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The separation dynamics of a sphere released from the surface of a ramp into a hypersonic
flow is investigated, focusing on the influence of the ramp boundary layer on the
sphere behaviour. First, numerical simulations are conducted of a sphere interacting with
an isolated high-speed boundary layer to determine the influence on the sphere force
coefficients as the sphere diameter and wall-normal location are varied. It is found that
the lift coefficient is strongly affected by the near-wall interactions, becoming increasingly
negative as the ratio of the sphere radius to boundary-layer thickness, r/δ, is decreased.
These results are combined with force coefficients derived from simulations of the sphere
interacting with the ramp-generated oblique shock to enable numerical predictions of the
sphere trajectories for a 10◦ ramp at Mach 6 (using a similar decoupled approach to
Part 1 of this work). It is found that the three trajectory types of the inviscid
situation – shock surfing, ejection followed by re-entrainment within the shock layer
and direct entrainment – also characterize the sphere behaviour here. Their relative
prevalence, however, is influenced by the sphere size: for smaller values of r/δ, direct
entrainment dominates because of the wall suction, while shock surfing and then
ejection/re-entrainment become increasingly likely at larger values of r/δ. Increasing the
ramp angle and/or the free-stream Mach number reduces the relative influence of the
boundary-layer interactions. Finally, experiments are conducted using free-flying spheres
released from a ramp surface in a hypersonic shock tunnel, confirming the major trends
predicted numerically.

Key words: flow–structure interactions, high-speed flow

1. Introduction

The present study is concerned with a simplified version of the shedding or detachment
of an object from a high-speed vehicle. Such a situation might be encountered during a
hypersonic store-separation process, or produced by scouring of particulate matter due
to the high heat loading near the leading edge of the vehicle. In our idealized study, the
vehicle is represented by a two-dimensional ramp and the shed object by a spherical body
of uniform density that is released instantaneously from the ramp surface. In Part 1 of this
work (Sousa, Deiterding & Laurence 2021), the inviscid problem was examined; in this
second part, we examine the effects of flow viscosity on the sphere dynamics, in particular,
focusing on the role of the ramp boundary layer.

† Email address for correspondence: stuartl@umd.edu
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We begin by recapitulating the most relevant findings from Part 1 of this work. Sphere
separation events were studied for free-stream Mach numbers between 6 and 20, and ramp
angles of 5–25◦. It was found that three types of sphere trajectories are possible: (i) surfing
of the spherical body down the shock; (ii) initial expulsion outside the shock layer followed
by re-entry and entrainment; or (iii) direct entrainment. The surfing phenomenon was first
noted by Laurence & Deiterding (2011) and is possible because, as the sphere interacts
with the ramp-generated oblique shock, the lift-to-drag ratio can exceed the tangent of
the shock angle. The ejection/re-entrainment-type trajectories are a result of the repulsive
force that the sphere experiences close to the wall (because of the high-pressure region
produced by flow compression between the sphere and wall). At relatively low hypersonic
Mach numbers, the latter two trajectory types were found to be predominant, but at higher
Mach numbers (M � 10), surfing becomes possible over a wider range of ramp angles and
downstream release locations for the sphere.

As described in Part 1, the dynamics of the shed body once it has cleared the near-wall
region of the ramp will be largely determined by the inviscid forces (this assumption will
be examined in the present work). The initial phase of the sphere separation from the
wall, in contrast, will be highly dependent on whether the flow is inviscid or viscous,
as the presence of a ramp boundary layer will significantly affect the near-wall flow.
We assume for now that this near-wall flow is unaffected by the ramp shock and that
the boundary layer is laminar. Adopting a simplistic approach, the low-momentum fluid
within the boundary layer should reduce the pressure on the near-wall surface of the
sphere, negating (to some extent) the repulsive force experienced in the inviscid case.
In reality, of course, the flow field will be much more complex, and will be dominated
by the shock-wave/boundary-layer interaction (SWBLI) that forms where the sphere bow
shock impinges upon the wall boundary layer. If the sphere is lying directly on the wall, the
resulting flow field will resemble to some extent other blunt-body SWBLI scenarios, for
example, a circular-cylinder or a blunt-fin interaction such as those examined by Sedney
& Kitchens (1971), Hung & Clauss (1981), Özkan & Holt (1984), Lakshmanan & Tiwari
(1994), Tutty, Roberts & Schuricht (2013) and Ozawa & Laurence (2018). Some of the
key points from these studies are: a large-scale separation region forms with an upstream
extent that depends on both the Mach number and Reynolds number; secondary separation
regions can form within this primary separation zone, generating symmetrical vortices that
are swept downstream to either side of the blunt obstacle; and an Edney-type shock–shock
interaction is generated where the separation shock impinges on the bow shock of the
blunt body. We would expect some differences in flow structures in the present case,
however, since the ability of the flow to pass under the sphere means it will present less of
a flow obstruction. If the sphere is displaced away from the wall, the SWBLI will weaken
and become more an impinging-type interaction, and eventually the aerodynamics of the
sphere itself will become independent of the wall. The aerodynamic forces acting on the
sphere in such an SWBLI-dominated flow field can be expected to be quite different from
the inviscid case, which will in turn affect the sphere’s dynamical behaviour.

