
TLP 3 (3): 287–327, May 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S1471068402001631 Printed in the United Kingdom

287

On the abductive or deductive nature
of database schema validation and

update processing problems

ERNEST TENIENTE and TONI URPÍ

Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,

Jordi Girona Salgado 1-3, Barcelona, Catalonia

(e-mail: {teniente,urpi}@lsi.upc.es)

Abstract

We show that database schema validation and update processing problems such as view

updating, materialized view maintenance, integrity constraint checking, integrity constraint

maintenance or condition monitoring can be classified as problems of either abductive or

deductive nature, according to the reasoning paradigm that inherently suites them. This is

done by performing abductive and deductive reasoning on the event rules (Olivé, 1991), a set

of rules that define the difference between consecutive database states. In this way, we show

that it is possible to provide methods able to deal with all these problems as a whole. We also

show how some existing general deductive and abductive procedures may be used to reason

on the event rules. In this way, we show that these procedures can deal with all database

schema validation and update processing problems considered in this paper.

KEYWORDS: database updating, database validation, abduction, deduction

1 Introduction

It is largely agreed that databases should contain, at least, base facts, deductive

rules (views), integrity constraints and, sometimes, conditions to monitor since

these features, together with appropriate reasoning capabilities, facilitate program

development and reuse (Grant and Minker, 1992). Base facts represent extensional

information; while deductive rules, integrity constraints and conditions to monitor

represent intentional information, i.e. information that can be inferred from the

extensional one. In particular, deductive rules define common knowledge shared by

different users; integrity constraints define conditions that each state of the database

is required to satisfy and conditions to monitor define information whose changes

must be notified to the user.

Database schema validation has become an important problem in database

engineering, particularly since databases are able to define intentional information.

Schema validation refers to the process of verifying whether a database schema

correctly and adequately describes the user’s intended needs and requirements

(Adrion et al., 1982). In general, preventing possible flaws during schema design will

prevent those flaws from materializing as execution time errors or inconveniences.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

288 E. Teniente and T. Urṕı

Among the typical problems related to database schema validation, we have

satisfiability checking, redundancy of integrity constraints, view liveliness, etc. (Bry

and Manthey, 1986; Levy and Sagiv, 1995; Decker et al., 1996).

Databases must also include an update processing system that provides users with

a uniform interface through which they can request different kinds of updates, e.g.

updates of base facts or updates of derived facts. In the presence of intentional

information, updating a database is not a simple task since many issues have

to be taken into account (Abiteboul, 1988). Therefore, an important amount of

research has been devoted to different database updating problems like view updating

(Kakas and Mancarella, 1990; Guessoum and Lloyd, 1990; Teniente and Olivé, 1995;

Console et al., 1995; Decker, 1996; Lobo and Trajcevski, 1997), materialized view

maintenance (Gupta and Mumick, 1995; Roussopoulos, 1998), integrity constraint

checking (Sadri and Kowalski, 1988; Küchenhoff, 1991; Olivé, 1991; Garcı́a et al.,

1994; Lee and Ling, 1996; Staudt and Jarke, 1996), integrity constraint maintenance

(Moerkotte and Lockemann, 1991; Ceri et al., 1994; Wüthrich, 1993; Schewe and

Thalheim, 1994; Teniente and Olivé, 1995) or condition monitoring (Rosenthal et al.,

1989; Hanson et al., 1990; Qian and Widerchold, 1991; Baralis et al., 1998).

Up to now, the general approach of the research related to database schema

validation and update processing has been to provide specific methods for solving

particular problems. Therefore, if we were interested in integrating these problems

into current database technology, we should incorporate several methods into

commercial database management systems. In our opinion, this is one of the main

reasons of the difficulty of translating the huge amount of research in this area into

practical applications.

Solving these problems requires reasoning about the effect of an update on the

database. Therefore, all these methods are either explicitly or implicitly based on a

set of rules that define the changes that occur in a transition from an old state of a

database to a new one, which is obtained as a result of the application of a certain

transaction consisting of a set of base fact updates.

Several authors have argued about the advantages of making explicit the rules

that define changes on the database contents induced by the application of a

transaction when dealing with database updating problems (Bry, 1990; Teniente

and Urpı́, 1995; Denecker and De Schreye, 1998). These rules allow to guarantee

that the updated database is as close as possible to the old database (which is the

traditional assumption considered in database updating) and provide a high level

of expressiveness since they allow to reason jointly about both states involved

in the update (which is specially useful when dealing with database updating

problems).

On the other hand, the role of deduction and abduction as reasoning paradigms

is widely accepted. For instance, deduction has been used for query processing,

while abduction has been applied to fault diagnosis, planning or default reasoning.

In the context of databases, abductive procedures have been proposed for view

updating (Bry, 1990; Console et al., 1995; Decker, 1996) or satisfiability checking

(Denecker and De Schreye, 1998). However, we do not know precisely how many

forms of reasoning are necessary for solving known database problems nor, in

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 289

general, which database problems can be considered of deductive or of abductive

nature, according to the reasoning paradigm that is more naturally suited to solve

them.

In this paper, we show that database schema validation and update processing

problems can be classified as either of deductive or of abductive nature. This is done

by considering the event rules (Olivé, 1991), a particular case of rules that define the

exact difference among consecutive database states, and by showing that reasoning

deductively or abductively on these rules allows us to naturally specify and handle

database problems. As we will see, problems like materialized view maintenance,

integrity constraint checking or condition monitoring will be considered as naturally

deductive, while problems like view updating, integrity constraint maintenance or

enforcing condition activation as naturally abductive.

This first result is an evolution of our earlier work (Teniente and Urpı́, 1995),

where we proposed two ad hoc procedures to reason about the event rules that

allowed us to classify database updating problems. We extend this work by showing

that, in fact, we do not need ad hoc procedures but that we can consider general

reasoning paradigms like deduction and abduction. It follows from this result that

general deductive and abductive procedures can be used to reason about the event

rules and, hence, to deal with database schema validation and update processing

problems.

We also show how some existing general deductive and abductive procedures may

be used to reason on the event rules. In this way, we show that these procedures can

be used to deal with all database schema validation and update processing problems

considered in this paper. This is illustrated by means of examples and we also point

out some additional benefits gained by these procedures when reasoning on the

event rules. Note that our goal is not that of comparing existing procedures but to

show how to use them to reason on the event rules.

Finally, we sketch how the event rules could be used to solve general abductive

problems in addition to database schema validation and update processing problems.

Problems related to views, integrity constraints and conditions to be monitored

will be encountered whenever we have a database able to deal with intentional

information. We have developed our ideas for the particular case of deductive

databases due to their clear and precise notation. However, our framework (and,

thus, our conclusions) can be easily generalized to all kinds of databases containing

views, integrity constraints and conditions like, for instance, relational, active, object

or object-relational databases.

This paper is organized as follows. The next section reviews basic concepts of

deductive databases. Section 3 shortly presents the concepts of event, transition rules

and event rules. Section 4 defines deductive and abductive reasoning on the event

rules. Section 5 describes the most important problems related to schema validation

and update processing and classifies them as either of deductive or of abductive

nature. Section 6 shows how to use general deductive and abductive procedures to

reason on the event rules. Section 7 sketches the use of the event rules to solve

general abductive problems. Finally, in section 8 we present our conclusions and

point out future work.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

290 E. Teniente and T. Urṕı

2 Basic definitions and notation

We briefly review the basic concepts of deductive databases (Lloyd, 1987; Ullman,

1989). We consider a first order language with a universe of constants, a set of

variables, a set of predicate names and no function symbols. We will use names

beginning with a capital letter for predicate symbols and constants and names

beginning with a lower case letter for variables.

A term is a variable symbol or a constant symbol. We assume that possible values

for terms range over finite domains. If P is an m-ary predicate symbol and t1, . . . , tm
are terms, then P(t1, . . . , tm) is an atom. The atom is ground if every ti (i = 1, . . . , m)

is a constant. A literal is defined as either an atom or a negated atom.

A fact is a formula of the form: P (t1, . . . , tm) ←, where P (t1, . . . , tm) is a ground

atom. We will omit the arrow when denoting an atom.

A deductive rule is a formula of the form: P (t1, . . . , tm) ← L1 ∧ · · · ∧ Ln, with

m � 0, n � 1, where P (t1, . . . , tm) is an atom denoting the conclusion and L1, . . . , Ln

are literals representing conditions. P (t1, . . . , tm) is called the head and L1 ∧ · · · ∧ Ln

the body of the deductive rule. Variables in the conclusion or in the conditions are

assumed to be universally quantified over the whole formula. The definition of a

predicate P is the set of all rules in the database which have P in their head. We

assume that the terms in the head are distinct variables.

An integrity constraint is a formula that every state of the database is required to

satisfy. We deal with constraints in denial form: ← L1 ∧ · · · ∧ Ln, with n � 1, where

the Li are literals and all variables are assumed to be universally quantified over

the whole formula. We associate to each integrity constraint an inconsistency

predicate Icn, where n is a positive integer, and thus they have the same form

as deductive rules. Then, we would rewrite the former denial as Ic1 ← L1 ∧ · · · ∧Ln.

We call them integrity rules. More general constraints can be transformed into denial

form by applying the procedure described in Lloyd and Topor (1984).

We also assume that the database contains a distinguished derived predicate Ic

defined by the n clauses: Ic ← Icn. That is, one rule for each integrity constraint Ici,

i = 1 . . . n, of the database. Note that Ic will only hold in those states of the database

that violate some integrity constraint and that it will not hold for those states that

satisfy all constraints.

A condition to be monitored is a formula of the form: Cond(t1, . . . , tm)← L1∧ · · ·∧
Ln, with m � 0, n � 1, where Cond(t1, . . . , tm) is an atom and L1, . . . , Ln are literals.

Moreover, variables in Cond and in L1, . . . , Ln are assumed to be universally

quantified over the whole formula. Each condition to be monitored corresponds

to a derived predicate for which certain changes have to be notified to the database

user.

A deductive database D is a tuple D = (EDB, IDB) where EDB is a set of facts,

and IDB = DR ∪ IC ∪ Cond is a set of rules such that DR is a set of deductive

rules, IC a set of integrity rules and Cond a set of conditions to be monitored. The

set EDB of facts is called the extensional part of the deductive database and the

set IDB of rules is called the intentional part. We say that a deductive database is

consistent if predicate Ic does not hold on it, i.e. if no integrity constraint is violated.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 291

We assume that deductive database predicates are partitioned into base and

derived (view) predicates. A base predicate appears only in the extensional part and

(possibly) in the body of deductive rules. A derived predicate appears only in the

intentional part. Base and derived facts correspond to facts about base and derived

predicates, respectively.

As usual, we require that the deductive database before and after any updates

is allowed, that is, any variable that occurs in a deductive rule, integrity rule or

condition to be monitored has an occurrence in a positive literal of the body of the

rule. In this paper, we deal with hierarchical1 databases. Note that, in particular,

this kind of databases does not allow to express recursive rules.

3 The event rules

Intuitively, a database is a dynamic system that changes over time. Changes are

effected by EDB updates. These updates define a transition from an old state of

the database to a new updated one. In this sense, schema validation and update

processing problems can be viewed as database state transition problems. It is

possible to define a set of rules that explicitly defines the possible transitions in

terms of the difference between consecutive database states. Reasoning about these

rules will allow to reason jointly about both states involved in the transition and,

thus, to reason about the effect of the updates.

The event rules explicitly define the difference between two consecutive database

states. In the following, we shortly review the concepts and terminology of event

rules, as presented in Olivé (1991), and we discuss the possible use of other sets of

rules instead of the event rules.

3.1 Events

Let Do be a deductive database, T a transaction and Dn the updated deductive

database. We say that T induces a transition from Do (the old state) to Dn (the new

state). We assume for the moment that T consists of an unspecified set of base facts

to be inserted and/or deleted.

Due to the deductive rules, T may induce other updates on some derived

predicates. Let P be one of such predicates, and let Po and Pn denote the same

predicate evaluated in Do and Dn, respectively. Assuming that a fact Po(C) holds in

Do, where C is a vector of constants, two cases are possible:

a.1. Pn(C) also holds in Dn.

a.2. Pn(C) does not hold in Dn.

and assuming that Pn(C) holds in Dn, two cases are also possible:

b.1. Po(C) also holds in Do.

b.2. Po(C) does not hold in Do.

1 Equivalent to nr-datalog-¬ rules, and with the same expressive power as the relational calculus
(Abiteboul et al., 1995).

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

292 E. Teniente and T. Urṕı

In case a.2 we say that a deletion event occurs in the transition, and we denote

it by δP (C). In case b.2 we say that an insertion event occurs in the transition, and

we denote it by ιP (C).

