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Application of an electric field across the pressure-driven stratified flow of a pair of
miscible fluids inside a microchannel manifests interesting electrohydrodynamic (EHD)
instabilities. Experiments uncover distinctive instability regimes with an increase in
electric field Rayleigh number (Raψ ) – a linear-onset regime, a time-periodic nonlinear
regime analogous to the von Kármán vortex street in the downstream and a regime
with coherent flow patterns. The experiments also reveal that such linear and nonlinear
instabilities can be stimulated non-invasively in a microchannel to mix or de-mix
fluids simply by turning the electric field on or off, indicating the suitability of the
process for on-demand micromixing. The characteristics of these instabilities have
been theoretically investigated with the help of an Orr–Sommerfeld framework, which
discloses the possibility of five distinctive finite-wavenumber modes for the instability.
The EHD stresses originating due to the application of electric field stimulate a pair
of shorter-wavelength electric field modes beyond a critical value of Raψ . Increase in
the levels of charge injection and EHD stresses lower the critical Raψ of these modes.
The relatively longer-wavelength viscous mode is found to appear when the viscosity
stratification between the fluid layers is high. Beyond a threshold Schmidt number
(Sc), a diffusive mode is also found to appear near the mixed interfacial region. A
thinner interface between the fluids at a higher Sc helps this mode to behave as the
interfacial mode of immiscible fluids. Contrast of ionic mobility in the fluids leads
to the appearance of the K-mode of instability at much shorter wavelengths. The
reported phenomena can be of significance in the domains of microscale mixing,
pumping, heat exchange, mass transfer and reaction engineering.

Key words: absolute/convective instability, chaotic advection, microfluidics

1. Introduction
In recent years, the specialities of micro- and nanoscale science have been routinely

exploited in diverse microfluidic applications such as cell cultures (Rhee et al.
2005), clinical diagnostics (Christodoulides et al. 2002), immunoassays (Wang et al.
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6468-565X
https://orcid.org/0000-0002-9703-5300
mailto:dipban@iitg.ac.in
https://doi.org/10.1017/jfm.2018.1023


170 S. Dutta, A. Ghosh, P. S. G. Pattader and D. Bandyopadhyay

2001), DNA analysis (Doyle et al. 2002) and environmental monitoring (Bromberg
& Mathies 2003). The microscale applications are found to have some distinct
advantages over their macroscopic counterparts such as, (i) usage and control of lesser
amounts of materials (Haeberle & Zengerle 2007); (ii) availability of higher surface to
volume ratio; (iii) high performance due to process intensification (Mark et al. 2010);
and (iv) superior control over the process parameters (Vilkner, Janasek & Manz 2004).
It is now well understood that for efficient and time bound operations, the existing
microscale chemical and biological applications require rapid mixing of fluid streams
inside the microfluidic devices (Hertzog et al. 2006; Janasek, Franzke & Manz
2006; Samiei, Tabrizian & Hoorfar 2016). However, the conventional pressure-driven
microfluidic flows are often limited by low values of the Reynolds number (Re), which
results in large diffusive time and length scales of mixing owing to the dominance
of the viscous force over the inertial one (Stroock et al. 2002; El Moctar, Aubry &
Batton 2003). In the macroscopic processes, the diffusion limited mixing lengths are
improved by the generation of auxiliary transport pathways such as turbulence. In
contrast, for the microscale processes, the large frictional resistance originating from
the confining boundaries pose multifarious challenges towards this end. Thus, of late,
the enhancement of momentum, heat and mass transport in microscale processes has
become one of the major areas of fluid dynamical research (Stone, Stroock & Ajdari
2004).

Over the years, various pathways have been explored to engender auxiliary transport
mechanisms in microfluidic flows with the help of active and passive triggers.
For example, the innovations associated with groovy or twisted channels (Bertsch
et al. 2001; Stroock et al. 2002; Verma et al. 2008), multi-lamination of flow paths
(Hinsmann et al. 2001), serpentine channels (Simonnet & Groisman 2005) and
viscous fingering of fluids (Jha, Cueto-Felgueroso & Juanes 2011) disclose passive
modes of enhanced momentum transport. In comparison, the active triggers require
the support of the external fields such as applications of thermal (Wall & Wilson
1996), or acoustic waves (Rife et al. 2000), magnetic (Yi, Qian & Bau 2002), or
electrokinetic forces (Oddy, Santiago & Mikkelsen 2001; Chen et al. 2005; Posner
& Santiago 2006; Zhao & Bau 2007; Harnett et al. 2008; Posner, Pérez & Santiago
2012; Wang, Yang & Zhao 2014; Ding & Wong 2015; Wang et al. 2016). However,
the enhancement of momentum, heat and mass diffusivities with the help of in situ
disturbances inside microfluidic devices remains one of the long standing challenges
in this regard. For example, the electrohydrodynamic (EHD) instabilities due to the
electrokinetic phenomena instigated by conductivity gradients between the fluids have
been explored only recently (Posner et al. 2012; Wang et al. 2014; Ding & Wong
2015; Wang et al. 2016).

In the present study, we investigate the consequence of an EHD phenomenon to
develop laminar, transitional and chaotic flow regimes. The phenomenon originates due
to injection of ions into a pair of miscible fluids undergoing a pressure-driven stratified
flow in a microchannel. The miscible fluids are considered to have higher viscosity
contrast and lower electrical conductivities to explore the cumulative effects of electric
field stress and viscosity stratification. The major interests here are twofold: (i) to
experimentally investigate the various regimes of instabilities in the aforementioned
system leading to chaotic mixing of the fluid streams, and (ii) to theoretically analyse
the linear regime of instability to predict their nature and onset conditions. The study
is pertinent due to its significance in a plurality of futuristic applications such as
microfluidic mixing in drug delivery systems, heat transfer enhancement, reactions in
micro reactors, among others.
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The prior art related to the stability of viscosity stratified miscible flows suggests
that Craik (1969) was among the pioneers who identified that these flows can be more
stable than the immiscible ones owing to the damping of the perturbations near the
interface due to molecular diffusion. Much later, Ranganathan & Govindarajan (2001)
theoretically identified the influence of the location of the viscosity stratified layer
with respect to the critical layer of the perturbation. Subsequently, Ern, Charru &
Luchini (2003) showed that the effect of molecular diffusion is not always stabilizing.
They identified that for moderate values of Péclet number (400 6 Pe 6 10 000),
the perturbation at a thicker interface might grow to destabilize the system. Later,
Govindarajan (2004) identified an overlap mode of instability, distinct from the
classical Tollmien–Schlichting (TS) and inviscid modes, obtained when the critical
layer of the most dominant disturbance merges with the viscosity stratified layer.
More recently, Selvam et al. (2007, 2009) noted that miscible core–annular flows
can be unstable beyond a critical viscosity ratio, when the lighter phase occupies
the annular region. The observations in this study uncovered some of the exceptions
to the claims of Ranganathan & Govindarajan (2001). Talon & Meiburg (2011)
performed the stability analysis of miscible fluids with strong viscosity stratification
in the Stokes flow regime (Re→ 0), and observed four distinct modes of instability
in which two were interfacial while the other two were bulk modes. They proposed
that these instabilities grew due to the phase shift between vorticity and interfacial
perturbations. Subsequently, a number of works showed the influence of miscibility
(Sahu & Govindarajan 2016), inclination (Scoffoni, Lajeunesse & Homsy 2001;
d’Olce et al. 2009; Ghosh & Usha 2016) and variable density (Talon, Goyal &
Meiburg 2013) on the different modes of instability. Apart from macroscopic flows,
microscale flows of miscible fluids have also been explored theoretically (Tan &
Homsy 1986; Preziosi, Chen & Joseph 1989; Chen & Meiburg 1996), as well as
experimentally (Petitjeans & Maxworthy 1996; Lajeunesse et al. 1999). Interestingly,
these studies indicate that the dominance (weakness) of the frictional (inertial) force
at the microscale often disallows intermixing of the fluid layers to provide a kinetic
stability at the stratified interface, even when the molecular diffusivities of the fluid
layers are high, leading to a weaker capacity of heat, mass and momentum transfer.

In this regard, the use of an external electric field is found to be an efficient
alternative to promote disturbance in various microfluidic flows. Previous studies
indicate that various EHD phenomena can improve the performance of microscale
electrowetting (Ko, Lee & Kang 2008), rheological devices (Otsubo & Edamura 1998),
electrospinning (Skotak & Larsen 2006) and drug delivery systems (Chakraborty et al.
2009). In particular, the electroconvection inside a fluid originating from ionic or
charge injections from an electrode to a dielectric fluid has attracted a lot of attention
(Atten & Gosse 1969; Watson, Schneider & Till 1970; Hopfinger & Gosse 1971;
Atten 1974; Lacroix, Atten & Hopfinger 1975; Denat, Gosse & Gosse 1979). In such
processes, the electrical conduction is controlled by the creation of charge carriers at
high electric field intensities through electrochemical reaction at the electrode–fluid
interface for fluids having higher electrical resistivity (Alj et al. 1985; Suh 2012).
The Coulomb force acting on the injected ions stimulate an auxiliary advection inside
the fluidic medium (Malraison & Atten 1982; Oliveri, Atten & Castellanos 1987;
Castellanos 1991) to enhance momentum, heat and mass transfer (McCluskey, Atten
& Perez 1991; Allen & Karayiannis 1995) as well as throughputs (Bart et al. 1990).

The onset of electroconvection in fluid flows has been traditionally analysed from
the magnitudes of the following dimensionless numbers, (i) electric field Rayleigh
number Raψ(= (εΨ0/Kµ)) – the ratio of Coulombic to viscous force and (ii) injection
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level Iq(= (Q0L2/εΨ0)). Here, the notations ε, Ψ0, K, µ, Q0 and L denote electrical
permittivity, applied voltage, ionic mobility, fluid viscosity, volumetric charge density
at the injecting electrode and distance between the electrodes respectively. The
instability of dielectric quiescent fluids subjected to unipolar ion injections was
first reported by Schneider & Watson (1970) neglecting the effects of diffusion.
Subsequently, Watson et al. (1970), performed an experimental analysis by creating
strong ion injections (Iq

� 1) on the surface of a liquid with an electron beam,
identifying the critical voltage Ψ0, for onset of electroconvection to be approximately
99. Later, Atten & Moreau (1972) established for the case of weak injections (Iq

� 1),
a stability criterion of Raψ Iq2

= 220.7, whereas for strong injections (Iq
� 1) the

stability criterion was defined by Raψ = 160.75. However, the experiments performed
by Atten & Lacroix (1979) reported the critical Raψ to be 100 for the space charge
limited regime. Following this, a number of analytical and numerical investigations
of the process of electroconvection due to the unipolar injection of ions have been
reported by many groups (Vázquez, Georghiou & Castellanos 2006; Traoré & Pérez
2012; Wu et al. 2013, 2015; Zhang et al. 2015; Wang & Sheu 2016; Zhang 2016).

The literature discussed so far indicate that, while the contributions of inertial
and molecular diffusive forces have been explored in detail in the past, arguably,
there is no report as such of the influence of electric field induced instabilities
on stratified two-layer miscible flows inside microchannels. In the present study,
with the help of combined experimental as well as theoretical analyses, the effects
of electroconvection on a two-layer viscosity stratified miscible flow inside a
microchannel have been explored. We report the experimental investigations of
the various regimes of instabilities produced due to ion injections from electrodes
into a viscosity stratified flow of miscible fluids, which subsequently lead to the
coherent mixing of the fluid streams. Experiments uncover three different instability
regimes with an increase in electric field intensity, namely, a linear-onset regime,
time-periodic nonlinear regime with the formation of von Kármán vortices and a
chaotic flow regime. An Orr–Sommerfeld analysis of the governing equations with
appropriate boundary conditions has also been performed to identify the various linear
modes of instabilities of the system, which helps in the identification of the onset
conditions of the EHD instabilities.

The paper is organized as follows. Section 2 contains a description of the
experimental methodology, in § 3 the mathematical formulation is shown along
with the linear stability equations, and solutions of the base states. Section 4 covers
the experimental and theoretical results. Section 5 contains the conclusions from the
analysis.

