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We consider the Cauchy problem{
ut = Δu + up, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,

where N > 2, p > 1, and u0 is a bounded continuous non-negative function in RN .
We study the case where u0(x) decays at the rate |x|−2/(p−1) as |x| → ∞, and
investigate the convergence property of the global solutions to the forward
self-similar solutions. We first give the precise description of the relationship between
the spatial decay of initial data and the large time behaviour of solutions, and then
we show the existence of solutions with a time decay rate slower than the one of
self-similar solutions. We also show the existence of solutions that behave in a
complicated manner.
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1. Introduction

We consider the Cauchy problem{
ut = Δu+ up, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(1.1)

where N > 2, p > 1, and u0 �≡ 0 is a given bounded continuous non-negative
function in RN . It is known that there exists T = T (u0) > 0 such that (1.1) has a
unique classical solution u ∈ C2,1(RN × (0, T )) ∩ C(RN × [0, T )) which is bounded
in RN × [0, T ′] for all T ′ < T , and ‖u(·, t)‖L∞(RN ) → ∞ as t→ T if T <∞. We
say that u is global if T = ∞, and that u blows up in finite time if T <∞. It is
well known by [12,31] that if 1 < p � (N + 2)/N then (1.1) has no global solution.
Then the condition p > (N + 2)/N is necessary for the existence of global solutions
of (1.1).
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The equation in (1.1) is invariant under the similarity transformation

u(x, t) 	→ uλ(x, t) = λ2/(p−1)u(λx, λ2t) for all λ > 0.

In particular, a forward self-similar solution u has the form u(x, t) = t−1/(p−1)

φ(x/
√
t), where φ satisfies the elliptic equation

Δφ+
1
2
x · ∇φ+

1
p− 1

φ+ φp = 0 in RN . (1.2)

If a solution φ of (1.2) is radially symmetric about the origin, then φ = φ(r), r = |x|,
satisfies φ′(0) = 0 and

φ′ +
(
N − 1
r

+
r

2

)
φ′ +

1
p− 1

φ+ φp = 0 for r > 0. (1.3)

Let p > (N + 2)/N , and let φ be a positive solution of (1.3). It was shown by
[16,28] that φ satisfies

lim
r→∞ r2/(p−1)φ(r) = � (1.4)

with some � � 0, and that φ(r) decays exponentially as r → ∞ if � = 0 in (1.4).
Forward self-similar solutions are global in time and often used to describe the

large time behaviour of global solutions to (1.1). In the case where initial data
u0(x) has the exponential decay at |x| = ∞ in (1.1), it was shown by Kavian
[19] and Kawanago [20] that certain solutions are asymptotic to the forward self-
similar solution whose profile decays exponentially in space. In this paper, we
consider the problem (1.1) in the case where u0(x) decays at |x|−2/(p−1) as |x| → ∞,
and investigate the convergence property of the global solutions to the forward
self-similar solutions.

For each � > 0, we denote by S� the set of all positive solution φ of (1.3) satisfying

φ′(0) = 0 and lim
r→∞ r2/(p−1)φ(r) = �. (1.5)

We call φ
�

a minimal solution of S� if φ
�
∈ S� satisfies φ

�
� φ for all φ ∈ S�. We

denote by w� a self-similar solution corresponding to the minimal solution φ
�

of S�,
that is,

w�(x, t) = t−1/(p−1)φ
�
(|x|/√t). (1.6)

To state the existence and nonexistence of solutions of S�, we need some notations.
Define a constant L by

L =
(

2
p− 1

(
N − 2 − 2

p− 1

))1/(p−1)

.

Note that U(r) = Lr−2/(p−1), r = |x|, is a singular stationary solution of (1.1) when
p > N/(N − 2). Define pJL by

pJL =

⎧⎪⎨
⎪⎩

∞, 3 � N � 10,

1 +
4

N − 4 − 2
√
N − 1

, N � 11.
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The exponent pJL has appeared in several different studies of (1.1) and related
problems, see, for example, [13–15,18,36]. The following results were shown
by [22,23].

Proposition A. Let p > (N + 2)/N .

(i) There exists �∗ > 0 such that S� �= 0 if 0 < � < �∗ and S� = ∅ if � > �∗.

(ii) If S� �= ∅ then there exists a minimal solution φ
�

of S�.

(iii) If (N + 2)/N < p < pJL then �∗ > L and there exists a unique solution of
S�∗ . If p � pJL then �∗ = L and S�∗ = ∅.

For the properties (i) and (ii), see lemma 3.1 of [23]. (See also lemma 4.1 of
[22].) Property (iii) is a consequence of theorem 1.1 and corollary 1.2 of [23]. For
the multiplicity of solutions of S�, it was shown that, if (N + 2)/N < p < pJL, then
there exists � > 0 such that S� has at least two solutions, while if p � pJL, then S�

has a unique solution for all � ∈ (0, �∗). (See [23,24,33].)
First, we consider the problem (1.1) in the case where u0(x) satisfies

lim
|x|→∞

|x|2/(p−1)u0(x) = � (1.7)

with � > 0. We show that the large time behaviour of global solutions is determined
by the decay property of initial data at the spatial infinity.

Theorem 1.1. Let p > (N + 2)/N , and let �∗ > 0 be the constant in proposition
A. Assume that u0 ∈ C(RN ) satisfies

0 � u0(x) < �∗|x|−2/(p−1) for x ∈ RN \ {0}, (1.8)

and (1.7) with some � ∈ (0, �∗). Then the solution u of (1.1) is global in time and
satisfies

lim
t→∞ t1/(p−1)‖u(·, t) − w�(·, t)‖L∞(RN ) = 0, (1.9)

where w� is defined by (1.6).

Remark 1.2.

(i) It was shown by Lee and Ni [21] that the decay rate |x|−2/(p−1) of the initial
data is a borderline between blow-up and global existence. In fact, by [25,
theorem 1.3], if (1.7) holds with � > �∗, then the solution u of (1.1) blows up
in finite time.

(ii) It was shown by [3,32] that, if the initial data are small and coincide for
large x with a homogeneous function of degree −2/(p− 1), then the solution
is asymptotically self-similar. See also [31, § 20.3]. These results are proved by
semigroup techniques and suitable fixed point argument, which are completely
different from our approach.
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(iii) In the case where initial data u0(x) decays at |x|−σ as x = ∞ with σ > 2/
(p− 1), it is known that global solutions behave like the fundamental solutions
of the heat equation up to multiple constants. See [31, theorem 20.6].

(iv) It should be mentioned that the exact convergence rate of solutions to the
forward self-similar solutions was shown by Fila et al. [11] in the case where
the initial data has a specific decay rate as x→ ∞.