In the present article, we describe a combined numerical and experimental investigation
of the dynamics of a spherical particle shed from a ramp in hypersonic viscous flow.
The numerical and experimental approaches are described in §§ 2 and 3, respectively.
Numerical results are presented in § 4: first we focus on the isolated interactions between
a sphere and a high-speed boundary layer; these results are then combined with those
from simulations of a sphere interacting with an oblique shock to allow full numerical
predictions of sphere trajectories. In § 5 we describe results from experiments in which
free-flying spheres interact with a planar ramp. Conclusions are drawn in § 6.
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2. Numerical methodology

2.1. Sphere/boundary-layer interactions
Static simulations of viscous sphere–wall interactions were performed using VULCAN
(viscous upwind algorithm for complex flow analysis), a Navier–Stokes flow solver
maintained by NASA Langley Research Center’s Hypersonic Air Breathing Propulsion
Branch (White & Morrison 1999). As discussed in the Introduction, the most significant
effect of viscosity in the current problem will be the introduction of the boundary layer
on the ramp surface and its interaction with the sphere bow shock. The approach pursued
herein is thus similar to that in § 4 of Part 1 of this work, i.e. the ramp-induced shock
is neglected and the sphere is simulated interacting with a free-stream-aligned wall. In
comparison to the inviscid case, however, the presence of the boundary layer will add
relevant parameters beyond the Mach number and normalized wall-normal distance, y/r
(with y being the distance between the wall and the sphere centre and r the sphere
radius), that were important in the inviscid case: namely, the Reynolds number based on
distance along the wall, Rex ; the Reynolds number based on the sphere diameter, Red; the
wall-temperature ratio, Tw/Taw, where Tw and Taw are the wall temperature and adiabatic
recovery temperature; and the boundary-layer state (laminar, transitional, turbulent). Since
this parameter space is too large to explore in the present context, we fix the Mach number
and temperature ratio to values appropriate for the experiments of § 5, assume a laminar
boundary layer as in the experiments (as will typically be the case near the leading edge of
a high-speed vehicle), and examine only y/r and a secondary non-dimensional parameter,
r/δ, i.e. the ratio of the sphere radius to the 99 % boundary-layer velocity thickness. This
latter parameter will vary with each of Rex , Red, and Tw/Taw, and so does not completely
characterize the problem; nevertheless, if it is held constant, we might expect variation of
the force coefficients with the other non-dimensional parameters to be relatively limited,
as the velocity profile of a high-speed boundary layer (as a function of y/δ) is relatively
insensitive to changes in Rex and Tw/Taw, and the drag coefficient of a sphere varies but
very little for moderate to high Red.

In these simulations, the viscous-wall interactions were decoupled from the effects
of the ramp shock by considering the flow over a flat plate at zero incidence rather
than an inclined ramp; nevertheless, the inflow parameters, listed in table 1, were
selected to match post-shock conditions for a 10◦ ramp at Mach 6 in the shock tunnel
described in the following section (but at higher enthalpy than the actual experiments).
A thermally and calorically perfect gas was assumed throughout. With maximum flow
temperatures exceeding 1000 K, this assumption becomes somewhat questionable, but
imperfect gas effects on the force coefficients are expected to be negligible, and, in
any case, this assumption is more appropriate at the lower enthalpies/temperatures of
the experiments described shortly. Numerical fluxes were evaluated using the Edwards
low-dissipation flux-splitting scheme, while variable interpolation was handled by a
third-order upwind-biased monotonic upstream-centred scheme for conservation laws
(MUSCL) technique using the flux limiter developed by Koren (1993).