2. Experiment
2.1. Materials and methods

Experiments were carried out in a cylindrical microchannel of 420 µm diameter
built on a PDMS (poly-dimethylsiloxane) platform. The channels were fabricated by
template moulding technique (Timung et al. 2017) employing a silicone elastomer
(SLYGARD 184 silicone elastomer, Dow Corning). For the fabrication of the channels,
templates were first prepared with the help of copper wires (Cu) of the same
dimension, as required for the channel. A rectangular well was then formed with
double sided tapes, with the Cu wire template fixed into the well. Liquid PDMS
mixed with a cross-linker in the ratio 10 : 1 was then poured inside the well before
curing the system in a vacuum oven at 80 ◦C for 2 h. The template was then
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Inlet 2

Inlet 1

PDMS platform

Electrode

Electrode

Electrode

Channel Outlet

Fluid 1

Fluid 2

420 µm

(a)

(b)

FIGURE 1. (Colour online) (a) Shows the top view of the experimental microchannel on a
poly-dimethylsiloxane (PDMS) platform. Fluids 1 and 2 with viscosities µ1 and µ2 (µ2 >
µ1), respectively, enter the channel through their respective inlets, and are then subjected
to an electric field applied from a direct current (DC) high voltage source through Cu
wire electrodes as shown. (b) Shows the experimental micrograph of the top view of the
region marked in (a). Fluids 1 and 2 form a stratified flow in the channel (side by side),
and are subjected to an electric field via Cu wire electrodes. The diameter of the channel
and the electrodes are 420 µm. The average Re of the flow is maintained at 0.5. The
arrow in (b) indicates the direction of the flow.

pulled out of the solid PDMS block to form the channels of required configuration.
The Cu wire electrodes of 420 µm diameter were integrated across the channel
wall, for application of electric field potential. Experiments were conducted using
different liquid pairs. Benzene (analytical grade, procured from Merck Ltd. (India),
viscosity, µ1 ≈ 0.603 cP at 25 ◦C; dielectric constant, εr1 ≈ 2.284 (van der Maesen
1949)) formed the lower viscosity phase. Oleic acid (analytical grade, procured from
Merck Ltd. (India), viscosity, µ2 ≈ 18 cP at 25 ◦C; dielectric constant, εr2 ≈ 2.32 (de
Sousa et al. 2009)), silicone oil (analytical grade, procured from Merck Ltd. (India),
viscosity, µ2 ≈ 317 cP at 25 ◦C; dielectric constant, εr2 ≈ 2.5 (Ren, Wang & Huang
2016)) and soybean oil (procured from local vendor, viscosity, µ2 ≈ 50 cP at 25 ◦C;
dielectric constant, εr2 ≈ 3.3 (Spohner 2016)) formed the higher viscosity phases.
The viscosities of the liquids were measured using interfacial rheometer (Anton Paar,
Physica MCR 301).

Figure 1(a) shows photographs of the experimental channel, before and after
electrode integration. The two liquids flowed through the inlets 1 and 2 of the PDMS
channel with the help of a syringe pump (Harvard Apparatus, PHD 2000). Electric
field was applied from a high voltage direct current (DC) source (SES Instruments
Pvt. Ltd, EHT-II) via Cu wire electrodes of 420 µm diameter as shown figure 1(a).
The flow of the liquids through the channel was recorded with a high speed camera
(Photron, Fastcam Mini UX-100). A picoammeter (SES Instruments Pvt. Ltd, Model
DPM-111) was used to measure the electric current across the electrodes. Figure 1(b)
demonstrates the experimental micrograph of the highlighted portion in figure 1(a),
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which shows the stratified flow of fluids 1 and 2 in absence of an electric field.
Before and after every experiment the channels were first cleaned by ultra-sonication
in an acetone bath for 10 min. It was followed by treatment with 10 % V/V dilute
piranha solution (H2SO4 :H2O2, 3 : 1) for 15 min. The channels were then repeatedly
washed with deionized water (Merck Millipore, grade I), dried by blowing nitrogen
gas, and kept in an air oven at 70 ◦C for 20 min.

2.2. Calculation of injection level
Previous studies indicate that strong unipolar injections (Iq

� 1) with space charge
limited currents can be achieved experimentally by covering the electrodes with
suitable perm-selective membranes and varnishes (Atten & Gosse 1969; McCluskey
& Atten 1988). In comparison, for non-polar liquids, moderate and weak injections
have been achieved by doping the liquids with appropriate salts (Denat et al. 1979;
Pontiga, Castellanos & Malraison 1995). It has also been shown that intense localized
injections of charge can be achieved by concentrating the electric field with the
use of blade or needle electrodes (Tobazeon, Haidara & Atten 1984; Atten &
Haidara 1985; Higuera 2002; Tsukahara, Hirose & Otsubo 2013). In the reported
experiments, a DC voltage was applied from a high voltage source with the help
of wire electrodes for the injection of charge into the dielectric experimental fluids.
Since the electrodes were in contact with the experimental fluids, the injection of
charge in the regions of high electric field was inevitable (Vasilkov, Chirkov &
Stishkov 2017). In order to measure the injection level, a stratified flow of the lower
viscosity phase, composed of benzene, and higher viscosity phase, composed of oleic
acid (or silicone oil), was maintained in the microchannel with the help of a syringe
pump. DC voltage input was applied to the system with the help of the copper wire
electrodes, while the electric current was measured across the electrodes with the
help of a picoammeter. The current–voltage curves for the cases: (i) benzene–oleic
acid and (ii) benzene–silicone oil are shown in figure 2. The electric field intensity
between the electrodes was obtained by dividing the applied voltage by the distance
between the electrodes (420 µm). The value of electric current across the electrodes
was recorded for each applied voltage across each liquid separately before the same
was repeated for the stratified flows. It has been shown in previous literature that for
electric fields within the range 5× 102 6 E 6 5× 104 kV cm−1, the charge density at
the injector remains almost constant and independent of the electric field (Castellanos
1991). Hence, the assumption of autonomous injection for the present analysis seems
to be reasonably valid. The measured electrical current in the quiescent liquid is due
to the contribution of two processes: (i) residual conduction and (ii) migration of
injected ions (Denat et al. 1979; McCluskey et al. 1991). Previously, Denat et al.
(1979) showed that the conduction current can be considered negligible if the ratio
of conduction current to injection current, C0(= (σL2/2KεΨ0)), is less than 0.5. The
working liquids benzene and oleic (or silicone oil) acid have conductivities of the
order of ∼10−13 Sm−1 (Bobyl, Romanets & Alyab’ev 1965; Zhang, Edirisinghe &
Jayasinghe 2006), while the value of ionic mobility K in the working liquids is of
the order of ∼(10−8–10−10) m2 s−1 V−1 (Denat et al. 1979). In such a situation, the
value of C0 was found to be less than 0.5 for the experiments reported in the present
work. Thus, the total current was considered to be due to ionic injections from the
electrodes only. Thereafter, the injection level Iq was calculated from (3.9), using the
current voltage curves shown in figure 2. The injection levels Iq for the experiments
shown in the present study were found to be in the range of 0.5–1.15, indicating a
moderate injection.
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FIGURE 2. (Colour online) (a,b) Show the current (I) versus voltage (Ψ0) curves for
different combinations of flows. (a) Shows the combination of single component flows of
benzene (B), oleic acid (OA) and a stratified flow of benzene and oleic acid (B-OA). (b)
Shows the combination of single component flows of benzene (B), silicone oil (SO) and a
stratified flow of benzene and silicone oil (B-SO). The error bar represents the maximum
standard deviation obtained from three experiments.

3. Theoretical formulation
3.1. Problem formulation

The experiments were carried out in a cylindrical microchannel (420 µm diameter)
as already discussed in § 2.1. To gain in-depth information about the nature and onset
conditions of the reported EHD instabilities, a scrupulous investigation considering
a similar flow geometry to the experimental channel is required. However, the
mathematical treatment of the problem considering a cylindrical coordinate system
is seemingly cumbersome, especially because the experimental flow configuration is
non-axisymmetric, due to integration of the electrodes on the channel walls. This
calls for a complete three-dimensional formulation of the problem in the cylindrical
coordinate system followed by a global stability analysis, which in the context of the
reported problem will be extremely involved. We thus resorted to a two-dimensional
planar geometry. Figure 3(a) depicts the laminar flow of a pair of miscible fluids
flowing through a channel, before being subjected to a DC voltage Ψ0. A Cartesian
coordinate system is chosen as the reference frame with the x and z axes perpendicular
to each other on the same plane. The distance between the two electrodes is 2R, while
the electric field is applied in the z direction. The fluids, namely, fluid 1 of viscosity
µ1 and fluid 2 of viscosity µ2 (µ2 > µ1), are assumed to be of equal density, and
dielectric permittivity, and the ionic mobility is considered to be the same in both
fluids. For two miscible fluids flowing inside a microchannel, the associated mass
transfer Péclet number [Pe= ul/κ], is of the order of ∼102 or higher (Stroock et al.
2002), leading to a slow diffusive mixing between the fluids. Thus, in the present
study, which is motivated by flows inside microchannels, the thickness of the mixed
interface can be effectively assumed to be constant. The interface between the two
fluids grows diffusively to a distance δ in such a manner that fluid 1 occupies the
region h+ δ/2 6 z 6 R and fluid 2 occupies the region −R 6 z 6 h− δ/2, where h is
the distance of the mixed interface from the datum line z= 0.

The viscosity of the fluids is formulated as an exponential function of the
concentration scalar S, such that the base values of the scalar S0 are 0 and 1 in
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Fluid 1 (viscosity µ1)

Fluid 1 (µ1, Ó1, K1)

Fluid 2 (µ2, Ó2, K2)
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FIGURE 3. (Colour online) Schematic illustration of (a) the theoretical framework for the
linear stability analysis. Two miscible fluids 1 and 2 with viscosities µ1 and µ2 (µ2>µ1),
respectively, form a stratified flow. The diffuse interface between them is of width δ, and
located at a distance h from the datum line, z= 0. The fluids are subjected to an electric
potential of Ψ0, applied through the electrodes separated by a distance of 2R, where R
is half the channel width. (b) The computational domain for the nonlinear computational
fluid dynamics (CFD) simulations.

the top and bottom layers, respectively. The viscosity µ is modelled as,

µ=µ1 exp(SVL), (3.1)

where, VL is the log viscosity ratio of the fluids defined as, VL
= ln(µ2/µ1) (Sahu &

Govindarajan 2016). The Reynolds number (Re) is defined as Re=Q/Rη1, where Q is
the volumetric flow rate and η1 is the kinematic viscosity of fluid 1. In order to bring
about homogeneity between the theoretical and experimental analyses, the strength
of injection, characterized by the injection parameter, Iq, is calculated experimentally
(refer to § 2.2), and used for the theoretical analysis. It is observed that the injection is
homogeneous and autonomous in the experiments. Assuming a medium injection level,
the value of the injection parameter, Iq, is fixed at 1 for the theoretical analysis unless
otherwise stated. In the formulation, ‘t’ represents time, the bold variables indicate
vectors and the dashed variables denote derivative with respect to ‘z’.

