)/2p (logn)(p−1)/2p gn for β ≥ 1,
n(p+1)/2pgn for β > 1.

(5)

We note that rates in (5) can be obtained by solving ng p
n /ρnb p−1

n = O(1)( �= o(1))
and (3) with respect to ρn for each case, where each rate on the right-hand side
(RHS) of (3) should be interpreted as a big-O (·) order of the relevant rate (not
a small-o (·) one). This (5) indicates an explicit trade-off between the degree of
dependence and the rate of convergence: the smaller β (i.e., the stronger time-
series dependence) implies the faster divergence rate of ρn (i.e., the slower con-
vergence rate of the sample mean). If

{
Xn,i

}
is uniformly bounded, the sum of

the array has the rate of Op(
√

n) for β > 1, which corresponds to the classical
CLT (Theorem 18.5.4 of Ibragimov and Linnik, 1971). Some other remarks on
Theorem 1 are in order:

Remark 1. The polynomial decay condition (1) on mixing coefficients can be
relaxed in Theorem 1 (and also in Theorems 2 and 4–6). The decay rate may be
arbitrarily slower than any polynomial rate. Given the condition that αn (m) ≤
ᾱ (m�)→ 0, as m�→ ∞ in Theorem 1, instead of (1) in Condition A1, we can
show that

∑n
i=1 Xn,i = Op (ρn) if ρn satisfies (2) and (n2b2

n/ρ
2
n ) ᾱ(ρ

2
n/nb2

n) =
O(1) (the proof of this result proceeds in the same way as that of Theorem 1 and
is omitted).
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Remark 2. If {Xn,i } is uniformly integrable (UI), then for any sequence bn →
∞, we can always find some ρn satisfying (2) with ρn = o (n). Given this fact,
together with the argument in Remark 1, we can show that

∑n
i=1 Xn,i = op (n) if

{Xn,i } is UI and ᾱ (m�)→ 0 as m�→ ∞. No decay rate on ᾱ (m�) is imposed
here. This is an α-mixing counterpart of Andrews’ (1988) LLN, where he proved
that the weak LLN holds if an L1-mixingale zero-mean array is UI and the average
of its scaling constants has a finite limsup (we again recall that no decay rate is
imposed on the mixingale numbers in Andrews’ LLN).

The result in (5) also indicates that the rate of ρn improves if a higher order
moment of {Xn,i } exists. If p> 2, we can obtain further improvements as follows:

THEOREM 2. Suppose that Condition A1 holds with p> 2 and� is a positive
constant. Then, for a sequence {ρn} such as

ρn =
⎧⎨
⎩

n(p+β)/p(1+β)gn for β ∈ (0, p/(p − 2)) ,√
n logngn for β ≥ p/(p − 2),√
ngn for β > p/(p − 2),

(6)

where gn is given in (4), it holds that
∑n

i=1 Xn,i = Op (ρn) as n → ∞.

While the rate ρn = n(p+β)/p(1+β)gn for β ∈ (0, p/(p − 2)) in this theorem
is the same as the one given in (5), “β ≥ 1” is allowed here. The rate for
β > p/(p − 2) also corresponds to the classical CLT:

∑n
i=1 Xn,i = Op(

√
n) if

gn = O (1) (see Theorem 18.5.3 of Ibragimov and Linnik, 1971 or Theorem 1.7
of Bosq, 1998). Note that for arrays whose degree of dependence is weak (i.e.,
ones with β large enough), various results on the strong convergence exist in the
literature, as stated previously. Some other remarks on Theorems 1–2 follow:

Remark 3. From the viewpoints of the analysis in Remark 2 and the classi-
cal CLT results in Ibragimov and Linnik (1971), we can say that the results of
Theorems 1 and 2 for β ∈ (0,1] and β ∈ (0, p/(p − 2)], respectively, fill the gap
between the LLN and the CLT. We also note that according to Bradley (1985,
Remark 1) and Bosq, Merlevède, and Peligrad (1999, Remark 1.1),∑∞

m=1mᾱ (m) < ∞ (resp.
∑∞

m=1mᾱ(p−2)/p (m) with p > 2) is essentially a
minimal requirement for an α-mixing sequence/array of bounded (resp. Lp-
bounded) random variables to satisfy a nondegenerate CLT under the condition
that Var[

∑n
i=1 Xn,i ] → ∞.

Remark 4. The degree of heterogeneity in {Xn,i } is captured and controlled by
the truncation constant bn and the moment bound gn , respectively, in Theorems
1 and 2, which are uniform over i . Overall, bn and gn play a role similar to the
scaling constants in the mixingale cases, as in Andrews (1988), Hansen (1991,
1992), Davidson (1993), Davidson and de Jong (1997), and de Jong (1995, 1996,
1998). In some of these studies, such constants may depend on each of the ob-
servations. Analogously, we could potentially let bn and/or gn be dependent on
each i . This manner of treating heterogeneity may allow for more flexibility, but
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we do not pursue this direction, since it makes conditions and proofs more com-
plicated. Our treatment of heterogeneity seems sufficient in many applications.

Remark 5. The results for β ≥ p/(p − 2) in Theorem 2 can be strengthened
to the L2 convergence, which is a direct consequence of Davydov’s inequality
for covariances (see the proof of Theorem 2). While the same inequality also
allows us to derive an L2-convergence rate for β ∈ (0, p/(p − 2)), it is inferior
to ρn = n(p+β)/p(1+β)gn in (6), which seems to illustrate the price of using the
stronger notion of the convergence.

2.2.1. Comparison with Previous Mixingale LLN Results. Here, we compare
our convergence results of Theorems 1 and 2 with previous mixingale LLN results
and discuss advantages of our results in mixing cases. As stated in the Introduc-
tion, Davidson and de Jong (1997) and de Jong (1998) investigated convergence
rates of sums of mixingale sequences/arrays. Since α-mixing arrays can also be
mixingale, we can apply Davidson and de Jong’s results (and other mixingale
LLN results) to the α-mixing cases. To understand this point, we recall the follow-
ing fact: if {Xn,i } is a zero-mean array with each Xn,i being Lp-bounded (p > 1)
and measurable with respect to nF i

1, and if its mixing coefficients satisfy Condi-
tions A2 (i.e., αn (m)≤ Am−β , where we set �= 1 for simplicity), then it is also
Lq -mixingale with its mixingale numbers ζm satisfying

ζm ≤ Ām−β(1/q−1/p) for 1 ≤ q < p, (7)

which follows from Lemma 2.1 of McLeish (1975, p. 834; see also Section 16.1
of Davidson, 1994). To the author’s knowledge, this inequality is the best avail-
able result that relates an α-mixing rate to a mixingale one. For the definition of
Lq -mixingale arrays, see Andrews (1988) or Section 16 of Davidson (1994).

The inequality (7) implies that we can also apply mixingale LLN results to
α-mixing arrays. However, if we do so, some stronger conditions will be needed
and/or less sharp rates will be obtained than if we would directly apply the LLN
results tailored to the mixing arrays as developed here. For example, to apply
Andrews’ (1988) LLN to an α-mixing array {Xn,i }, we need to impose the Lp-
boundedness with p > 1, which is stronger than necessary, while the original
Andrews’ LLN holds under the L1-boundedness (see also Remark 2 above).

To provide another example, we compare our LLN rates with those by
Davidson and de Jong. While their results and ours are not necessarily imme-
diately comparable (as they consider the almost-sure and Lp convergence con-
cepts), we compare our L2 rates in Remark 5 with those in de Jong (1998), which
seems to lead to a fair comparison, illustrating advantages of our LLN theorems
rather than their mixingale LLNs in the mixing environment. Suppose that {Xn,i }
satisfies Condition A1 with β > p/(p − 2) (p > 2) and gn (p) = O (1). In this
case, by Remark 5, it holds that

∥∥∑n
i=1 Xn,i

∥∥
2 = O(

√
n). On the other hand, (7)

implies that {Xn,i } is L2-mixingale with ζm ≤ Ām−β(1/2−1/p), and the application
of de Jong’s (1998, Theorem 7) mixingale LLN leads to
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∥∥∥∥∥
n∑

i=1

Xn,i

∥∥∥∥∥
2

=
⎧⎨
⎩

O
(
n1−β(1/2−1/p)/2

)
for β ∈ (p/(p − 2),2 p/(p − 2)),

O
(√

n logn
)

for β ≥ 2 p/(p − 2),
O
(√

n
)

for β > 2 p/(p − 2),
(8)

whose proof is provided in Appendix A.4. Rates in (8) are inferior to O(
√

n) for
β ≤ 2 p/(p − 2). de Jong’s theorem requires β > 2 p/(p − 2) to obtain the sharp
rate

√
n, which is stronger than necessary, while we can check that the same rate

is attained for β > p/(p − 2).
These two comparisons suggest the benefits of using our results. We do not

claim that our convergence theorems dominate previous mixingale LLNs, but
we argue that they are more likely to derive superior/sharper results if an array
in question is mixing (rather than in the case when the mixingale LLNs were
applied via (7)). We note that it is relatively easy to check mixing properties/rates
of moving-average, autoregressive and Markov processes, as a number of suffi-
cient conditions are available in the literature.

2.2.2. Examples of α-Mixing Arrays. Before concluding this subsection, we
provide two examples that have slowly decaying mixing coefficients. Example 1
satisfies Conditions A1–A2, to which our new theorems are directly applicable.
Example 2 is a near-unit-root (near-nonstationary) process. While this process
does not satisfy (1) of Condition A1 in that αn (m) depends directly on n (even
when � is a constant, say � = 1), the Bernstein-type inequality can still be
employed to derive a LLN result. We take up this example to illustrate the useful-
ness of this technical device.