We consider the case where � = �∗ in theorem 1.1 when p � pJL. Recall that
�∗ = L and S�∗ = ∅ if p � pJL by proposition A. We obtain the following result,
which is a slight improvement of [15, theorem 4 (i)].

Theorem 1.3. Let p � pJL. Assume that u0 satisfies

0 � u0(x) < L|x|−2/(p−1) for x ∈ RN \ {0} (1.10)

and

lim
x→∞ |x|2/(p−1)u0(x) = L. (1.11)

Then the solution u of (1.1) is global and satisfies

lim
t→∞ t1/(p−1)‖u(·, t)‖L∞(RN ) = ∞. (1.12)

Remark 1.4. Assume that p > pJL. Let λ1 be a positive constant defined by

λ1 =
N − 2 − 2m− √

(N − 2 − 2m)2 − 8(N − 2 −m)
2

(1.13)

with m = 2/(p− 1). It was shown by Yanagida [37, theorem 6.1] that, if u0 satisfies
(1.10) and

lim
|x|→∞

|x|λ1(|x|2/(p−1)u0(x) − L) = ∞, (1.14)

then the solution u of (1.1) is global and satisfies

lim
t→∞ ‖u(·, t)‖L∞(RN ) = 0. (1.15)

Thus, by combining with theorem 1.3, if u0 satisfies (1.10), (1.11) and (1.14), then
the solution u of (1.1) is global and satisfies (1.12) and (1.15).

For nonlinear parabolic equations, it is well known that positive global solutions
must converge to a single steady state under fairly general assumptions (see, e.g.,
[1,6,7]). On the other hand, Poláčik and Yanagida [30] showed that, when p � pJL,
(1.1) has a positive global solution that behaves in a complicated manner. For α > 0,
we denote by vα = vα(r), r = |x|, a radially symmetric solution of

Δv + vp = 0 in RN (1.16)

satisfying vα(0) = α. It was shown by [30, theorem 1.1] that, in the case p � pJL, for
any infinite sequence {(αi, ξi, εi)} with αi > 0, ξi ∈ RN and εi > 0, there exists u0

such that the solution u of (1.1) exists globally in time and satisfies the following:
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(i) There exists an increasing sequence {si} tending to ∞ as i→ ∞ such that

‖u(·, si)‖L∞(RN ) < εi for each i = 1, 2, . . . .

(ii) There exists a sequence {ti} with ti ∈ (si, si+1) such that

‖u(·, ti) − vαi
(· − ξi)‖L∞(RN ) < εi for each i = 1, 2, . . . .

Recall that pJL = ∞ if 3 � N � 10, and hence the above non-convergent solution
can be observed when N � 11. For N � 3, we obtain the following result.

Theorem 1.5. Let p > (N + 2)/N . For any infinite sequence {(�i, ξi, εi)} with

0 < �i < �∗, ξi ∈ RN and εi > 0, (1.17)

there exists u0 ∈ C(RN ) such that the solution u of (1.1) exists globally in time and
there exists an increasing sequence {ti} tending to ∞ as i→ ∞ such that

t
1/(p−1)
i ‖u(·, ti) − w�i

(· − ξi, ti)‖L∞(RN ) < εi for each i = 1, 2, . . . , (1.18)

where w�(x, t) is defined by (1.6).

As a consequence of theorem 1.5, we obtain the analogous phenomena to [30] for
global solutions tending to 0 as t→ ∞.

Corollary 1.6. Let p > (N + 2)/N . For any infinite sequence {(�i, ξi, εi)} with
(1.17), there exists u0 ∈ C(RN ) such that the solution u of (1.1) exists globally in
time and satisfies the following:

(i) There exists an increasing sequence {si} tending to ∞ as i→ ∞ such that

s
1/(p−1)
i ‖u(·, si)‖L∞(RN ) < εi for each i = 1, 2, . . . .

(ii) There exists an increasing sequence {ti} with ti ∈ (si, si+1) such that (1.18)
holds.

Remark 1.7. The existence of global solutions with complicated asymptotic
behaviour was also shown by [4,5] by the different argument. In [4,5] it was shown
that there exist solutions which are asymptotic to many different self-similar solu-
tions along different time sequences. These results are proved by employing the
properties of the semiflow on some Banach spaces.

In the proofs of theorems 1.1, 1.3 and 1.5, we will employ the rescaling to the
self-similar variables, which have been used by Kavian [19]. For a solution u of
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(1.1), define

w(y, s) = (t+ 1)1/(p−1)u(x, t)

with

y =
x√
t+ 1

and s = log(t+ 1).

Then w satisfies⎧⎨
⎩ ws = Δw +

1
2
y · ∇w +

1
p− 1

w + wp, y ∈ RN , s � 0,

w(y, 0) = w0(y), y ∈ RN ,

(1.19)

where w0 = u0. Since (1.2) is the corresponding stationary problem to (1.19), we
can expect that the study of the behaviour of solutions of (1.19) is reduced to the
analysis of stability properties of solutions of (1.2).

It should be mentioned that, in some cases, the large time behaviour of solutions
is determined by the decay property of initial data at the spatial infinity. Recall
that vα(r), r = |x|, is the radially symmetric solution of (1.16) satisfying vα(0) = α,
and that λ1 is the positive constant given by (1.13). It was shown by Poláčik and
Yanagida [29] that, if p > pJL, and if u0 satisfies (1.10) and

lim
|x|→∞

|x|m+λ1 |u0(x) − vα(x)| = 0,

then the solution u of (1.1) is global and satisfies

lim
|x|→∞

‖u(·, t) − vα(·)‖L∞(RN ) = 0.

It was also shown by [29] that, if p > pJL, and if u0 satisfies (1.10) and

L|x|−2/(p−1) − c1|x|−� � u0(x) � L|x|−2/(p−1) − c2|x|−� for |x| > R

with some � > m+ λ1 and c1, c2, R > 0, then the solution of (1.1) is global and
unbounded as t→ ∞. For more precise analysis, we refer to [9,17,26,27,34,35]
for the convergence to the steady state, and to [8,10] for the grow-up rate of
solutions. In the proof of theorems 1.1 and 1.3, we will show that analogous results
of [29] hold for the problem (1.19) and the corresponding stationary problem (1.2).
Making use of these results together with the continuous dependence of the initial
value, we will obtain theorem 1.5.

The paper is organized as follows: In § 2, we present some preliminary results
which will be used in the sequel. We construct continuous weak super and sub-
solutions to (1.2) in § 3, and give the proof of theorems 1.1 and 1.3 in § 4. Finally,
we prove theorem 1.5 and corollary 1.6 in § 5.