Formally, we associate to each predicate P an insertion event predicate ιP and a

deletion event predicate δP , defined as:

(1) ∀x (ιP (x) ↔ Pn(x) ∧ ¬Po(x))

(2) ∀x (δP (x) ↔ Po(x) ∧ ¬Pn(x))

where x is a vector of variables. From the above, we then have the equivalencies:

(3) ∀x (Pn(x) ↔ (Po(x) ∧ ¬δP (x)) ∨ ιP (x))

(4) ∀x (¬Pn(x) ↔ (¬Po(x) ∧ ¬ιP (x)) ∨ δP (x))

We say that an event ιP or δP is a base event if P is a base predicate. Otherwise,

it is a derived event. If P is a base predicate, then ιP and δP facts represent

insertions and deletions of base facts, respectively. Therefore, we assume from now

on that a transaction T consists of an unspecified set of insertion and/or deletion

base event facts. If P is a derived predicate, an integrity constraint or a condition to

be monitored, ιP and δP facts represent induced insertions and induced deletions

on P , respectively.

3.2 Transition rules

Let us consider a derived predicate P of the database. The definition of P consists

of the rules in the deductive database having P in the conclusion. Assume that there

are m(m� 1) such rules. For notation’s sake, we rename predicate symbols in the

conclusions of the m rules by P1, . . . , Pm, replace the implication by an equivalence

and add the set of rules:

(5) P ← Pi i = 1 . . . m

i.e. one rule defining P for each derived predicate Pi, i = 1 . . . m.

Consider now one of the rules Pi(x) ↔ L1 ∧ · · · ∧ Ln. When this rule is to be

evaluated in the new state, its form is Pn
i (x)↔ Ln

1 ∧ · · · ∧Ln
n, where Ln

j (j = 1 . . . n) is

obtained by replacing the predicate Q of Lj by Qn. Then, if we replace each literal

in the body by its equivalent expression given in (3) or (4) we get a new rule which

defines the new state predicate Pn
i in terms of old state predicates and events.

More precisely, if Ln
j is a positive literal Qn

j (xj) we apply (3) and replace it by:
(
Qo

j (xj)∧¬ δQj(xj)
)
∨ ιQj(xj)

and if Ln
j is a negative literal ¬Qn

j (xj) we apply (4) and replace it by:
(
¬Qo

j (xj) ∧ ¬ιQj(xj)
)
∨ δQj(xj)

After distributing ∧ over ∨, we get the set of transition rules for Pn
i . Notice that

there are 2ki such rules (where ki is the number of literals in the Pn
i rule), and that

literals in each rule can be of three types: old database literals, base event literals

and derived event literals.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 293

Example 1

Consider the rule Cont1(x) ↔ Sign(x) ∧¬Fail-ex(x) stating that contracted people

are those who signed an agreement and did not failed the exam. In the new state,

this rule has the form Contn1(x) ↔ Signn(x) ∧¬Fail-exn(x). Then, replacing Signn(x)

and ¬Fail-exn(x) by their equivalent expressions given by (3) and (4) we get:

Contn1(x)↔ [(Signo(x) ∧ ¬δSign(x)) ∨ ιSign(x)] ∧
[(¬Fail-exo(x) ∧ ¬ιFail-ex(x)) ∨ δFail-ex(x)]

and, after distributing ∧ over ∨, we get the following transition rules:

Contn1(x)← Signo(x) ∧ ¬δSign(x) ∧ ¬Fail-exo(x) ∧ ¬ιFail-ex(x)

Contn1(x)← Signo(x) ∧ ¬δSign(x) ∧ δFail-ex(x)

Contn1(x)← ιSign(x) ∧ ¬Fail-exo(x) ∧ ¬ιFail-ex(x)

Contn1(x)← ιSign(x) ∧ δFail-ex(x)

Intuitively, it is not difficult to see that the first rule states that Cont(X) will be

true in the new state of the database if Sign(X) was true in the old state, Fail-ex(X)

was false in the old state and no change of Sign(X) and Fail-ex(X) is given by the

transition. In a similar way, the second rule states that Cont(X) will be true in the

new state if Sign(X) was true and it has not been deleted and if Fail-ex(X) has been

deleted during the transition. A similar, intuitive, interpretation can be given for the

third and fourth rules.

For simplicity of presentation, we will omit the subscript when a predicate P is

defined by only one rule and we will omit the superscript o for denoting old

database predicates.

3.3 Insertion and deletion event rules

Let P be a derived predicate. Insertion and deletion event rules of predicate P are

defined, respectively, as:

(6) ιP (x) ← Pn(x)∧¬Po(x)

(7) δP (x) ← Po(x)∧¬Pn(x)

where P refers to the current (old) database state and Pn refers to the transition

rule of P . These event rules define the induced changes that happen in a transition

from an old state of a database to a new, updated state. Note that they depend only

upon the rules of the database, being independent of the stored facts and of any

particular transaction.

We wish to point out that these rules can be intensively simplified, as described

in Olivé (1991) and Urpı́ and Olivé (1992, 1994). By simplifying the event rules, we

obtain a set of semantically equivalent rules, but with a lower evaluation cost. The

automatic generation and simplification of the event rules has been implemented in

a SunOS environment by means of Quintus Prolog. In this paper, we consider the

simplified version of the event rules.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

294 E. Teniente and T. Urṕı

Definition 1

Let D = (EDB, IDB) be a deductive database. The augmented database associated

to D is the tuple A(D) = (EDB, IDB∗), where IDB∗ contains the rules in DR ∪ IC ∪
Cond and their associated simplified transition and event rules.

Example 2

Given the following database D = (EDB, IDB):

Sign(John)

Fail-ex(John)

Cont(x) ← Sign(x) ∧¬Fail-ex(x)

the corresponding augmented database A(D) is the following:

Sign(John)

Fail-ex(John)

Cont(x) ← Sign(x) ∧ ¬Fail-ex(x)

ιCont(x) ← Sign(x) ∧ ¬δSign(x) ∧ δFail-ex(x)

ιCont(x) ← ιSign(x) ∧ ¬ Fail-ex(x) ∧ ¬ιFail-ex(x)

ιCont(x) ← ιSign(x) ∧ δFail-ex(x)

δCont(x) ← Cont(x) ∧ ιFail-ex(x)

δCont(x) ← δCont(x) ∧ ¬ Fail-ex(x)

3.4 Using other rules instead of the event rules

We will use the event rules to provide the basis of our framework for specifying

and handling schema validation and update processing problems. However, since

our framework is only based on the definition of event given in (1) and (2) (see

section 3.1), we could use any set of rules that defines the difference between

consecutive states of the database, instead of the event rules, provided that they

preserve the event definition. In this section, we show two different sets of rules that

could had been used also.

Assume that we have the following deductive rules:

P(x) ← Q(x) ∧ R(x)

R(x) ← S(x)

If we simply consider the definition of transition and event rules without applying

any simplification, we would have:

ιP(x) ← Pn(x) ∧ ¬P(x)

ιR(x) ← Rn(x) ∧ ¬R(x)

δR(x) ← R(x) ∧ ¬Rn (x)

Pn(x) ← Q(x) ∧ ¬δQ(x) ∧ R(x) ∧ ¬δR(x)

Pn(x) ← Q(x) ∧ ¬δQ(x) ∧ ιR(x)

Pn(x) ← ιQ(x) ∧ R(x) ∧ ¬δR(x)

Pn(x) ← ιQ(x) ∧ ιR(x)

Rn(x) ← S(x) ∧ ¬δS(x)

Rn(x) ← ιS(x)

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 295

On the other hand, by adapting the rules generated by Küchenhoff (1991) to our

terminology, we would obtain:

ιP(x) ← Q(x) ∧ ¬δQ(x) ∧ ιR(x) ∧ ¬P(x)

ιP(x) ← ιQ(x) ∧ R(x) ∧ ¬δR(x) ∧ ¬P(x)

ιP(x) ← ιQ(x) ∧ ιR(x) ∧ ¬P(x)

ιR(x) ← ιS(x)

δR(x) ← δS(x)

Note that Küchenhoff’s rules provide some simplifications with regards to the

non-simplified event rules. For instance, insertion event rules about R do not check

that R was false in the old state of the database. A similar simplification is given

for deletion event rules about R. However, no simplification is applied for the rules

defining events on P.

Finally, the simplified insertion event rules for P according to Urpı́ and Olivé

(1992) are the following:

ιP(x) ← Q(x) ∧ ¬δQ(x) ∧ ιR(x)

ιP(x) ← ιQ(x) ∧ R(x) ∧ ¬δR(x)

ιP(x) ← ιQ(x) ∧ ιR(x)

ιR(x) ← ιS(x)

δR(x) ← δS(x)

Note that, in addition to the simplifications already provided by Küchenhoff, these

rules include also simplifications involving the event rules for P.

It is not difficult to see that the three sets of rules are semantically equivalent and

define the same transitions between consecutive database states. The event definition

is preserved in all cases. The only difference relies on the kind of optimizations

that have been considered. In fact, we could also think about other sets of rules

that incorporate additional optimizations (see, for instance, Urpı́ and Olivé (1994),

which incorporates the knowledge provided by the integrity constraints into such

set of rules). The differences among possible sets of rules imply advantages or

inconveniences as far as efficiency is concerned, but not regarding the ability of

solving the problems we deal with in this paper. Thus, our framework does not

depend on any particular set of rules.

4 Reasoning on the event rules

There is a big amount of problems related to database schema validation and

to update processing. Unfortunately, the general approach considered by previous

research in this area has been to deal with each problem in an isolated way. So, it

is unusual to find a method able to handle several of the previous problems. This

limitation can be overcome by considering a set of rules that explicitly define the

difference between two consecutive database states and by performing deductive and

abductive reasoning on these rules.

The role of deduction and abduction as reasoning paradigms is widely accepted.

Deduction is an analytic process based on the application of general rules to

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

296 E. Teniente and T. Urṕı

particular cases, with the inference of a result. Abduction is another form of synthetic

reasoning which infers the case from the rule and the result.

The event rules define the exact changes, either on base as on derived predicates,

produced as a consequence of the application of a given transaction to a database

state. Deductive and abductive reasoning can be performed on these rules. As

we will see, performing deductive reasoning on the event rules defines changes

on derived predicates induced by changes on base predicates. On the other hand,

performing abductive reasoning on the event rules defines changes on base predicates

needed to satisfy changes on derived predicates. In this way, reasoning deductively

or abductively on the event rules provides the basis for solving database schema

validation and update processing problems in a uniform way.

In fact, as stated in section 3.4, any set of rules that precisely defines the

difference between consecutive database states could also be used. Due to our

previous experience with the event rules, we have considered them in this paper.

4.1 Reasoning deductively on the event rules

Deduction is concerned with inferring consequences from facts via deductive rules.

For instance, given a deductive rule P(x) ← Q(x) and a fact Q(A), deduction infers

P(A) as a consequence of Q(A). Thus, deductive reasoning is suitable among other

things for finding correct answers to queries.

Definition 2

Let D = (EDB, IDB) be a deductive database and G a goal L1 ∧ · · · ∧Ln. A correct

answer to G over EDB is a substitution θ for variables of G such that Gθ is a

logical consequence of EDB ∪ IDB, i.e. EDB ∪ IDB |= Gθ.

Since event rules define the changes that occur in a transition from an old state of

a database to a new one as a consequence of the application of a given transaction,

by considering deduction in the context of the augmented database we can also

define how to reason deductively on the event rules.

Definition 3

Let D = (EDB, IDB) be a deductive database, A(D) = (EDB, IDB∗) its correspond-

ing augmented database, T a transaction consisting of a set of ground base event

facts, u a derived event. The deduced consequences on u due to the application of

T is the set θ of correct answers to EDB ∪ IDB∗ ∪ T ∪ u. Note that each correct

answer θi ∈ θ defines a ground derived event uθi induced as a consequence of the

application of T .

Thus, reasoning deductively on the event rules defines changes on derived

predicates induced by changes on base predicates, since θ defines all ground facts

about u induced by the application of T to the current state of the database.

As an example, given the database of Example 2 and the transaction T = {δFail-

ex(John)}, it is not difficult to see that reasoning deductively on the event rules

allows to deduce that T induces ιCont(John), i.e. θ= {x = John}.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 297

4.2 Reasoning abductively on the event rules

Abduction is aimed at looking for hypothesis that explain a given observation,

according to known laws usually specified by means of deductive rules. Abduction

(in the absence of integrity constraints) is traditionally defined as follows: Given

a set of sentences T (a theory presentation) and a sentence G (observation), the

abductive task consists of finding a set of sentences ∆ (abductive explanation for G)

such that:

(1) T ∪ ∆ |= G

It is usually considered that ∆ consists of atoms drawn from predicates explicitly

indicated as abducible (those whose instances can be assumed when required).