Example 1
A moving-average process with long lasting past shocks. Let {Xn,i } be
described by

Xn,i = Xi :=
∞∑

j=0

cjεi− j ,

where {εi } is a sequence of independent random variables each of which has the
probability density fi with∫∞
−∞| fi (x)− fi (x + y) |dx ≤ C|y| for any i (with some constant C > 0)

and satisfies supi∈Z E[|εi |δ]<∞ for some δ > 0, and the moving-average coeffi-
cients satisfy

∑∞
j=0 cj z j �= 0 for |z| ≤ 1 (cj ∈ R).

Given these settings, we can derive the decay rate of αn (m) in terms of {cj }
by Gorodetskii’s (1977) theorem. When effects of past shocks εi− j do not die out
sufficiently fast, αn (m) decays slowly (as m → ∞). For example, if cj decays
only polynomially: cj = O( j−q) as j → ∞ with “q > 3/2” and “δ > 2/(q − 1)
or δ ≥ 4,” then it holds that

αn (m)≤ ᾱ (m�)=
{

O
(
m−[δ(q−1)−2]/(1+δ)) for δ < 2q + 1,

O
(
m−q+3/2

√
logm

)
for δ ≥ 2q + 1.

https://doi.org/10.1017/S0266466616000323 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000323


1130 SHIN KANAYA

We note that the polynomial decay of cj (with small q) represents a case in
which the effects of past shocks {εi } do not die out rapidly. If we have δ > 1
and E[εi ] = 0, the result (5) or (6) can be applied with δ = p and

gn =
⎧⎨
⎩

∞∑
j=0

|cj |supi∈Z E[|εi |δ]
/ ∞∑

k=0

|ck |
⎫⎬
⎭

1/δ

= O (1) ,

which can be derived by Jensen’s inequality. If q and/or δ are not sufficiently
large, usual CLTs cannot be used but our previous theorems may still be
applied.

Example 2
Here, we consider a near-unit-root process, as in Stock (1991), Elliott et al.
(1996), and Phillips and Magdalinos (2007; PM, henceforth):

Xn,i = θn Xn,i−1 + ui and θn = 1 − c̄/kn, (9)

where {ui }i≥1 is a sequence of independent random variables with E[ui ] = 0
and maxi≥1 E[|ui |δ] <∞ for δ > 0; X0 = op(

√
kn) is independent of {ui } with

E [X0] = 0; kn is a sequence increasing to ∞ such that kn = o(n) or = n; and
c̄ > 0. This specification of {Xn,i } follows that of PM (while we allow kn to be n
but additionally suppose that E [X0] = 0 and c̄ > 0).

If 1/kn is some positive constant (independent of n), {Xn,i } is a standard
autoregressive process of order 1. Its mixing coefficients decay exponentially fast,
which follows from Gorodetskii’s (1977) theorem. For the case 1/kn = o (1), the
decay rate of mixing coefficients can be derived in the same way (as long as c̄> 0)
but it depends on n. Specifically, the coefficient of {Xn,i } satisfies

αn(m)= O(exp{δ(1 + δ)−1m(logθn)})≤ O(exp{−δ(1 + δ)−1c̄m/kn}), (10)

which can also be derived by Gorodetskii’s (1977) theorem (as it leads to the
upper bound of the α-mixing coefficient for each n), where we have let � = 1
for simplicity (the inequality holds since logθn ≤ −c̄/kn). We note that (9)
behaves like a stable/ergodic autoregressive process in that its mixing coefficients
decay exponentially as m grows for each (fixed) n, while it represents a near-
nonstationary situation in which its autoregressive coefficient θn is (very) close to
1 and the convergence of the mixing coefficients does not occur quickly for large
n (or kn). The convergence rate in the LLN involves kn , as follows:

THEOREM 3. Suppose that {Xn,i } is specified by (9) with δ ≥ 2. Then,∑n
i=1 Xn,i = Op(ρn) with ρn = √

knn as n → ∞.

The condition “δ ≥ 2” is imposed only for simplicity (it may be relaxed, but
a smaller δ will lead to a less sharp rate). This theorem may complement PM’s
limit results for (9). It seems that the literature on processes such as (9) have not
necessarily paid attention to the mixing property of the processes, which can still
be used for establishing asymptotic results.
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2.3. Convergence Rates of Sums Under Infill and Long-Span
Asymptotics

Here, we consider an array whose observation intervals shrink to zero as n → ∞.
The results obtained here are useful for analyzing convergence rates of estimators
for continuous-time processes, as we see in Section 3.

We set out an additional condition:

A3. �−1 ≤ c1T c2 for some c1,c2 > 0 (as �→ 0 and T → ∞ with n → ∞).

This condition may slightly simplify rate expressions in Theorems 4 and 5 for
the intermediate cases β ≥ 1 and β ≥ p/(p − 2), respectively. We can derive con-
vergence results without A3. However, this bound of �−1 can be used to control
the degree of dependence in arrays: if a divergence rate of�−1 is fast beyond this
condition, the dependence between consecutive observations becomes too strong,
which may hamper establishing simple and sharp rate expressions. We also note
that there should be no practical restriction due to Condition A3, since c1 and c2
may be arbitrarily large.

We subsequently write the rate of ρn (given in Condition A2) in terms T (:= Tn)
and �(:= �n). While it may be more reasonable to write ρT ,� instead of ρn (as
pointed out by a referee), we use ρn to avoid writing the same condition using a
different notation (the same remark applies to bn , gn , and δn , which are given in
Condition A2, (4), and Condition A4 below).5

Now, analogously to the fixed-distance case, we present two additional
theorems:

THEOREM 4. Suppose that Conditions A1–A2 hold. Then, for any sequences
{ρn} and {bn} satisfying (2) and

bn

ρn
=
⎧⎨
⎩

O(T −1/(1+β)�) for β ∈ (0,1) ,
O
(
�/

√
T log(T/�)

)
for β ≥ 1,

O(T −1/2�) for β > 1,
(11)

it holds that
∑n

i=1 Xn,i = Op (ρn) as T → ∞ and � → 0 with n → ∞.
If Condition A3 is additionally supposed, then bn/ρn = O(�/

√
T log T ) for β ≥ 1

in (11).

Due to the infill assumption, the rate of ρn depends on the shrinking rate of
�. Given that β is fixed, the smaller � leads to the faster divergence rate of ρn

(or equivalently, the slower shrinking rate of the sample mean). This is because
a small � increases the degree of time-series dependence in the array and makes
consecutive observations highly correlated.

Analogously to (5), if p > 1, we can write ρn in Theorem 4 as follows:

ρn =
⎧⎨
⎩

T (p+β)/p(1+β)�−1gn for β ∈ (0,1) ,
T (p+1)/2p[log(T/�)](p−1)/2p�−1gn for β ≥ 1,
T (p+1)/2p�−1gn for β > 1,

(12)
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where ρn = T (p+1)/2p (log T )(p−1)/2p�−1gn under Condition A3. This result
may not fully exploit the existence of higher order moments. If p > 2, the rate
of ρn is improved:

THEOREM 5. Suppose that Condition A1 holds with p > 2. Then, for a se-
quence {ρn}, such as

ρn =
⎧⎨
⎩

T (p+β)/p(1+β)�−1gn for β ∈ (0, p/(p − 2)) ,√
T log(T/�)�−1gn for β ≥ p/(p − 2),

T 1/2�−1gn for β > p/(p − 2),
(13)

where gn is given in (4), it holds that
∑n

i=1 Xn,i = Op (ρn), as T → ∞ and�→ 0
with n → ∞. If Condition A3 is additionally supposed, then ρn =√

T log T�−1gn

for β ≥ p/(p − 2) in (13).

As can be seen in Theorems 4–5, the sample mean of the array is not convergent
unless T →∞ (e.g., n−1∑n

i=1 Xn,i = Op(gn/
√

T ) for β > p/(p − 2) in Theorem
5). Note that both the infill and long-span assumptions are often necessary in drift
function estimation, as in the next section (see p. 243 of Bandi and Phillips, 2003;
Section 5 of Kristensen, 2010).

Remark 6. The rate for β > p/(p − 2) is sharp and corresponds to the rate
obtained in the CLT for continuously observed processes. To see this point, let
Xa

n,i := ∫�(2i−1)
�2(i−1) Zsds and Xb

n,i := ∫ �2i
�(2i−1)Zsds, where {Zs}s≥0 is a zero-mean

continuous-time process with sups≥0 ‖Zs‖p = O (1) for p > 2, whose mixing
coefficients satisfy αZ (s) ≤ As−β . We can then write

∫ T
0 Zsds =

n∑
i=1

(
Xa

n,i + Xb
n,i

)+ ∫ T
n Zsds.

Applying Theorem 5, we obtain
∫ T

0 Zsds = Op(
√

T ), since
∑n

i=1 Xk
n,i =

Op
(
T 1/2�−1 supi≥1

∥∥Xk
n,i

∥∥
p

) = Op(
√

T ) for k = a,b, supi≥1

∥∥Xk
n,i

∥∥
p = O (�)

and
∫ T

n Zsds = Op (1). Note that the rate of
∫ T

0 Zsds may also be derived using
Theorems 1 or 2 analogously.

Before concluding this subsection, we present a simple example of a
continuous-time process to which our convergence results are relevant.