2. Preliminaries

We first recall the definition of continuous weak super and sub-solutions to the
problem (1.19). We say that w is a continuous weak supersolution of (1.19) for
0 � s � S if w is continuous on RN × [0, S], w(y, 0) � w0(y) and satisfies, for any
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η ∈ C2,1(RN × [0, S]) with η � 0 and supp η(·, s) being compact in RN for all
s ∈ [0, S],∫

RN

w(y, s)η(y, s)dy
∣∣∣∣
s=S′

s=0

�
∫ S′

0

∫
RN

w(y, s)H(y, s) + w(y, s)pη(x, s)dyds (2.1)

for all S′ ∈ [0, S], where

H(y, s) =
(
ηs + Δη − 1

2
y · ∇η +

(
1

p− 1
− N

2

)
η

)
(y, s).

Continuous weak subsolutions are defined in a similar way by reversing the
inequalities. The following result was shown by [25, lemma 2.3].

Lemma 2.1. If w and w, respectively, are bounded continuous weak super and sub-
solutions of (1.19) for 0 � s � S. Then w � w in RN × [0, S] and (1.19) has a
unique classical solution w with w � w � w in RN × [0, S].

We say that v is a continuous weak supersolution (subsolution) of (1.2) if v
is continuous in RN and satisfies, for any η ∈ C2(RN ) with η � 0 and compact
support in RN , ∫

RN

v(y)H̃(y) + v(y)pη(x)dy � (�) 0,

where

H̃(y) =
(

Δη − 1
2
y · ∇η +

(
1

p− 1
− N

2

)
η

)
(y).

The following result was shown by [25, lemma 2.5].

Lemma 2.2. Let w0 in (1.19) be a bounded continuous weak supersolution
(subsolution) of (1.2), and let w be a global solution of (1.19). Then the solution
w(y, s) is nonincreasing (nondecreasing) in s � 0.

We call v is a classical supersolution (subsolution) of (1.2) if v ∈ C2(RN ) and
satisfies

Δv +
1
2
y · ∇v +

1
p− 1

v + vp � (�) 0, y ∈ RN .

The following lemma by [25, lemma 2.6] gives a way to construct continuous weak
super and sub-solutions of (1.2).

Lemma 2.3.

(i) Let v1 = v1(r) and v2 = v2(r), r = |y|, be classical radial supersolutions of
(1.2). Assume that v1(R) = v2(R) and v′1(R) � v′2(R) with some R > 0.
Define

ṽ(r) =

{
v1(r), 0 � r � R,

v2(r), R < r <∞.
(2.2)

Then ṽ(|y|) is a continuous weak supersolution of (1.2).
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(ii) Let v1 = v1(r) and v2 = v2(r), r = |y|, be classical radial subsolutions of (1.2).
Assume that v1(R) = v2(R) and v′1(R) � v′2(R) with some R > 0. Define ṽ
by (2.2). Then ṽ(|y|) is a continuous weak subsolution of (1.2).

The following convergence result was shown by [25, proposition 3.1 (iii)].

Lemma 2.4. Let w be a global solution of (1.19) such that w = w(r, s), r = |y|, is
spatially radially symmetric about the origin. Assume that w(r, s) is nonincreasing
in s � 0 for each fixed r � 0, and put φ(r) = lims→∞ w(r, s) for r � 0. Assume, in
addition, that there exists a continuous function W on [0,∞) , satisfying W (r) → 0
as r → ∞, such that w(r, s) � W (r) for r � 0 and s � 0. Then φ ∈ C2[0,∞) and
satisfies (1.3) with φ′(0) = 0 and

‖w(·, s) − φ(·)‖L∞([0,∞)) → 0 as s→ ∞.

For α > 0, we denote by φ(r;α) a unique solution of (1.3) satisfying φ(0) = α and
φ′(0) = 0. It was shown by [16, theorem 5] that φ(·, α) ∈ C2[0,∞) and the limit

�(α) = lim
r→∞ r2/(p−1)φ(r;α)

exists and is locally Lipschitz continuous on α > 0. The following result was shown
by [23, theorem 1.1 and corollary 1.2].

Lemma 2.5. Let p > (N + 2)/N . There exists α∗ ∈ (0,∞] satisfying the following
(i)–(iii).

(i) If α ∈ (0, α∗), then φ(r;α) > 0 for r � 0 and �(α) > 0, and φ(r;α) is a
minimal solution of S�(α).

(ii) If φ
�
is a minimal solution of S� with � ∈ (0, �∗), then there exists α ∈ (0, α∗)

such that φ(r;α) ≡ φ
�
(r).

(iii) If p � pJL, then α∗ = ∞.

By lemma 2.5, we obtain the following results.

Lemma 2.6.

(i) Let p > (N + 2)/N , and let �, �̂ ∈ (0, �∗) with � < �̂. If φ ∈ S� satisfies
φ(r) � φ

�̂
(r) for r � 0. Then φ(r) ≡ φ

�
(r).

(ii) Let p > (N + 2)/N . For any ε > 0, there exists �ε ∈ (0, �∗) such that
‖φ

�ε
‖L∞([0,∞)) < ε.

(iii) Let p � pJL. For any M > 0, there exists �M ∈ (0, L) such that
‖φ

�M
‖L∞([0,∞)) > M .

Proof.
(i) By lemma 2.5 (ii), we have φ

�̂
(0) < α∗, and hence φ(0) < α∗. By lemma 2.5 (i),

φ is the minimal solution of S�. This implies that φ(r) ≡ φ
�
(r).
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(ii) We may assume that ε < α∗. Take α ∈ (0, ε). Then, by lemma 2.5 (i), φ(r;α) is
a minimal solution of S�(α) with some �(α) ∈ (0, �∗). Note that ‖φ(·, α)‖L∞([0,∞)) =
α. Put �ε = �(α). Then we have φ

�ε
(r) ≡ φ(r;α) and ‖φ

�ε
‖L∞([0,∞)) = α < ε.

(iii) Recall that �∗ = L if p � pJL by proposition A (iii). Take α > M . By lemma
2.5 (i) and (iii), we see that φ(r;α) is a minimal solution of S�(α) with some
�(α) ∈ (0, L). Put �M = �(α). Then we have φ

�M
(r) ≡ φ(r;α) and ‖φ

�M
‖L∞([0,∞)) =

α > M . �

3. Construction of continuous weak super and sub-solutions

For simplicity, we denote by Lv the differential operator

Lv = v′ +
(
N − 1
r

+
r

2

)
v′ +

1
p− 1

v (3.1)

for v ∈ C2(0,∞). Then the equation (1.3) is written as

Lφ+ φp = 0 for r > 0. (3.2)

Recall that S� is the set of all positive solution φ of (1.3) satisfying (1.5), and that
φ

�
denotes the minimal solution of S�. In this section, we will show the following

two propositions.

Proposition 3.1. Suppose that S�̂ �= ∅ for some �̂ > 0. Let u0(x) satisfy

0 � u0(x) � φ
�̂
(|x|) for x ∈ RN .