3.2. Governing equations
The fluids are assumed to be Newtonian and incompressible, thereby the flow field
can be defined by the following continuity and momentum equations neglecting the
effect of gravity,

∇ · v = 0, (3.2)
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ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+∇ · [µ(∇v +∇vT)] +Fe. (3.3)

Where v is the velocity vector, ρ is the density, p is the pressure and Fe is the
electrical body force term given by,

Fe = qE−
1
2
|E|2∇ε+∇

(
ρ
|E|2

2
∂ε

∂ρ

)
. (3.4)

Here, q represents the volumetric charge density, E is the electric field intensity
and ε is the electrical permittivity. The first term of (3.4) represents the Coulomb
force exerted by the electric field on the free charges, and is generally the strongest
in case of a DC supplied voltage. The second term of (3.4) is the dielectric force
exerted by the electric field on the bound charges, and is neglected in the present
analysis due to the negligible gradient of dielectric permittivity. The third term of
(3.4) is the electrostrictive force which is included with the pressure term of the
Navier–Stokes equation. The irrotational electric field E is assumed to follow the
field, E = −∇ψ , which leads to the following Poisson’s equation originating from
the governing Gauss’s law in which the electric field potential is defined as ψ ,

q=∇ · εE, (3.5)

∇
2ψ =−

q
ε
. (3.6)

The continuity equation for charge density is given by,
∂q
∂t
+∇ · J= 0, (3.7)

where, the current density J is given by,

J= qv + qKE−D∇q+ σE. (3.8)

The first term of (3.8) accounts for the convection of charges due to motion of
the fluid moving with a velocity v. The second term accounts for the drift transport
of charges under the effect of the electric field, where K is the mobility of the ions
moving with velocity KE. The third term accounts for the diffusive transport of the
ions with diffusion coefficient D, which is neglected because of its smaller magnitude
as compared to the other terms (Lacroix et al. 1975; Denat et al. 1979; Castellanos
1991). In the present analysis, the fluids under study are considered to be nearly
electrically non-conductive (σ 6 10−13 Sm−1), thereby making the last term of (3.8)
negligible. Therefore, the constitutive relation for current density reduces to,

J= qv + qKE. (3.9)

Substituting (3.9) into (3.7), and using (3.2), we obtain the conservation equation for
the charge density as,

∂q
∂t
+ v · (∇q)+K[q(∇ ·E)+E · (∇q)] = 0. (3.10)

The advection–diffusion equation for the concentration scalar S gives,
∂S
∂t
+ v · ∇S= κ∇2S. (3.11)

Here, κ is the diffusion coefficient of the scalar. For the velocity field, no-slip and
no-penetration boundary conditions are enforced at the channel walls, i.e. [v(±R) =
0, v′(±R)= 0]. The boundary conditions used to solve for the electric potential ψ are:
ψ(R)=Ψ0, ψ(−R)= 0.
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3.3. Non-dimensional governing equations
The equations are reduced to dimensionless forms by using the following scheme,

(x, z, h, δ)= R(x∗, z∗, h∗, δ∗), (u,w)=
KΨ0

R
(u∗,w∗), ψ =Ψ0ψ

∗,

q=Q0q∗, t=
R2

KΨ0
t∗, p=

ρK2Ψ 2
0

R2
p∗, µ=µ1µ

∗.

 (3.12)

The asterisk symbol depicts dimensionless quantities. Here, Ψ0 and Q0 represent the
applied voltage and the charge density at the injector, respectively. The dimensionless
governing equations after dropping the asterisk symbol are,

∇ · v = 0, (3.13)
∂v

∂t
+ v · ∇v =−∇p+

1
Reψ
∇ · [µ(∇v +∇vT)] + IqRM

2(qE), (3.14)

∇
2ψ =−Iqq, (3.15)

∂q
∂t
+ v · (∇q)+ q(∇ ·E)+E · (∇q)= 0, (3.16)

∂S
∂t
+ v · ∇S=

1
ReψSc

∇
2S, (3.17)

where,

Reψ =
KΨ0

η1
, RM =

(ε/ρ)1/2

K
, Iq

=
Q0R2

εΨ0
, Sc=

η1

κ
. (3.18a−d)

Here, Reψ is defined as the electric Reynolds number, RM is defined as the ratio
between the hydrodynamic mobility [(ε/ρ)1/2] and the true ionic mobility K, Iq is
the charge injection level and Sc is the Schmidt number. The electric field Rayleigh
number Raψ is defined as Raψ = ReψRM

2
= (εΨ0)/(µ1K), and gives the ratio of the

electrostatic to viscous force. The non-dimensional boundary conditions used to solve
the velocity field are: v(±1)= 0, v′(±1)= 0. For the solution of the electric potential
ψ , the non-dimensional boundary conditions used are: ψ(1)= 1, ψ(−1)= 0, ψ ′′(1)=
−Iq.

3.4. Linear stability
A general linear stability analysis (LSA) has been carried out by splitting the
flow and electric field variables into base-state and perturbed-state quantities. We
consider only the transverse modes because the existing literature suggests that
the longitudinal modes remain unaffected by the parallel shear flow or the other
parameters of interest reported in the present study (Castellanos & Agrait 1992;
Lara, Castellanos & Pontiga 1997; Sahu & Govindarajan 2016). In such a scenario
a two-dimensional (2-D) stability analysis is found to be sufficient to qualitatively
uncover the underlying physics and predict the onset conditions. The formulation
considering three-dimensional (3-D) perturbations is also shown in appendix B. The
governing equations are linearized considering the following linear modes:

[u,w, p, ψ, S, µ](x, z, t) = [u0(z), 0, p0, ψ0(z), S0(z), µ0(z)]

+ [ũ, w̃, p̃, ψ̃, S̃, µ̃](z)e(ωt+ikx). (3.19)
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FIGURE 4. Base-state profiles for (a) concentration scalar S0, (b) viscosity µ0, (c) velocity
u0 and (d) potential ψ0, for h=−0.3 and δ = 0.02.

The variables with subscript ‘0’ denote the base-state quantities and the variables with
‘tilde’ are the perturbed quantities. Here, u and w are the x and z directional velocities,
respectively. The symbols ω and k are the growth coefficient and the wavenumber
of the perturbation, respectively. The parameter ω is a complex quantity (ω = ωr +

iωi). A perturbation is unstable when ωr > 0, stable when ωr < 0, and neutrally stable
when ωr = 0. The perturbation viscosity µ̃ is modelled as, µ̃= (dµ0/dS0)S̃ (Sahu &
Govindarajan 2016).

3.4.1. Base-state analysis
It is assumed that the diffusive interface between the two miscible fluids is of

thickness δ. If δ � 1, then the base-state profile of the concentration scalar can be
estimated following a quasi-steady approximation [ω� κ/δ2

] (Tan & Homsy 1986;
Selvam et al. 2007) as,

S0 = 0.5− 0.5erf
(

z− h
δ

)
. (3.20)

Here, the variable, h, is the dimensionless distance of the diffused interface from the
datum, z= 0. The base-state profile of the concentration scalar is shown in figure 4(a).
The base-state profiles for viscosity µ0, are then obtained from the relation,

µ0 = exp(S0VL). (3.21)
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The base-state velocity profile u0 is then obtained by solving (3.14) for steady state,
after dropping the electrical body force term, which gives,

µ0(u′′0 + VLu′0S′0)= Reψ
dp0

dx
. (3.22)

Equation (3.22) is solved with no-slip boundary conditions at the channel walls,
u0(±1) = 0, in which the non-dimensional pressure gradient, (dp0/dx), is fixed by
assuming a constant volumetric flow rate. From (3.16) the base state equation for
electric potential is obtained as,

(ψ ′′0 )
2
+ψ ′0ψ

′′′

0 = 0. (3.23)

Equation (3.23) is solved numerically with the boundary conditions: [ψ0(1) =
1; ψ0(−1) = 0; ψ ′′0 (1) = −Iq]. The base-state profiles for viscosity (µ0), velocity
(u0) and electric potential (ψ0) are shown in figure 4(a–d). Panel (a) of this figure
shows that S0 is zero at layer 1 and it is one at layer 2 while the variation across
the diffused interface is sharp but continuous. A similar trend of the variation in
the dimensionless viscosity µ0 can also be seen in (b). Further, (c) shows the
dimensionless velocity profile u0 of the base state under varied conditions. Panel
(d) shows the variation of the base-state electric field potential, ψ0, across the fluid
layers.

3.4.2. Perturbed-state analysis
The governing equations (3.13)–(3.17) are perturbed with the variables mentioned

in (3.19) in which the growth coefficient, ω, is represented in terms of the wave
speed c as, ω=−ikc. The dimensionless linearized equations of motion and continuity
equation after eliminating the pressure perturbation term are given by,

Reψ ik[(u0 − c)(w̃′′ − k2w̃)− u′′0w̃] + Raψk2
[ψ ′0ψ̃

′′
− (ψ ′′′0 + k2ψ ′0)ψ̃]

=µ0w̃′′′′ + 2µ′0w̃′′′ + (µ′′0 − 2k2µ0)w̃′′ − 2k2µ′0w̃′ + (k2µ′′0 + k4µ0)w̃

− iku′0µ̃
′′
− 2iku′′0µ̃

′
− (iku′′′0 + ik3u′0)µ̃. (3.24)

Equations (3.16) and (3.17) reduce to the following equations,

ik
[
(u0 − c)(ψ̃ ′′ − k2ψ̃)−

i
k
ψ ′′′0 w̃

]
= ψ ′0ψ̃

′′′
+ 2ψ ′′0 ψ̃

′′
+ (ψ ′′′0 − k2ψ ′0)ψ̃

′

− 2k2ψ ′′0 ψ̃, (3.25)

ikReψSc
[
(u0 − c)S̃−

i
k

S′0w̃
]
= S̃′′ − k2S̃. (3.26)

The boundary conditions employed to solve (3.24)–(3.26) are,

w̃(±1)= 0, w̃′(±1)= 0, (3.27a,b)

ψ̃(±1)= 0, ψ̃ ′′(1)= 0, (3.28a,b)

S̃′(±1)= 0. (3.29a,b)
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3.4.3. Numerical method
The domain is discretized employing a spectral collocation method based on

Chebyshev polynomials (Orszag 1971; Weideman & Reddy 2000). The three ordinary
differential equations defined by (3.24)–(3.26) reduce to the following eigenvalue
form upon discretization,

Aφ̃ =ωBφ̃, (3.30)

where A and B are 3× 3 matrices, given by,

A=

 A11 A12 A13
−ReψScS′0 A22 0
−ψ ′′′0 0 A33

 , (3.31)

B=

Reψ(D2 − k2) 0 0
0 ReψSc 0
0 0 (D2 − k2)

 , (3.32)

and,

φ̃ =

w̃
S̃
ψ̃

 . (3.33)

Here, D1 = d/dz, D2 = d2/dz2, D3 = d3/dz3, D4 = d4/dz4 and

A11 =µ0D4 + 2µ′0D3 + (µ
′′

0 − ikReψu0 − 2k2µ0)D2 − 2k2µ′0D1

+ ik
(

Reψu′′0 +
k
i
µ′′0 + Reψk2u0 +

k3

i
µ0

)
,

A12 =−ikVLµ0u′0D2 − 2ikVL(µ0u′′0 + u′0µ
′

0)D1

− ikVL(µ0u′′′0 + k2µ0u′0 + u′0µ
′′

0 + 2u′′0µ
′

0),

A13 = Raψk2(ψ ′′′0 + k2ψ ′0 −ψ
′

0D2),

A22 =D2 − k2
− ikReψScu0,

A33 =ψ
′

0D3 + (2ψ ′′0 − iku0)D2 + (ψ
′′′

0 − k2ψ ′0)D1 − 2k2ψ ′′0 + ik3u0.


(3.34)

The eigenvalue problem defined by (3.30) has been solved with the help of a
MATLAB code to obtain the variation in the growth rate, ω, with the wavenumber,
k, for the unstable modes. In general, it is a common practice to cluster the grid in
the viscosity stratified region by using a stretching function to reduce the number of
grid points required for convergence (Sahu & Govindarajan 2016). However, in the
present analysis, even in the absence of clustering, a satisfactory convergence has
been achieved with 200 collocation points.

3.4.4. Validation of numerical method
In order to validate the results obtained from the numerical method, we draw a

parallel between the EHD flow (abbreviated as EHDF) studied in the present report
with the single fluid plane Poiseuille flow (abbreviated as SFPF), as described in
Schmid & Henningson (2001) for Re = 10 000. The consistency of the numerical
method is checked by setting significantly lower values for VL, representing a
negligible viscosity gradient in the flow, so that the flow can be essentially considered
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FIGURE 5. (a) Eigenspectra depicting the real part (cr) versus imaginary part (ci) of
the complex wave speed c, for single fluid plane Poiseuille flow (SFPF) and EHD flow
(EHDF) when Re= 10 000 and k= 1, and (b) neutral stability curves showing the variation
of k with Re for SFPF and EHDF. The other parameters considered for EHDF are h=
−0.3, δ = 0.02 and Sc= 10.

to be composed of a single fluid. The electric field force is turned off by assigning
extremely low values to Raψ . Hence, for imposed constraints of very low VL and
Raψ , EHDF asymptotically emulates the SFPF. Figure 5 shows the eigenspectra and
neutral stability plots for SFPF in tandem with the EHDF considered in the present
analysis. Figure 5(a) shows the comparison between the eigenspectra depicting the
imaginary part (ci) versus the real part (cr) of the complex wave speed, c, for
the SFPF and the EHDF. The plot shows that, for a lower electric field potential
(Raψ = 10) and marginal viscosity difference (VL

= 0.005), the SFPF and EHDF
generate similar eigenspectra. The latter produces a few extra eigenvalues owing to
the marginal influence of the electric body force term in the momentum equation.
Figure 5(b) depicts the neutral stability curves showing wavenumber (k) as a function
of Reynolds number (Re) for SFPF and EHDF. For very low values of electric
field and viscosity stratification (Raψ = 10, VL

= 0.005), the EHDF shows a similar
behaviour to the SFPF, yielding a critical Re of approximately 5772, as can be seen in
figure 5(b). An increase in Raψ signals an increment in the destabilizing electric field
force, which is reflected as a decreasing trend of the critical Re with increasing Raψ
in figure 5(b). However, for a marginal increase in the viscosity difference between
the fluids (VL

= 0.05) and for a lower electric field potential (Raψ = 10), the critical
Re for instability is found to increase, suggesting a kinetic stabilization of the system.
Figure 5 shows the accuracy of the numerical analysis presented in this work, which
has been employed to generate the results shown in the manuscript.