Example 3
A diffusion process with weak mean-reversion drift. Let {Zs}s≥0 be an R-
valued, continuous-time diffusion process defined through (a weak solution to)
the following stochastic differential equation:

d Zs = μZ (Zs)ds + dWs,

where μZ (·) is the drift function; {Ws}s≥0 is a standard Brownian motion; and
the process is supposed to start from some constant z0 ∈ R, i.e., Z0 = z0.6 If the
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drift function satisfies

μZ (z)≤ −r/z for z ≥ M0, and μZ (z)≥ −r/z for z ≤ −M0, (14)

for some r > 1/2 and M0 ≥ 0, then we can find the decay rate of α-mixing coef-
ficients of the process {Zs} and its uniform moment bound:

αZ (t) ≤ At−β for any β < (0,r − 1/2);

sups≥0 E[|Zs|p]<∞ for any p ∈ (0,2r) ,

where A (> 0) is some positive constant and αZ (t) stands for the mixing co-
efficient for the continuous-time process {Zs} (see the definition in note 4).
These results follow from Section 5.3 of Chen, Hansen, and Carrasco (2010)
and Lemma 1 of Veretennikov (1997). In this example, the mixing rate and
the moment existence rely directly on the parameter r . The condition (14) on
μZ (·) represents a case in which the drift function’s effect of the mean-reversion
is very weak.7 If {Xn,i } is an array of (normalized) discrete-time observations
from {Zs}, say, Xn,i = (Z�i − E[Z�i ]), then its mixing coefficients satisfy
αn (m) ≤ A (m�)−β and the uniform moment bound gn = gn (p) is well-defined
for p ∈ (0,2r). Therefore, we can apply the rate results of (12) and (13). In par-
ticular, for a small r , we cannot obtain a sufficiently fast convergence rate.

3. NONPARAMETRIC DRIFT FUNCTION ESTIMATION OF
CONTINUOUS-TIME PROCESSES

3.1. Continuous-Time Framework

We now apply the results from Section 2 to the drift function estimation for
continuous-time processes. We pay particular attention to processes with (rela-
tively) strong time-series dependence and nonexistence of higher-order moments,
both of which may be prominent features in financial data. We consider the fol-
lowing type of continuous-time process:

dYs = μ(Zs−)ds + dUs, (15)

where {Ys} and {Zs} are real-valued càdlàg processes defined on a filtered prob-
ability space (�,F,{Fs}s≥0 ,Pr), and {Us} is a martingale process on the same
space. We suppose that each process is adapted to the filtration {Fs} and μ(·) is a
continuous function. μ(·) is termed the drift (or instantaneous conditional mean)
function. This general specification, called the martingale regression, has been
proposed by Park (2009) (see also Kim and Park, 2016). It includes many inter-
esting models used in the fields of economics and finance. A leading example is a
univariate diffusion process with Ys = Zs and dUs = σ (Zs)dWs , where {Ws} is a
standard Brownian motion and σ (·) is a volatility function.8 As an example with
Ys �= Zs , we note that (15) may be used to construct a continuous-time analog of
a long run risk model, as in Bansal and Yaron (2004). For other examples, see our
subsequent arguments on Conditions B4 and B5 as well as Park (2009).
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Given a set of observations sampled at discrete-time points,
{(Yi�, Zi�) : 1 ≤ i ≤ n + 1} (with n = T/�), we consider the following
nonparametric estimator of the drift function μ(·):
μ̂ (z) := η̂ (z)/π̂ (z) ,

where

η̂ (z) := 1

T

n∑
i=1

Kh (Zi�− z)[Y(i+1)�− Yi�];

π̂ (z) := �

T

n∑
i=1

Kh (Zi�− z) ;

Kh (x) := K (x/h)/h; K is a kernel function; and h is a smoothing parameter
(bandwidth). By using the results obtained in Section 2, we investigate the con-
vergence rate of μ̂ (z). To this end, we impose the following conditions:

B1. The support of K (:R→R) is bounded (say, it is included in [−cK ,cK ] for
some cK ∈ (0,∞)), and satisfies

∫∞
−∞ K (x)dx = 1;

∫∞
−∞ x K (x)dx = 0;

and supx∈R |K (x)| ≤ K̄ for some K̄ (<∞).

B2-i. {Zs}s≥0 is an α-mixing process whose mixing coefficients satisfy αZ (t)≤
At−β for some A,β > 0.

B2-ii. The drift function μ(z) is differentiable at z and each Zs has the
marginal density πs (·); and there exists some ε̄(> 0), such that
sup|ε|≤ε̄

∣∣μ′ (ε+ z)
∣∣<∞ and sups≥0; |ε|≤ε̄ πs (z + ε) <∞.

Condition B1 is standard, except for the boundedness of the support. While
some kernels (such as the normal one) are excluded, this condition allows us to
work without imposing the boundedness of the moment (say E[|μ(Zs)|p]<∞).
If some kernel with an unbounded support is employed, the existence of some
(higher-order) moment is likely to be a required condition. Condition B2 allows
for some sort of nonstationarity/heterogenous process, e.g., the process need not
be initialized by the invariant distribution, while it excludes strongly nonstation-
ary processes (such as null-recurrent processes). While many parametric mod-
els used in the econometric literature turn out to be geometrically α-mixing, we
can easily find exceptions, as in Example 3 (see also Veretennikov, 1997, 1999).
Chen et al. (2010) also present a class of Markov diffusion processes with very
slowly decaying mixing coefficients.9 They observe that such processes look like
long memory processes from the vantage point of sample statistics. Note also that
diffusion processes with the so-called volatility-induced stationary (see Conley,
Hansen, Luttmer, and Scheinkman, 1997), which may look like unit-root pro-
cesses, often fail to possess higher-order moments, as argued and exemplified
in Nicolau (2005). These kinds of processes are also allowed under Condition
B2. Additionally, notice that Condition B2-i does not imply the Markov property
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of processes. While several mixing results available in the literature are derived
using the Markov condition, we do not exclude non-Markov cases.

3.2. Effects of Discretized Observations

In this subsection, we illustrate that our convergence results under the infill
assumption “� → 0” (Theorems 4–5) are particularly useful in the context of
kernel-based estimation for a continuous-time process {Zs}s≥0. As we can see
below, one has to incur some sort of discretization bias in such estimation since
only the availability of discretized observations {Zi�}n

i=1 has been assumed
(instead of that of a continuous trajectory). Roughly speaking, we can think of
(at least) two ways to verify the estimator’s convergence. Here, we show that one
approach based on fully discretized processes may allow us to derive a sharper
rate for the discretization biases than the other one based on fully continuous-time
processes in the mixing/ergodic environment, and the former approach requires
the rate results based on the infill assumption (as Theorems 4–5).

Now, consider the following decomposition of the nonparametric drift
estimator:

μ̂ (z)−μ(z)= [
ξ̃ (z)+ ψ̃ (z)]/π̂ (z) ,

where

ξ̃ (z) := 1

T

n∑
i=1

Kh (Zi�− z)
∫ (i+1)�

i�
[μ(Zs−)−μ(z)]ds;

ψ̃ (z) := 1

T

n∑
i=1

Kh (Zi�− z)[U(i+1)�−Ui�].

Note that we have the regressor process {Zt } evaluated at t = i� (a sample time)
as well as at all t ∈ [i�,(i + 1)�] (not necessarily sample times) in each sum-
mand of ξ̃ (z).

3.2.1. Decomposition with a Fully Discretized Process. For the first approach
mentioned above, we further decompose ξ̃ (z) into

ξ̃ (z)= 1

nh

n∑
i=1

X̃n,i + 1

nh

n∑
i=1

E

[
K

(
Zi�− z

h

)
[μ(Zi�)−μ(z)]

]
+ 1

T h

n∑
i=1

κ̃n,i , (16)

where

X̃n,i := K

(
Zi�− z

h

)
[μ(Zi�)−μ(z)]− E

[
K

(
Zi�− z

h

)
[μ(Zi�)−μ(z)]

]
;

κ̃n,i := K

(
Zi�− z

h

)∫ (i+1)�

i�
[μ(Zs−)−μ(Zi�)]ds.

We call the first term (1/nh)
∑n

i=1 X̃n,i on the RHS of (16) as a fully discretized
component, as {Zs} is only evaluated at sample times. The convergence rate of this
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term can be obtained using Theorem 4 or 5. The second term is the bias due to
smoothing. The third term (1/T h)

∑n
i=1κ̃n,i is the discretization bias that appears

only when estimating continuous-time processes from discrete observations. In
this discretization term, {Zs} also needs to be evaluated at nonsample points, but
such an evaluation occurs only when it is put outside the kernel function.

3.2.2. Decomposition with a Fully Continuous-Time Process. Another way
of decomposition other than (16) is also possible:

ξ̃ (z)= 1

T h

∫ T

0
X̃c

s ds + 1

T h

∫ T

0
E

[
K

(
Zs− − z

h

)[
μ(Zs−)−μ(z)

]]
ds − 1

T h

n∑
i=1

κ̃c
n,i , (17)

where

X̃ c
s := K

(
Zs− − z

h

)
[μ(Zs−)−μ(z)] − E

[
K

(
Zs− − z

h

)
[μ(Zs−)−μ(z)]

]
;

κ̃c
n,i :=

∫ (i+1)�

i�

[
K

(
Zs− − z

h

)
− K

(
Zi�− z

h

)]
μ(Zs−)ds.

The first term (1/T h)
∫ T

0 X̃ c
s ds on the RHS of (17) is defined through an integral

(rather than a sum of discretized components), where {Zs} has to be evaluated at
all t ∈ [0,T ]. The second and third terms on the RHS of (17) are also smoothing
and discretization biases, respectively, while their expressions are different from
those in (16) due to the different nature of the decomposition.