(i) Assume that there exists � ∈ (0, �̂) such that u0(x) � φ
�
(|x|) for sufficiently

large |x|. Then there exists a continuous weak supersolution v0(|x|) of (1.2)
satisfying

u0(x) � v0(|x|) for x ∈ RN , (3.3)

φ
�
(|x|) � v0(|x|) � φ

�̂
(|x|) for x ∈ RN and (3.4)

lim
|x|→∞

|x|2/(p−1)v0(|x|) = �. (3.5)

(ii) Assume that there exists � ∈ (0, �̂) such that u0(x) � φ
�
(|x|) for sufficiently

large |x|. Then there exists a continuous weak subsolution v0(|x|) of (1.2)
satisfying

0 � v0(|x|) � u0(x) for x ∈ RN , (3.6)

v0(|x|) � φ
�
(|x|) for x ∈ RN and (3.7)
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lim
|x|→∞

|x|2/(p−1)v0(|x|) = �. (3.8)

We denote by w(y, s;w0) the solution of (1.19).

Proposition 3.2. Suppose that S�̂ �= ∅ for some �̂ > 0. Let � ∈ (0, �̂).

(i) Assume that v0(|x|) is a continuous weak supersolution of (1.2) satisfy-
ing (3.4) and (3.5). Then w(y, s; v0) � φ

�
(|y|) for all y ∈ RN , s � 0 and

‖w(·, s; v0) − φ
�
(| · |)‖L∞(RN ) as s→ ∞.

(ii) Assume that v0(|x|) is a continuous weak subsolution of (1.2) satisfying (3.7)
and (3.8). Then w(y, s; v0) � φ

�
(|y|) for all y ∈ RN , s � 0 and ‖w(·, s; v0) −

φ
�
(| · |)‖L∞(RN ) as s→ ∞.

In the proof of proposition 3.1, we put ψ(r) = r−μ with μ > 2/(p− 1). Then, by
a direct calculation, we obtain

Lψ =
(
−μ

2
+

1
p− 1

)
r−μ +O(r−μ−2) as r → ∞.

Note here that

pφ
�̂
(r)p−1ψ(r) = O(r−μ−2) as r → ∞.

Then, from μ > 2/(p− 1), there exists R0 > 0 such that

Lψ + pφp−1

�̂
ψ � 0 for r > R0. (3.9)

The following results hold.

Lemma 3.3. Suppose that S�̂ �= ∅ for some �̂ > 0. Let � ∈ (0, �̂).

(i) Define v0 by

v0(r) = φ
�
(r) + Cψ(r) for r > 0, (3.10)

where C > 0 is a constant. Assume that there exists R � R0 such that

v0(r) � φ�̂(r) for r > R. (3.11)

Then Lv0 + vp
0 � 0 for r > R.

(ii) Define v0 by

v0(r) = φ
�
(r) − Cψ(r) for r > 0, (3.12)

where C > 0 is a constant. Assume that there exists R � R0 such that
v0(r) � 0 for r > R. Then Lv0 + vp

0 � 0 for r > R.
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Proof.
(i) From (3.9) the function v0, defined by (3.10), satisfies

Lv0 + vp
0 = Lφ

�
+ CLψ + vp

0 � −φp

�
− Cpφp−1

�̂
ψ + vp

0

for r > R0. By the mean value theorem and (3.11), for r > R, we obtain

vp
0 − φp

�
= (φ

�
+ Cψ)p − φp

�
� pvp−1

0 Cψ � Cpφp−1

�̂
ψ.

Thus we obtain Lv0 + vp
0 � 0 for r > R.

(ii) From (3.9) the function v0, defined by (3.12), satisfies

Lv0 + vp
0 = Lφ

�
− CLψ + vp

0 � −φp

�
+ Cpφp−1

�̂
ψ + vp

0

for r > R0. By the mean value theorem, for r > R, we obtain

φp

�
− vp

0 = φp

�
− (φ

�
− Cψ)p � pφp−1

�
Cψ � Cpφp−1

�̂
ψ.

Thus we obtain Lv0 + vp
0 � 0 for r > R. �

Proof of proposition 3.1.

(i) Take R1 � R0 such that

u0(x) � φ
�
(|x|) for |x| � R1. (3.13)

Choose C > 0 such that φ
�
(R1) + Cψ(R1) � φ�̂(R1). Since we have

r2/(p−1)
(
φ

�
(r) + Cψ(r)

)
→ � and r2/(p−1)φ�̂(r) → �̂ as r → ∞

with � < �̂, there exists R2 � R1 such that

φ
�
(R2) + Cψ(R2) = φ�̂(R2) and φ

�
(r) + Cψ(r) � φ�̂(r) for r > R2. (3.14)

Define v0(r) by

v0(r) =

⎧⎨
⎩

φ
�̂
(r), 0 < r < R2,

φ
�
(r) + Cψ(r), r � R2.

By the right-hand side of (3.14), we have v0(r) � φ
�̂
(r) for r > R2. By lemma 3.3,

v0(|x|) is a classical radial supersolution of (1.2) for |x| > R2. By lemma 2.3, v0(|x|)
is a continuous weak supersolution of (1.2). It is clear that (3.5) holds. Note that
v0(|x|) � φ

�
(|x|) � u0(x) for |x| � R2 by (3.13). Thus (3.3) and (3.4) hold.
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(ii) Take R1 � R0 such that

u0(x) � φ
�
(|x|) for |x| � R1. (3.15)

Choose C > 0 such that φ
�
(R1) − Cψ(R1) � 0. Since we have

r2/(p−1)
(
φ

�
(r) + Cψ(r)

)
→ � > 0 as r → ∞,

there exists R2 � R1 such that

φ
�
(R2) − Cψ(R2) = 0 and φ

�
(r) − Cψ(r) � 0 for r > R2.

Define v0(r) by

v0(r) =

{
0, 0 < r < R2,

φ
�
(r) − Cψ(r), r � R2.

By lemma 3.3, v0(|x|) is a classical radial subsolution of (1.2) for |x| > R2. By
lemma 2.3, v0(|x|) is a continuous weak subsolution of (1.2). It is clear that (3.8)
holds. Note that v0(|x|) � φ

�
(|x|) � u0(x) for |x| � R2 by (3.15). Thus (3.6) and

(3.7) hold. �

Proof of proposition 3.2. We will show (i) only since we can show (ii) by the similar
argument. Since v0 = v0(|x|) is radially symmetric, a solution w of (1.19) with
w0 = v0 is spatially symmetric and hence it is written as w(r, s; v0), r = |y|. By
lemma 2.2, w(r, s; v0) is nonincreasing in s � 0 for each fixed r � 0. Put φ(r) =
lims→∞ w(r, s; v0). By applying lemma 2.1 with w = φ

�
, we obtain

φ
�
(r) � w(r, s; v0) � v0(r) (3.16)

for r � 0 and s � 0. By lemma 2.4, φ satisfies (1.3) with φ′(0) = 0 and

‖w(·, s; v0) − φ‖L∞([0,∞)) → 0 as s→ ∞.