Therefore, an abductive framework is a pair ≺T ,Ab�, where Ab is the set of

abducible predicates, i.e. ∆ ⊆ Ab2.

By considering these ideas in the context of the augmented database, we can

also define how to reason abductively on the event rules. In this case, abducible

predicates correspond to base event facts since this is the only possible way to

physically update a database.

Definition 4

Let us consider a deductive database D = (EDB, IDB) and its corresponding

augmented database A(D) = (EDB, IDB∗). We can define an associated abductive

framework ≺EDB ∪ IDB∗, Ab�, where Ab corresponds to the set of base event

predicates. Now, given a ground derived event u, we can define an abductive

explanation for u in ≺EDB ∪ IDB∗, Ab� to be any set Ti consisting of ground facts

about predicates in Ab such that:

– EDB ∪ IDB∗ ∪ Ti |= u

An explanation Ti is minimal if no proper subset of Ti is also an explanation, i.e.

if it does not exist any explanation Tj for u such that Tj ⊂ Ti.

The previous condition states that the update request is a logical consequence of

the database updated according to Ti. Thus, abductive reasoning on the event rules

defines changes on base predicates needed to satisfy a given change on a derived

predicate.

As an example, given the database of Example 2 and the derived event ιCont(John),

it is not difficult to see that T = {δFail-ex(John)} is a minimal abductive explanation

for ιCont(John). That is, the insertion of Cont(John) is satisfied by the deletion of

Fail-ex(John).

In general, the result of applying abductive reasoning may not be unique. That is,

several sets Ti of base event facts that satisfy a derived event may exist. Each possible

set Ti constitutes a possible transaction that applied to the database will accomplish

the desired change on the derived predicate. Minimal explanations are usually of

particular interest, specially when we deal with database updating problems since

2 Here and in the rest of the paper we use Ab to indicate both the set of abducible predicates and the
set of all their variable-free instances.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

298 E. Teniente and T. Urṕı

they allow to minimize the difference between the old and the new states of the

database.

If no solution Ti is obtained then either the requested update cannot be satisfied

only by changes on the EDB or the current database state already satisfies the

intended effect of the request (e.g. an insertion of P is requested into a database that

already satisfies P). Note that in the latter case we do not obtain a solution with

the empty set since, when taking the event definition into account, an insertion of

P can only be explained if the old state of the database does not satisfy P (resp. a

deletion of P can only be explained if P is satisfied).

With this framework, the basic strategy of a proof procedure for computing Ti

is the following. Given, for instance, an update request for inserting P, the update

procedure tries to solve abductively the goal← ιP in ≺EDB ∪ IDB∗, Ab� generating

a set Ti of abducibles such that Ti satisfies the above condition. Before abducing

a base event, we have to check that its definition is satisfied. That is, for abducing

an event δP we require P to be true in the old state of the database while for ιP

we require P to be false. The set Ti generated by abduction for an update request u

constitutes a transaction that, applied to the current state of the EDB, will satisfy u.

Given an event (base or derived) ui to be explained, abductive reasoning on the

event rules can also be used to determine sets of base events that ensure that a

certain derived event uj is not induced by the explanations of ui. In this case, the

abductive interpretation defines changes on base predicates needed to satisfy that

a certain change on a derived predicate does not occur as a consequence of the

application of the explanations of ui.

Definition 5

Let D be a deductive database D = (EDB, IDB), its corresponding augmented

database A(D) = (EDB, IDB∗) and its associated abductive framework ≺EDB ∪
IDB∗, Ab�. Now, given a positive event ui and a negative derived event ¬uj such

that ui ∧¬uj is allowed, we can define the abductive explanation for ui ∧¬uj in

≺ EDB ∪ IDB∗, Ab� to be any set Ti consisting of ground facts about predicates

in Ab such that:

– EDB ∪ IDB∗ ∪Ti |= ui
– EDB ∪ IDB∗ ∪Ti �|= uj

The first condition states that ui is a logical consequence of the database updated

according to Ti, while the second states that uj it is not. Note that if the explanations

of ui alone do not induce uj , then they are already valid abductive explanations.

As an example, given the database of Example 2 and the positive event ιSign(Mary)

and the negative event ¬ιCont(Mary), we have that T = {ιSign(Mary), ιFail-ex

(Mary)} is a minimal abductive explanation for ιSign(Mary) ∧¬ιCont(Mary). Note

that ιSign(Mary) alone would induce ιCont(Mary). However, adding ιFail-ex(Mary)

to T does not induce ιCont(Mary) any more since Cont(Mary) will be false in the

new database state.

Two special cases are of particular interest. First, when the negative derived event

is ¬ιIc it is guaranteed that the obtained explanations do not induce any insertion

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 299

of an integrity constraint. Thus, the new database state will be consistent if the old

database state was already consistent. Secondly, if the positive event is base (i.e. a

transaction T), abductive reasoning on the event rules determines possible sets Si of

ground base event facts that, appended to T , ensure that the application of any of

the resulting transactions Ti = Si ∪T does not induce uj . Note that if T alone does

not induce uj , then T itself is a valid transaction.

This framework can be easily generalized to reason abductively on sets of positive

and negative events.

5 Deductive or abductive nature of database problems

Deduction and abduction provide a uniform way to reason about the event rules and,

in general, about any set of rules that explicitly define the exact difference between

two consecutive database states. Moreover, either views (i.e. derived predicates) or

integrity constraints or conditions to be monitored are uniformly defined by means

of deductive rules and they are only distinguished by the different semantics endowed

to the head of the rule. Thus, a view defines common knowledge shared by different

users, an integrity constraint defines a situation that must never happen and a

condition to be monitored defines an information whose changes must be reported

to the user.

Therefore, given a derived predicate P(x) defined by the rule P(x)←Q(x)∧¬ R(x),

P can be expressed as:

View(x) ← Q(x) ∧ ¬R(x)

Ic1(x) ← Q(x) ∧ ¬R(x)

Cond(x) ← Q(x) ∧ ¬R(x)

according to the concrete semantics that we would like to endow to P.

Now, reasoning deductively or abductively on the event rules corresponding to

View, Ic1 and Cond we may classify as naturally deductive or naturally abductive

the database schema validation and update processing problems.

This is summarized in Figure 1. Each row corresponds to the form of reasoning to

be applied to the event rules of P and to the relevant events about P (i.e. ιP, δP, T ∧
¬ιP or T ∧ ¬δP; being T a transaction) to reason about. Each column considers a

different semantics to be endowed to P. Finally, each resulting cell defines a possible

database schema validation or update processing problem that can be specified in

terms of that form of reasoning and of the considered semantics.

In the rest of this section, we briefly review database schema validation and update

processing problems and we show how they can be handled by means of deductive

or abductive reasoning, according to the classification provided in Figure 1.

5.1 Schema validation and update processing problems

The correct use of a database involves three different tasks: Schema Validation,

to guarantee that the database schema satisfies the user’s intended needs and

requirements; Query Processing, to be able to give efficient and correct answers

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

300 E. Teniente and T. Urṕı

Fig. 1. Classification of database problems.

to the user’ queries; and Update Processing, to be able to correctly perform updates

to the database contents. In general, several problems may arise when dealing

with each of these tasks (Teniente, 2000). We will consider here only the problems

encountered during schema validation and update processing, since query processing

is beyond the scope of this paper.

Example 3

Consider the following flawed database schema to be validated:

(DR.1) Some-cand ← Cand(x)

(DR.2) Emp(x) ← Cand(x) ∧ Cont(x)

(DR.3) Cont(x) ← Sign(x) ∧ ¬Fail-ex(x)

(DR.4) App(x) ← Cand(x)

(IC.1) Ic1(x) ← App(x) ∧ Sign(x)

(IC.2) Ic2(x) ← App(x) ∧ ¬Has-account(x)

(IC.3) Ic3(x) ← ¬Some-cand

(IC.4) Ic4(x) ← Cand(x) ∧ ¬App(x)

(IC.5) Ic5(x) ← App(x)

(IC.6, . . . , IC.10) Ic ← Ici, for i= 1. . . 5

(Cond.1) Cond1(x) ← Cand(x) ∧ ¬Cont(x)

(Cond.2) Cond2(x) ← Emp(x) ∧ ¬Cont(x)

This schema defines four derived predicates (through deductive rules DR.1 to

DR.4): Some-cand, Emp (employee), Cont (contracted person) and App (applicant).

A person is an applicant if he is a candidate (Cand). A person is contracted if he

signed an agreement (Sign) and he did not fail the exam. Employees are candidates

that have a contract. Finally, Some-cand is true if the database contains, at least,

one candidate.

The schema contains also five integrity constraints (defined by integrity rules IC.1

to IC.5). Ic1 states that it is not possible to have applicants that have signed an

agreement. Ic2 states that it is not possible to be applicant and not to have an

account. Ic3 states that there must be some candidate. Ic4 states that it is not

possible to be candidate and not be applicant. Finally, Ic5 states that the database

may not contain any applicant.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 301

The schema contains also two conditions to be monitored. The first one is used

to notify changes on the populations of applicants that do not have a contract

and the second one changes on the populations of employees that do not have a

contract.

5.2 Schema validation problems

In general, we cannot be completely sure that a certain database schema adequately

describes the structure of the information that we want the database to contain.

At first glance, we could perhaps detect that a certain deductive rule or integrity

constraint is not precisely defined, as it might happen with IC.5 above, but it is

very difficult to assess whether a certain schema does not present critical flaws.

Detecting and removing flaws during schema design time will prevent these flaws

from materializing as run-time errors or other inconveniences during operation time.

Decker et al. (1996) identified several desirable properties that a database schema

should satisfy.

5.2.1 Satisfiability checking

A database schema is satisfiable if there exists an EDB for which no integrity

constraint is violated (Bry and Manthey, 1986), also mentioned in Bry et al. (1988)

and Inoue et al. (1992). Clearly, a non-satisfiable schema is not useful, since it does

not accept any extensional information.

As an example, the previous database schema is not satisfiable for any EDB. The

empty EDB is not a proper EDB since it violates Ic3. Then, we need to consider

an EDB with at least one candidate, let us say John. However, this is not enough

since Ic4 would then be violated. So, John must also be an applicant but this is

not possible since Ic5 impedes it. As a consequence of detecting that the previous

schema is not satisfiable, we assume that the database designer decides to discard

Ic3 and Ic5.

Satisfiability checking can be naturally specified as performing abductive reasoning

on the event rules associated to δIc provided that Ic holds with an empty EDB. If

there exists at least one abductive explanation for δIc in ≺EDB ∪ IDB∗, Ab�, with

IDB = DR ∪ IC, then the integrity constraints are satisfiable. Note that if Ic does

not hold in the state corresponding to the empty EDB, all constraints are already

satisfied in that state.

Note that, since satisfiability checking is to be determined at schema validation

time, we are considering the empty EDB for checking this property. For the same

reason, we will also use the empty EDB for checking other problems related to

database schema validation.

5.2.2 Absolute redundancy of an integrity constraint

Intuitively, an integrity constraint is absolutely redundant if integrity does not

depend upon it. That is, if it can never be violated. Obviously, an absolute redundant

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

302 E. Teniente and T. Urṕı

integrity constraint is not useful since it does not add any additional information to

the information already provided by the rest of the schema.

For instance, integrity constraint Ic4 is absolutely redundant since the deductive

rule DR.4 prevents Ic.4 to be violated for any EDB. Therefore, the database designer

has to modify the schema to remove this absolute redundancy. In this case, we assume

that he decides to discard DR.4.

Given an integrity constraint Ici, absolute redundancy can be naturally specified as

performing abductive reasoning on the event rules associated to ιIci. If there exists

at least one abductive explanation for ιIci in ≺EDB ∪ IDB∗, Ab�, with IDB =

DR ∪ IC, then Ici is not absolutely redundant since it can be violated in some state

of the database. In particular, in the database state that we obtain as a result of

applying the obtained abductive explanation.

5.2.3 View liveliness

A derived predicate P (i.e. a view) is lively if there exists an EDB in which at least

one fact about P is true. That is, predicates which are not lively correspond to views

that are empty in each possible state of the database. Such predicates are clearly not

useful and probably ill-specified. This definition of ‘liveliness’ essentially coincides

with the definition of ‘satisfiable’ in Levy and Sagiv (1995).

For instance, predicate Emp as defined in Example 3 is not lively. The reason

is that a fact Emp(X) requires Cand(X) and Sign(X) to be true at the same time.