For all computations, the sphere was situated 65 mm downstream of the ramp leading
edge, corresponding to an undisturbed boundary-layer height of approximately 0.75 mm.
Characterization of the viscous effects on the sphere aerodynamics was then accomplished
through variation of the sphere size and wall-normal distance. Sphere diameters of 4, 6,
8, 12 and 16 mm were considered (i.e. r/δ values of 2.67, 4, 5.33, 8 and 10.67), with
y/r ranging from 1.031 to 2.375. Unlike the AMROC software used in Part 1 of this
work and the AERO suite described in the following subsection, VULCAN is unable
to accommodate moving boundaries; therefore, static simulations at discrete wall-normal
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Computational inflow Equivalent free stream

M 4.65 6
u [m s−1] 1456 1517
p [Pa] 5000 948
ρ [kg m−3] 0.0714 0.0208
T [K] 244 159

TABLE 1. Inflow parameters for the VULCAN computational study.

(a) (b)

FIGURE 1. Sample computational grids used in this study.

locations were instead performed. The sphere and ramp were treated as isothermal walls at
300 K. The top, side and rear planes were all treated as outflow surfaces with zeroth-order
extrapolation of all variables. All simulations used the inflow properties to uniformly
initialize the entire computational domain.

The inherently unsteady nature of the flow inhibited full convergence for the larger
sphere-diameter simulations at the nearest wall position. Thus, after reaching an
approximate solution from a steady computation, the 8, 12 and 16 mm simulations
were iterated further using an unsteady diagonalized approximate factorization scheme
with dual time stepping. An absolute time step of 0.5 µs was implemented with
20 sub-iterations and a second-order backward-difference scheme. These sub-iterations
were computed using a nominal Courant–Friedrichs–Lewy (CFL) number of 20, though
VULCAN offers an adaptive CFL option which lowered the CFL to 1.0 in the vicinity
of large pressure gradients. These unsteady simulations were initialized with the steady
simulation results and continued until convergence of the time-averaged flow fields, which
occurred within 2.5–5.0 ms.

A representative grid is shown in figure 1(a). The spanwise extent of the domain was
progressively increased with the sphere diameter, as detailed in table 2, to prevent sidewall
influence on the results. The domain length and height were also increased for the 12
and 16 mm cases. Figure 1(b) shows a centreline slice of a typical grid topology. Grid
points were clustered on the lower windward surface of the sphere to accurately capture
the interaction between the sphere and the separated boundary layer. Also included in
table 2 are the node counts along key topology lines, namely the domain height and span,
and the circumference of the sphere. Values of y+ remained comfortably below unity along
the length of the ramp; somewhat higher values, up to 2.4, occurred on the upper side of
the sphere, but this is expected to have a negligible effect on the calculated forces.
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Sphere diameter [mm] 4 6 8 12 16

Domain height [mm] 25 25 25 40 40
Span [mm] 30 40 70 104 122
Length [mm] 100 100 100 110 110
Spanwise nodes 93 93 111 153 164
Vertical nodes 153 144 151 167 182
Circumferential nodes 420 458 460 398 470

TABLE 2. Computational domain sizing for this study.

Refinement Nodes CL CD

Coarse 753 243 −0.0603 0.9847
Medium 2 297 160 −0.0706 0.9843
Fine 5 355 780 −0.0733 0.9881

TABLE 3. Aerodynamic results from grid resolution study (CL and CD are the coefficients of
lift and drag).

A grid refinement study was carried out to ensure sufficient resolution of all flow
features relevant to the sphere aerodynamics. The test case chosen was the 4 mm sphere
situated at y/r = 1.125, the nearest wall position investigated throughout this work. This
configuration produced the strongest interaction with the boundary layer, and thus would
be expected to be most sensitive to variations in grid resolution. In this analysis, three
different grid levels were considered, all with identical topology. The medium grid was
generated by increasing the number of nodes along each topology line by 50 % relative
to the coarse grid, while the number of nodes was doubled for the fine grid. Table 3
summarizes the results of the study, revealing that CD is almost entirely insensitive to
the chosen grid resolution. The lift coefficient is slightly more sensitive: moving from
coarse to medium resolution, the lift coefficient decreases by 17 %, while the jump to
fine resolution results in a smaller 3.8 % drop (compared a 0.4 % shift in CD). Given the
small magnitude of the lift, however, this was a small enough change for us to consider
the flow to be sufficiently resolved for accurate force calculations at the fine grid level,
and all computations were thus carried out using such grids. We further note that the grid
resolution employed here is comparable with previous computations of laminar SWBLIs
(Tutty et al. 2013).