3.2.3. Comparison of the Two Decompositions. We can usually show that the
convergence rates of (1/nh)

∑n
i=1 X̃n,i and (1/T h)

∫ T
0 X̃ c

s ds are the same and
that those of the smoothing biases in (16) and (17) are also the same. How-
ever, the convergence rate of (1/T h)

∑n
i=1κ̃n,i in (16) may be different from

that of (1/T h)
∑n

i=1κ̃
c
n,i in (17). In general, we are able to show that the rate

of (1/T h)
∑n

i=1κ̃n,i is faster than that of (1/T h)
∑n

i=1κ̃
c
n,i . This is the advantage

of using the decomposition with fully discretized processes, whose convergence
needs to be analyzed by limit results under the infill scheme, as in Theorem 4 or 5.

If we can find some uniform rate δn (→ 0 as n → ∞) (or assume its existence),
such that

max1≤i≤n sups∈[i�,(i+1)�] |Zs − Zi�| = Op(δn) as T,n → ∞ and �→ 0,

which may hold for continuous diffusion processes (see our subsequent discus-
sions on B4), then we are able to show that (1/T h)

∑n
i=1κ̃n,i = Op(δn), as in

Theorem 7. However, it is likely that (1/T h)
∑n

i=1κ̃
c
n,i can be shown to be only

Op(δn/h) or to shrink at a slower rate. This is because we need to evaluate
the difference between Zs− and Zi�

(
for κ̃c

n,i

)
, which is on the inside of K (·),

taking into account its interaction with 1/h(→ ∞). Bandi and Phillips (2003)
and Aı̈t-Sahalia and Park (2016) have considered decompositions with fully
continuous-time processes, as in the second one (17). Bandi and Phillips
assume that

https://doi.org/10.1017/S0266466616000323 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000323


CONVERGENCE RATES OF SUMS OF α-MIXING ARRAYS 1137

max1≤i≤n sups∈[i�,(i+1)�] |Zs − Zi�| = Oa.s.(δn) with δn =√
� log (1/�), (18)

for continuous diffusion processes (see Section A.3 for related results), and their
convergence rates of nonparametric estimators include a term

√
� log(1/�)/h,

which is assumed to be o (1).10 Aı̈t-Sahalia and Park (2016) impose the condition
�/h4 = o (1) (see their Assumption 4 for the drift estimation), which guarantees
the negligibility of discretization biases (relative to smoothing biases). Since the
obtained convergence rates of the discretization biases are slower, we need to im-
pose more restrictive conditions on the shrinking rates of h and� in the approach
with (17) than in that with (16).

For more details, look at

1

T h

n∑
i=1

κ̃c
n,i = 1

T h

n∑
i=1

∫ (i+1)�

i�
K ′

(
Zs− − z

h
+ Oa.s.

(
Zs− − Zi�

h

))

× Zs− − Zi�

h
μ(Zs−)ds, (19)

where the equality follows from the Taylor expansion under the differentiability
of K . Given (19), if (18) were assumed with

√
� log(1/�)/h → 0, we could

obtain (1/T h)
∑n

i=1κ̃
c
n,i = Op(

√
� log(1/�)/h), since

1

T h

n∑
i=1

∫ (i+1)�

i�

∣∣∣∣K ′
(

Zs− − z

h
+ Oa.s.

(
Zs− − Zi�

h

))∣∣∣∣ |μ(Zs−)|ds = Op (1) , (20)

where we will outline how to prove this result (20) in Appendix A.4. We also note
that Aı̈t-Sahalia and Park’s (2016) results and derivations (e.g., Lemmas 10–12)
may be used to compare the two types of decompositions.

Before concluding this subsection, note that for non-stationary/nonergodic
Markov processes, it is often more convenient to consider decompositions with
fully continuous-time processes as (17) (rather than ones as (16)), which allow us
to exploit integral forms, as

∫ T
0 X̃ c

s ds, and use some mathematical devices, such
as the local time and occupation time formulae in Bandi and Phillips (2003). Aı̈t-
Sahalia and Park (2016), Jeong and Park (2014), and Kim and Park (2016) have
made significant contributions to asymptotic theory in this line for null-recurrent
Markov diffusion processes. The two approaches outlined here may be seen as
complementary to each other.

3.3. Convergence Results for the Non-Parametric Drift Estimator

We now present the convergence results for the estimator μ̂ (z), which is based on
the decomposition in (16):

THEOREM 6. Suppose that Conditions (B1)–(B2) hold. Then, for any ν ∈
(0,1/2),

1

nh

n∑
i=1

X̃n,i = Op(ρ
μ
n ) with ρμn =

{
T −β/(1+β)[T β/(1+β)h

]ν
if β ∈ (0,1],

T −1/2hν if β > 1,
(21)
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as T → ∞ and �→ 0 with n → ∞, where the bandwidth h is chosen so that
ρ
μ
n → 0.

This is a direct application of Theorem 5. The parameter ν ∈ (0,1/2) may be
chosen arbitrarily, which corresponds to the existence of any arbitrary order mo-
ment of X̃n,i under Condition B2-ii. For β ∈ (0,1], we can have a shrinking rate
arbitrarily close to T −β/(1+β) (by letting ν very small) if the bandwidth is selected
as h = O(T −b) for some b ∈ (0,1), which is likely to be a standard choice (say,
b = 1/5), balancing the effects of the variance and smoothing bias components,
i.e., the term ψ̃ (z) and the second term on the RHS of (16), respectively.

To complete our analysis of μ̂ (z), we also present the convergence results for
the other terms. To this end, we consider the following conditions:

B3. πs (·) and μ(·) are continuously twice differentiable satisfying

sup
s≥0

∫
R

|π ′′
s (z) |dz <∞ and sup

s≥0

∫
R

|l ′′s (z) |dz <∞,

where ls (z) := μ(z)πs (z).
B4. {Zs} and μ(·) satisfy either of the following conditions:

max
1≤i≤n

sup
s∈(i�,(i+1)�]

|μ(Zs−)−μ(Zi�)| = Op (δn) or (22)

max
1≤i≤n

sup
s∈(i�,(i+1)�]

‖μ(Zs−)−μ(Zi�)‖1+ε = O (δn) for some ε > 0, (23)

where {δn} is some positive sequence tending to 0 as n → ∞, and

‖·‖1+ε := {
E
[| · |1+ε]}1/(1+ε)

.

B5. {Us} is described by

dUt = σs−dWs +
∫
R\{0}

φU
s− (x)(JU − vU )(ds,dx) , (24)

where {Ws} is a standard Brownian motion; {σs} is an adapted càdlàg
process; JU is a Poisson random measure with intensity measure
νU (ds,dx)= ds FU (dx); FU is a σ -finite measure; φU

s (x)(ω) is a map on
�× [0,∞)×R into R that is Fs ×B (R)-measurable for all s and càdlàg
in s; and

∫ t
0

∫
R\{0} |φU

s− (x) |2 FU (dx)ds <∞ almost surely for any t > 0.
For some ε > 0, it holds that

sup
s≥0

∥∥σ 2
s +

∫
R\{0}

∣∣φU
s (x)

∣∣2 FU (dx)
∥∥

1+ε <∞.

Condition B3 is quite standard. The condition (22) in B4 holds with δn = �γ

for any γ ∈ (0,d/c)⊂ (0,1/2) if {Zs} satisfies

E[|Zs − Zt |c] ≤ C|s − t|1+d , (25)

for some positive constants C , c, and d (independent of s and t). If {Zs} is a
continuous diffusion process, such as
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d Zs = aZ (Zs)ds + θZ (Zs)d Bs, (26)

where {Bs} is a standard Brownian motion, we may be able to show that

sup0≤s<t<T ; |s−t |≤δ |Zs − Zt | = Op
(√
δ log(1/δ)

)
as δ → 0 and T → ∞,

under certain conditions (see discussions on the global modulus of continuity in
Kanaya, 2016). We can then let δn =√

� log (1/�) in (22), which may be satisfied
by Example 3. We provide some more discussions on the two cases (25) and (26)
in Appendix A.3.

We can show that the condition (23) in B4 holds with δn = O
(
�1/2

)
if {Zs} is

driven by a semimartingale of the following type:

d Zs = asds + θs−d Bs +
∫
R\{0}

φZ
s− (x)(JZ − vZ )(ds,dx), (27)

and if all of the following components, ‖μ′ (Zs)as‖q , ‖μ′′ (Zs)θ
2
s ‖q ,

‖μ′ (Zs)θs‖2, E[
∫
R\{0}|μ

(
Zs +φZ

s (x)
) − μ(Zs) |2 FZ (dx)], and

‖μ′ (Zs)
∫
R\{0}φZ

s (x)FZ (dx)‖q , are bounded uniformly over s ≥ 0 for some

q ∈ (1,2].11 A specification similar to (27) can be found in Todorov (2011),
where similar moment conditions are also imposed.

The specification (24) of {Us} in Condition B5 is quite general, including pro-
cesses described by Lévy-type stochastic differential equations, and it covers
almost all models used in the economics/finance literature. While we assume for
simplicity that both the Brownian and Poisson components are univariate, they
may be multivariate. Finally, the moment conditions imposed in B4 and/or B5
may be too strong for some classes of processes. Even in such cases, we may
be able to derive the convergence rate of the estimators by using the damping
function approach considered in Kanaya (2016).

THEOREM 7.

(i) Under Conditions B1 and B3,

1

nh

n∑
i=1

E

[
K

(
Zi�− z

h

)
[μ(Zi�)−μ(z)]

]
= O(h2),

as h → 0 (with n → ∞).