However, since nobody can be a candidate without being an applicant (Ic.4) and

nobody can be an applicant and to have signed an agreement (Ic.1), no person X

can be an employee. We assume that the database designer decides to correct this

flaw by redefining Ic.1 as Ic1′(x) ← App(x) ∧ Sign(x) ∧ ¬ Has-account(x).

In our framework, provided that no fact about View holds in the empty EDB, view

liveliness can be specified as reasoning abductively on the event rules of ιView(x).

If there exists at least one abductive explanation for a certain event ιView(X) in

≺EDB ∪ IDB∗, Ab�, then View is lively since it is possible to reach a state where

at least a fact View(X) is true. Otherwise, View is not lively. Note that if some fact

about View holds in the empty EDB, then View is already lively in that state and

there is no reason to ask about this property.

Let us review the Example 3 with the flaws corrected up to now:

(DR.1) Some-cand ← Cand(x)

(DR.2) Emp(x) ← Cand(x) ∧ Cont(x)

(DR.3) Cont(x) ← Sign(x) ∧ ¬Fail-ex(x)

(IC.1’) Ic1(x) ← App(x) ∧ Sign(x)∧ ¬Has-account(x)

(IC.2) Ic2(x) ← App(x) ∧ ¬ Has-account(x)

(IC.4) Ic4(x) ← Cand(x) ∧ ¬App (x)

(IC.6, IC.7, IC.9) Ic ← Ici, for i = 1, 2, 4.

(Cond.1) Cond1(x) ← Cand(x) ∧ ¬Cont (x)

(Cond.2) Cond2(x) ← Emp(x) ∧ ¬Cont (x)

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 303

5.2.4 Relative redundancy of integrity constraints

Relative redundancy is similar to absolute redundancy but, in this case, an integrity

constraint (or a set of constraints) is relatively redundant if it is always satisfied in

all states that satisfy the rest of the constraints. Again, such a redundancy should

be detected and redundant constraints should not be considered during update

processing.

In our example, we can see that Ic1′ is relatively redundant, since it is entailed by

Ic2. Therefore, we assume that the database designer decides to discard Ic.1′ since

the resulting database will admit the same consistent states.

Given an integrity constraint Ici, relative redundancy can be naturally specified

as performing abductive reasoning on the event rules associated to ιIci. Ici is

not relatively redundant if there exists at least one abductive explanation for ←
ιIci ∧¬ιIc in ≺EDB ∪ IDB∗, Ab�, with IDB = DR ∪ IC − {Ic ← Ici}.

5.2.5 Condition validation

Condition validation refers to the problem of determining whether it is possible to

change the contents of a certain condition Cond(x). That is, to determine whether

exists at least one transaction that, if applied to the database, could activate a

certain condition ιCond(X) or δCond(X). Clearly, a condition that can never be

activated is probably ill-specified since the active behaviour of the database does

not depend on it. This can be useful, for instance, to provide the database designer

with a tool for validating certain aspects of the condition definition and, hence,

of the active behaviour of the database. This problem is very important in the

context of active databases since this technology is mainly based on the extensive

use of conditions to be monitored, which are the core of Condition-Action (CA)

and Event-Condition-Action (ECA) rules (Widom and Ceri, 1996).

For instance, condition Cond2 as defined in Example 3 is not valid, since no

insertion and no deletion can be induced on it. The reason is that, by the deductive

rule DR.2, employees must have a contract and, then, it is not possible to have

employees without a contract. So, we assume that the database designer decides to

discard condition Cond2.

In a similar way that view liveliness, changes induced in a given condition,

Cond(x), can be specified as reasoning abductively on the event rules of ιCond(x)

and δCond(x). If there exists at least one abductive explanation for a certain event

ιCond(X) or δCond(X) in ≺EDB ∪ IDB∗, Ab�, then the condition can be activated.

5.3 Update processing problems

Once the database schema is validated, we are ready to perform updates to the

database contents. Several problems will arise when processing the requested updates

(Teniente and Urpı́, 1995). To illustrate these problems, we consider the schema we

have previously validated and we will assume that the database contains several

base facts. Note that now the schema is satisfiable, all predicates are lively, and no

integrity constraint is either absolutely nor relatively redundant.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

304 E. Teniente and T. Urṕı

Example 4

The following database will be considered to deal with update problems related to

views and integrity constraints:

(F.1) Sign(John)

(F.2) Fail-ex(John)

(DR.1) Some-cand ← Cand(x)

(DR.2) Emp(x) ← Cand(x) ∧ Cont(x)

(DR.3) Cont(x) ← Sign(x) ∧ ¬Fail-ex(x)

(IC.2) Ic2(x) ← App(x) ∧ ¬Has-account(x)

(IC.4) Ic4(x) ← Cand(x) ∧ ¬App (x)

(IC.7, IC.9) Ic ← Ici, for i= 2, 4.

(Cond.1) Cond1(x) ← Cand(x) ∧ ¬Cont (x)

5.3.1 Integrity constraint checking

There exists a large cumulative effort in the field of integrity constraint checking (Sadri

and Kowalski, 1988; Küchenhoff, 1991; Olivé, 1991; Garcı́a et al., 1994; Lee and

Ling, 1996; Staudt and Jarke, 1996). Given a consistent database and a transaction

(i.e. a set of insertions and deletions of base facts), integrity constraint checking

is devoted to incrementally, i.e. efficiently, determine whether the application of

this transaction to the current database violates some integrity constraint. In this

case, the transaction is rejected since, otherwise, its application would lead to an

inconsistent database state.

Given a transaction T, integrity constraint checking can be naturally specified in

our framework as performing deductive reasoning on the event rules associated to

ιIc, provided that Ic does not hold. The deduced consequences on ιIc are either the

identity substitution or no correct answer of EDB ∪ IDB∗ ∪ T ∪ ¬ιIc exists. In the

first case, T induces an insertion of Ic and, therefore, it must be rejected because

it violates some integrity constraint. Otherwise, T does not violate any integrity

constraint and it can be successfully applied. As it happens with materialized

view maintenance, efficiency of the process is ensured since reasoning about the

transaction and the event rules allows to compute only the updates induced by this

transaction.

As an example, assume that the database of Example 4 also contains the facts

App(Peter) and Has-account(Peter). Reasoning deductively on the event rules of

Ic2 we could determine that the transaction T = {δHas-account(Peter)} induces the

insertion of Ic2(Peter), and thus of Ic, and would lead the database to an inconsistent

state.

5.3.2 Integrity constraint maintenance

The main drawback of integrity constraint checking is that the user may not know

which changes to the transaction are needed to guarantee that its application does

not violate any integrity constraint. Integrity constraint maintenance is aimed at

overcoming this drawback: given a consistent database state and a transaction T

that violates some integrity constraint, the problem is to find repairs, i.e. an additional

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 305

set of insertions and/or deletions of base facts to be appended to T such that the

resulting transaction T’ satisfies all integrity constraints. In general, there may be

several repairs and the user must select one of them. Eventually, if no such repair

exists then the original transaction must be rejected. Several methods have been

proposed to deal with this problem (Moerkotte and Lockemann, 1991; Ceri et al.,

1994; Wüthrich, 1993; Schewe and Thalheim, 1994; Teniente and Olivé, 1995).

Given a consistent database state and a transaction T, integrity constraint main-

tenance can be specified in our framework as performing abductive reasoning

on the goal←T ∧¬ιIc. Thus, possible abductive explanations for T∧¬ιIc in

≺EDB ∪ IDB∗, Ab�, with IDB = DR ∪ IC, correspond to the possible transactions

T’, T ⊆ T’, that maintain database consistency.

As an example, consider again the database of Example 4, and assume that

the transaction T= {ιApp(Claire)} wants to be applied to the database. Reasoning

abductively on ιApp(Claire) ∧ ¬ιIc we obtain the transaction T′ = {ιApp(Claire),

ιHas-account(Claire)} which satisfies the original transaction and maintains the

database consistent.

5.3.3 View updating

View updating is concerned with determining how a request to update a view, i.e.

to update the contents of a derived predicate, must be appropriately translated into

updates of the underlying base facts. In general, several translations may exist and

the user must select one of them. This problem has attracted much research during

the last years in deductive databases (Kakas and Mancarella, 1990; Guessoum and

Lloyd, 1990; Teniente and Olivé, 1995; Console et al., 1995; Decker, 1996; Lobo

and Trajcevski, 1997), and it has been already identified as an abductive problem

(Console et al., 1995; Decker, 1996; Denecker and De Schreye, 1998; Inoue and

Sakama, 1999).

View updating can be naturally specified as performing abductive reasoning on the

event rules of ιView(X) or δView(X), where View(X) is the derived fact to be inserted

or deleted, respectively. The abductive explanation for ιView(X) defines possible sets

of base fact updates (i.e. transactions) that satisfy the insertion of View(X), while

the abductive explanation for δView(X) defines possible sets of base fact updates

that satisfy the deletion of View(X).

For instance, in Example 4 reasoning abductively on the event rules of Cont we

can determine that the view update request ιCont(John) is satisfied by the transaction

T = {δFail-ex(John)}.
In principle, it may happen that some translations corresponding to a given view

update request do not satisfy the integrity constraints. For this reason, view updating

is usually combined with problems related to integrity constraints. Possible ways of

performing this combination will be explained in section 5.5.

5.3.4 Materialized view maintenance

A view can be materialized by explicitly storing its contents in the extensional

database. This can be useful, for instance, to improve efficiency of query processing.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

306 E. Teniente and T. Urṕı

Given a transaction, materialized view maintenance consists of incrementally (i.e.

efficiently) determining which changes are needed to update accordingly the ma-

terialized views (see Gupta and Mumick (1995) and Roussopoulos (1998) for a

state-of-the-art reports).

Given a transaction T and a materialized view View(x), materialized view mainten-

ance can be naturally specified as performing deductive reasoning on the event rules

associated to ιView(x) and δView(x). That is, deduced consequences for ιView(x)

and for δView(x) correspond, respectively, to the insertions and to the deletions

to be performed on View(x). Efficiency of the process is ensured, since reasoning

about the transaction and the event rules allows to incrementally compute only the

updates induced by this transaction.

For instance, if we assume that predicate Cont(x) in Example 4 is materialized,

reasoning deductively on the event rules of Cont we can determine that the trans-

action T= {δFail-ex(John)} induces the insertion of Cont(John) in the materialized

view.

5.3.5 Preventing side effects

Due to the deductive rules, undesired updates may be induced on some derived

predicates when applying a transaction. We say that a side effect occurs when

this happens. The problem of preventing side effects (Teniente and Olivé, 1995) is

concerned with determining a set of base fact updates which, appended to a given

transaction, ensure that the application of the resulting transaction to the current

state of the database will not induce the undesired side effects. In general, several

solutions may exist and the user must select one of them.

Ensuring that a transaction T will not induce an insertion or a deletion of

a derived fact View(X) can naturally be specified as reasoning abductively on

{T ∧¬ιView(X)} or on {T ∧¬δView(X)}, respectively. The former defines sets T′ of

base fact updates, which are supersets of T, needed to guarantee that the insertion

of View(X) is not induced by T, while the latter defines sets T′ of base fact updates,

again supersets of T, needed to satisfy that the deletion of View(X) is not induced.

For instance, reasoning abductively on ιSign(Mary) ∧ ¬ιCont(Mary) we can

prevent that the transaction T = {ιSign(Mary)} will not induce the insertion of

Cont(Mary). This is done by considering T′= {ιSign(Mary), ιFail-ex(Mary)} instead

of T, which is also given by this abductive interpretation.

5.3.6 Condition monitoring

Condition monitoring refers to the problem of incrementally monitoring the changes

on a condition induced by a transaction that consists of a set of base fact updates

(Rosenthal et al., 1989; Hanson et al., 1990; Qian and Widerhold, 1991; Baralis

et al., 1989).

As an example, applying the transaction T = {ιCand(Peter)} to the database of

Example 4 would induce ιCond1(Peter). That is, due to the application of T, Peter

would be a candidate without a contract.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 307

In our framework, changes induced in a condition Cond(x), are specified as

performing deductive reasoning on the events rules associated to ιCond(x) and

δCond(x). The former, ιCond(x), defines the changes meaning that x satisfy the

condition after the application of the transaction, but not before. δCond(x) defines

the changes meaning that x satisfy the condition before the application of the

transaction, but not after.

5.3.7 Enforcing condition activation

Enforcing condition activation refers to the problem of obtaining the possible

transactions that, if applied to the current state of the database, would induce

an activation of a given condition. For instance, the transaction T1 = {ιCand(Peter)}
would induce the condition ιCond1(Peter).