To provide validation of this computational methodology, in figure 2 we compare a
numerical schlieren with a shadowgraph image obtained from one of the experiments
described in § 3. The y/r values for the two are the same (y/r = 1.063), although the
calculated r/δ values differ slightly (r/δ = 5.3 for the simulation versus 5.1 for the
experiment). Aside from the presence of the ramp-generated shock in the experimental
image, we note close agreement in the flow features, especially the size of the separated
region in front of the sphere (the slightly upstream location of the separation shock
in the numerical image is consistent with the larger value of r/δ). As the separation
length is highly sensitive to both the computational method and grid resolution for such
laminar SWBLIs (Candler 2011), this agreement provides some degree of confidence in
the simulations described herein.
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(a)

(b)

FIGURE 2. (a) Numerical schlieren image for y/r = 1.06, r/δ = 5.3; (b) experimental
shadowgraph image for y/r = 1.06, r/δ = 5.1.

2.2. Sphere/oblique-shock simulations
A single viscous moving-body simulation of the interactions between a sphere and an
impinging oblique shock were conducted in the AERO suite, a multi-physics software
capable of achieving high-fidelity solutions to fluid–structure interaction problems made
available by Stanford University (https://bitbucket.org/frg/). Here we focus on an extension
of the fluid solver providing automated mesh-refinement (AMR) capabilities as a viscous
counterpart to the forced AMROC computations detailed in Part 1 of this study; as in
AMROC, this AMR capability makes the simulation of a solid boundary undergoing
substantial displacements feasible. We also considered AERO for studying sphere–wall
interactions (or, indeed, free-flight simulations), but the computational cost was deemed
to be prohibitive. The fluid solver in the AERO suite is known as FIVER (finite
volume method with exact two-material Riemann problems), which is a finite volume
method utilized for the solution of high-speed compressible flows with multiple material
domains (Farhat, Gerbeau & Rallu 2012). If any domain is specified as a solid, however,
FIVER reverts to an embedded boundary method for the simulation of fluid–structure
interactions. The AMR method implemented in this framework is specialized to track
the boundary layers that form on the surfaces of embedded boundaries in viscous flow
problems by means of a wall-proximity refinement law (Borker et al. 2019). At the same
time, a Hessian-based threshold criterion of selected fluid variables allows for capture
of important flow features. In the implemented scheme, edges flagged by the above
refinement laws are adapted according to the newest vertex bisection method, wherein
cell conformity and refinement reversibility are ensured.

To explore the viscous interaction of a sphere and oblique shock at Mach 6, we
prescribed the sphere a shock-crossing trajectory starting from a position in the free-stream
flow. In our treatment of the problem, the forward and upper boundaries serve as inflow for
a free stream inclined at −10◦ to the xz-plane, and a slip wall condition is applied to the
lower surface to generate an oblique shock without forming a boundary layer. Slip walls
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A spherical body shedding from a hypersonic ramp. Part 2 906 A29-7

(a) (b)

FIGURE 3. Centreline slice of the viscous simulation mesh at ( y − ys)/r = 1.0 showing
results of the automated mesh refinement (zoomed version in b).

Physical scale [mm] Sphere-referenced [dsph] Simulation parameter

Base domain length 200 62.9 68 cells
Height 100 31.4 34 cells
Span 30 9.4 10 cells
Oblique shock AMR 0.092 0.029 5 levels
Sphere AMR 0.012 0.0036 8 levels
Approx. domain size — — 41 500 000 nodes

TABLE 4. Computational domain sizing for AERO simulations.

on the side surfaces contain the oblique shock, and the aft boundary serves as generalized
outflow. A base Cartesian grid of size 0.2 m long × 0.1 m high × 0.03 m wide with 68 ×
34 × 10 cells contains the embedded sphere of radius 1.59 mm initially located 1.3 sphere
radii above the oblique shock. In the vicinity of the sphere, we apply density Hessian and
wall-proximity laws, allowing for eight levels of refinement, while the upstream oblique
shock experiences five refinement levels. A centreline slice of a representative mesh is
presented in figure 3 and a table of computational domain parameters is provided in table 4.
Semi-discretization of the laminar Navier–Stokes equations is performed using constant
reconstruction of intra-cell quantities, providing first-order accuracy globally; numerical
fluxes are estimated using Roe’s approximate Riemann solver. Utilizing a converged steady
solution of the stationary sphere to initialize the unsteady simulation, we force the sphere
towards the wall with a constant velocity of 0.015u∞, refining and coarsening the mesh
at intervals of 100 time steps. An explicit Euler time-marching scheme with a CFL of
0.9 was used, and the simulation was terminated when the sphere reached a position
of ( y − ys)/r = −1.7. A perfect gas, Mach-6 free stream was specified, with a unit
Reynolds number of 6.38 × 106 1 m−1. The sphere–wall thermal boundary condition was
isothermal, with a temperature of 300 K. The number of nodes varied between 39 million
and 44 million, and simulations were conducted using 480 cores on the NASA Pleaides
supercomputing cluster.