(ii) Under Conditions B1, B2-ii, and B4, (1/T h)
∑n

i=1κ̃ni = Op (δn) as
T → ∞ and h,�→ 0 (with n → ∞).

(iii) Under Conditions B1, B2-ii, and B5, ψ̃ (z) = Op
(
1/

√
T h

)
as T → ∞

and h,�→ 0 (with n → ∞).

These convergence results do not rely on the mixing condition, where we note
that the last one (iii) is derived by the martingale condition B5 and that the regres-
sand process {Ys} is not necessarily mixing.

We can show that π̂ (z) is Op (1) in the same way as in Theorem 6 under
Conditions B1–B2. Therefore, given the results of Theorems 6–7, we have
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μ̂ (z)−μ(z)= Op
(
ρμn

)+ Op(δn)+ O
(

h2
)

+ Op

(
1/

√
T h

)
. (28)

It is often assumed that the discretization bias is negligible (relative to the
last term on the RHS) by setting δn

√
T h → 0, which typically corresponds

to “�γ
√

T h → 0” or “
√
� log(1/�)T h → 0” (see the previous arguments on

Condition B4).

3.3.1. Bandwidth Rate. According to the rate result (21) of Theorem 6, if
β > 1, the term Op

(
ρ
μ
n
)

in (28) is negligible, relative to Op
(
1/

√
T h

)
(always,

with any choice of the bandwidth h → 0), since ρμn
√

T h = hν+1/2. Accordingly,
the asymptotic distribution of μ̂ (z) is determined by ψ̃ (z), the sum of the mar-
tingale differences (the last term on the RHS of (28)). However, when β ∈ (0,1],
the choice of the bandwidth may matter to the relative magnitude of Op

(
ρ
μ
n
)

to
Op

(
1/

√
T h

)
. For example, if we let h = O

(
T −1/5

)( �= o
(
T −1/5

))
, then

ρμn
√

T h = T [1−(β−2ν)]/2(1+β)h(1+2ν)/2

= O
(

T (2−ν)/5−β(1−ν)/(1+β)) , (29)

We note that
2 − ν

5
− β (1 − ν)

1 +β ≥ 0 ⇔ 2 − ν
3 − 4ν

≥ β and also

supν∈(0,1/2)
2 − ν
3 − 4ν

= 3/2,

which exceeds 1. Therefore, given this (standard) bandwidth h = O(T −1/5),
the order of ρμn is greater than Op

(
1/

√
T h

)
for any β ∈ (0,1]. This situation

may arise for the process in Example 3 if the mean-reversion effect of the pro-
cess is weak (in particular, when the parameter r in (14) is equal to or less
than 3/2).

If β ∈ (0,1] and we want to have the negligibility of ρμn (relative to 1/
√

T h, in
order to obtain the asymptotic normality), then we must have a faster shrinking
rate of h. That is, if we consider the form of h = O(T −b), b ∈ (0,1) must be

large with β >
(1 − b)(1 + 2ν)

b (1 + 2ν)+ 1
or equivalently b >

(1 −β+ 2ν)

(1 + 2ν)(1 +β) for some

ν ∈ (0,1/2), which can be obtained by plugging h = O(T −b) into (29), implying
that b must satisfy at least

b > infν∈(0,1/2)
1 −β+ 2ν

1 + 2ν+β = 1 −β
1 +β . (30)

For β close to 0, one has to have b close to 1. If one fails to select b satisfying
(30), the asymptotic property of μ̂ (z) may be determined by (1/nh)

∑n
i=1 X̃n,i

and the asymptotic normality may not necessarily hold. It is uncertain whether
one can construct some reasonable inference procedure in this case while only the
consistency is guaranteed by Theorems 6–7, as long as h = O(T −b)( �= o(T −b))
for any b ∈ (0,1).
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4. CONCLUSION

We have derived the convergence rates of the sums of α-mixing arrays for the
cases where their mixing coefficients decay slowly and/or the higher-order mo-
ments do not exist. Our results may fill the gap between the CLT and LLN
under the mixing environment and complement previous convergence rate results
for weakly dependent time series (e.g., mixingale LLNs, as in Andrews, 1988;
Davidson and de Jong, 1997; de Jong, 1998). We have also showed that our tech-
niques, based on the Bernstein-type inequality, may be applied to a near-unit-root
process. The fact that such processes may also be analyzed in the mixing frame-
work does not seem to have attracted attention in the literature.

This paper may also contribute to the high-frequency econometrics litera-
ture, where double (infill and long-span) asymptotics are often necessary to es-
timate economically interesting objects (such as risk-preference parameters) in
the continuous-time framework. Limit theorems used in this literature usually
rely on a Markov or (semi) martingale type assumption. For the Markov diffu-
sion case, Aı̈t-Sahalia and Park (2016), Jeong and Park (2014), and Kim and Park
(2016) have recently provided extensive studies of limit theorems under double
asymptotics. This paper’s results may complement their theorems, as the former
are based on the mixing assumption and are applicable to non-Markov processes
(as well as non-semi-martingales).

NOTES

1. For the conditions under which the CLT for a mixing process holds (or fails to hold), see
Ibragimov (1962), Chapter 18 of Ibragimov and Linnik (1971), Bradley (1985, 1988), Merlevède,
Peligrad, and Utev (2006), and the references therein.

2. For LLNs in the mixingale case, see also McLeish (1975), Andrews (1988), Hansen (1991,
1992), Davidson (1993), and de Jong (1995, 1996).

3. Phillips (1987) showed that the infill limit of a regression estimator was represented as a func-
tional of a Brownian motion. He discussed that such a representation was particularly useful to explain
the estimator’s (finite-sample) behavior.

4. The α-mixing coefficients of a continuous time process are defined analogously: for a process
{Zs : s ≥ 0} defined on a filtered probability space (�,F,{Fs}s≥0,Pr),

αZ (t) := sup
s≥0

sup{|Pr(A∩ B)−Pr(A)Pr(B)| : A ∈ F∞
t+s , B ∈ Fs

0},

where Fu
t is the σ -algebra generated by {Zs : s ∈ [t,u]}. If Xn,i = Zi� , we can set ᾱ(·)= αZ (·).

5. We also note that the rates of T (= Tn) and �(= �n ) may be written in terms of n through the
definition n = T/� and Condition A3. Then, we can regard Tn → ∞ and �n → 0 as n → ∞.

6. We can also think of more general cases: (i) Z0 follows some distribution, (ii) {Zs } is a general
diffusion process with its nonconstant diffusion function (say, d Zs = μZ (Zs )ds + σZ (Zs )dWs ),
and/or (iii) it is of multi-dimension. Mixing rates and moment bounds for these cases are investigated
in Veretennikov (1997).

7. For instance, compare (14) with a linear-drift case (possessing a strong mean-reversion prop-
erty): μ̃Z (x) = κ (m − z) with κ > 0 and m ∈ R. Given this drift specification, the process is pulled
toward m: for a sufficiently large positive (resp. small negative) value of z, μ̃Z (x) takes a very small
negative (resp. large positive) value.

8. We note that the specification (15) allows for general diffusion and stochastic volatility pro-
cesses. This can be understood by writing dUs in terms of a (formal) integral expression. For
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example, in the case of a stochastic volatility process with a spot volatility process {σs }, we have
Ut −U0 = ∫ t

0 σs dWs , which is equivalently written as dUs = σs dWs by convention.
9. Veretennikov (1997, 1999) and Chen et al. (2010) present some conditions for processes to be

polynomially β-mixing. Their conditions can be used to check Condition B2-i, since α-mixing coeffi-
cients are always smaller than β-mixing ones. In addition, in view of Bradley (2005, Section 4.2), where
he observes that various mixing conditions can occur simultaneously at essentially the same decay rate,
we note that to investigate a sharp α-mixing rate of a process, it is often sufficient to investigate its sharp
β-mixing rate (e.g., if β-mixing coefficients of some process decay at the (exact) rate of t−c with some
c > 0, then its α-mixing coefficients are less likely to decay at a faster rate of t−d with some d > c).

10. Bandi and Phillips (2003) imposed the condition that L̄ Z (T, z)
√
� log (1/�)/h = oa.s. (1) for

their asymptotic distribution result, where L̄ Z (T, z) is the chronological local time of {Zs }. This
condition corresponds to T

√
� log (1/�)/h = o (1) in ergodic cases like ours.

11. {Bs} is a standard Brownian motion; {as} is locally bounded and predictable; {θs } is adapted
and càdlàg; and the other components of the last term on the RHS of (27) are defined analogously to
those in (24).
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APPENDIX A

A.1. Proofs of Primary Convergence Results

Proofs of Theorems 1–5. We follow similar steps in the proofs of Theorems 1–5. Here,
we outline points that are common among them. Further details tailored to each theorem
are provided subsequently. First, we split the sum of {Xn,i } into two parts:

n∑
i=1

Xn,i =
n∑

i=1

Zn,i +
n∑

i=1

Z̃n,i , (A.1)

where

Zn,i := Xn,i 1(|Xn,i | ≤ bn)− E[Xn,i 1(|Xn,i | ≤ bn)];
Z̃n,i := Xni 1(|Xn,i |> bn)− E[Xn,i 1(|Xn,i |> bn)].

We can complete the proof if both terms on the RHS of (A.1) are shown to be Op (ρn) and
the rate of ρn is as given in each of Theorems 1–5.