Then it follows from (3.16) that

φ
�
(r) � φ(r) � v0(r) � φ

�̂
(r) for r � 0.

From (3.5), we have φ ∈ S�. lemma 2.6 (i) implies that φ(r) ≡ φ
�
(r). Thus we obtain

‖w(·, s; v0) − φ
�
‖L∞([0,∞)) as s→ ∞. From (3.16), we obtain w(y, s; v0) � φ

�
(|y|)

for all y ∈ RN and s � 0. �

4. Proof of theorems 1.1 and 1.3

In this section, we show the following theorem.
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Theorem 4.1. Let p > (N + 2)/N , and let � ∈ (0, �∗). Assume that u0 satisfies

0 � u0(x) < �∗|x|−2/(p−1) for x ∈ RN \ {0}. (4.1)

Then, for any ε > 0, there exists δ ∈ (0, �∗ − �) satisfying that, if

lim sup
x→∞

||x|2/(p−1)u0(x) − �| < δ, (4.2)

then the solution u of (1.1) is global in time and satisfies

lim sup
t→∞

t1/(p−1)‖u(·, t) − w�(·, t)‖L∞(RN ) < ε. (4.3)

Theorem 1.1 follows from theorem 4.1 immediately. In order to prove theorem
4.1, we first show the following proposition.

Proposition 4.2. Let p > (N + 2)/N , and suppose that S�̂ �= ∅ for some �̂ > 0.
Put � ∈ (0, �̂). Assume that u0 satisfies

0 � u0(x) � φ
�̂
(x) for x ∈ RN .

Then, for any ε > 0, there exists δ ∈ (0, �̂− �) such that, if (4.2) holds, then the
solution w of (1.19) with w0 = u0 is global in time and satisfies

lim sup
s→∞

‖w(·, s) − φ
�
(| · |)‖L∞(RN ) < ε. (4.4)

To show proposition 4.2, we need the following lemma.

Lemma 4.3. Let p > (N + 2)/N , and let � ∈ (0, �̂).

(i) For any ε > 0, there exists δ = δ(ε, �) > 0 such that

‖φ
�+δ

− φ
�
‖L∞([0,∞)) < ε and ‖φ

�−δ
− φ

�
‖L∞([0,∞)) < ε. (4.5)

(ii) Let δ ∈ (0, �̂− �). If u0 ∈ C(RN ) satisfies (4.2), then there exists R > 0 such
that

φ
�−δ

(|x|) � u0(x) � φ
�+δ

(|x|) for |x| > R. (4.6)

Proof.
(i) By [25, proposition 4.2], we obtain ‖φ

�2
− φ

�1
‖L∞([0,∞)) → 0 as �2 → �1. Then,

for any ε > 0 and � > 0, there exists δ = δ(ε, �) > 0 such that (4.5) holds.
(ii) If u0 satisfies (4.2), then there exists δ′ ∈ (0, δ) and R1 > 0 such that

(�− δ′)|x|−2/(p−1) � u0(x) � (�+ δ′)|x|−2/(p−1) for |x| > R1. (4.7)

Since δ′ ∈ (0, δ), there exists R2 > 0 such that

φ
�−δ

(|x|) � (�− δ′)|x|−2/(p−1) and φ
�+δ

(|x|)
� (�+ δ′)|x|−2/(p−1) for |x| > R2. (4.8)

Combining (4.7) and (4.8), we obtain (4.6) with R = max{R1, R2}. �
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Proof of proposition 4.2. By lemma 4.3, for any ε > 0, there exist δ ∈ (0, �̂− �) and
R > 0 such that (4.5) and (4.6) hold. Applying proposition 3.1 (i) and (ii) with
� = �+ δ and � = �− δ, respectively, there exist continuous weak super and sub-
solutions v0 and v0 of (1.2) satisfying⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 � v0(x) � u0(x) � v0(x) � φ
�̂
(|x|) for x ∈ RN ,

v0(x) � φ
�−δ

(|x|) and φ
�+δ

(|x|) � v0(x) for x ∈ RN , and

lim|x|→∞ |x|2/(p−1)v0(x) = �− δ and lim|x|→∞ |x|2/(p−1)v0(x) = �+ δ.

proposition 3.2 implies that w(y, t, v0) � φ
�+δ

(|y|) and w(y, t, v0) � φ
�−δ

(|y|) for all
y ∈ RN and s � 0, and that

‖w(·, t, v0) − φ
�+δ

‖L∞(RN ) → 0 and ‖w(·, t, v0)

− φ
�−δ

‖L∞(RN ) → 0 as t→ ∞. (4.9)

By lemma 2.1, we obtain

w(x, t, v0) � w(x, t, u0) � w(x, t, v0) for (x, t) ∈ RN × (0,∞).

Then we have

‖(w(·, t, u0) − φ
�
)+‖L∞(RN ) � ‖w(·, t, v0) − φ

�
‖L∞(RN )

� ‖w(·, t, v0) − φ
�+δ

‖L∞(RN ) + ‖φ
�+δ

− φ
�
‖L∞(RN ),

where a+ = max{a, 0}. Thus, from the left-hand side of (4.5) and (4.9), we obtain

lim sup
t→∞

‖(w(·, t, u0) − φ
�
)+‖L∞(RN ) � ‖φ

�+δ
− φ

�
‖L∞(RN ) < ε.

By the similar argument, we obtain

lim sup
t→∞

‖(w(·, t, u0) − φ
�
)−‖L∞(RN ) � ‖φ

�
− φ

�−η
‖L∞(RN ) < ε,

where a− = max{−a, 0}. Thus we obtain (4.4). �

To prove theorem 4.1, we also need the following proposition. Recall that w� is
the self-similar solution defined by (1.6) with the minimal solution φ

�
of S�.

Proposition 4.4. Assume that u0 ∈ C(RN ) satisfies (4.1) and

lim sup
|x|→∞

|x|2/(p−1)u0(x) < �∗. (4.10)

Then there exist �̂ ∈ (0, �∗) and τ0 > 0 such that, for any τ ∈ (0, τ0],

u0(x) � w�̂(x, τ) for x ∈ RN . (4.11)
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Lemma 4.5. Let M > 0 and � ∈ (0, �∗). Put

ΦM,�(x) = min{M, �|x|−1/(p−2)} for x ∈ RN .