In our framework, enforcing condition activation is specified reasoning abductively

on ιCond(X) or δCond(X), where both correspond to the conditions to be enforced.

The former defines possible transactions that will induce X to satisfy the condition

after their application, but not before. The latter, defines possible transactions that

will induce X not to satisfy the condition after their application.

5.3.8 Preventing condition activation

This problem is close to the problem of preventing side effects but considering

conditions to be monitored instead of views. Given a transaction T, the problem

of preventing condition activation is to find an additional set of insertions and/or

deletions of base facts to be appended to T such that the resulting transaction T′

guarantees that no changes in the condition would occur as a consequence of the

application of T′. In general, several resulting transactions may exist and the user

should select one of them.

5.4 Updates to an inconsistent database

Sometimes it could be useful to allow for intermediate inconsistent database states,

i.e. states where some integrity constraint is violated. This may happen, for instance,

to reduce the number of times that integrity constraint enforcement is performed.

In this case, three new problems related to update processing arise.

5.4.1 Checking consistency restoration

Given an inconsistent database state and a transaction that consists of a set of

base fact updates, the problem of checking consistency restoration is to incrementally

check whether these updates restore the database to a consistent state.

Checking consistency restoration can be specified as performing deductive reason-

ing on δIc, provided that Ic holds. In this case, deduced consequences on δIc are also

either the identity substitution or no correct answer exists. If the identity substitution

is obtained, then the transaction induces a deletion of Ic and, therefore, restores the

database to a consistent state.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

308 E. Teniente and T. Urṕı

5.4.2 Repairing an inconsistent database

Given an inconsistent database state, the problem of repairing an inconsistent

database is to obtain a set of updates of base facts, i.e. a transaction, that restore

the database to a consistent state. In general, several solutions may exist and the

database administrator should select one of them.

The problem of repairing an inconsistent database can be specified as performing

abductive reasoning on the event rules associated to δIc, provided that Ic holds.

Given an EDB that violates some integrity constraint, abductive explanations for

δIc in ≺EDB ∪ IDB∗, Ab�, with IDB = DR ∪ IC, correspond to the possible

transactions that would induce a deletion of Ic and that, therefore, would restore

database consistency.

5.4.3 Maintaining database inconsistency

Given an inconsistent database state and a transaction T, the problem of maintaining

database inconsistency is to obtain an additional set of base fact updates to be

appended to the original transaction to guarantee that the resulting database state

remains inconsistent.

Maintaining database inconsistency can be specified as performing abductive

reasoning on the goal ← T ∧¬δIc, provided that Ic holds, with an abductive

framework ≺EDB ∪ IDB∗, Ab�, with IDB = DR∪ IC. Although we do not see for

the moment any practical application of this problem, it can be naturally classified

and specified in the framework we propose in this paper.

5.5 Combining different problems

In previous sections, we have assumed that deductive or abductive reasoning is

performed on the event rules associated to a single derived event predicate. However,

this framework can be easily extended to consider several derived events instead of

only one. Deductive or abductive reasoning on a set of derived events is performed

by considering the conjunction of all derived events in the set as the goal to be

reasoned about. For instance a view update request consists, in general, of a set of

insertions and/or deletions to be performed on derived predicates, e.g. u = ιP(a) ∧
ιQ(b)∧ δS(c) stands for the request of inserting P(a) and Q(b) and deleting S(c),

being P, Q and S derived predicates. In this case, translations that satisfy u

correspond to the abductive explanations for ιP(a) ∧ ιQ(b) ∧ δS(c) in ≺EDB ∪
IDB∗, Ab�.

Moreover, we would like to notice that deductive problems can be naturally

combined. All of them share a common starting-point (a transaction that consists of

a set of base fact updates) and aim at the same goal (to define the changes on derived

predicates induced by this transaction). The same reasons allow the combination

of abductive problems. Therefore, we can specify more complex database updating

problems of deductive or of abductive by considering possible combinations of the

problems specified in section 5.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 309

For instance, given a transaction T, a materialized view View, a condition to be

monitored Cond and the integrity constraint predicate Ic, we could combine ma-

terialized view maintenance, integrity constraints checking and condition monitoring

by reasoning deductively on ιView(x) ∧ δCond(y) ∧¬ιIc. Deduced consequences on

ιView(x)∧ δCond(x)∧¬ιIc correspond to the values x and y that cause an insertion

of View, satisfy the condition δCond as a consequence of the application of T, and

such that T does not violate any integrity constraint.

In a similar way, we could also combine view updating with integrity constraints

maintenance by reasoning abductively on ιView(a)∧¬ιIc. In this case, abductive

explanations for ιView(a)∧ ¬ιIc correspond to the translations that satisfy both the

insertion of View(a) and that do not violate any integrity constraint.

Furthermore, we could also combine deductive and abductive problems. Note

that the result of performing abductive reasoning is exactly the starting-point for

performing deductive reasoning, that is, a transaction that consists of a set of base

fact updates. Therefore, we could first deal with abductive problems and, immediately

after, use the obtained result for dealing with the deductive ones.

For instance, we could be interested on distinguishing between integrity constraints

to be maintained and integrity constraints to be checked, and on combining view

updating with the treatment of both kinds of constraints. In this case, we should first

reason abductively on the view update request and the set of integrity constraints

to be maintained and, later on, to consider the resulting transactions and reason

deductively on the set of integrity constraints to be checked to reject those resulting

transactions that violate some constraint in this set.

Finally, we would also like to notice that in our approach for the specification

of database updating problems does not change when considering other kinds of

updates like insertions or deletions of deductive rules. In this case, we should first

determine the changes on the transition and event rules caused by the update and

apply then our approach.

6 Using existing procedures to reason on the event rules

Our framework to classify database schema validation and updating processing

problems is based on the existence of a set of rules, like the event rules, that define

the exact difference between consecutive database states. By performing deductive

and abductive reasoning on these rules, we can deal with all these problems in a

uniform way. Therefore, our framework does not rely on the concrete method we use

to perform either deductive or abductive reasoning. However, candidate methods to

be used must satisfy several conditions.

Given a method able to perform deductive reasoning in a certain class of deductive

databases, it should satisfy two requirements to tackle the deductive problems

described in the previous section:

(a) The class of deductive databases considered by the method must allow

expressing at least the goals required to define these problems.

(b) The method must obtain all correct answers that satisfy the request.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

310 E. Teniente and T. Urṕı

Similarly, given a method able to perform abductive reasoning in a certain class

of deductive databases, it should satisfy two requirements to tackle the abductive

problems described in the previous section:

(a) The class of deductive databases considered by the method must allow

expressing at least the goals required to define these problems.

(b) For schema validation problems, if there exists some explanation for a given

request the method obtains such explanation (but not necessarily several or

even all of them). For updating problems, the method must be complete, i.e.

it must obtain all possible explanations that satisfy the request.

In this section we show that there exists already some procedures able to

compute each different form of reasoning on the event rules and we illustrate

them by means of some examples. We show, in this way, the applicability of

our approach. We would like to mention, however, that our aim is not that of

comparing existing procedures but just to show they are able to handle several

problems.

6.1 Using SLDNF to reason deductively on the event rules

Standard SLDNF resolution is a possible way for reasoning deductively on the

event rules. Given an augmented database A(D) = (EDB, IDB∗), a transaction T

and a derived event u, the deduced consequences on u due to T correspond to the

successful SLDNF derivations of the goal ← u that result in a computed answer θi
when considering the input set EDB ∪ IDB∗ ∪ T.

Nevertheless, other proof procedures could be used instead of SLDNF resolution

like, for instance, bottom-up computation of the event rules. To motivate our

discussion and without loss of generality, we will assume that SLDNF resolution is

used to reason deductively on the event rules. The following example illustrates how

to perform deductive reasoning on the event rules.

Example 5

Consider again Example 2 and assume a transaction T which consists of the

deletion of the base fact Fail-ex(John), in our notation T= {δFail-ex(John)}. The

corresponding deductive framework is:

EDB ∪ IDB∗: Sign(John)

Fail-ex(John)

Cont(x) ← Sign(x) ∧ ¬Fail-ex(x)

ιCont(x) ← Sign(x) ∧ ¬δSign(x) ∧ δFail-ex(x)

ιCont(x) ← ιSign(x) ∧ ¬Fail-ex(x) ∧ ¬ιFail-ex(x)

ιCont(x) ← ιSign(x) ∧ δFail-ex(x)

δCont(x) ← δSign(x) ∧ ¬Fail-ex(x)

δ Cont(x) ←Cont(x) ∧ ιFail-ex(x)

T: δFail-ex(John)

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 311

Fig. 2. Computing answers for ← ιCont(x).

The SLDNF refutation of Figure 2 shows that T= {δFail-ex(John)} induces

the insertion of Cont(John), i.e. θ= {x = John}. Note that the SLDNF tree rooted

at ← ιCont(x) succeeds with a computed answer x = John. That means that the

deletion of Fail-ex(John) induces an insertion of Cont(John). Selecting other rules

at step 1 of this tree does not result on any other successful branch and, thus, no

other insertion of Cont is induced due to T.

6.2 Using abductive procedures to reason abductively on the event rules

We show now how the Events Method (Teniente and Olivé, 1995), Inoue and

Sakama’s method (Inoue and Sakama 1998, 1999) and SLDNFA (Denecker and

De Schreye, 1998) may be used to perform abductive reasoning on the event

rules and, hence, to deal with schema validation and updating processing prob-

lems. Other existing procedures could have been used as well like, for instance,

Kakas and Mancarella (1990), which was the first attempt to use abduction in

a database context. However, we have just considered some of the most recent

proposals since they can be understood in some sense as an evolution of the initial

ones.

A detailed discussion on the specific features and limitations of other (abductive)

methods to perform view updating and integrity maintenance can be found in Mayol

and Teniente (1999).

6.2.1 The Events Method

The Events Method (Teniente and Olivé, 1995) takes the event rules explicitly into

account to obtain all possible minimal sets Ti on the EDB that satisfy a given update

request on the IDB. It extends the SLDNF proof procedure to obtain all possible

transactions Ti and it has been proved to be sound and complete for stratified

databases (Teniente and Olivé, 1995). Soundness of the method guarantees that the

obtained transactions satisfy the update request, while completeness ensures that it

obtains all minimal transactions.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

312 E. Teniente and T. Urṕı

In this method, an update request u is a conjunction of positive and negative

events (base and derived). Positive events correspond to updates that must be

effectively performed during the transition from the old state of the database to the

new state, while negative events correspond to updates that may not happen during

this transition.

Let D be a deductive database, A(D) its augmented database, u an update request

and Ti a set of base events. In the Events Method, Ti satisfies the request u if, using

SLDNF resolution, the goal ← u succeeds from input set A(D) ∪ Ti. Each set Ti

is obtained by having some failed SLDNF derivation of A(D) ∪ ← u succeed. The

possible ways in which a failed derivation may succeed correspond to the different

sets Ti that satisfy the request. If no Ti is obtained, then it is not possible to satisfy

the requested update by changing only the EDB.

Although the event rules define the exact difference between consecutive database

states, making a failed SLDNF derivation succeed does not always guarantee the

generation of minimal solutions only. Therefore, the Events Method includes also a

final step to discard obtained non-minimal solutions. We must note that the Events

Method may not terminate in the presence of recursive rules because it may enter

into an infinite loop. Moreover, as far as efficiency is concerned, it provides certain

limitations on the treatment of rules with existential variables.

Let u be an update request. In the Events Method, a transaction T satisfies u

if there is a constructive derivation from (← u � �) to ([] T C). The transaction

T contains the base event facts to be applied, while the condition set C contains

base events (subgoals in the general case) that would invalidate the update request

if applied.

A constructive derivation is defined as follows (for convenience, let G/L stand

for the goal obtained from a goal G by dropping a selected occurrence of literal L

in G).

Definition 6

A constructive derivation from (G1 T1 C1) to (Gn Tn Cn) via a safe computation rule

R (Lloyd, 1987) is a sequence:

(G1 T1 C1), (G2 T2 C2), . . . , (Gn Tn Cn)

such that for each i � 1, Gi has the form←L1 ∧ · · · ∧Lk , R(Gi) = Lj and (Gi+1 Ti+1

Ci+1) is obtained according to one of the following rules:

(A1) If Lj is a positive literal and it is not a base event, then Gi+1 = S, where S

is the resolvent of some clause in A(D) with Gi on the selected literal Lj ,

Ti+1 = Ti and Ci+1 = Ci.