For Theorems 1 and 4, we have
∑n

i=1 Z̃n,i = Op(ρn) by Condition A2 and the assump-

tion that E[|Xn,i |] < ∞. For Theorem 3, we derive the rate of
∑n

i=1 Z̃n,i (below). For
Theorems 2 and 5, we use the Markov inequality: for any a > 0,

Pr

⎛
⎝
∣∣∣∣∣∣

n∑
i=1

Z̃n,i

∣∣∣∣∣∣ ≥ aρn

⎞
⎠≤ a−1ρ−1

n E

⎡
⎣
∣∣∣∣∣∣

n∑
i=1

Z̃n,i

∣∣∣∣∣∣
⎤
⎦

≤ a−1ρ−1
n 2

n∑
i=1

E
[|Xn,i |p]/bp−1

n

≤ a−12ng p
n /ρnbp−1

n , (A.2)

where the second inequality follows from the triangle inequality and the last inequality
follows from the definition of the uniform moment bound in (4). The majorant side of (A.2)
can be made arbitrarily small for sufficiently large a; therefore, we obtain

∑n
i=1 Z̃n,i =

Op (ρn) if ng p
n /b

p−1
n = O (ρn). We subsequently show that ng p

n /b
p−1
n = O (ρn) with ρn

specified in (6) or (13).
To derive the rate of

∑n
i=1 Zn,i , we use the Bernstein-type inequality in the proofs of all

five theorems. We define the covariance process of {Zn,i } as

D (n,m) := sup0≤ j≤n−1 E

⎡
⎢⎣
⎛
⎝min{j+m,m}∑

i= j+1

Zn,i

⎞
⎠

2
⎤
⎥⎦ (for m = 1, . . . ,n). (A.3)
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Note that E[Zn,i ] = 0, |Zn,i | ≤ 2bn , and {Zn,i } has the same mixing coefficient as {Xn,i }.
Then, by Theorem 2.1 of Liebscher (1996), for any arbitrary a> 0 and each positive integer
m satisfying

m ≤ n and 4m (2bn) < aρn , (A.4)

it holds that

Pr

⎛
⎝
∣∣∣∣∣∣

n∑
i=1

Zn,i

∣∣∣∣∣∣ ≥ aρn

⎞
⎠≤ 4exp

{
− (aρn)

2

64n D (n,m)/m + (8/3) (aρn)m (2bn)

}

+4
n

m
αn (m) . (A.5)

We derive the bound of D (n,m) and choose an appropriate pair of m and bn in the proof of
each theorem. We also illustrate that for a large enough, the majorant side can be arbitrarily
small (as n → ∞), which means

∑n
i=1 Zn,i = Op (ρn).

Proof of Theorem 1. Given the previous arguments, we first derive the bound of
D (n,m) (whose proof is provided in Section A.4):

LEMMA A.1. There exists some constant ω(> 0) such that

D (n,m) ≤
⎧⎨
⎩
ωb2

nm2−β for β ∈ (0,1) ,
ωb2

nm logm for β ≥ 1,
ωb2

nm for β > 1.
(A.6)

Now, suppose that β ∈ (0,1). Letting int [x] denote the integer part of x , we set m =
int[

√
an1/(1+β)] and bn = ρnn−1/(1+β), both of which satisfy the conditions in (A.4) for

any a (> 0) if n is large enough. Then, by (1) with D (n,m)≤ωb2
nm2−β in (A.6), the RHS

of (A.5) is bounded by

4exp

{
− a2

64ωa(1−β)+ (16/3)a3/2

}
+4An/int[

√
an],

and we can let Pr(|∑n
i=1 Zn,i | ≥ aρn) be arbitrarily small for a large enough. This implies

the desired result for β ∈ (0,1). If β = 1 (resp. β > 1), we set bn = ρnn−1
√

logm (resp.
bn = ρnn−1/2). This bn , together with m = int[

√
an1/(1+β)], satisfies (A.4) for any n

large enough. Then, given the corresponding bound of D (n,m) in (A.6), we can show that∑n
i=1 Zn,i = Op (ρn) by the same argument. The proof is now complete. �

Proof of Theorem 2. First, consider the case where β (p −2)/p ∈ (0,1). Given any
arbitrary a (> 0), we set m = int[

√
an1/(1+β)] and bn = ρnn−1/(1+β) (these m and bn

satisfy (A.4) for n large enough). Then, we apply (A.5) to
∑n

i=1 Zn,i with the following
covariance bound:

D (n,m) ≤ ωg2
nm2−β(p−2)/p, (A.7)

where p > 2; β(p − 2)/p ∈ (0,1); ω(> 0) is some constant; and gn is defined in (4).
Given ρn in (6), we can show that Pr(|∑n

i=1 Zni | ≥ aρn)→ 0 as a → ∞, as in the proof
of Theorem 1. This, together with (A.2), implies that

n∑
i=1

Xn,i = Op(ρn)+ Op
(
ng p

n /b
p−1
n

)
.
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Therefore, we can complete the proof if we show that ng p
n /b

p−1
n = O (ρn).

Since bn = ρnn−1/(1+β) and ρn = n(p+β)/p(1+β)gn , it holds that ng p
n /b

p−1
n =

O(n(p+β)/p(1+β)gn)= O(ρn). Now, we have obtained the desired result.
For the cases where β (p −2)/p = 1 and > 1, we compute the L2-bound of

∑n
i=1 Xn,i

by using Davydov’s inequality, which allows us to derive the same convergence rate as
when using the Bernstein-type inequality but with a stronger notion of the L2-convergence
(rather than the convergence in probability). By Davydov’s inequality (Corollary 1.1 of
Bosq, 1998), we have

γn (l) := sup1≤k≤n−l |Cov
(
Xn,k , Xn,(k+l)

) |
≤ 4p

(
2Al−β

)(p−2)/pg2
n = O

(
l−β(p−2)/pg2

n
)
, (A.8)

uniformly over l . Then,

E

⎡
⎢⎣
∣∣∣∣∣∣

n∑
i=1

Xn,i

∣∣∣∣∣∣
2
⎤
⎥⎦ ≤

n∑
i=1

E
[
X2

n,i
]+2n

n−1∑
l=1

γn (l)

≤ ng2
n + O

(
ng2

n
)× n−1∑

l=1

l−β(p−2)/p. (A.9)

The bound of
∑n−1

l=1 l−β(p−2)/p can be computed as

n−1∑
l=1

l−β(p−2)/p ≤
{

1+∫ n
1 x−1dx = 1+ logn for β = p/(p −2) ,

1+∫∞
1 x−β(p−2)/pdx ≤ 1+ 1

β(p−2)/p−1 for β > p/(p −2) .
(A.10)

This, together with (A.9), implies

E

⎡
⎣
∣∣∣∣∣

n∑
i=1

Xn,i

∣∣∣∣∣
2
⎤
⎦ =

{
ng2

n + O
(
ng2

n

)× [1+ log n] = O
(
n (logn)g2

n

)
for β = p/(p −2) ,

ng2
n + O

(
ng2

n

)× [
1+ 1

β(p−2)/p−1

]= O
(
ng2

n

)
for β > p/(p −2) .

Therefore, we have shown the desired result: E
[∣∣∑n

i=1 Xn,i
∣∣2] = Op(

√
n logngn) for

β = p/(p −2) and = Op(
√

ngn) for β > p/(p −2), completing the proof. �

Proof of Theorem 3. Since the mixing coefficient satisfies αn (m) ≤
O(exp{δ(1+ δ)−1m logθn}) as in (10), we can find some ω ∈ (0,∞), such that

Dn,m = O
(
ωmb2

n
[
1+ 1

logθn
exp

{
δ(1+ δ)−1m logθn

}])
≤ ωmb2

n
[
1+kn exp{−c̃m/kn}] ,

where c̃ := δ(1 + δ)−1c̄; the first equality follows from arguments similar to those for
(A.8)–(A.10); and the last inequality holds since 1

logθn
= O(kn) and logθn ≤ −c̄kn . By the

proof of Lemma 3.1 of Phillips and Magdalinos (2007), we have
∑n

i=1 X2
n,i = Op(nkn).

Now, we set bn = ρn/
√

nkn and ρn = √
nkn , which together with E[|Xn,i |] < ∞ (for

each i) imply that
∑n

i=1 Z̃n,i = Op(ρn).
If kn = o (n), we let m = √

ankn (which satisfies (A.4) for large a). Then, the RHS of
(A.5) is bounded by
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4exp

{
− a2

64+ (16/3)a3/2

}
+ O

(
a−1/2√n/kn exp

{− c̃a1/2√n/kn
})
,

which can be made arbitrarily small for sufficiently large a, as n → ∞. For the case of
kn = n, by letting m = n/(logn) (which also satisfies (A.4) for any a if n is large enough),
the RHS of (A.5) is bounded by

4exp

{
− a2

64+ (16/3)a/(log n)

}
+ O ((logn)exp{−c̃ logn}) ,

which is also arbitrarily small for large a, as n → ∞. Now, we have shown that∑n
i=1 Zn,i = Op(ρn), completing the proof. �

Proof of Theorem 4. We follow the same strategy as in the proof of Theorem 1. Thus,
we omit details and outline only the main points. For the Bernstein-type inequality (A.5),
we set m = int[

√
an1/(1+β)�−β/(1+β)] (for each a; this m satisfies the first conditions

in (A.4) as T → ∞) throughout this proof. Furthermore, we use the following covariance
bound:

LEMMA A.2. There exists some constant ω(> 0) such that

D (n,m) ≤
⎧⎨
⎩
ωb2

n�
−βm2−β for β ∈ (0,1) ,

ωb2
n�

−1m logm for β ≥ 1,
ωb2

n�
−1m for β > 1.