Take �̂ ∈ (�, �∗). Then there exists τ0 > 0 such that, for any τ ∈ (0, τ0],

w�̂(x, τ) > ΦM,�(x) for x ∈ RN . (4.12)

Proof. Since lims→∞ s2/(p−1)φ
�̂
(s) = �̂ > �, there exists s0 > 0 such that

s2/(p−1)φ
�̂
(s) � � for s � s0.

Put r0 > 0 such that M = �r
−2/(p−1)
0 , and take τ0 > 0 so that r0/

√
τ0 � s0. Then,

for any τ ∈ (0, τ0], we have

|x|2/(p−1)w�̂(x, τ) = (|x|/√τ)2/(p−1)φ
�̂
(|x|/√τ) � � for |x| � r0,

which implies that

w�̂(x, τ) � �|x|−2/(p−1) for |x| � r0. (4.13)

In particular, w�̂(x, τ) � �r
−2/(p−1)
0 = M on |x| = r0. Since φ

�̂
(s) is decreasing for

s > 0, we have w�̂(x, τ) � w�̂(y, τ) if |x| � |y|. Then it follows that

w�̂(x, τ) � �r
−2/(p−1)
0 = M for 0 � |x| � r0. (4.14)

From (4.13) and (4.14), we obtain (4.12). �

Proof of proposition 4.4. Put M = max{u0(x) : x ∈ RN}. From (4.1) and (4.11),
there exists �0 ∈ (0, �∗) such that

u0(x) � �0|x|−2/(p−1) for x ∈ RN \ {0}.

Then we obtain u0(x) � ΦM,�0(x) for x ∈ RN . Take �̂ ∈ (�0, �∗). Then, by lemma
4.5, there exists τ0 > 0 such that, for any τ ∈ (0, τ0], we have w�̂(x, τ) � ΦM,�0(x)
for x ∈ RN . Thus we obtain u0(x) � w�̂(x, τ) for x ∈ RN . �

Proof of theorem 4.1. Since δ ∈ (0, �∗ − �), we have (4.10) if u0 satisfies (4.2). By
proposition 4.4, there exist �̂ ∈ (0, �∗) and τ0 > 0 such that u0(x) � w�̂(x, τ0) for
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x ∈ RN , which implies that

τ
1/(p−1)
0 u0(

√
τ0x) � φ

�̂
(|x|) for x ∈ RN .

Put ũ(x, t) = τ
1/(p−1)
0 u(

√
τ0x, τ0t). Then ũ satisfies ũt = Δũ+ ũp in RN × (0,∞)

and

ũ(x, 0) = τ
1/(p−1)
0 u0(

√
τ0x) � φ

�̂
(|x|) for x ∈ RN . (4.15)

Define w = w(y, s) by

w(y, s) = (t+ 1)1/(p−1)ũ(x, t) (4.16)

with

y =
x√
t+ 1

and s = log(t+ 1). (4.17)

Then w satisfies (1.19) with w0(y) = ũ(y, 0) for y ∈ RN . From (4.15), we have
w0(y) � φ

�̂
(y) for y ∈ RN . For any ε > 0, take δ ∈ (0, �̂− �) as in proposition 4.2.

Then (4.4) holds. From (4.16) and (1.6) with (4.17), we have

w(y, s) − φ
�
(|y|) = (t+ 1)1/(p−1)(ũ(x, t) − w�(x, t+ 1)).

Note that (t+ 1)/t→ 1 as t→ ∞. Thus (4.4) can be written as

lim sup
t→∞

t1/(p−1)‖ũ(·, t) − w�(·, t+ 1)‖L∞(RN ) < ε.

By lemma D.1 in [25], we see that

lim
t→∞ t1/(p−1)‖w�(·, t) − w�(·, t+ t0)‖L∞(RN ) = 0

for any t0 ∈ R. Then we obtain

lim sup
t→∞

t1/(p−1)‖ũ(·, t) − w�(·, t)‖L∞(RN ) < ε. (4.18)

Note here that

τ
1/(p−1)
0 w�(

√
τ0|x|, τ0t) = t−1/(p−1)φ

�
(|x|/√t) = w�(|x|, t).

Then it follows that

ũ(x, t) − w�(x, t) = τ
1/(p−1)
0 (u(

√
τ0x, τ0t) − w�(

√
τ0x, τ0t)) .

Then we have

t1/(p−1)‖ũ(·, t) − w�(·, t)‖L∞(RN ) = (tτ0)1/(p−1)‖u(·, τ0t) − w�(·, τ0t)‖L∞(RN ).

From (4.18), we obtain (4.3). �

We denote by u(x, t;u0) a solution of (1.1).

Proof of theorem 1.3. By lemma 2.6 (iii), for any M > 0, there exists �M ∈ (0, L)
such that ‖φ

�M
‖L∞([0,∞)) > M . Define ũ0(x) = min{φ

�M
(|x|), u0(x)}. From (1.10)
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and (1.11), we have ũ0(x) < L|x|−2/(p−1) for x ∈ RN \ {0} and ũ0(x) ≡ φ
�M

(|x|)
for |x| sufficient large. By applying theorem 1.1, we obtain

lim
t→∞ t1/(p−1)‖u(·, t; ũ0) − w�M

(·, t)‖L∞(RN ) = 0.

We note here that t1/(p−1)‖w�M
(·, t)‖L∞(RN ) = ‖ψ

�M
(| · |)‖L∞(RN ) > M for all t >

0. By the comparison principle, u(x, t;u0) � u(x, t; ũ0) for x ∈ RN , t > 0. Then we
obtain

lim sup
t→∞

t1/(p−1)‖u(·, t;u0)‖L∞(RN ) � lim sup
t→∞

t1/(p−1)‖u(·, t; ũ0)‖L∞(RN ) > M.

Since M > 0 is arbitrary, we obtain (1.12). �

5. Proof of theorem 1.5 and corollary 1.6

First, we show the following lemma.

Lemma 5.1. Let p > (N + 2)/N . Assume that u0 ∈ C(RN ) satisfies (4.1). Then the
solution u of (1.1) exists globally in time.

Proof. In the case p � pJL, we have �∗ = L by proposition A (iii). Then we obtain
the global existence of the solution by the argument as in the proof of theorem 6.1
in [29].

In the case where (N + 2)/N < p < pJL, we put μ ∈ (0, 1). By proposition 4.4,
there exist �̂ ∈ (0, �∗) and τ0 > 0 such that, for any τ ∈ (0, τ0], μu0(x) � w�̂(x, τ)
for x ∈ RN . Recall that S�∗ �= ∅ if (N + 2)/N < p < pJL by proposition A (iii). By
[23, lemma 3.1 (iii)], we have φ

�̂
(r) < φ

�∗
(r) for each r � 0. Then, for all τ ∈ (0, τ0],

we obtain

μu0(x) < w�∗(x, τ) for x ∈ RN .