3.4.5. Variable ionic mobility
It may be noted here that, the ionic mobility parameter can strongly depend on

the viscosity of the fluid (Schmidt & Yoshino 2015). Thus, it is likely that the ionic
mobility values will differ in the fluids of interest in a practical setting. Although in
the present analysis, for the purpose of mathematical simplification, most of the results
are presented assuming equal ionic mobility, it is however lucrative to study the effect
of a difference in the ionic mobility values in order to simulate a physical system with
more precision. In order to investigate the effect of ion mobility values on the stability
characteristics, we assume the ion mobility to be K1 in the lower viscosity fluid 1
and K2 in the higher viscosity fluid 2. The ionic mobility in the mixed interfacial
is modelled as K = K1 exp(SKL), where S is the same scalar used for defining the
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viscosity µ, and KL
= ln(K2/K1), is defined as the log mobility ratio. Subsequently,

the perturbation scheme described by (3.19) becomes,

[u,w, p, ψ, S, µ,K](x, z, t) = [u0(z), 0, p0, ψ0(z), S0(z), µ0(z),K0(z)]

+ [ũ, w̃, p̃, ψ̃, S̃, µ̃, K̃](z)e(ωt+ikx). (3.35)

The modified governing equation for the conservation of charge density q ((3.10) and
(3.16)) can now be written as,

∂q
∂t
+ v · (∇q)+Kq(∇ ·E)+E · (K∇q+ q∇K)= 0. (3.36)

The base-state profile of the ionic mobility K0 is obtained from the base-state solution
of S0 (3.20) as,

K0 = exp(S0KL). (3.37)

The base state of electric potential ψ0 is obtained by solving the steady-state form of
(3.36), given by,

K0(ψ
′′

0 )
2
+K0ψ

′

0ψ
′′′

0 +K ′0ψ
′

0ψ
′′

0 = 0, (3.38)

with the boundary conditions: [ψ0(1) = 1; ψ0(−1) = 0; ψ ′′0 (1) = −Iq] as already
mentioned previously. Upon perturbing the governing equations with the variables
mentioned in (3.35), the modified dimensionless linearized charge conservation
equation is given by,

ik
[
(u0 − c)(ψ̃ ′′ − k2ψ̃)−

i
k
ψ ′′′0 w̃

]
=K0ψ

′

0ψ̃
′′′
+ (2K0ψ

′′

0 +K ′0ψ
′

0)ψ̃
′′

+ (K0ψ
′′′

0 +K ′0ψ
′′

0 − k2K0ψ
′

0)ψ̃
′
− (2k2K0ψ

′′

0 + k2K ′0ψ
′

0)ψ̃ +ψ
′

0ψ
′′

0 K̃ ′

+ [(ψ ′′0 )
2
+ψ ′0ψ

′′′

0 ]K̃. (3.39)

The linearized non-dimensional governing equations defined by (3.24), (3.39) and
(3.26) along with the boundary conditions defined by (3.27)–(3.29), are solved using
the numerical method described in § 3.4.3.

3.4.6. Variable dielectric constant
As the case of ionic mobility, it is also quite likely that the experimental fluids

seldom have similar dielectric constants. In order to investigate the effect of variable
dielectric constants on the stability characteristics, we assume dielectric constants ε1
and ε2 for fluids 1 and 2, respectively. In the mixed interfacial region, the dielectric
constant is modelled as ε = ε1 exp(SEL), where EL

= ln(ε2/ε1) is defined as the log
permittivity ratio. The perturbation scheme shown in (3.19) transforms into,

[u,w, p, ψ, S, µ, ε](x, z, t) = [u0(z), 0, p0, ψ0(z), S0(z), µ0(z), ε0(z)]

+ [ũ, w̃, p̃, ψ̃, S̃, µ̃, ε̃](z)e(ωt+ikx). (3.40)

The base-state profile of dielectric constant ε0 is obtained from the base state of the
concentration scalar S0 as,

ε0 = exp(S0EL). (3.41)

The base-state electric potential ψ0 is obtained by solving the steady-state form of
(3.16), given by,

ε0(ψ
′′

0 )
2
+ 3ε′0ψ

′

0ψ
′′

0 + ε0ψ
′

0ψ
′′′

0 + ε
′′

0(ψ
′

0)
2
= 0. (3.42)
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Equation (3.42) is solved using the boundary conditions: [ψ0(1) = 1; ψ0(−1) =
0;ψ ′′0 (1)=−Iq]. The modified dimensionless linearized momentum equation is given
by,

Reψ ik[(u0 − c)(w̃′′ − k2w̃)− u′′0w̃]

+Raψk2
[ε0ψ

′

0ψ̃
′′
− (ε0ψ

′′′

0 + k2ε0ψ
′

0 + 2ε′0ψ
′′

0 + ε
′′

0ψ
′

0)ψ̃ + (ψ
′

0)
2ε̃′ + 2ψ ′0ψ

′′

0 ε̃]

=µ0w̃′′′′ + 2µ′0w̃′′′ + (µ′′0 − 2k2µ0)w̃′′ − 2k2µ′0w̃′ + (k2µ′′0 + k4µ0)w̃− iku′0µ̃
′′

− 2iku′′0µ̃
′
− (iku′′′0 + ik3u′0)µ̃. (3.43)

The linearized charge conservation equation is given by,

ik
[
(u0 − c)(ε0ψ̃

′′
+ ε′0ψ̃

′ − k2ε0ψ̃ +ψ
′

0ε̃
′
+ψ ′′0 ε̃)−

i
k
(ε0ψ

′′′

0 + 2ε′0ψ
′′

0 + ε
′′

0ψ
′

0)w̃
]

= ε0ψ
′

0ψ̃
′′′
+ (2ε0ψ

′′

0 + 3ε′0ψ
′

0)ψ̃
′′
+ (ε0ψ

′′′

0 + 2ε′′0ψ
′

0 + 3ε′0ψ
′′

0 − k2ε0ψ
′

0)ψ̃
′

− (2k2ε0ψ
′′

0 + 2k2ε′0ψ
′

0)ψ̃ + (ψ
′

0)
2ε̃′′ + 3ψ ′0ψ

′′

0 ε̃
′
+ (ψ ′0ψ

′′′

0 +ψ
′′2
0 )ε̃. (3.44)

Equations (3.43) and (3.44) along with (3.26) are solved using the boundary
conditions mentioned in (3.27)–(3.29) applying the numerical method discussed
in § 3.4.3.

3.5. Nonlinear simulations
The computational domain for the nonlinear simulations is shown in figure 3(b). The
properties of the fluids are modelled as, X = X1 exp(SXL), where X is a physical
property (viscosity (µ1, µ2), dielectric constant (ε1, ε2) or ionic mobility (K1, K2)),
S is any scalar and XL is the log ratio. The governing equations simulated for the
system are same as defined in § 3.2 ((3.2)–(3.11)).

For the flow field ((3.2) and (3.3)), a no-slip (v= 0) condition was enforced at the
walls. For the advection–diffusion equation (3.11), the inlet concentration was fixed
at 1 for the higher viscosity (dielectric constant, ionic mobility) fluid and at 0 for the
lower one. For the electric field (3.6), ψ = Ψ0 and ψ = 0 boundary conditions were
enforced at the top and bottom electrodes, respectively. The injection was considered
autonomous and homogenous (refer to § 2.2). Thus, for the charge conservation
equation defined by (3.7), constant charge density, q = Q0, was maintained at the
injector (top). It was also assumed that the ions discharged immediately on reaching
the collector electrode (Wu et al. 2013, 2015).

The set of partial differential equations defined by (3.2)–(3.11) were solved
using the finite element method employing the commercial software COMSOL
MultiphysicsTM for a 2-D geometry shown in figure 3(b). The domain was discretized
with ∼4.5 × 104 finite elements with refinement along the walls, mixed interface
and electrode regions. Second-order elements for velocity, concentration, potential
and volume charge density, and first-order elements for pressure, were used for
discretization. The MUltifrontal Massively Parallel Sparse direct solver (MUMPS)
was used for solving the equations. The time dependent solver was adjusted to a
backward difference formula with free time stepping for integrating the equations.

4. Results and discussion
4.1. Experimental observations

We initiate the discussion with one of the experimental results in which a benzene–
silicone oil system (VL

≈ 6) flowed through a microchannel before the EHD field
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0 ms
420 µm

5 ms

45 ms

90 ms

(a)

(b)

(c)

(d)

FIGURE 6. (a–d) Show the experimental snapshots after 0 ms, 5 ms, 45 ms and 90
ms, respectively, depicting the response of a stratified flow of a benzene–silicone oil
system through the microchannel under an applied potential of 300 V (Raψ = 225). Here,
(a) corresponds to the system under 0 V electric potential. The top layer on the image
corresponds to benzene and the bottom layer corresponds to silicone oil. The fluids flowed
side by side in the channel while the images were taken from the top. The average Re
of the base flow was maintained approximately at 0.5. The arrow indicates the direction
of flow.

was generated by the application of a DC voltage of 300 V (Raψ = 225) across
the electrodes. Figure 6 shows the images of the experiment, which correspond
to the top view of the flow while the electrodes were inserted into the channel
horizontally from the sides, as previously mentioned in figure 1. The supporting
movie 1 available at https://doi.org/10.1017/jfm.2018.1023 shows the spatio-temporal
evolution of the instability near the electrode with the finer details. The experiments
were visualized using a microscope under 2.5× magnification and recorded using
a high speed camera at 500 fps at a resolution of 1280 × 120 pixels unless stated
otherwise. It may be noted here that a higher difference in the viscosities of benzene
and silicone oil helped us in capturing the high quality grey scale videos, as reported
here. The EHD instability phenomenon was reproducible for benzene–oleic acid and
benzene–soybean oil systems too. However, those results are not reported for the sake
of brevity. Figure 6(a) shows that the pressure-driven flow rates of the fluids were
attuned in such a manner that a steady stratified flow was formed in the absence
of the external field. Figure 6(b–d) and the supporting movie 1 show the typical
evolution of the miscible benzene–silicone oil interface under the influence of the
electric field. It may be noted here that the top layer shown in the image is benzene
while the bottom one is silicone oil. However, in reality, the fluids flowed side by
side in the channel while the images were taken from the top. On application of
the electric field potential through the electrodes, the flow becomes unstable and
develops instabilities, as shown with the help of highlighted rectangular boxes in the
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images. The images and the video suggest that the applied field destabilizes the lower
viscosity benzene layer and subsequently shifts the diffused interface towards the more
viscous silicone oil layer. Under the exposure of a constant electric field intensity,
the instability possesses convective waves propagating towards the downstream of the
channel owing to the presence of the pressure-driven flow inside the channel. After
the onset, the speed of these waves increase with time before reaching a constant
value for given field intensity, as shown in figure 6(b–d) and the supporting movie 1.