(A2) If Lj is a positive base event ‘ιP’ (resp. ‘δP’), there is a substitution σ

such that Pσ does not hold (resp. Pσ holds) in the current database and

there is a consistency derivation from (Ci Ti ∪ {Ljσ} Ci) to ({ } T′ C′) then

Gi+1 = Giσ/Ljσ, Ti+1 = T′ and Ci+1 = C′.

Note that if Ci = Ø or Ljσ ∈ Ti then Gi+1 = Giσ\Ljσ, Ti+1 = Ti∪{Ljσ} and

Ci+1 = Ci.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 313

(A3) If Lj is negative and there is a consistency derivation from ({← ¬Lj} Ti Ci)

to ({ } T′ C′), then Gi+1 = Gi/Lj , Ti+1 = T′ and Ci+1 = C′.

Rule (A1) is an SLDNF resolution step where A(D) acts as input set. In rule

(A2), the selected base event is included in the transaction set Ti to get a successful

derivation for the current branch, provided that the event does not violate any of

the conditions in Ci. In rule (A3), we get the next goal if we can ensure consistency

for the selected literal.

Definition 7

A consistency derivation from (F1 T1 C1) to (Fn Tn Cn) via a safe computation rule

R is a sequence:

(F1 T1 C1), (F2 T2 C2), . . . , (Fn Tn Cn)

such that for each i � 1, Fi has the form Hi ∪ F′i, where Hi = ←L1 ∧ · · · ∧ Lk and,

for some j = 1 . . . k, (Fi+1 Ti+1 Ci+1) is obtained according to one of the following

rules:

(B1) If Lj is a positive literal and it is not a base event, then Fi+1 = S′ ∪F′i,

Ti+1 = Ti and Ci+1 = Ci; where S′ is the set of all resolvents of clauses in

A(D) with Hi on the selected literal Lj and []/∈S′. Note that, if no input

clause in A(D) can be unified with Lj , then S′= � and Fi+1 = F′i.

(B2) If Lj is a positive base event, then Fi+1 = S′ ∪F′i, Ti+1 = Ti and Ci+1 =

Ci ∪ {Hi}; where S′ is the set of all resolvents of clauses in Ti with Hi on the

selected literal Lj and [] /∈ S′. If Lj is ground then Ci+1 = Ci.

(B3) If Lj is a negative literal, ¬Lj is not a base event, k> 1 and there is a con-

sistency derivation from ({← ¬Lj}Ti Ci) to ({} T′ C′), then Fi+1 = {Hi\Lj} ∪
F′i, Ti+1 = T’ andCi+1 = C′.

(B4) If Lj is a negative base event, ¬Lj /∈ Ti and k> 1, then Fi+1 = {Hi\Lj} ∪ F′i,

Ti+1= Ti and Ci+1 = Ci.

(B5) If Lj is negative, and there is a constructive derivation from ({← ¬Lj} Ti

Ci) to ([] T′ C′), then Fi+1 = F′i, Ti+1 = T′ and Ci+1 = C′.

Rules (B1) and (B2) are SLDNF resolution steps where A(D) or T act as input

set, respectively. Rules (B3) and (B4) allow to continue with the current branch by

ensuring that the selected literal Lj is consistent with respect to Ti and Ci. In rule

(B5) the current branch is dropped if there exists a constructive derivation for the

negation of the selected literal.

Consistency derivations do not rely on the particular order in which selection

rule R selects literals, since in general, all possible ways in which a conjunction

←L1 ∧ · · · ∧ Lk can fail should be explored. Each one may lead to a different

transaction. As a result of this formulation, non-minimal solutions may be obtained.

They are discarded by means of a simple procedure that rejects those that are a

superset of the minimal ones.

Example 6

Consider again the same database as in Example 5 and assume now that the update

request ιCont(John) is requested. The corresponding abductive framework is:

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

314 E. Teniente and T. Urṕı

Fig. 3. Constructive derivation for ← ιCont(John).

EDB ∪ IDB∗: Sign(John)

Fail-ex(John)

Cont(x) ← Sign(x) ∧ ¬Fail-ex(x)

ιCont(x) ← Sign(x) ∧ ¬δSign(x) ∧ δFail-ex(x)

ιCont(x) ← ιSign(x) ∧ ¬Fail-ex(x) ∧ ¬ιFail-ex(x)

ιCont(x) ← ιSign(x) ∧ δFail-ex(x)

δCont(x) ← δSign(x) ∧ ¬ Fail-ex(x)

δCont(x) ← Cont(x) ∧ ιFail-ex(x)

Ab: {ιSign, δSign, ιFail-ex, δFail-ex}

Figure 3 shows that the abductive interpretation of the event rules of Cont

provided by the Events Method computes the abductive explanation T= {δFail-

ex(John)} for ιCont(John). This is done by performing a constructive derivation

rooted at ← ιCont(John). Circled labels appearing at the left of the derivation are

references to the rules of the Events Method we have just defined.

The Events Method starts from the update request ← ιCont(John) and uses

SLDNF resolution pursuing the empty clause. Steps 1 and 2 are standard SLDNF

resolution steps. At step 3, an abducible fact is selected. Then, it is included in the

input set T and used as input clause if we want to get a successful derivation for ←
ιCont(John).

Finally, at step 4, a negative base event literal is selected. Then, its corresponding

subsidiary derivation must be considered, which is shown enclosed by the bold box.

To ensure failure of this derivation it must be guaranteed that δSign(John) will

not be included into T later on during the derivation process. This is achieved by

means of an auxiliary set C that contains conditions to be satisfied during the whole

derivation process. These conditions correspond to some of the goals reached in

subsidiary derivations, as shown at step 4.1 of Figure 3, where the condition ←
δSign(John) is included in C. Hence, before adding a base event to T we must

enforce that it does not falsify any of the conditions of C.

Once the empty clause is reached in the primary derivation, the abductive

procedure finishes and T gives the base events that, applied to the EDB, will satisfy

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 315

Fig. 4. Constructive derivation for ← ιEmp(Mary) ∧ ¬ ιIc.

the requested update. From this derivation we have that T= {δFail-ex(John)}. Then,

the request for inserting Cont(John) can be achieved by deleting the fact Fail-

ex(John).

Example 7

Consider now the database of Example 4. The abductive framework relevant to this

example is:

EDB ∪ IDB∗: Sign(John)

Fail-ex(John)

Some-cand ← Cand(x)

Emp(x) ← Cand(x) ∧ Cont(x)

Cont(x) ← Sign(x) ∧ ¬Fail-ex(x)

Ic2(x) ← App(x) ∧ ¬Has-account(x)

Ic4(x) ← Cand(x) ∧ ¬App(x)

Ic ← Ic2(x)

Ic ← Ic4(x)

ιEmp(x) ← ιCand(x) ∧ ιCont(x)

ιIc ← ιIc2(x)

ιIc ← ιIc4(x)

ιIc2(x) ← ιApp(x) ∧ ¬Has-account(x) ∧ ¬ιHas-account(x)

ιIc4(x) ← ιCand(x) ∧ ¬App(x) ∧ ¬ιApp(x)

Ab: {ιCand, δCand, ιCont, δCont, ιSign, δSign, ιFail-ex,

δFail-ex ιApp, δApp, ιHas-account, δHas-account}

Assume that we want to insert the derived fact Emp(Mary) without violating

any integrity constraint. In this case, the abductive interpretation of ιEmp(Mary)

∧ ¬ιIc defines the possible sets Ti, {ιEmp(Mary)} ⊆Ti, that do not induce ιIc. This

is shown in Figure 4.

As it happens in the Example 6, the Events Method starts from the update

request ← ιEmp(Mary) ∧ ¬ιIc and uses SLDNF resolution pursuing the empty

clause. In this case, base event facts ιCand(Mary) and ιCont(Mary) are included in

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

316 E. Teniente and T. Urṕı

the translation set Ti during steps 2 and 3 of the primary constructive derivation.

At step 4, the subsidiary consistency derivation (enclosed by the bold box) rooted

at ιIc must fail finitely to get the empty clause in the constructive derivation. Steps

4.1a and 4.2a of this subsidiary derivation are SLDNF resolution steps. After this

step, a failed goal is reached and it is included in the condition set C to guarantee

that latter additions to T do not make it succeed.

Steps 4.1b to 4.4b are SLDNF resolution steps, with the extension that the goal is

included in C at step 4.3b. At step 4.5b, we have, in turn, a subsidiary constructive

derivation (not shown in the previous figure) which is handled in the same way as

the primary constructive one. This derivation causes the inclusion of ιApp(Mary)

into T. Moreover, it must be ensured that this inclusion does not violate any of

the conditions in C. This is done by means of the subsidiary derivation rooted

at ← ιApp(x) ∧ ¬Has-account(x) ∧ ¬ι Has-account(x) which, in turn, requires the

inclusion of ιHas-account(Mary) into T (this is done in the constructive derivation

associated to step 4.5b3, which is not shown in Figure 4).

Once the empty clause is reached, the abductive procedure finishes and T contains

the base events that satisfy the requested update. From this derivation we have

that Ti = {ιCand(Mary), ιCont(Mary), ιApp(Mary), ιHas-account(Mary)}. This is

the only solution that satisfies the requested update in this example.

6.2.2 Inoue and Sakama’s Method

In this proposal (Inoue and Sakama, 1998, 1999), an Abductive Logic Program

(ALP) is defined as a pair ≺P, A� where P is a normal logic program and A

is a set of abducible atoms. Given an ALP, Inoue and Sakama define a set of

production rules, its transaction program τP, that declaratively specifies addition

and deletion of abductive hypothesis. Abductive explanations are then computed

by the fixpoint of the transaction program using a bottom-up model generation

procedure.

They consider two possible kinds of explanations: positive and negative. Given an

ALP ≺P, A� and an observation G, a set of hypothesis E is a positive explanation

for G if P ∪ E |= G and P ∪ E is consistent. Similarly, a set of hypothesis F is a

negative explanation for G if P\F |= G and P\F is consistent.

Moreover, they apply abduction also to ‘unexplain’ an observation (look for anti-

explanations). Given a normal logic program P and an observation G, a set of

hypothesis E is a positive anti-explanation for G if P ∪ E �|= G and E is consistent.

Similarly, a set of hypothesis F is a negative anti-explanation for G if P\F �|= G and

E is consistent.

Their method has been shown sound and complete for covered acyclic normal

logic programs. A normal logic program P is covered if, for every rule in P, all

variables in the body appear in the head. In particular, this restriction does not

allow having non-ground integrity constraints neither existential variables in the

body of rules.

There is a clear correspondance between looking for (negative) explanations that

explain/unexplain an observation and the kind of updates we can consider with the

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 317

event rules. In particular, a positive explanation (anti-explanation) E is a set of event

facts to be inserted (i.e. a set of base insertion events) while a negative explanation

(anti-explanation) F is a set of event facts to be deleted (i.e. a set of base deletion

events). Moreover, to explain an observation G that does not hold in the current

database corresponds to consider the update request ιG, to unexplain G (which

holds in the current database) corresponds to consider the update request δG.

We may use Inoue and Sakama’s method to reason abductively on the event rules.

We have to:

1. Consider the ALP ≺P∗, A� where P∗ is the augmented database of P and A

is the set of base event facts (both insertion and deletion).

2. Include the following rules in the transaction program τP∗:

– For each base fact q that belongs to the EDB, we have to include the rule:

in(ιq) → false.

– For each base fact q that does not belong to the EDB, we have to include

the rule: in(δq) → false

These rules are needed to distinguish event predicates from database ones and

to guarantee that an event can be successfully applied.

Furthermore, since events (and events facts) are handled in this way, we also

require to apply rule 3 of the definition of transaction program as defined in

page 346 of (Inoue and Sakama, 1999) only to base facts, and not to apply it

to events facts. This rule states that for any atom A that does not appear in

the head of any rule in P we must introduce the production rule out(A) → ε

and if A is not abducible we must introduce also in(A)→ false.

3. To perform abductive reasoning on a derived event fact ιp (resp. δp), we have

to explain ιp (resp. δp). On the other hand, to perform abductive reasoning

on a negative derived event fact ¬ιp (resp. ¬δp), we have to unexplain ¬ιp
(resp. ¬δp).

As a result of applying Inoue and Sakama’s method according to the previous

transformations we obtain several explanations ≺Ei, Fi�. For each such explanation

≺ Ei, Fi �, Ei corresponds to the abductive explanation that satisfies the request

while Fi contains base events that may not belong to Ei.

Note that the sets Fi play a similar role than the condition set in the events method.

However, due to the restrictions imposed by Inoue and Sakama’s method, each Fi

contains only base event facts while the condition set contains more general goals.

Example 8 (adapted from Example 3.2 of Inoue and Sakama (1999)) illustrates

the use of Inoue and Sakama’s method to perform abductive reasoning on the event

rules.