(A.11)

Given this bound for each case, we set bn/ρn to satisfy the rate given in (11). Then
the second condition in (A.4) is satisfied for any a large enough (for example, if we let
bn = ρn T −1/(1+β)� for β ∈ (0,1) then “a ≥ 64” is enough). Note that we use “logm =
O(logn)” for β ≥ 1, since m = int[

√
an1/(1+β)�−β/(1+β)] and �−1 = n/T = O (n). If

Condition A3 is supposed, then we can write logm = O (log T ). Then, by the same argu-
ments as in the proof of Theorem 1, we can show that

∑n
i=1 Zni = Op (ρn), completing

the proof. �

Proof of Theorem 5. For the case where β < p/(p −2), we apply (A.5) to
∑n

i=1 Zn,i .
We let

m = int
[√

an1/(1+β)�−β/(1+β)] and bn = ρnn−1/(1+β)�β/(1+β)

with ρn in (13), and we use the covariance bound:

D (n,m) ≤ ωg2
n�

−β(p−2)/pm2−β(p−2)/p, (A.12)

where ω(> 0) is some constant. This (A.12) follows from the same argument as in (A.7),
whose proof is omitted. Now, we can show that

∑n
i=1 Zni = Op (ρn) by the previous

argument. Given these ρn and bn , we have ng p
n /b

p−1
n = O (ρn), completing the proof for

β ∈ (0, p/(p −2)).
For the cases where β (p −2)/p = 1 and > 1, we derive the L2-bound of

∑n
i=1 Xn,i .

As in (A.9), we have

E

⎡
⎢⎣
∣∣∣∣∣∣

n∑
i=1

Xn,i

∣∣∣∣∣∣
2
⎤
⎥⎦ ≤ ng2

n + O
(
ng2

n
)× n−1∑

l=1

(�l)−β(p−2)/p . (A.13)
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If β (p −2)/p = 1, we can show that
∑n−1

l=1 (�l)−β(p−2)/p = O(�−1 logn), as we did
in (A.10). Then, together with (A.13), we obtain∥∥∥∥∥∥

n∑
i=1

Xn,i

∥∥∥∥∥∥
2

= O

(√
n�−1 logngn

)

= O
(√

T logn�−1gn
)
,

where we note that logn = log(T/�) = O (log T ) under Condition A3. If
β (p −2)/p > 1, then

E

⎡
⎢⎣
∣∣∣∣∣∣

n∑
i=1

Xn,i

∣∣∣∣∣∣
2
⎤
⎥⎦ ≤

n∑
i=1

E
[
X2

n,i
]+2n

⎡
⎣ φ∑

l=1

γn (l)+
n−1∑

l=φ+1

γn (l)

⎤
⎦

≤ ng2
n +2ng2

n

⎡
⎣φ+ O (1)×

n−1∑
l=φ+1

(�l)−β(p−2)/p

⎤
⎦ , (A.14)

where γn(l) is defined in (A.8). The last inequality holds since γn (l) ≤ g2
n and γn (l) =

O(g2
n (�l)−β(p−2)/p) uniformly over l (the latter can be derived in the same way as for

(A.8) under �→ 0). The second term in the square brackets is bounded as

n−1∑
φ+1

(�l)−β(p−2)/p ≤�−β(p−2)/p∫∞
φ x−β(p−2)/pdx

= �−β(p−2)/pφ1−β(p−2)/p

β (p −2)/p −1
.

Given this, we set φ = int[�−1] and obtain

E

⎡
⎢⎣
∣∣∣∣∣∣

n∑
i=1

Xn,i

∣∣∣∣∣∣
2
⎤
⎥⎦ = O

(
ng2

n�
−1)= O

(
T g2

n�
−2)

in (A.14), implying the desired result. �

A.2. Proofs for the Nonparametric Estimator’s Convergence

Proof of Theorem 6. We start by computing the uniform moment bound. For any p ≥ 1,

{
E
[|X̃n,i |

]}1/p ≤ 2
{∫∞

−∞ |K ((q − z)/h) [μ(q)−μ(z)]|p πi� (q)dq
}1/p

, (A.15)

by the triangle and Hölder inequalities, where πi� is the marginal density of Zi�. We
also have

max
1≤i≤n

E
[|X̃n,i |p] = max

1≤i≤n

∫∞
−∞|K ((q − z)/h)[μ(q)−μ(z)]|pπi�(q)dq

= max
1≤i≤n

h
∫∞
−∞|K (r)|p |μ(rh + z)−μ(z)|pπi�(rh + z)dq
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= max
1≤i≤n

h p+1∫∞
−∞|K (r)r |p |μ′(rhλrh,z + z)|πi�(rh + z)dr

≤ h p+1∫∞
−∞|K (r)r |pdr × sup

|ε|≤ε̄
|μ′(ε+ z)|× sup

s≥0; |ε|≤ε̄
πs(ε+ z)

= O(h p+1), (A.16)

where the second and third equalities follow from changing variables and the Taylor ex-
pansion (with some λrh,z ∈ [0,1], which may depend on rh and z); the inequality holds
for h small enough, since the support of K is assumed to be bounded; and the last equality
holds by Condition B2-ii.

Given (A.15)–(A.16), we obtain gn = sup1≤i≤n ‖X̃n,i ‖p = O(h1+1/p) for any p > 1.
We then apply Theorem 5 with p > 2. For the case when β ≤ 1,

(1/nh)
n∑

i=1

X̃ni = Op
(
(1/nh)× T (p+β)/p(1+β)�−1 ×h1+1/p)

= Op
(
T −β/(1+β)[T β/(1+β)h

]1/p)
.

If β > 1, we can always have β > p/(p −1) by setting p (> 2) large enough, to obtain

(1/nh)
n∑

i=1

X̃ni = Op
(
(1/nh)× T 1/2�−1 ×h1+1/p) = Op

(
T −1/2h1/p).

Now, the results of the theorem follow since 1/p ∈ (0,1/2) for p > 2. �

Proof of Theorem 7(i). The result can be proven by the standard arguments for the
kernel method, where we use the Taylor expansion and an argument similar to that for
(A.16) to show the negligibility of the remainder terms. We omit details for brevity. �

Proof of Theorem 7(ii). If the condition in (22) holds, we have

(1/T h)
n∑

i=1

κ̃n,i ≤ op (1)× (1/nh)
n∑

i=1

∣∣∣K (
Zi�−z

h

)∣∣∣ .
Note that {E[|K ((Zi�− z)/h)|]} = O(h) uniformly over i (for each p ≥ 1 and each z),
which follows from the uniform boundedness of πs (z). Consequently, we obtain the de-
sired result. When (23) holds, we consider the following moment bound:

E[|κ̃n,i |] = ∫∞
−∞

∫∞
−∞K

( u−z
h

)
vπ̃i�,i�+1 (u,v)dudv

= h
∫∞
−∞

∫∞
−∞K (w)vπ̃i�,i�+1 (wh + z,v)dwdv

≤ h
{∫∞

−∞ |K (w)|(1+ε)/ε πi� (wh + z)dw
}ε/(1+ε)

×∥∥∫ (i+1)�
i�

[
μ(Zs)−μ(Zi�)

]
ds
∥∥

1+ε
≤ h

{
sups≥0;z∈Rπs (z)× K̄ 1/ε∫∞

−∞ |K (w)|dw
}ε/(1+ε)

×� max
1≤i≤n

sup
s∈[i�,(i+1)�]

‖μ(Zs )−μ(Zi�)‖1+ε

= O (h�δn) , (A.17)
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where π̃i�,i�+1 (·, ·) is the joint density of Zi� and
∫ (i+1)�

i� [μ(Zs)−μ(Zi�)]ds; πi� (·)
is the marginal density of Zi�; the inequality holds by the Hölder inequality; and the last
equality holds uniformly over i . Consequently, (A.17) leads to the desired result. �

Proof of Theorem 7(iii). First, look at

E
[

K 2
(

Zi�−z
h

)[
U(i+1)�−Ui�

]2
]

= ∫ (i+1)�
i� E

[
K 2

(
Zi�−z

h

)[
σ 2

s−ds +∫
R\{0}

∣∣φU
s− (x)

∣∣2FU (dx)
]]

ds

≤ h sup
1≤i≤n

{∫∞
−∞ |K (w)|2(1+ε)/ε πi� (wh + z)dw

}ε/(1+ε)

× � sup
s≥0

∥∥σ 2
s
∫
R\{0}

∣∣φU
s (x)

∣∣2 FU (dx)
∥∥

1+ε

= O (h�),

uniformly over i , where the first equality holds by the Ito isometry and the Fubini theorem;
the inequality holds by arguments similar to those for (A.17); and the last equality holds
by the boundedness conditions in (B1), (B2), and (B5). Then, since {U(i+1)�−Ui�} is a
martingale difference array,

E
[|ψ̃ (z) |2] = (

1/T 2h2) n∑
i=1

E
[

K 2
(

Zi�−z
h

)[
U(i+1)�−Ui�

]2]

= (
1/T 2h2) n∑

i=1

O (h�)= O (1/T h) ,

as desired. �

A.3. Discussions on Equations (25) and (26), Sufficient Conditions
for Condition B4

The condition (25) is called the Kolmogorov-Čentsov criterion (e.g., Theorem 2.8 in Chap-
ter 2 of Karatzas and Shreve, 1991). If (25) holds, then there exists a continuous modifica-
tion {Z̃s} of {Zs} that is almost surely Hölder continuous with any exponent γ ∈ (0,d/c)
and some ϑ ∈ (0,∞) satisfying

Pr

(
ω ∈�

∣∣∣∣∃�̄(ω) > 0 such that sup
|t−s|∈(0,�̄(ω)); s,t∈[0,∞)

|Z̃t (ω)− Z̃s (ω) |
|t − s|γ ≤ ϑ

)
= 1, (A.18)

where �̄ is some positive-valued random variable. While the classical Kolmogorov-
Čentsov theorem is a local result in that T must be fixed (T = T̄ < ∞), we can extend
it to a global result where “s, t ∈ [0,T ]” may be replaced with “s, t ∈ [0,∞),” as in (A.18)
(see arguments/proofs in Kanaya and Kristensen, 2016).