4.2. Theoretical outlook of the instabilities
The details of the theoretical formulation are deliberated in § 3 while the results
obtained from the LSA are discussed in this section. We have identified that, for
the proposed system, the effects of Raψ , VL and Sc are perhaps the most significant
ones because all of the different modes of instability pertaining to this system are
obtained with variations in the magnitudes of these parameters. The results (except for
figures 13–15) correspond to KL = 0 and EL = 0, unless otherwise stated. Figure 7(a)
depicts the neutral stability plot showing the variation of the wavenumber (k) with
Raψ for VL

= 1. The plot suggests that the system is unstable to a finite-wavenumber
mode of instability at low and intermediate values of Raψ (solid line). We term this
mode the electric field mode I (E-I). At higher values of Raψ the system becomes
unstable to another finite-wavenumber mode of instability (broken line) termed the
electric field mode II (E-II). The wave speed (cr) of the E-I-mode is found to match
with the theoretical average velocity (u0) of the lower viscosity fluid (fluid 1) whereas
the wave speed of the E-II-mode matches with the mean flow of the higher viscosity
fluid (fluid 2). This observation helps in inferring that the EHD field can destabilize
the lower viscosity fluid at much lower values of Raψ to manifest the E-I-mode while
the E-II-mode appears at a much higher value of Raψ in the higher viscosity fluid 2.
The typical ω versus k plots with the variation in Raψ are shown in figure 7(d). At
Raψ = 400, only E-I-mode exists (unevenly broken line) whereas at Raψ = 1125, both
E-I and E-II modes (triangular symbols) are present with the E-I-mode characterized
by significantly higher growth rates than the E-II-mode. Figure 7(b) illustrates the
variation of wavenumber against log viscosity ratio (VL) for Raψ = 375. The plot
suggests that, at lower values of VL, only the E-I-mode (solid line) can destabilize the
flow. In comparison, at higher values of VL, a much longer-wavelength viscous mode
(V) (unevenly broken line) appears alongside the E-I-mode. At the intermediate values
of VL, ranging from 1.3 to 1.6, a unique bimodal behaviour is observed, as shown by
the ω versus k plots in figure 7(e). The plots clearly suggest that the V-mode arises
only when there is a higher viscosity contrast across the diffused interface. Figure 7(c)
shows the variation of k with Sc for VL

= 2 and Raψ = 375. In this situation, apart
from the E-I mode (solid line), the diffusive D-mode becomes unstable beyond a
threshold value of Sc. The D-mode exhibits a finite-wavenumber-type behaviour for
low to intermediate values of Sc, which signifies a thick and diffusive interface. At
higher values of Sc, when the interface is much sharper and thinner, the D-mode
behaves as a long-wave mode, frequently observed for immiscible two-phase flows
(Ern et al. 2003; Sahu & Govindarajan 2016). The ω versus k plots in figure 7( f )
shows the transition of the length scale from the shorter- to longer-wavelength regime
with the increase in Sc.

In summary, figure 7 uncovers four distinctive finite-wavenumber modes destabilizing
a two-layer viscosity stratified flow of miscible fluids under the influence of an
externally applied electric field. The results suggest the existence of two distinct
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FIGURE 7. (Colour online) Neutral stability plots showing the variations of wavenumber
(k) with (a) electric Rayleigh number Raψ , (b) log viscosity ratio VL and (c) Schmidt
number Sc. The dispersion curves showing the growth rate (ω) versus the wavenumber (k)
of the unstable modes with (d) Raψ , (e) VL and ( f ) Sc. In (a) the solid line represents the
electric field mode I (E-I) and the broken line represents the electric field mode II (E-II).
The other parameters for (a,d) are VL

= 1, h=−0.3, δ= 0.02, Sc= 10 and Re= 0.5. In (b)
the solid lines represent electric field mode I (E-I) and the unevenly broken lines represent
the viscous mode (V). The other parameters for (b,e) are h = −0.3, δ = 0.02, Sc = 10,
Raψ = 375 and Re= 0.5. In (c) the solid lines represent the E-I-mode, the unevenly broken
line represents the V-mode and the evenly broken line denotes the diffusive mode (D). The
other parameters for (c, f ) are VL

= 2, h=−0.3, δ = 0.02, Raψ = 375 and Re= 0.5. The
hatched U-regions denote unstable zones whereas S-regions denote the stable zones.

electric field modes, E-I and E-II, beyond a critical value of Raψ . Further, the
presence of the V- and D-modes are also observed due to the viscosity stratification
and convective transport of the perturbed concentration near the interface, respectively.

In order to evaluate the contributions of the various forces to the growth of the
instability modes discussed above, an energy analysis is carried out. A brief outline
of the analysis is provided in appendix A. The energy equation relates the rate of
change of the disturbance kinetic energy (EKE), with energy changes associated with
the Reynolds stress (ERS), viscous dissipation (EVD), viscosity stratification (EV) and
electric force (EE) components. Figure 8 describes the variation of the normalized
energy associated with the various terms (EN) with Raψ , VL and Sc. It may be noted
here that the eigenfunctions used for the energy calculations correspond to those of the
most unstable modes. Further, the eigenfunctions are normalized with their maximum
absolute values while the energy terms are normalized by the total kinetic energy∫ 1
−1(|ũ|

2
+ |w̃|2) dz. The variation of ERS is not shown in the plots because the energy

associated with the Reynolds stresses are negligible for the flows with low Re reported
in this work.

Figure 8(a) shows that, for the situation with a lower viscosity stratification (VL
=1),

the major part of the disturbance energy is generated by the applied electric force,
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FIGURE 8. (Colour online) The variations of (a) normalized energy (EN) with Raψ , (b)
normalized energy with VL, (c) absolute values of normalized perturbation concentration
(S̃) with Sc and (d) normalized energy with Sc. The other parameters for (a) are VL

= 1,
h = −0.7, δ = 0.02, Sc = 10 and Re = 0.5. The other parameters for (b) are h = −0.3,
δ = 0.02, Sc = 10, Raψ = 375 and Re = 0.5. The other parameters for (c,d) are VL

= 3,
h=−0.3, δ = 0.02, Raψ = 375 and Re= 0.5.

which is reflected in the higher values of EE. With the increase in electric force
(Raψ ), EE increases monotonically, which is the cause of the onset of the E-I and
E-II modes. In this case, the energy associated with viscosity stratification (EV) is
negligible, and remains nearly unchanged with increment in Raψ . The trends of the
variation in EE and EV with Raψ explain well the occurrence of the electric field
modes at lower viscosity stratifications, as previously discussed with figure 7(a,d).
Figure 8(b) depicts the variations of EN with VL, which reveals that the electric force
remains the major source of disturbance at lower values of VL. Hence, for lower
viscosity stratifications, only the E-I-mode of instability manifests in the system, as
depicted in figure 7(b,e). With the increase in VL, the energy associated with viscosity
stratification increases rapidly, leading to the occurrence of the V-mode of instability
along with the E-I-mode. Figure 8(c) shows the variation of the absolute values of the
normalized perturbation concentration (S̃) for different values of Sc. At lower values
of Sc the variation in S̃ is found to be progressive and less steep near the mixed
interface. The variation in S̃ becomes steeper across the interface at higher values of
Sc, which gives rise to the onset of the D-mode of instability. Figure 8(d) shows the
variation of EN with Sc. The plot suggests that at lower values of Sc, the disturbance
kinetic energy is produced mainly by the applied electric force, which is indicated
by the higher values of EE. At higher values of Sc, EV contributes more towards the
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FIGURE 9. Neutral stability plots showing the variation of wavenumber (k) versus electric
field Rayleigh number (Raψ ) for (a) VL

= 0, (b) VL
= 1, (c) VL

= 2 and (d) VL
= 3. In

(b–d) the evenly broken, solid, dotted and unevenly broken lines show the situations with
h=−0.9,−0.3, 0 and 0.35, respectively. The other parameters are Sc= 10, δ = 0.02 and
Re=0.5. The hatched U-regions denote unstable zones whereas S-regions denote the stable
zones.

generation of disturbance energy compared to EE, which causes the D-mode to occur
alongside the E-I-mode, as previously observed in figure 7(c, f ).

4.2.1. Parametric study
In this section we discuss the role of various parameters in influencing the stability

of the system. Figure 9(b) shows the variation of k with Raψ for different values of
h, which signifies the distance of the diffused interface from the datum, z = 0, as
previously shown in figure 3(a). It may be noted here that the variation of h from
−1 to 1 also signifies the progressive filling of the channel with a more viscous
fluid. Figure 9(a) shows the situation when VL

= 0, which indicates that the channel
is entirely filled with the low viscosity fluid. The plot shows that the system is
unstable to the E-I-mode of instability. In figure 9(b–d) the evenly broken, solid,
dotted and unevenly broken lines show the situations with h = −0.9, −0.3, 0 and
0.35, respectively, which signify that the channel is filled with thin (e.g. h = −0.9)
to thick (e.g. h= 0.35) layers of more viscous fluid in the fully developed stratified
flow.

Figure 9(b) shows the neutral stability curves when VL
= 1, for different values of

h. The plot suggests that as the proportion of the more viscous fluid increases inside
the channel, the critical Raψ for the E-I-mode progressively increases owing to the
increase in the overall viscous resistance. The neutral stability curves in figure 9(c) for
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FIGURE 10. (Colour online) (a) Shows the variations of dominant growth rate (ωm,
denoted by symbols) and wavelength (λm, denoted by lines) with Raψ . (b,c) Show the
variations of dominant growth rate (ωm, denoted by symbols) and wavelength (λm, denoted
by lines) with h, at different values of Raψ for VL

= 1 and VL
= 2, respectively. The other

parameters considered for (a) are VL
= 1, h=−0.3, δ = 0.02, Sc= 10 and Re= 0.5. The

other parameters considered for (b,c) are h=−0.3, δ = 0.02, Sc= 10 and Re= 0.5.

VL
= 2 show the presence of the E-I-mode for the situations with a thinner layer of

more viscous fluid. The plot shows the appearance of the twin E-I and V modes with
shorter and longer wavelengths, respectively, as the thickness of the layer with more
viscosity is increased at h=−0.3. The V-mode arises due to the viscosity stratification
across the diffused interface, while the origin of the E-I-mode can be attributed to
the externally applied electric field, as discussed previously. Notably, the E-I-mode
is found to have a much shorter wavelength, compared to the V-mode. The V-mode
becomes unstable at a much lower value of Raψ when the thickness of the more and
less viscous fluids are identical at h= 0. With further increase in the thickness of the
higher viscosity fluid, the increase in the viscous resistance inside the channel enforces
the V-mode to appear at a higher value of Raψ for h= 0.35. Again, the E-I-mode for
this plot appears at a much higher value of Raψ , which is not shown. Figure 9(d)
shows the results for VL

= 3, which are very similar in nature to those observed in
figure 9(c). However, for VL

= 3, the V-mode becomes unstable even in the absence
of an externally applied electric field beyond a certain value of h, as can be seen for
h= 0 and h= 0.35. Thus, the V-mode is found to have similar characteristics to the
shear mode of instability in the viscosity stratified flow of miscible fluids, which has
been reported in previous works (Talon & Meiburg 2011).

Figure 10(a) depicts the variations of the dominant growth rate (ωm) and wavelength
(λm) representing the most unstable disturbances with Raψ for VL

= 1. The plot
suggests that, for low and intermediate values of Raψ , the system manifests the
E-I-mode (black symbols) whereas at higher values of field intensity the E-II-mode
(red symbols) appears along with the E-I-mode. Figure 10(b) shows the variations of
ωm and λm with h across the channel for three different values of Raψ . Again, in this
plot the variation of h from −1 to 1 signifies the progressive filling of the channel
with the more viscous fluid. The plot suggests that when VL

= 1, the E-I-mode
progressively loses its strength (ωm reduces) when the channel is filled with the more
viscous fluid provided Raψ is kept constant. Subsequently, a marginal increase in
λm of the E-I-mode is also observed. The plot also shows that the time and length
scales of the E-I-mode reduce with the increase in Raψ because the magnitude of
ωm increases and λm reduces with the increase in Raψ . In comparison, figure 10(c)
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FIGURE 11. (Colour online) (a) Shows the variations of dominant growth rate (ωm,
denoted by symbols), and wavelength (λm, denoted by lines) with VL. The other
parameters considered are h = −0.3, δ = 0.02, Sc = 10, Raψ = 375 and Re = 0.5. (b)
Shows the variations of dominant growth rate (ωm, denoted by symbols) and wavelength
(λm, denoted by lines) with h for different values of Sc. The other parameters are, VL

= 2,
δ = 0.02, Raψ = 375 and Re= 0.5.

shows that, for higher values of VL(VL
= 2), the E-I-mode is the dominant one at

lower values of h. However, the reduction in ωm of the E-I-mode happens at a much
faster rate with the increase in h while a subdominant V-mode appears due to the
combined influence of electric field and viscosity stratification at intermediate values
of h. At even higher values of h, the E-I-mode disappears, and the V-mode becomes
the dominant mode. Interestingly, at intermediate values of h both the modes co-exist
to engender a bimodal instability. The plot suggests that the time and length scales
of both the E-I-mode and V-mode reduce with the increase in Raψ because the
magnitude of ωm increases and λm reduces with the increase in Raψ as previously
observed in the case of VL

= 1. Thus, an externally applied electric field can stimulate
both the finite-wavenumber E-I and V modes at lower Re of the stratified flow of
miscible fluids.