By the comparison principle, it follows that

u(x, t;μu0) < w�∗(x, t+ τ) for x ∈ RN , t > 0. (5.1)

Since (5.1) holds for any τ ∈ (0, τ0], we have

u(x, t;μu0) � w�∗(x, t) for x ∈ RN , t > 0. (5.2)

Letting μ→ 1 in (5.2), we obtain u(x, t;u0) � w�∗(x, t) for all x ∈ RN and t > 0.
Thus the solution of (1.1) exists globally in time. �

We define some special functions which will be used in the proof of theorem 1.5.
Let h(r; a, b), 1 < a < b � ∞, be a smooth function of r � 0 such that

(i) 0 � h � 1 for r � 0,
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(ii) h(r; a, b) ≡ 0 for r ∈ [0, a− 1] ∪ [b+ 1,∞) if b <∞, and h(r; a,∞) ≡ 0 for
r ∈ [0, a− 1],

(iii) h(r; a, b) ≡ 1 for r ∈ [a, b] if b <∞, and h(r; a,∞) ≡ 1 for r ∈ [a,∞).

We set ρ(r; �, a, b) = �h(r; a, b)r−2/(p−1), and define

u0
∞(r) =

∞∑
i=1

ρ(r; �i, ai, bi), (5.3)

where {�i} is a sequence in theorem 1.5 and {(ai, bi)} is a sequence to be determined
later. We choose {(ai, bi)} such that

a1 > 1, ai < bi and bi + 2 < ai+1 for i = 1, 2, . . . . (5.4)

Then

supp ρ(r; �i, ai, bi) ∩ supp ρ(r; �j , aj , bj) = ∅ if i �= j. (5.5)

Define auxiliary functions u0
1(r) = ρ(r; �1, a1,∞) and

u0
k(r) =

k−1∑
i=1

ρ(r; �i, ai, bi) + ρ(r; �k, ak,∞) for k = 2, 3, . . . .

Since (5.5) holds and 0 < �i < �∗ for i = 1, 2, . . ., we have

u0
∞(r) < �∗r−2/(p−1) and u0

k(r) < �∗r−2/(p−1) for r � 0. (5.6)

By lemma 5.1, solutions u(x, t;u0
∞) and u(x, t;u0

∞) exist globally in time.

Lemma 5.2.
(i) For each k = 1, 2, . . ., the solution u(x, t;u0

k) satisfies

lim
t→∞ t1/(p−1)‖u(·, t;u0

k) − w�k
(·, t)‖L∞(RN ) = 0. (5.7)

(ii) For each k = 1, 2, . . ., one has ‖u0
k(| · |) − u0

∞(| · |)‖L∞(RN ) � �∗b−2/(p−1)
k .

Proof.
(i) Note that u0

k satisfies (5.6) and |x|2/(p−1)u0
k(x) → �k as |x| → ∞. By theorem

1.1, we obtain (5.7).
(ii) We see that u0

k(r) − u0
∞(r) ≡ 0 for 0 � r � bk and

|u0
k(r) − u0

∞(r)| �
∣∣∣∣∣�kr−2/(p−1) −

∞∑
i=k

ψ(r; �i, ai, bi)

∣∣∣∣∣ for bk � r <∞.

Since (5.5) holds and 0 < �i < �∗ for i = k, k + 1, k + 2, . . ., we obtain

|u0
k(r) − u0

∞(r)| � �∗r−2/(p−1) � �∗b−2/(p−1)
k for bk � r <∞.

Thus we obtain ‖u0
k(| · |) − u0

∞(| · |)‖L∞(RN ) � �∗b−2/(p−1)
k . �
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For ξ ∈ RN and � ∈ (0, �∗), we obtain

lim
t→∞ t2/(p−1)‖w�(· − ξ, t) − w�(·, t)‖L∞(RN ) = 0. (5.8)

In fact, for each x ∈ RN , we have

t2/(p−1)|w�(x− ξ, t) − w�(x, t)| = |φ
�
(|x− ξ|/√t) − φ

�
(|x|/√t)|.

Since φ
�
(r) is uniformly continuous on [0,∞), we obtain (5.8).

Assume that solutions u(x, t;u0) and u(x, t; ũ0) exist globally in time. By the
continuous dependence of solution of (1.1) on the initial value (see, e.g., [2, propo-
sition 4.3.7]), for any ε > 0 and T > 0, there exists δ = δ(ε, T ) > 0 such that, if
‖u0(·) − ũ0(·)‖L∞(RN ) < δ, then

max
0�t�T

T 2/(p−1)‖u(·, t;u0) − u(·, t; ũ0)‖L∞(RN ) < ε.

We carry out the proof of theorem 1.5 by constructing a sequence {(ai, bi)}
satisfying the requirements recursively.

Proof of theorem 1.5. Let {(�i, ξi, εi)} be a sequence in theorem 1.5. Put u0
∞ by

(5.3) with {(ai, bi)} satisfying (5.4). Since the left-hand side of (5.6) holds, by
lemma 5.1, the solution u(x, t;u0

∞) exists globally in time. We will show that one
can choose a sequence {(ai, bi)} recursively such that there exists an increasing
sequence {ti} satisfying ti+1 > ti + 1 and

t
2/(p−1)
i ‖u(·, ti;u0

∞) − u�i
(· − ξi, ti)‖L∞(RN ) < εi (5.9)

for each i = 1, 2, . . ..
Step 1. Take a1 > 1 arbitrarily. We show that one can choose b1 > a1 such that,

for any {(ai, bi)}i�2 satisfying (5.4), there exists t1 > 1 satisfying (5.9) with i = 1.
By lemma 5.2 (i), there exists t̃1 > 1 such that

t2/(p−1)‖u(·, t;u0
1) − w�1

(·, t)‖L∞(RN ) <
ε1
4

for t � t̃1. (5.10)

From (5.8) there exists t1 � t̃1 such that

t2/(p−1)‖w�1(· − ξ1, t) − w�1(·, t)‖L∞(RN ) <
ε1
4

for t � t1. (5.11)

Combining (5.10) and (5.11), we obtain

t2/(p−1)‖u(·, t;u0
1) − w�1(· − ξ1, t)‖L∞(RN ) <

ε1
2

for t � t1. (5.12)

By the continuous dependence of initial value, there exists δ1 = δ1(ε1/2, t1) > 0
such that, if ‖u0(·) − u0

1(| · |)‖L∞(RN ) < δ1, then

max
0�t�t1

t
2/(p−1)
1 ‖u(·, t;u0) − u(·, t;u0

1)‖L∞(RN ) <
ε1
2
. (5.13)
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It follows from (5.12) and (5.13) that, if ‖u0
∞(·) − u0

1(| · |)‖L∞(RN ) < δ1, then

t
2/(p−1)
1 ‖u(·, t1;u0

∞) − w�1(· − ξ, t1)‖L∞(RN ) < ε1.