We consider the case where {Zs } follows (26). For example, if {Zs} is the OU process
described by

d Zs = λZ (Zs −m Z )ds + θ̄Z d Bs,

where λZ , θ̄z ∈ (0,∞) and m Z ∈ R, we can verify that

sup0≤s<t<T ; |s−t |≤δ |Zs − Zt | = Op
(
δ
√

log T
)+ Op

(√
δ log (1/δ)

)
, (A.19)
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as δ → 0 and T → ∞. Therefore, the RHS is Op
(√
δ log (1/δ)

)
if
√
δ/ log (1/δ) =

O
(√

log T
)
, which is a mild restriction on δ (cf. Condition A3 with δ = �). More gen-

erally, if {Zs} is a general diffusion as in (26), then it holds that

sup0≤s<t<T ; |s−t |≤δ |Zs − Zt |
= Op

(
δ sup0≤s<T |aZ (Zs) |

)+ Op
(√
δ log(1/δ)max

{
1,sup0≤s<T |θZ (Zs) |

})
, (A.20)

as δ → 0 and T → ∞, which is discussed and verified in Kanaya (2016), where the proof
of (A.20) is based on a new result on the global modulus of continuity of Brownian motions
(also developed in Kanaya, 2016), as well as so-called time-change arguments.

Given (A.20), we can check (A.19) since the OU process satisfies
max

{
1,sup0≤s<T |θZ (Zs)|

} ≤ 1 + θ̄Z = O (1) and sup0≤s<T |aZ (Zs)| ≤
|λZ mz | + Op(sup0≤s<T |Zs |) = Op(

√
log T ), where the latter follows from the result

on extremal processes (see, e.g., Borkovec and Klüpperlberg, 1998; Jeong and Park,
2014, and references therein). In the same way, (A.20) also allows us to verify that
sup0≤s<t<T ; |s−t |≤δ |Zs − Zt | = Op

(√
δ log (1/δ)

)
for a diffusion process in Example 3

(for example, if its drift function is uniformly bounded on R). Given these continuity
results such as (A.18)–(A.20), as well as some further Hölder continuity condition of the
drift function μ(·) (or the use of the Ito lemma to a diffusion process (26)), we can check
(22) of Condition B4.

A.4. Proofs of Auxiliary Results

Proof of Equation (8). By a careful investigation of the proof of Theorem 7 of de Jong
(1998), we can check that replacing de Jong’s condition (19) with

a−2
n

⎛
⎝ n∑

t=1

c2
nt

⎞
⎠ n−1∑

m=0

ζm = O (1) (A.21)

leads to ‖∑n
t=1 Xnt‖2 = O (an), where ζm stands for the mixingale number, and an , cnt

and Xnt are used in the same sense as in de Jong’s theorem. Given that gn (p) = O (1),
we can let cnt = O (1). In this case, (A.21) is reduced to a−2

n n
∑n−1

m=0ζm = O (1). Since

ζm ≤ Ām−β(1/2−1/p), we can derive the bound of
∑n−1

m=0ζm in the same way as in the
proof of Lemma A.1 for the three cases in (8), where we note that β(1/2 − 1/p) < 1 ⇔
β < 2p/(p −2). We can then check that the possible rates of an are as given on the RHS
of (8). �

Proof of Equation (20). We outline only the main points. Assuming that (18) holds, we
have Zs = Zs−. Look at

(1/T h)
n∑

i=1

∫ (i+1)�
i�

∣∣∣K ′ ( Zs−z
h + Oa.s.

(
Zs−Zi�

h

))∣∣∣ |μ(Zs)|ds

= (1/T h)
n∑

i=1

∫ (i+1)�
i�

∣∣∣K ′( Zs−z
h + Oa.s.

(
Zs−Zi�

h

))∣∣∣ |μ(Zs)|1{|Zs−Zi�|/h≤η}ds

+ (1/T h)
n∑

i=1

∫ (i+1)�
i�

∣∣∣K ′ ( Zs−z
h + Oa.s.

(
Zs−Zi�

h

))∣∣∣ |μ(Zs)|1{|Zs−Zi� |/h>η}ds, (A.22)
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where η (> 0) is some positive constant. The second term on the RHS is negligible. This is
because, for each ω ∈ �∗ with Pr

(
�∗) = 1, it holds that 1{|Zs−Zi�|/h>η} = 0 uniformly

over s ∈ [i�,(i +1)�] and i ∈ {1, . . . ,n} for any
√
� log (1/�)/h small enough. To find

the bound of the first term on the RHS, we look at∣∣∣K ′( Zs−z
h + Oa.s.

(
Zs−Zi�

h

))∣∣∣1{|Zs−Zi� |/h≤η} ≤ K ∗( Zs−z
h

)
,

where K ∗ is a dominant function such that ∀|ε| ≤ η (with some ε > 0), |K ′ (x +ε) | ≤
K ∗ (x) for any x , and

∫∞
−∞ K ∗ (x)dx <∞. We can find such a dominant function for al-

most all standard kernels (in particular for kernels with bounded support; see the conditions
on the kernel function and the proof of Theorem 1 in Kanaya and Kristensen, 2016). There-

fore, the first term on the RHS of (A.22) is bounded by 1
T

∫ T
0

1
h K ∗( Zs−z

h

)
|μ(Zs )|ds,

which can be shown to be Op (1) by a standard argument for the kernel method. �

Proof of Lemma A.1. We set � = 1 without loss of generality. Let γn (l) :=
sup1≤k≤n−l |Cov(Znk , Zn(k+l))| for each l(= 0,1, . . . ,n − 1). Since |Zn,i | ≤ 2bn and

γn (l) ≤ ᾱ (l) |2bn |2 ≤ 4Ab2
nl−β , where the latter follows from Billingsley’s inequality

(Corollary 1.1 of Bosq, 1998). Then,

E

⎡
⎢⎣
⎛
⎝( j+m)∧n∑

i= j+1

Zni

⎞
⎠

2
⎤
⎥⎦ ≤

( j+m)∧n∑
i= j+1

E
[
Z2

ni
]+2m

m−1∑
l=1

γn (l)

≤ 4mb2
n +2m

m−1∑
l=1

4Ab2
nl−β

= 4mb2
n

⎛
⎝1+2A

m−1∑
l=1

l−β
⎞
⎠ . (A.23)

The proof is completed if we compute the bound of
∑m−1

l=1 l−β for each case:

m−1∑
l=1

l−β ≤ ∫ m
0 x−βdx = m1−β

1−β for β ∈ (0,1) ,

m−1∑
l=1

l−β = 1+
m−1∑
l=2

l−β

≤
{

1+∫ m
1 x−1dx = 1+ log m for β = 1,

1+∫∞
1 x−βdx = 1+1/(β−1) for β > 1. �

Proof of Inequality (A.7). This proof proceeds in the same way as that of Lemma A.1
for β ∈ (0,1), and the details are omitted. It differs only in using the covariance bound
γn (l) ≤ 4p(2Al−β)(p−2)/pg2

n in (A.23), where this bound follows from Davydov’s
inequality (Corollary 1.1 of Bosq, 1998). �
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Proof of Lemma A.2. We use the same notion as in the proof of Lemma A.1. By
Billingsley’s inequality γn (l) ≤ α (l) |2bn |2 ≤ 4Ab2

n (l�)
−β . For β ≤ 1, we consider the

following bound:

E

⎡
⎢⎣
⎛
⎝( j+m)∧n∑

i= j+1

Zni

⎞
⎠

2
⎤
⎥⎦ ≤

( j+m)∧n∑
i= j+1

E
[
Z2

ni
]+2m

m−1∑
l=1

γn (l)

≤ 4mb2
n

⎛
⎝1+2A

m−1∑
l=1

(l�)−β
⎞
⎠ . (A.24)

The bound of
∑m−1

l=1 l−β can be computed as follows:

m−1∑
l=1

(l�)−β ≤
{
�−β∫ m

0 x−βdx ≤�−βm1−β/(1−β) for β ∈ (0,1) ,
�−1(1+∫ m

1 x−1dx
) =�−1 (1+ log m) for β = 1.

These, together with (A.24), imply the desired results for β ≤ 1. If β > 1, then for any
integer φ (≥ 1),

E

⎡
⎢⎣
⎛
⎝( j+m)∧n∑

i= j+1

Zni

⎞
⎠

2
⎤
⎥⎦ ≤

( j+m)∧n∑
i= j+1

E
[
Z2

ni
]+2m

⎧⎨
⎩

φ∑
l=1

γn (l)+
m−1∑
φ+1

γn (l)

⎫⎬
⎭

≤ 4mb2
n +8mb2

n

⎧⎨
⎩φ+ A

m−1∑
φ+1

(l�)−β
⎫⎬
⎭ , (A.25)

where the second term in the braces is bounded as

m−1∑
φ+1

(l�)−β ≤�−β∫∞
φ x−βdx

≤�−βφ1−β/(β−1) ,

since β > 1. Given this, we set φ = int[�−1] and obtain the upper bound of the RHS of

(A.25) as O
(

mb2
n�

−1
)

, completing the proof. �
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