Another important parameter, which strongly influences the nature of the instabilities
in the present setting, is the viscosity contrast between the fluids defined by log
viscosity ratio VL. Figure 11(a) shows the variations of ωm and λm with VL. The plot
suggests that when the viscosity contrast across the diffused interface is lower, the
E-I-mode is the dominant one whereas, with a progressive increase in VL, the V-mode
can become the dominant one (not shown here). The plot also shows a much smaller
length scale of the E-I-mode as compared to the V-mode. It is important to note
here that Sc is another crucial parameter for defining the stability of miscible flows.
The effect of Sc on various configurations of miscible flows have been discussed in
detail in previous literature (Sahu & Govindarajan 2016). However, the presence of
an electric field in this regard makes the study more interesting. It has been discussed
earlier that the Sc number contributes to the appearance of the D-mode beyond a
critical threshold. Figure 11(b) shows the variation of ωm and λm with h for three
different values of Sc. It can be inferred from the figure that the E-I-mode remains
almost unaffected by the increase in Sc. However, as the interface becomes thinner
and less diffusive (higher Sc, filled circular and triangular symbols) the V-mode which
occurs at Sc = 10 undergoes transition to the D-mode which is accompanied by a
drastic increase in the growth rates of the most unstable perturbations. At higher
values of h, again the increase in the viscous resistance owing to the presence of the
more viscous liquid reduces the growth rate of the D-mode.
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FIGURE 12. Neutral stability plots showing the variation of k with Raψ for (a) different
values of thickness of the mixed interface, δ, and (b) different values of the injection level
Iq. The other parameters for (a) are VL

= 2, h=−0.3, Sc= 10 and Re= 0.5 and for (b) are
VL
= 1, h=−0.3, δ= 0.02, Sc= 10 and Re= 0.5. The hatched U-regions denote unstable

zones whereas S-regions denote the stable zones.

It is now well understood that the thickness of the mixed interface plays a
significant role in determining the stability characteristics of the system (Talon &
Meiburg 2011). While a thicker mixed interface damps a perturbation due to molecular
diffusion, a thin interface with restricted diffusion makes a perturbation unstable owing
to steep viscosity profiles near the interfacial region. The neutral stability plot shown
in figure 12(a) describes the effect of δ on the stability behaviour for VL

= 2. While
the E-I-mode remains unaffected by δ, the V-mode exhibits profound stabilization with
an increase in δ. Apart from the interfacial thickness, the level of charge injection,
Iq, can also influence the critical conditions of the E-I-mode. Figure 12(b) shows that
the critical Raψ reduces significantly with the increase in Iq. This observation is in
qualitative agreement with the results of Zhang et al. (2015) for a single fluid.

The difference in ionic mobility in the two fluids can be a critical parameter
in governing the stability characteristics of the system under study. The base-state
profile for electric potential ψ0 is shown in figure 13 for different values of KL. The
variation of ionic mobility across the channel is consequential in the distribution
electric potential across the channel. In the case of uniform mobility across the
channel (KL

= 0), the base-state profile of electric potential is progressive, as shown
in figure 13. However, with a decrease in the value of ionic mobility in the higher
viscosity fluid, there is a build-up of charge in the mixed interfacial region, which
is depicted by the cusps in the profiles of the electric potential ψ0 near the mixed
interfacial region for KL

=−2, KL
=−3 and KL

=−4. Figure 14(a) depicts the neutral
stability plots for different values of KL, at VL

= 1 and h=−0.7. It can be inferred
from the plot that, as the mobility values decrease in the higher viscosity fluid, the
critical electric field needed to trigger the E-I-mode of instability increases. However,
with an increase in the proportion of the more viscous fluid (h = −0.3), there is a
substantial increase in the growth rates (ωm) at KL

= −3 and KL
= −4, compared

to KL
= 0 as seen from figure 14(b,c). The instabilities also exhibit much shorter

wavelengths compared to the finite-wavenumber E-I-mode of instability. We hereafter
refer to this mode as the K-mode of instability. Figure 14(d) shows the variation
of ωm with the location of the mixed layer (h). It can be inferred from the plot that,
for greater proportions of less viscous (higher mobility) fluid inside the channel, the
system becomes unstable to the E-I-mode of instability (triangular symbols). The
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FIGURE 13. (Colour online) Base-state profile for electric potential (ψ0) for different
values of log mobility ratio KL. The other parameters are h=−0.3 and δ = 0.02.

interface is located close to the walls when the proportion of either fluid is very high
inside the channel. Thus, any perturbation occurring within the interfacial region due
to difference in ionic mobility is stabilized by viscous dissipation. Thus, only the
E-I-mode occurs for high proportions of the less viscous fluid inside the channel.
With an increase in the proportion of the more viscous (lesser mobility) fluid, as the
location of the interface h shifts towards the centre of the channel, the instability is
governed by the K-mode with higher growth rates and lower wavelength as compared
to the E-I-mode. The K-mode occurs in the mixed interfacial region due the steep
gradient in charge density in the region caused by the difference in ionic mobility
between the fluids. Again, it can be seen from figure 14(e, f ) that, for higher viscosity
stratification, the stability characteristics change on varying the ionic mobility of the
fluids. For KL

= −4, as depicted by figure 14( f ), only the K-mode of instability
exists, unlike the V-mode and the E-I-mode depicted in figure 14(e) for KL

= 0. It
may be noted that with a further increase in viscosity stratification, the V-mode also
occurs in conjunction with the K-mode (not shown here).

The dielectric constant is another important parameter that can be consequential to
the stability characteristics of the system under study. Figure 15 shows the neutral
stability curves depicting the variation of k with Raψ for different values of EL.
The plot predicts an increase in the critical values of Raψ with an increase in
the permittivity stratification inside the channel compared to the case of uniform
permittivity (EL

= 0). It may be noted here that, in this work, the higher permittivity
is used as the characteristic permittivity. Hence, negative (positive) sign in the value
of EL signifies that the permittivity of fluid 2 is lesser (higher) than that of fluid 1.
It can be inferred from figure 15 that, for slight differences in the values of electric
permittivity of the two fluids, the critical conditions for the onset of the instabilities
remain very close to each other. Significant changes in the onset conditions are only
observed for larger differences in the values of dielectric constants of the two fluids.
Since this study is motivated by fluids with similar dielectric constants, we do not
undertake an in-depth analysis of the consequences of larger contrasts in the dielectric
constants.

Figures 7–15 together provide some clue to the onset of instability in a two-layer
viscosity stratified flow of miscible fluids, which has been observed in the experiment
shown in figure 6. The plots reveal that the E-I-mode may appear even at very low
flow rates beyond a critical electric field intensity, which suggests that the proposed
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FIGURE 14. (Colour online) (a) Neutral stability curves showing the variation of
wavenumber (k) with electric Rayleigh number (Raψ ) for different values of KL. The other
parameters are VL

= 1, h=−0.7, δ= 0.02, Sc= 10 and Re= 0.5. Variation of the growth
rate of the most unstable modes (ωm) with Raψ for (b) KL

= 0, (c) KL
=−3 and KL

=−4.
The other parameters used for (b,c) are VL

= 1, h=−0.3, δ= 0.02, Sc= 10 and Re= 0.5.
(d) Variation of the growth rate of the most unstable modes (ωm) for different values of h.
The other parameters used are VL

=1, KL
=−4, Raψ =300, δ=0.02, Sc=10 and Re=0.5.

Variation of the growth rate of the most unstable modes (ωm) with Raψ for VL
= 2 and

(e) KL
= 0 and ( f ) KL

=−4. The other parameters are h=−0.3, δ = 0.02, Sc= 10 and
Re= 0.5.

methodology can cause micromixing in the low Re flows. The threshold field intensity
to instigate the instability can be reduced further by increasing the charge injection
level, reducing the diffusion across the interface, and reducing the proportion of more
viscous fluid. Further, both the layers can be made unstable at higher field intensities
by simultaneously stimulating both the E-I and E-II modes. Conditionally, the V-mode
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FIGURE 15. (Colour online) Neutral stability curves showing the variation of wavenumber
(k) with electric Rayleigh number (Raψ ) for different values of EL. The other parameters
are VL

= 1, KL
= 0, h=−0.3, δ = 0.02, Sc= 10 and Re= 0.5.

and D-modes may appear owing to the viscosity contrast across the interface and the
convective transport at the diffused interface. A contrast in the ionic mobilities in the
two fluids may also cause the appearance of the K-mode of instability characterized
by higher growth rates compared to the E-I-mode. For small values of EL, the nature
and onset conditions of the instabilities are similar to the case of uniform dielectric
constants.

4.3. A comparison between experimental and theoretical results
In this section, a comparison between the data obtained from the experiments, LSA
and numerical simulations is reported. Here, we particularly focus on the critical
voltage required to initiate the instability in the two-layer stratified flow of miscible
fluids. Due to limitations in measurement techniques, the values of h and δ used for
the theoretical calculations are assumed to emulate the experimental conditions closely.
The precise calculation of the thickness of the mixed layer, δ, for a dynamic interface
developed inside a microchannel is challenging. Further, the characterizations of such
a diffuse interface between miscible fluids require sophisticated techniques, and are
thus not attempted. In such a scenario, the value of δ was not measured directly
from the experiments, but rather approximated with a simple order-of-magnitude
analysis and CFD simulations, the details of which are provided in appendix C. The
three experimental values denote benzene–oleic acid (VL

≈ 3), benzene–soybean oil
(VL
≈ 4) and benzene–silicone oil (VL

≈ 6) fluid pairs. Figure 16 shows that the
LSA over-predicts the corresponding experimental and simulation values. This is
expected since the nonlinearity associated with the actual experimental phenomena is
not considered in the LSA. In addition, the other parameters, such as the location of
the mixed layer (h), thickness of the mixed layer (δ), the value of Sc, are set, for the
LSA, to tentatively emulate the experimental conditions, as the measurement of these
quantities is exceedingly challenging in the reported experimental set-up. Variation in
the ionic mobilities and dielectric constants of the fluids, which are not considered
in the LSA, can also be instrumental in determining the onset conditions, as hinted
at in figures 14 and 15. In the absence of exact experimentally measured values
of the ionic mobility and dielectric constant, the LSA was carried out considering
equal ionic mobilities and dielectric constants for the fluids. Further, the injection of
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FIGURE 16. (Colour online) Variation of Raψ with VL depicted by LSA, experiments
and numerical simulations. The other parameters used for LSA are h = −0.6, δ = 0.04,
KL
= 0, EL

= 0, Sc = 500 and Re = 0.5. The other parameters used for simulations are
KL
= 0, EL

= 0, Sc = 500 and Re = 0.5. The experimental values denote benzene–oleic
acid (VL

= 3), benzene–soybean oil (VL
= 4) and benzene–silicone oil (VL

= 6) fluid pairs.
The average Re maintained during the experiments was 0.5. The error bars represent the
standard deviations of three experiments.

charges from the electrodes is considered to be autonomous. However, it has been
shown in earlier literature (Pontiga et al. 1995) that, for moderate injection levels,
a realistic field-dependent injection law can yield results different from those of the
autonomous injection case. Nevertheless, it can be seen that there is a reasonable
qualitative agreement between the onset conditions obtained from the theory and
the experiments. It is anticipated that, various assumptions made for the purpose of
simplification of the mathematical model, when addressed accurately, would yield
better agreement between the experimental and theoretical predictions.