Example 8

Let ≺P, A� be an ALP where:

P: P ← P ∧ ¬A

Q ← ¬C

C ←
A : A, C

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

318 E. Teniente and T. Urṕı

Fig. 5. Computing explanations for ← ιP.

The relevant rules of P∗ are the following:

P: ιP ← ιQ ∧ ¬ A ∧ ¬ιA
ιQ ← δC

and the new abducibles atoms are δC, ιA, ιC, δA.

Then, the subset of τP∗ obtained for the previous rules becomes:

in(ιP) → in(ιQ) ∧ out(A) ∧ out(ιA)

in(ιQ) → in (δC)

Now, to perform abductive reasoning on ιP we have to compute the explanations

for ιP. Figure 5 shows the behaviour of Inoue and Sakama’s method in this case.

Note that, as a result, we have obtained the minimal explanations for ιP: ≺E, F� =

≺{in(δC)}, {out(ιA)}�. That means that to insert P we should delete C.

From the previous example, we can conclude that Inoue and Sakama’s method

is not only applicable to the update problems mentioned by Inoue and Sakama

(1998, 1999), mainly view updating and satisfiability checking, but also to the rest

of schema validation and update processing problems in covered acyclic databases.

Moreover, by explicitly considering the event rules, this method is able to perform

more precise requests. It is not difficult to see that in Inoue and Sakama (1999), an

anti-explanation of P takes two different cases into account: whether P is false in

the old state of the database and it is not inserted during the transition and whether

P is deleted during the transition. By considering events about P we can be more

specific since we can just look for anti-explanations of ιP (which corresponds only

to the second case). A similar claim can be made when looking for explanations. In

fact, this distinction would allow them also to be able to define and handle dynamic

integrity constraints. For instance, the dynamic constraint “it may not be inserted

Joan as an employee and deleted the Sales department at the same time” may be

specified as: ← ιEmp(Joan) ∧ δDept(Sales).

Finally, we must note that, in fact, Inoue and Sakama’s method would not need

to use the event rules to obtain the solutions of Example 8. However, we believe that

the use of these rules could help this method to relax the restrictions it imposes on

the programs it deals with. We will see in the next section other advantages provided

by the event rules when more general conditions have to be taken into account.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 319

6.2.3 The SLDNFA Method

Denecker and De Schreye (1998) propose SLDNFA, an extension of SLDNF reso-

lution, to deal with abduction in abductive logic programs with negation. Given an

abductive logic program and a query Qo to be explained, an SLDNFA computation

can be understood as a process of deriving formulas of the form ∀ (Qo←Ψ), where

Ψ is obtained from the unsolved goals of the SLDNFA computation.

In fact, SLDNFA distinguishes two kinds of abductive solutions. A ground

abductive solution for ←Qo is a triple (Σ’, ∆, θ) with ∆ a finite set of ground

abducible atoms and θ a substitution of the variables of Qo, both based on the

alphabet Σ’, such that P + ∆ |= ∀(θ (Qo)). Similarly, an abductive solution for ←Qo

wrt PA is an open formula Ψ containing only equality and abducible predicates such

that PA |= ∀ (Qo←Ψ) and ∃(Ψ) is satisfiable wrt PA. A ground abductive solution

can be considered as a special case of an abductive solution since many ground

abductive solutions can be drawn from Ψ, in general.

SLDNFA has been proved to be sound and complete for failure. Soundness

ensures that the obtained solutions are correct since they entail the initial query

and are consistent. Completeness for failure guarantees that if there exists a failed

SLDNFA-tree for an initial query, then the query has no abductive solutions.

However, this does not imply that SLDNFA generates all ground abductive solutions

or all ground solutions satisfying some minimality criteria, as already pointed out

by Denecker and De Schreye (1998, p. 138). Two variants of SLDNFA, namely

SLDNFo and SLDNFA+, are defined for which stronger completeness results are

proved.

SLDNFA can also be used to perform abductive reasoning on the event rules.

To do it, we should first rewrite event and transition rules to guarantee that they

explicitly state the event definition and, thus, that the events are correctly handled

by SLDNFA. That is, for each event literal ιQ(x) appearing in the body of an event

or transition rule we should add the literal ¬Q(x) to that rule, while for each

event literal δQ(x) we should add the literal Q(x). This rewriting is equivalent to the

addition of new rules in Inoue and Sakama’s method to guarantee that an event

can be successfully applied.

Then, we should take the Augmented Database (corresponding to the rewritten

rules) as the abductive logic program PA, where SLDNFA is applied and consider

base event predicates as the only abducible predicates.

Denecker and De Schreye already mention the applicability of SLDNFA (and

its variants) to other problems and, in particular, to satisfiability checking. From

the use of SLDNFA to perform abductive reasoning on the event rules, we can

conclude that SLDNFA is also applicable to the rest of schema validation and

update processing problems. Furthermore, dynamic integrity constraints can be

easily specified by means of event and transition rules and, thus, they could also

be handled by SLDNFA.

Example 9 (a simplified version of the example in Denecker and De Schreye (1998,

p. 119)) illustrates the use of SLDNFA to perform abductive reasoning on the event

rules.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

320 E. Teniente and T. Urṕı

+ ιP(a)

1

2

3

+ ¬R(a), ιR(a), Q(a), δQ(a)

+ ιR(a), Q(a), δQ(a)

+ ιR(a), δQ(a)

Fig. 6. SLDNFA-refutation for ← ιP(a).

Example 9

Consider the following deductive database:

Q(a)

P(x) ← R(x)∧¬Q(x)

The abductive logic program PA corresponding to the previous database is:

(I.1) ιP(x) ← R(x) ∧ ¬δR(x) ∧ Q(x) ∧ ¬δQ(x)

(I.2) ιP(x) ← ¬R(x) ∧ ιR(x) ∧ ¬Q(x) ∧ ¬ιQ(x)

(I.3) ιP(x) ← ¬R(x) ∧ ιR(x) ∧ Q(x) ∧ δQ(x)

Abducibles: {ιR, δR, ιQ, δQ}

An SLDNFA-refutation to find abductive solutions for ιP(a) (which corresponds

to the initial query ← ιP(a)) is shown in Figure 6. The ground abductive answer

generated by this refutation is (Σ,{ιR(a), δQ(a)},ε). This answer states that the

insertion of P(a) may be achieved by the insertion of R(a) and the deletion of Q(a).

Use of the event rules also provides other contributions to SLDNFA. For instance,

it allows SLDNFA to obtain solutions that would not be generated otherwise. For

instance, SLDNFA (as defined in Denecker and De Schreye (1998)) would not obtain

any solution to the request insert P(a) in Example 9. The reason is that SLDNFA con-

siders only positive explanations, but no negative explanations (according to the ter-

minology of Inoue and Sakama (1999)). Therefore, it cannot generate the deletion of

Q(a) which is required to insert P(a). We have shown in Figure 6 that the use

of the event rules allows SLDNFA to obtain such kind of solutions, since abducing

events corresponds always to the generation of positive explanations although

an event may correspond to a deletion of a database atom.

Another limitation that is overcome by the use of the event rules is that a direct

application of SLDNFA to integrity constraint maintenance is not incremental. That

is, it does not exploit the fact that the old database satisfies the integrity constraints,

but rechecks blindly all of them (Denecker and De Schreye, 1998, p. 158). Again,

such situation can also be overcome if SLDNFA is used in conjunction with the

event rules, as shown in Example 10.

Example 10

Consider the following deductive database:

Q(b) R(b) Q(c) R(c) Q(d) R(d)

Ic ← Q(x) ∧ ¬R(x)

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 321

Fig. 7. SLDNFA-refutation for ← ιQ(a) ∧ ¬ιIc.

The abductive logic program corresponding to the previous database is:

(I.1) ιIc ←Q(x) ∧ ¬δQ(x) ∧ R(x) ∧ ¬δR(x)

(I.2) ιIc ← ¬Q(x) ∧ ιQ(x) ∧ ¬R(x) ∧ ¬ιR(x)

(I.3) ιIc ← ¬Q(x) ∧ ιQ(x) ∧ R(x) ∧ δR(x)

Abducibles: {ιQ, δQ, ιR, δR}

An SLDNFA-refutation to find abductive solutions for ιQ(a) that do not violate

integrity constraints (which corresponds to the initial query← ιQ(a)∧¬ιIc) is shown

in Figure 7.

The ground abductive answer generated by this refutation is (Σ,{ιQ(a), ιR(a)},ε).
Note that, in this case, integrity constraint maintenance has taken into account that

integrity constraints are satisfied before the update, since it has only considered the

events that could induce a violation of Ic (and not all database facts involved in

the definition of Ic, as SLDNFA would do in the absence of the event rules).

6.2.4 How many methods do we really need to deal with database problems?

In general, research related to database problems is still looking for methods able

to deal only with specific problems. However, we have shown that all problems are

either of abductive or deductive nature and, thus, they can be formulated in terms

of just two forms of reasoning. Therefore, we may conclude from our results that at

most two different procedures are enough to handle all of them.

In fact, it could also be argued that just one single general procedure would be

enough since it has been shown that either abduction as well as deduction can

be realized in terms of the other. For instance, Bry (1990) and Bry et al. (1999)

have proposed a procedure that allows to perform abductive reasoning by means

of deduction, while Denecker and De Schreye (1998) and Inoue and Sakama (1999)

have shown that their abductive procedures can also be used for deduction. Clearly,

this strengthens our claim that we do not need a different method to deal with each

schema validation and update processing problem.

The discussion about whether it would be better to have just one single method or

two is far beyond the scope of this paper since it requires to be further investigated.

From our intuition, we think that it will be difficult to define a single method which

is as efficient to perform abductive reasoning as it is to perform deductive reasoning

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

322 E. Teniente and T. Urṕı

since, as we have shown in the paper, the nature of the corresponding problems

is intrinsically abductive or deductive. In this sense, we believe that it is difficult to

incorporate the optimizations required to efficiently deal with deductive problems

into a method based on abductive reasoning (and the other way around). However,

this is still an open problem and it is a challenger research.

7 Using the event rules to perform general abductive reasoning

We have shown how the event rules can be used to deal with several schema

validation and update processing problems and we have illustrated how several

deductive and abductive procedures can be used to reason on them. In this section,

we sketch how the event rules can be used also to solve general abductive problems

in addition to the database problems considered before. Obviously, we must take

into account that whenever we use the event rules we obtain solutions that minimize

the difference between the old and the new sates and that this is not necessarily a

requirement that the abductive explanations must satisfy in general.

We illustrate, by means of the following example, how could we use the event

rules to deal with a typical abductive task like fault diagnosis and how the expected

solutions to this problem can be abduced from these rules.

Example 11

The relevant part of the abductive framework of this example is the following:

EDB ∪ IDB∗: Lamp(L1)

Battery(C1,B1)

Faulty-lamp ← Lamp(x) ∧ Broken(x)

Backup(x) ← Battery(x,y) ∧ ¬Unloaded(y)

Faulty-lamp ← Power-failure(x) ∧ ¬Backup(x)

Unloaded(x) ← Dry-cell(x)

ιFaulty-lamp ← Faulty-lampn ∧ ¬Faulty-lamp

Faulty-lampn ← ιPower-failure(x) ∧ Backup(x)∧ δBackup(x)

Faulty-lampn ← ιPower-failure(x) ∧ ¬Backup(x) ∧ ¬ιBackup(x)

Faulty-lampn ← Lamp(x) ∧ ¬δLamp(x) ∧ ιBroken(x)

δBackup(x) ← Battery(x,y) ∧ ιUnloaded(y) ∧ Backupn(x)

ιUnloaded(x) ← ιDry-cell(x)

Ab: {ιBroken, δBroken, ιPower-failure, δPower-failure, ιDry-cell, δDry-cell}

Within this framework, we can use the event rules to detect that a faulty lamp

problem is caused by a broken lamp or by a power failure of a circuit without

backup, that is, a loaded battery. To do it, we have selected the Events Method

among the three possible abductive procedures considered in section 6.2.

Figure 8 shows how, given the goal← ιFaulty-lamp and EDB ∪ IDB∗, the Events

Method obtains the abductive solution T= {ιPower-failure(C1), ιDry-cell(B1)}, which

is a possible solution for having a faulty lamp.

The Events Method would also obtain the solution T= {ιBroken(L1)} by consid-

ering the rule Faulty-lampn(x) ← Lamp(x) ∧ δLamp(x) ∧ ιBroken(x) at step 2 of

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 323

Fig. 8. Constructive derivation for ← ιFaulty-lamp.