Take b1 > a1 such that �∗b−2/(p−1)
1 < δ1. By lemma 5.2 (ii), for any {(ai, bi)}i�2

satisfying (5.4), we obtain

‖u0
∞(| · |) − u0

1(| · |)‖L∞(RN ) < �∗b−2/(p−1)
1 < δ1.

Thus (5.9) with i = 1 holds for any {(ai, bi)}i�2 satisfying (5.4).
Step 2. Let k � 2, and suppose that {(ai, bi)}k−1

i=1 satisfy (5.4), and that there
exist {ti}k−1

i=1 such that (5.9) holds for each i = 1, 2, . . . , k − 1. Take ak > bk−1 + 2
arbitrarily. We will show that one can choose bk > ak such that there exists tk >
tk−1 + 1 satisfying (5.9) with i = k for any {(ai, bi)}i�k+1 satisfying (5.4).

By lemma 5.2 (i), there exists t̃k > tk−1 + 1 such that

t2/(p−1)‖u(·, t : u0
k) − w�k

(·, t)‖L∞(RN ) <
εk

4
for t � t̃k. (5.14)

From (5.8) there exists tk � t̃k such that

t2/(p−1)‖w�k
(· − ξk, t) − w�k

(·, t)‖L∞(RN ) <
εk

4
for t � tk. (5.15)

Combining (5.14) and (5.15), we obtain

t2/(p−1)‖u(·, t : u0
k) − w�k

(· − ξk, t)‖L∞(RN ) <
εk

2
for t � tk. (5.16)

By the continuous dependence of initial value, there exists δk = δk(εk/2, tk) > 0
such that, if ‖u0(·) − u0

k(| · |)‖L∞(RN ) < δk, then

max
0�t�tk

t
2/(p−1)
k ‖u(·, t;u0) − u(·, t;u0

k)‖L∞(RN ) <
εk

2
. (5.17)

It follows from (5.16) and (5.17) that, if ‖u0
∞(·) − u0

k(| · |)‖L∞(RN ) < δk, then

t
2/(p−1)
k ‖u(·, tk : u0

∞) − w�k
(· − ξk, tk)‖L∞(RN ) < εk.

Take bk > ak + 1 such that �∗b−2/(p−1)
k < δk. Then, by lemma 5.2 (ii), we obtain

‖u0
∞(| · |) − u0

k(| · |)‖L∞(RN ) < �∗b−2/(p−1)
k < δk.

Thus (5.9) with i = k holds for any {(ai, bi)}i�k+1 satisfying (5.4).
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First we take (a1, b1) by Step 1, and then (a2, b2) by Step 2 with k = 2. Then there
exists t2 > t1 + 1 such that (5.9) with i = 1, 2 hold for any {(ak, bk)}k�3 satisfying
(5.4). Next we take (a3, b3) by Step 2 with k = 3. Then there exists t3 > t2 + 1 such
that (5.9) with i = 3 holds for any {(ak, bk)}k�4 satisfying (5.4). Repeating this
argument, we can choose a sequence {(ak, bk)} recursively such that (5.9) holds for
each i = 1, 2, . . .. Let u be a solution of (1.1) with u0 = u0

∞. Then u exists globally
in time and there exists an increasing sequence {ti} such that (1.18) holds for each
i = 1, 2, . . .. �

Remark 5.3. By the proof of theorem 1.5, we find that the solution u(x, t;u0
∞) is

radially symmetric about the origin even if ξk �= 0 for k = 1, 2, . . ..

Proof of corollary 1.6. For the sequence {(�i, ξi, εi)}, put {(�̃i, ξ̃i, ε̃i)} as follows. For
i = 1, 2, . . .,

�̃2i = �i, ξ̃2i−1 = ξ̃2i = ξi and 2ε̃2i−1 = ε̃2i = εi.

By lemma 2.6 (ii), for any ε > 0, there exists �ε > 0 such that ‖φ
�ε
‖L∞([0,∞)) <

ε. Then, for i = 1, 2, . . ., put �̃2i−1 such that ‖φ
�̃2i−1

(| · |)‖L∞(RN ) < εi/2. Then it
follows that

sup
t>0

t1/(p−1)‖w�̃2i−1
(·, t)‖L∞(RN ) = ‖φ

�̃2i−1
(| · |)‖L∞(RN ) <

εi

2
. (5.18)

By applying theorem 1.5 with {(�̃i, ξ̃i, ε̃i)}, there exists u0 such that the solution
u of (1.1) exists globally in time and there exists an increasing sequence {τi} with
τi → ∞ such that

τ
1/(p−1)
2i−1 ‖u(·, τ2i−1) − w�̃2i−1

(· − ξi, τ2i−1)‖L∞(RN ) <
εi

2
(5.19)

and

τ
1/(p−1)
2i ‖u(·, τ2i) − w�̃2i

(· − ξi, τ2i)‖L∞(RN ) < εi

for i = 1, 2, . . .. From (5.18) and (5.19), we obtain

τ
1/(p−1)
2i−1 ‖u(·, τ2i−1)‖L∞(RN ) < εi.

Putting si = τ2i−1 and ti = τ2i, we obtain (i) and (ii) in corollary 1.6. �
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H. Poincaré Anal. Non Linéaire 4 (1987), 423–452.

20 T. Kawanago. Asymptotic behavior of solutions of a semilinear heat equation with
subcritical nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 1–15.

21 T.-Y. Lee and W.-M. Ni. Global existence, large time behavior and life span of solutions of
a semilinear parabolic Cauchy problem. Trans. Amer. Math. Soc. 333 (1992), 365–378.

22 Y. Naito. Non-uniqueness of solutions to the Cauchy problem for semilinear heat equations
with singular initial data. Math. Ann. 329 (2004), 161–196.

23 Y. Naito. An ODE approach to the multiplicity of self-similar solutions for semi-linear heat
equations. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 807–835.

24 Y. Naito. Self-similar solutions for a semilinear heat equation with critical Sobolev exponent.
Indiana Univ. Math. J. 57 (2008), 1283–1315.

25 Y. Naito. The role of forward self-similar solutions in the Cauchy problem for semilinear
heat equations. J. Differ. Equ. 253 (2012), 3029–3060.

26 Y. Naito. Convergence rate in the weighted norm for a semilinear heat equation with
supercritical nonlinearity. Kodai Math. J. 37 (2014), 646–667.

27 Y. Naito. Global attractivity and convergence rate in the weighted norm for a supercritical
semilinear heat equation. Differ. Integral. Equ. 28 (2015), 777–800.

28 L. A. Peletier, D. Terman and F. B. Weissler. On the equation Δu + 1
2
x · ∇u + f(u) = 0.

Arch. Rational Mech. Anal. 94 (1986), 83–99.
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