Figure 17(a) shows experimental snapshots of the top view of the instabilities of
a benzene–silicone oil system at different time intervals when exposed to an electric
field potential of 400 V (E= 9.5 kV cm−1). Again, it may be noted here that the top
layer shown in the image is benzene while the bottom one is silicone oil. However,
in reality, the fluids flowed side by side while the images were taken from the top.
The images show the progressive linear undulations near the interface and subsequent
travelling waves towards the downstream of the channel under exposure to the
electric field. Figure 17(b) shows a comparison between the theoretically calculated
wavelengths (λ) and wave speeds (cr), and their corresponding experimental values.
In order to experimentally measure the wavelength and wave speed of the unstable
waves, the system was subjected to DC electric fields before the response was
recorded. The frames extracted from the videos were then analysed to measure
the required quantities. The wave speed was measured by tracking a wave over a
particular distance towards the downstream, and then estimating the time required for
the motion, as shown by the boxes in figure 17(a).

The experimental wavelength and wave speed were compared with the wavelength
and speed of the E-I-mode obtained from linear stability analysis. It can be seen from
figure 17(b) that the experimental and theoretical wavelengths are of the order of
∼10−2 cm, while the wave speeds are found to be of the order of ∼10−1 cm s−1. The
plot also shows that the wavelengths obtained from the experimental and theoretical
analyses show the same qualitative decreasing trend, whereas the wave speeds exhibit
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FIGURE 17. (Colour online) (a) Shows the experimental snapshots of a silicone
oil–benzene system under application of an electric field of 9.5 kV cm−1 at different time
instances. (b) Demonstrates the variation of experimental and theoretical wave speeds (vw,
cr) and wavelengths (λ) with increasing electric field intensity (E). The hollow symbols
(blue) denote the values of the wavelengths, whereas the solid symbols (red) denote the
wave speeds. The theoretical parameters used for the plot are h=−0.6, δ= 0.02, Sc= 500
and VL

= 6. The error bars in the experimental points are twice the standard deviations
obtained from three experiments. The average Re maintained during the experiments was
0.5. (a) Corresponds to the top view of the flow configuration. In the image the top
(bottom) layer corresponds to benzene (silicone oil) while in reality they flowed side by
side. The videos were recorded at 500 fps under 2.5× magnification. The arrow in (a)
indicates the direction of the flow.

an increasing trend, with an increase in the strength of the applied electric field. Again,
the plot shows that the experimentally observed quantities are slightly different from
the values predicted theoretically, which can be attributed to the various factors
mentioned previously.

4.4. Experimental and simulation results: nonlinear, time-periodic and unsteady
regimes

Apart from the unstable linear modes, the experiments also uncovered the presence
of interesting nonlinear, time-periodic and unsteady regimes in the two-layer
stratified flow of miscible fluids under the influence of external EHD field inside
a microchannel. In this section, we investigate the various flow patterns obtained
during electroconvection when the applied field intensity is on the higher side.
Upon application of electric potential to the system after development of a steady
flow profile, four distinctive disturbance patterns are observed in the system, as
demonstrated in figure 18. The image sets in figure 18(a–d) qualitatively identify
these instability regimes, labelled as I, II, III and IV, as observed upon application
of electric field from 0 to 35 kV cm−1. In these images the layer shown at the top
(bottom) corresponds to benzene (silicone oil). In these experiments, the voltage was
ramped up in 20 s in such a manner that the four quarters correspond to ramps of
0–300 V, 300–600 V, 600–900 V, 900–1500 V, respectively. The image set shown
in figure 18(a) corresponds to the regime I, which is in response to the application
of 0–300 V electric potential. In this regime, upon crossing a threshold voltage, the
linear instability is first triggered in the less viscous fluid layer, which grows with the
increase in the applied voltage. The characteristics of the instabilities in this regime
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FIGURE 18. Experimental micrographs showing the response of a stratified flow of a
benzene–silicone oil system through the channel under application of ramp electric fields
of strengths (a) 0–300 V, (b) 300–600 V, (c) 600–900 V and (d) 900–1500 V. The first
image in the image set (a) corresponds to the system under 0 V electric field potential.
Four regimes were distinguished, namely I, II, III and IV, as shown on the image sets.
The applied voltage was gradually increased from 0 V–1500 V in 20 s, allowing 5 s
for stabilization. Experiments were viewed with the help of a microscope under 2.5×
magnification under the transmission mode. The videos were recorded at 500 fps. The
images correspond to the top view of the flow configuration. The top layer corresponds
to benzene and the bottom layer corresponds to silicone oil. The average Re maintained
during the experiments was 0.5. The arrow indicates the direction of the flow.

have already been discussed in the previous sections. It may be noted here that these
instabilities are reversible in nature because turning off the electric field again leads
to the formation of the two-layer stratified flow in a short time. The image set in
figure 18(b) and supporting movie 2 correspond to the regime II, obtained during
application of 300–600 V electric potential. This regime is marked by the generation
of repeated instability patterns at the downstream of the channel, which qualitatively
resemble the time-periodic von Kármán vortex street in appearance. Upon further
increase in voltage from 600–900 V, regime III is identified, as shown in the image
set in figure 18(c) and supporting movie 3. In this situation, the time-periodic flow
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FIGURE 19. (Colour online) Computational snapshots showing the concentration surface
plot of a stratified flow of benzene–silicone oil (VL

= 6) through the channel at Raψ = 225.
Here, t∗ represents non-dimensional time. The other parameters used for the simulation are
KL
=−4, EL

=−0.15, Sc= 700, Iq
= 1 and Re= 0.5. The arrows in the images indicate

the direction of the flow. The black rectangles outside the channel represent the electrodes.
A positive potential is applied to the top electrode while the bottom electrode is grounded.

patterns start mixing with each other, in addition to having a smaller length scale
and higher frequency of ejection of flow structures as compared to regime II. Finally,
the voltage increment in the range of 900–1500 V, results in regime IV, depicted in
the image set of figure 18(d) and supporting movie 4. The images illustrate the onset
of a chaotic regime of flow instability where the periodic ejections of flow patterns
having higher frequency and smaller length scale intermix to stimulate a ready mixing
of the miscible layers.

The CFD simulations also predict qualitatively similar flow structures upon
application of an electric field to a stratified flow of two miscible fluids through
a channel. Figure 19 and supporting movie 6 depict the concentration surface plot
of a stratified flow of benzene–silicone oil (VL

= 6) at Raψ = 225. The flow is
undisturbed at t∗ = 0 in the absence of an electric field. The EHD instability sets
into the system upon application of an electric field, and a vortex street similar to
the experimental regimes II and III have been observed in figure 19. The simulations
mimic the experimental findings of the reduction of the size and time scale of
vortex generation on increasing the electric field, which is depicted in figure 20.
The figure shows the concentration surface plots of the benzene–silicone oil system
at different values of Raψ . It can be seen from the figure that the sizes of the
vortices decrease on increasing Raψ from 225 to 450, accompanied by an increase
in the frequency of vortex shedding. This behaviour is qualitatively similar to the
experimental observations reported in figure 18. It may be noted here that the
simulation results are reproducible with other fluid pairs (different VL) and also
considering liquids with equal ionic mobility (KL

= 0), however, the results are not
discussed here for the sake of brevity and two such cases are depicted in supporting
movies 7 and 8.

In order to characterize regimes II and III shown in figure 18, the frequency of
vortex shedding is correlated with the strength of the applied electric field. For this
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FIGURE 20. (Colour online) Computational snapshots showing the concentration surface
plot of a stratified flow of benzene–silicone oil (VL

= 6) through the channel at different
values of Raψ at t∗ = 300. It may be noted here that t is normalized considering Ψ0 =

300 V to maintain uniformity in reporting the results. The other parameters used for the
simulation are KL

= −4, EL
= −0.15, Sc = 700, Iq

= 1 and Re = 0.5. The arrows in
the images indicate the direction of the flow. The black rectangles outside the channel
represent the locations of the electrodes. A positive potential is applied to the top electrode
while the bottom electrode is grounded.

purpose, we analyse the variation of Strouhal number (St) with electric field Rayleigh
number (Raψ ). The experimental Strouhal number (St) is defined as St= fR/U, where
f is the frequency of shedding, R is the characteristic length and U is the average flow
velocity. In these experiments, the benzene–silicone oil system was subjected to a DC
voltage input in the range of 300–850 V at increments of 50 V. The system responded
with the generation of vortices, which were recorded and analysed simultaneously. The
frequency of the vortex cycles generated per second ( f ) at each of the applied electric
fields was calculated from the frames extracted from the recorded videos. Figure 21
shows the variation of St with Raψ , for regimes II and III. The figure suggests that
for both regimes II and III, the frequency of vortex generation increases (increasing
St) with the strength of the applied field (increasing Raψ ). The higher values of St
in regime III indicate larger frequencies of the vortices as compared to regime II,
which can be attributed to a higher electrical force in regime III compared to regime
II. Further, regimes II and III can also be differentiated by an abrupt jump observed
in the values of St. Interestingly, the experimental time scale of vortex generation,
tv ∼ O(10−2 s), is found to be very close to the theoretical one, tv ∼ O(10−2 s) ∼
(RVLη1)/(Kψ0U).

We introduce a parameter ξ to quantify the amount of perturbation instilled into
the system upon application of electric fields of varying strengths for the regimes
I–IV, discussed in figure 18. For this purpose, initially, the benzene–silicone oil system
was subjected to DC voltage application in the range of 0–1500 V, at increments of
50 V, and the response was recorded simultaneously. We define, ξ = 1− Ie/Ii, where
Ii is the mean grey scale level in absence of an electric field and Ie is the mean
grey scale level in the presence of an electric field. The parameter ξN represents the
normalized values of ξ , obtained by dividing the latter by the maximum value of ξ .
The grey scale intensities were measured by image analysis of the extracted frames
using the commercial software MATLAB. Figure 22(a) shows the variation of ξN with
Raψ . The ξN in this plot were calculated for three distinct regions marked 1, 2 and
3, located upstream, within and downstream of the area of application of the electric
field, respectively, as shown in the plot by the rectangular boxes. The intensity values
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FIGURE 21. (Colour online) Variation of Strouhal number (St) with electric field Rayleigh
number (Raψ ) in regimes II and III, for a benzene–silicone oil system under DC voltage
input. The average Re maintained during the experiments was 0.5. The arrow indicates
the direction of the flow.
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FIGURE 22. (Colour online) (a,b) Show the variation of perturbation parameter ξN with
Raψ . (a) The three regions 1, 2 and 3 in the inset are located at the upstream, within and
downstream, of the region where the electric field was applied, respectively. In (b), five
regions, 1–5, in the inset are identified in the downstream of the region of application of
electric field. Regions 1 and 3 in (a) are two channels widths in length, and one channel
width in breadth. All other regions are squares of one channel width side. The system
studied was that of benzene–silicone oil, under application of DC voltages. The average
Re maintained during the experiments was 0.5. The arrow indicates the direction of the
flow.

represent the mean intensity of all the pixels contained within the regions of interest
namely, regions 1, 2 and 3.

The plot suggests that, while ξN remains nearly constant at the upstream of the
electrodes, the same increases with an increase in Raψ within the electrode and
downstream regions. Further, at lower values of Raψ , when there is little perturbation
in the system, the grey scale levels do not change significantly, yielding lower values
of ξN . With the increase in Raψ , the development of the instability modes yield
higher values of ξN . Region 3 in the downstream, where all the unstable perturbations
travel with the fluid, shows a more rapid increase in the values of ξN with Raψ ,
as compared to regions 1 and 2. Further, regions 2 and 3 show significantly higher
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values of ξN in instability regimes III and IV owing to the chaotic nature of the
instabilities. Figure 22(b) shows the variation of ξN with Raψ in five different regions
immediately downstream to the electrode region, as shown by boxes in the figure. The
figure suggests that ξN is minimum near region 1, then increases sharply in regions
2 and 3 before again reducing in regions 4 and 5. The plots infer that perturbation
strength is maximum in region 2, which is the immediate downstream of the region
of application of electric force. The image suggests that the electric field induced
perturbations in these systems can only grow up to a certain part of the downstream
of the electrodes before they are transported downstream due to pressure-driven flow
of the fluid layers. It is important to note here that ξN is also a measure of mixing of
the fluids in the downstream of the channel. A higher value of ξN signifies a larger
amount of mixing between the layers. Thus, both the plots in figure 22 suggest that
the increase in the electric field intensity can cause a rapid mixing of the fluids at
the immediate downstream of the channel. Further, the plots also suggest that the
mixing length reduces with the increase in field intensity. The experiments also show
that the liquid can immediately be de-mixed when the electric field is turned off, i.e.
the perturbations die out immediately upon removal of electric field.