Figure 8, and other possible solutions, like for instance T= {ιPower-failure(C2)}, by

considering the rule Faulty-lampn(x)← ιPower-failure(x) ∧ Backup(x) ∧¬ιBackup(x)

also at step 2. The resulting derivations are not shown in the tree above.

8 Conclusions and further work

We have shown that database schema validation and update processing problems

can be classified into problems of either deductive or abductive nature according

to the reasoning paradigm that is more adequate to solve them. This has been

done by making explicit the exact changes that occur in a transition between two

consecutive states of the database by means of the event rules (Olivé, 1991) and by

performing deductive and abductive reasoning on these rules. In this way, we have

distinguished between deductive problems, concerned with computing the changes

on derived predicates induced by a transaction, and abductive problems, concerned

with determining the possible transactions that satisfy a set of changes on derived

predicates. We have also shown that deductive and abductive problems can be

combined, thus defining more complex update problems.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

324 E. Teniente and T. Urṕı

Thus, problems like materialized view maintenance, integrity constraint checking

or condition monitoring are considered as naturally deductive, while problems like

view updating, integrity constraint maintenance or enforcing condition activation as

naturally abductive.

By taking only a unique set of rules and two forms of reasoning into account to

specify and deal with all these problems, we have shown that it is possible to provide

general methods able to uniformly deal with several database updating problems at

the same time. This suggests that future research in this field should be aimed at pro-

viding general methods instead of proposing specific methods for solving a particular

problem like has been traditionally done in the past. Moreover, all these problems

could be uniformly integrated into a database update processing system.

We have also shown how some existing general deductive and abductive pro-

cedures may be used to reason on the event rules. In this way, we have shown

that these procedures can be used to deal with all database problems considered

in this paper. This has been illustrated by means of examples and some additional

benefits gained by these procedures when reasoning on the event rules have also

been pointed out. Moreover, we have sketched how the event rules could be used

to solve general abductive problems in addition to database schema validation and

update processing problems.

The results presented in this paper may be extended at least in three different

directions. First, our framework could be generalized to databases that allow

recursive rules. Second, to deepen in the study of the application of the event

rules to current abductive procedures to provide an efficient implementation of

abductive reasoning on the event rules. Third, the advantages and inconveniences

of using the event rules to perform general abductive reasoning should be further

investigated.

Acknowledgements

This work has been partially supported by the CICYT PRONTIC program project

TIC97-1157.

References

Abiteboul, S. (1988) Updates, a new frontier. In: Gyssens, M., Paredaens, J. and Gucht,

D. V. (eds.), ICDT’88, 2nd International Conference on Database Theory: Lecture Notes in

Computer Science 326, pp. 1–18. Bruges, Belgium. Springer-Verlag.

Abiteboul, S., Hull, R. and Vianu, V. (1995) Foundations of Databases. Addison-Wesley.

Adrion, W. R., Branstad, M. A. and Cherniavsky, J. C. (1982) Verification, validation, and

testing of computer software. ACM Computing Surveys, 14(2), 159–192.

Baralis, E., Ceri, S. and Paraboschi, S. (1998) Compile-time and runtime analysis of active

behaviors. Transactions of Knowledge and Data Engineering, 10(3), 353–370.

Bry, F. (1990) Intensional updates: Abduction via deduction. In: Warren, D. H. D. and Szeredi,

P. (eds.), Proceedings Seventh International Conference on Logic Programming, pp. 561–575.

Jerusalem, Israel. The MIT Press.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 325

Bry, F. and Manthey, R. (1986) Checking consistency of database constraints: a logical basis.

In: Chu, W. W., Gardarin, G., Ohsuga, S. and Kambayashi, Y. (eds.), Twelfth International

Conference on Very Large Data Bases, pp. 13–20. Kyoto, Japan. Morgan Kaufmann.

Bry, F., Decker, H. and Manthey, R. (1988) A uniform approach to constraint satisfaction

and constraint satisfiability in deductive databases. In: Schmidt, M. M. J. W. and

Ceri, S. (eds.), Proceedings International Conference on Extending Database Technology

(EDBT ’88): Lecture Notes in Computer Science 303, pp. 488–505. Venice, Italy. Springer-

Verlag.

Bry, F., Eisinger, N., Schütz, H. and Torge, S. (1998) Sic: Satisfiability checking for integrity

constraints. In: Fraternali, P., Geske, U., Ruiza, C. and Seipel, D. (eds.), 6th International

Workshop on Deductive Databases and Logic Programming (DDLP’98), pp. 25–36.

Ceri, S., Fraternali, P., Paraboschi, S. and Tanca, L. (1994) Automatic generation of production

rules for integrity maintenance. ACM Transactions on Database Systems, 19(3), 367–422.

Console, L., Sapino, M. L. and Dupré, D. T. (1995) The role of abduction in database view

updating. Journal Intelligent Information Systems, 4(3), 261–280.

Decker, H. (1996) An extension of SLD by abduction and integrity maintenance for view

updating in deductive databases. In: Maher, M. (ed.), Proceedings Joint International

Conference and Symposium on Logic Programming, pp. 157–169. MIT Press.

Decker, H., Teniente, E. and Urpı́, T. (1996) How to tackle schema validation by view updating,

Proceedings of the International Conference on Extending Database Technology (EDBT’96):

Lecture Notes in Computer Science 1057, pp. 535–549. Avignon, France. Springer-Verlag.

Denecker, M. and De Schreye, D. D. (1998) SLDNFA: An abductive procedure for abductive

logic programs. Journal of Logic Programming, 34(2), 111–167.

Garcı́a, C., Celma, M., Mota, L. and Decker, H. (1994) Comparing and synthesizing integrity

checking methods for deductive databases. In: Elmagarmid, A. K. and Neuhold, E. (eds.),

Proceedings 10th International Conference on Data Engineering, pp. 214–222. IEEE Press.

Grant, J. and Minker, J. (1992) The impact of logic programming on databases.

Communications of the ACM, 35(3), 66–81.

Guessoum, A. and Lloyd, J. W. (1990) Updating knowledge bases. New Generation Computing,

71–89.

Gupta, A. and Mumick, I. S. (1995) Maintenance of materialized views: Problems,

techniques and applications. IEEE Quarterly Bulletin on Data Engineering, Special Issue

on Materialized Views and Data Warehousing, 18(2), 3–18.

Hanson, E. N., Chaabouni, M., Kim, C. and Wang, Y. (1990) A predicate matching

algorithm for database rule systems. In: Garcia-Molina, H. and Jagadish, H. V. (eds.),

Proceedings ACM SIGMOD International Conference on Management of Data, Atlantic City,

NJ. (SIGMOD Record (ACM Special Interest Group on Management of Data), 19(2) 271–

280.)

Inoue, K. and Sakama, C. (1998) Specifying transactions for extended abduction. In: Cohn,

A. G., Schubert, L. and Shapiro, S. C. (eds.), Proceedings 6th International Conference

on Principles of Knowledge Representation and Reasoning (KR-98), pp. 394–405. Morgan

Kaufmann.

Inoue, K. and Sakama, C. (1999) Computing extended abduction through transaction

programs. Annals of Mathematics and Artificial Intelligence, 25(3–4), 339–367.

Inoue, K., Koshimura, M. and Hasegawa, R. (1992) Embedding negation as failure into

a model generation theorem prover. In: Kapur, D. (ed.), Proceedings 11th International

Conference on Automated Deduction (CADE-11): Lecture Notes in Artificial Intelligence 607,

pp. 400–415. Saratoga Springs, NY. Springer-Verlag.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

326 E. Teniente and T. Urṕı

Kakas, A. C. and Mancarella, P. (1990) Database updates through abduction. In: McLeod,

D., Sacks-Davis, R. and Schek, H.-J. (eds.), 16th International Conference on Very Large

Data Bases, pp. 650–661. Brisbane, Australia. Morgan Kaufmann.

Küchenhoff, V. (1991) On the efficient computation of the difference between consecutive

database states. In: Delobel, C., Kifer, M. and Masunaga, Y. (eds.), Proceedings Deductive

and Object–Oriented Databases (DOOD’91): Lecture Notes in Computer Science 566, pp. 478–

502. Berlin, Germany. Springer-Verlag.

Lee, S. Y. and Ling, T. W. (1996) Further improvements on integrity constraint checking

for stratifiable deductive databases. In: Vijayaraman, T. M., Buchmann, A. P., Mohan, C.

and Sarda, N. L. (eds.), VLDB’96, Proceedings 22th International Conference on Very Large

Data Bases, pp. 495–505. Mumbai (Bombay), India. Morgan Kaufmann.

Levy, A. Y. and Sagiv, Y. (1995) Semantic query optimization in Datalog programs.

Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, pp. 163–173. San Jose, CA.

Lloyd, J. W. (1987) Foundations of Logic Programming, Second Edition. Springer-Verlag.

Lloyd, J. W. and Topor, R. W. (1984) Making PROLOG more expressive. Journal of Logic

Programming, 1(3), 225–40.

Lobo, J. and Trajcevski, G. (1997) Minimal and consistent evolution in knowledge bases.

Journal of Applied Non-Classical Logics, 7(1–2), 117–146.

Mayol, E. and Teniente, E. (1999) A survey of current methods for integrity constraint

maintenance and view updating. First International Workshop on Evolution and Change in

Data Management ECDM99, pp. 62–73.

Moerkotte, G. and Lockemann, P. C. (1991) Reactive consistency control in deductive

databases. ACM Transactions on Database Systems, 16(4), 670–702.

Olivé, A. (1991) Integrity constraints checking in deductive databases. In: Lohman, G. M.,

Sernadas, A. and Camps, R. (eds.), 17th International Conference on Very Large Data Bases,

pp. 513–523. Barcelona, Catalonia. Morgan Kaufmann.

Qian, X. and Widerhold, G. (1991) Incremental recomputation of active relational expressions.

Transactions on Knowledge and Data Engineering, 3(3), 337–341.

Rosenthal, A., Chakravarthy, S., Blaustein, B. T. and Blakeley, J. A. (1989) Situation

monitoring for active databases. In: Apers, M. G. and Wiederhold, G. (eds.), Very Large

Data Bases: Proceedings 15th International Conference on Very Large Data Bases, pp. 455–

464. Amsterdam, The Netherlands. Morgan Kaufmann.

Roussopoulos, N. (1998) Materialized views and data warehouses. SIGMOD Record (ACM

Special Interest Group on Management of Data), 27(1), 21–26.

Sadri, F. and Kowalski, R. A. (1988) A theorem proving approach to database integrity. In:

Minker, J. (ed.), Foundations of Deductive Databases and Logic Programming, pp. 313–362.

Morgan Kaufmann.

Schewe, K. D. and Thalheim, B. (1994) Achieving consistency in active databases. Proceedings

4th International Workshop on Research Issues in Data Engineering – Active Database

Systems, pp. 71–76.

Staudt, M. and Jarke, M. (1996) Incremental maintenance of externally materialized views.

In: Vijayaraman, T. M., Buchmann, A. P., Mohan, C. and Sarda, N. L. (eds.), Proceedings

22nd International Conference on Very Large Data Bases, Mumbai (Bombay), pp. 75–86.

India. Morgan Kaufmann.

Teniente, E. (2000) Deductive databases. In: Piattini, M. and Dı́az, O. (eds.), Advanced

Database Technology and Design, pp. 91–136. Artech House.

Teniente, E. and Olivé, A. (1995) Updating knowledge bases while maintaining their

consistency. The VLDB Journal, 4(2), 193–241.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

On the abductive or deductive nature of database problems 327

Teniente, E. and Urpı́, T. (1995) A common framework for classifying and specifying deductive

database updating problems. In: Yu, P. S. and Chen, A. L. P. (eds.), Proceedings 11th

International Conference on Data Engineering, pp. 173–183. IEEE Press.

Ullman, J. D. (1989) Principles of Database and Knowledge-base Systems. Computer Science

Press.

Urpı́, T. and Olivé, A. (1992) A method for change computation in deductive databases. In:

Yuan, L.-Y. (ed.), 18th International Conference on Very Large Data Bases, pp. 225–237.

Vancouver, Canada. Morgan Kaufmann.

Urpı́, T. and Olivé, A. (1994) Semantic change computation optimization in active databases.

Proceedings 4th International Workshop on Research Issues in Data Engineering – Active

Database Systems, pp. 19–27.

Widom, J. and Ceri, S. (1996) Active Database Systems: Triggers and Rules For Advanced

Database Processing. Morgan Kaufmann.

Wüthrich, B. (1993) On updates and inconsistency repairing in knowledge bases. International

Conference on Data Engineering, pp. 608–615. IEEE Press.

https://doi.org/10.1017/S1471068402001631 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001631