Figures 18–22 show the EHD induced steady, time-periodic and chaotic instabilities
in a pressure-driven viscosity stratified flow of a pair of miscible fluids inside
a microchannel, which can be employed for rapid mixing of the fluids inside
microfluidic devices. The method is found to be reversible in nature because
immediate de-mixing of the layers takes place upon the removal of the electric
field influence.

Figure 23 and supporting movie 5 show the use of multiple electrodes to cause a
rapid mixing of the miscible fluids undergoing a stratified flow inside a microchannel.
The optical micrographs (a–f ) show the response of a benzene–silicone oil stratified
flow when a DC voltage of 0–500 V is ramped up through five pairs of electrodes
integrated in a staggered manner along the microchannel wall, as shown in the figure.
The electrode separation distance in these experiments has been optimized based on
the observations made with the single electrode experiments. Again, the top (bottom)
layer shown in the image corresponds to benzene (silicone oil). In these experiments,
the voltage was ramped up in 5 s to cause the phenomena. All the frames shown in
this figure have been extracted from the supporting movie 5. Panel (a) corresponds to
the pressure-driven situation in absence of the electric field while (b) shows the onset
of the electric field induced mixing. Panels (c–f ) show the progressive reduction
in the mixing length owing to the generation of time-periodic and unsteady flow
patterns with the progressive increase in the field intensity. The multiple electrode
arrangement ensure an amplified perturbation in this system induced by the electric
field as compared to a single electrode system. Thus, a more efficient mixing of the
fluids can be achieved at a much lower voltage in the multi-electrode system. The
figure shows the use of the proposed methodology to rapidly mix fluids layers inside
the microfluidic devices.

5. Conclusions
A combined theoretical and experimental study uncovers the salient features of

electric field induced instabilities associated with the viscosity stratified flow of a pair
of miscible fluids inside microchannels. The major conclusions are:

(i) A general linear stability analysis reveals that the EHD instabilities of such
systems appear only beyond a critical field intensity. The analysis also uncovers
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420 µm(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 23. Experimental micrographs (a–f ) show the response of a benzene–silicone oil
stratified flow upon application of ramp DC voltage of 0–500 V, through five pairs of
electrodes integrated along the channel wall in a staggered fashion. The images correspond
to the top view of the flow configuration. The top layer corresponds to benzene and
the bottom layer corresponds to silicone oil. (a) Corresponds to the system at 0 V. The
average Re maintained during the experiments was 0.5.

the presence of five distinctive instability modes, which are identified as electric
field mode I (E-I), electric field mode II (E-II), viscous mode (V), diffusive mode
(D) and the K-mode. Mode E-I appears in the bulk of the lower viscosity fluid
at the lower values of Raψ while the E-II-mode manifests in the higher viscosity
fluid at very high values of Raψ . The V-mode appears when the viscosity
difference between the fluids is high. Presence of the electric field facilitates
the onset of the V-mode when compared with the regular pressure driven flows.
The D-mode appears in the mixed interfacial region at higher values of Sc due
to steep variation of perturbation concentration across the interface. Again, the
presence of the electric field facilitates the onset of the D-mode when compared
with the regular pressure-driven flows. A contrast of the ionic mobility in the
fluids cause the appearance of the much shorter wavelength K-mode.

(ii) The location of the interface (h), thickness of the interface (δ), level of charge
injection (Iq), strength of the applied EHD field (Raψ ), viscosity contrast across
the diffused interface (VL) and diffusivity across the interface (Sc), are found
to be some of the very important parameters for these types of instabilities.
For relatively small variations in the dielectric constants of the fluids (EL), the
E-I-mode remains nearly unaffected. In particular, the E-I-mode and E-II-mode
can be facilitated by increasing the applied field intensity, charge injection
levels and reducing the overall viscosity of the fluids. In the linear regime, the
experimental and theoretical values obtained for the critical electric field strength,
wave speed and wavelength of the E-I-mode of instability are found to be in
reasonable qualitative agreement.

(iii) Experiments uncover four distinct regimes of instabilities. The linear regime I
corresponds to the onset of instability waves beyond a critical field intensity. With
further increase in the applied voltage, the regime II marks the initiation of the
nonlinear regime with the appearance of time-periodic vortices in the downstream
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of the electrode region. On further increasing the electric field intensity a regime
III appears where smaller vortices are generated at higher frequencies leading
to intermixing of the flow patterns. The transition of regime II to regime III is
marked by an abrupt jump in the Strouhal number. Two-dimensional nonlinear
CFD simulations also predict the appearance of vortices which are qualitatively
similar to the experimental observations of regime II and III. The simulated
results show reduction in size and increment in frequency of shedding with the
increase in the electric field intensity. At still higher field intensities, the flow
becomes unstructured and chaotic in regime IV leading to total mixing of the
two fluids downstream the region of application of electric potential.

(iv) From the perspective of mixing, among all the regimes, the chaotic regime IV
with coherent flow patterns is found to be the most suitable one. The mixing
is found to happen at the immediate downstream of the electrodes inserted in
the channel where electric field can engender a strong intermixing of the layers.
The mixing decreases at the far downstream of the channel due to viscous
damping of the perturbations induced by the electric field. Interestingly, the
mixing and de-mixing processes have been observed to be reversible because
the flow immediately restores to its stratified configuration on switching off the
electric field. The mixing efficiency is found to increase with the increase in the
strength of the applied field and the number of electrodes inserted across the
channel.

In summary, the study uncovers a pathway to integrate the influence of an external
electrostatic field with a microfluidic device in order to remotely control the mixing
of the fluid layers. The phenomenon can be of significance in improving the efficiency
of multifarious cutting-edge microfluidic applications which include mixing, pumping,
heat exchange, mass transfer and reaction engineering. In depth investigation of the
coherent and chaotic regimes, along with a spatial stability analysis of the system has
been kept as future scope of research work.
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Appendix A. Energy analysis
The contributions of the various forces towards production or dissipation of the

disturbance kinetic energy are analysed to obtain a more comprehensive understanding
of the instability phenomenon. The energy equation is obtained by first multiplying the
x and z directional momentum equations (3.3) with the complex conjugate of ũ (ũ†)
and w̃ (w̃†), respectively, then adding the equations, and subsequently, integrating them
across the channel length (Selvam et al. 2007). The energy equation is given by,

EKE = ERS + EVD + EV + EE, (A 1)
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where, EKE represents the rate of change of disturbance kinetic energy, ERS is the
energy associated with the Reynolds stress, EVD is the viscous dissipation energy, EV is
the rate of energy change due to viscosity stratification and EE is the energy associated
with the electrical field body force component in the momentum equation. Here,

EKE =ωr

∫ 1

−1
(|ũ|2 + |w̃|2) dz,

ERS =−

∫ 1

−1
[Re(ũ†w̃)u′0] dz,

EVD =
1

Reψ

∫ 1

−1
µ0[−(|ũ′|2 + |w̃′|2)− k2(|ũ|2 + |w̃|2)] dz,

EV1 =
1

Reψ

∫ 1

−1
[µ′0{Re(ũ†ũ′ + 2w̃†w̃′)+ Im(kũ†w̃)}] dz,

EV2 =
1

Reψ

∫ 1

−1
[µ̃{Re(ũ†u′′0)+ Im(kw̃†u′0)}] dz,

EV3 =
1

Reψ

∫ 1

−1
[µ̃′{Re(ũ†u′0)}] dz,

EV = EV1 + EV2 + EV3,

EE =
Raψ

Reψ

∫ 1

−1
[Im(kũ†ψ ′′0 ψ̃)+Re{w̃†(ψ ′′0 ψ̃

′
+ ψ̃ ′′ψ ′0 − k2ψ ′0ψ̃)}] dz.



(A 2)

Appendix B. Three-dimensional stability analysis

The non-dimensional scheme is given by,

(x, y, z, h, δ)= R(x∗, y∗, z∗, h∗, δ∗), (u, v,w)=
KΨ0

R
(u∗, v∗,w∗),

ψ =Ψ0ψ
∗, q=Q0q∗, t=

R2

KΨ0
t∗, p=

ρK2Ψ 2
0

R2
p∗, µ=µ1µ

∗.

 (B 1)

Here, u, v and w represent the x, y and z directional velocity components, respectively.
The normal linear modes represented by (3.19) are modified as,

[u, v,w, p, ψ, S, µ](x, y, z, t) = [u0(z), 0, 0, p0, ψ0(z), S0(z), µ0(z)]

+ [ũ, ṽ, w̃, p̃, ψ̃, S̃, µ̃](z)e[ωt+i(kx+my)]. (B 2)

Here, k represents the streamwise and m represents the spanwise wavenumbers,
respectively. The non-dimensional linearized momentum equation represented by
(3.24) becomes,

Reψ ik[(u0 − c)(w̃′′ − (k2
+m2)w̃)− u′′0w̃]

+Raψ(k2
+m2)[ψ ′0ψ̃

′′
− (ψ ′′′0 + (k

2
+m2)ψ ′0)ψ̃] =µ0w̃′′′′ + 2µ′0w̃′′′

+ (µ′′0 − 2(k2
+m2)µ0)w̃′′ − 2(k2

+m2)µ′0w̃′ + ((k2
+m2)µ′′0 + (k

2
+m2)2µ0)w̃

− iku′0µ̃
′′
− 2iku′′0µ̃

′
− (iku′′′0 + ik(k2

+m2)u′0)µ̃. (B 3)
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FIGURE 24. (Colour online) Neutral stability curves (a,b) show the variation of
streamwise wavenumber (k) with electric Rayleigh number (Raψ ) for two-dimensional
(evenly broken line) and three-dimensional (solid line) perturbations. The other parameters
for (a) are VL

= 1, h= 0, δ= 0.02, Sc= 10 and Re= 0.5. The other parameters for (b) are
VL
= 3, h=−0.3, δ= 0.02, Sc= 10 and Re= 0.5. The value of the spanwise wavenumber

m is set equal to k for the three-dimensional cases.

The charge conservation equation (3.25) is modified as,

ik
[
(u0 − c)(ψ̃ ′′ − (k2

+m2)ψ̃)−
i
k
ψ ′′′0 w̃

]
= ψ ′0ψ̃

′′′
+ 2ψ ′′0 ψ̃

′′
+ (ψ ′′′0 − (k

2
+m2)ψ ′0)ψ̃

′

− 2(k2
+m2)ψ ′′0 ψ̃. (B 4)

The advection–diffusion equation of the concentration scalar becomes,

ikReψSc
[
(u0 − c)S̃−

i
k

S′0w̃
]
= S̃′′ − (k2

+m2)S̃. (B 5)

Equations (B 3)–(B 5) are solved using the boundary conditions mentioned in
(3.27)–(3.29) and applying the numerical methodology mentioned in § 3.4.3 of
the main text. Figure 24 shows the comparison between neutral stability plots
of the two-dimensional and three-dimensional perturbations. It may be noted
that for the three-dimensional cases, m = k is considered. Figure 24(a) shows
that the two dimensional perturbations are unstable at a lower value of critical
Raψ compared to the three-dimensional perturbations. Figure 24(b) also depicts a
similar trend with the two-dimensional perturbations being more unstable than the
three-dimensional ones. Thus, in the light of the above observation, it is evident that
two-dimensional perturbations become unstable at lower values of Raψ , compared
to the three-dimensional ones. Hence, only two-dimensional transversal modes are
considered in the analysis.

Appendix C. Estimation of thickness of mixed layer δ

For the diffusion process, the length scale can be approximated as, δ ∼
√
κt.

The diffusion coefficient κ ∼O(10−9
− 10−11) m2 s−1 (Petitjeans & Maxworthy 1996;

Lajeunesse et al. 1999), the time scale t can be approximated as, t∼O(10−1
−10−2) s.
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FIGURE 25. (Colour online) The variation of concentration scalar (S0) across the channel
at the base state. The parameters considered for the simulation are h= 0, Sc= 700 and
VL
= 6.

Thus, δ is obtained as δ ∼ O(10−5
− 10−6) m. This gives the dimensionless value

of δ ∼ O(10−1
− 10−2) considering the characteristic length to be ∼10−4 m. It was

further confirmed through the nonlinear CFD simulations, the details of which are
mentioned in § 3.5. Figure 25 shows the base-state scalar (S0) profile, for VL

= 6. It
can be seen from the figure that the thickness of the mixed interface at the base state
is ∼0.05.
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