Results from inviscid numerical simulations using the AMROC software are also
employed at several points in this work. These simulations were essentially identical to
those described in Part 1, and the reader is referred therein for further details.

3. Experimental apparatus

3.1. Facility
All experiments were performed in the hypersonic shock tunnel, HyperTERP, operated
by the University of Maryland. A schematic of the facility is shown in figure 4,
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CA
GB D E F

FIGURE 4. Schematic of the shock tunnel facility employed in the experimental component of
this study: (A) driver section; (B) primary (double) diaphragm; (C) driven section; (D) secondary
diaphragm; (E) Mach-6 nozzle; (F) test section; (G) dump tank.

with major components labelled. The driver section is an unheated tube of 100 mm internal
diameter; the original driver length (as shown in the figure) was 3 m long, but was extended
midway through this study to 5.4 m, allowing for longer test times. Experiments with
larger, slower-moving spheres were generally conducted with this extended driver tube.
The driven section is 6 m long, also with an internal diameter of 100 mm, and is separated
from the driven section by the primary diaphragm station. A double-burst mechanism
incorporating two mylar diaphragms allows accurate control of the burst conditions. The
driven section is isolated from the nozzle and downstream components by a secondary
mylar diaphragm, just upstream of the nozzle throat. The nozzle is axisymmetric with a
constant expansion angle of 7◦; the throat diameter is 23.88 mm and the exit diameter
200 mm. Calibration measurements using a Pitot rake have indicated a flow Mach number
at the nozzle exit of 6.1, increasing to approximately 6.32 at the leading edge of the ramp
(57 mm further downstream) with the flow divergence. A Mach-6 contoured nozzle is also
available, which would have provided more uniform flow conditions; however, the flow
start-up time around the sphere with this nozzle was found to be much longer than with
the conical nozzle (almost 1 ms versus ∼300 µs), which would have led to unacceptable
uncertainty in the effective initial conditions. The results reported herein were thus
obtained exclusively with the conical nozzle. The nozzle exhausts into a cylindrical test
section with an internal diameter of 305 mm, equipped with circular windows of 152 mm
diameter on either side for optical access. Further details of the facility can be found in
Butler & Laurence (2019).

The tunnel is typically run under tailored conditions to maximize test time; for the
present tests the driver gas was a mixture of helium (81.4 % molar fraction) and air
(18.6 %), with a total driver pressure of 2.036 MPa. Initial tests were conducted with the
shorter driver tube and a driven section pressure of 76.3 kPa; this will be referred to as
Condition B. The resulting pressure ratio is slightly greater than the theoretical value for
tailored operation but, with shock attenuation, was found to give optimally steady test
conditions. Partway through the study the driver extension was added, and the driven
section pressure was adjusted to 56.0 kPa to minimize unsteadiness over the extended
flow duration. This second condition we refer to as Condition A, as it was employed for
the majority of the experiments.

Typical reservoir traces are shown in figure 5. We see that, for Condition B, the pressure
remains approximately constant for 3.5 ms. This is 1.5 ms shorter than the theoretically
predicted test time, a discrepancy that we attribute to deviations from ideal burst in the
double-diaphragm mechanism. Condition A more than doubles the steady test duration,
although a modest pressure hump is now present during the first 4 ms of flow time.
The average reservoir conditions over the series of tests described in this work are
summarized in table 5. The reservoir pressure, p0, is calculated directly, while the reservoir
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FIGURE 5. Typical stagnation pressure traces for (—) Condition A and (— —) Condition B in
HyperTERP for this experimental investigation.

Condition p0 [MPa] T0 [K] M∞ u∞ [m s−1] p∞ [Pa] T∞ [K] ρ∞ [kg m−3] Re [1 m−1]

A 1.35 890 6.32 1281 599 102 0.0204 3.7 × 106

B 1.45 795 6.32 1206 649 90.6 0.0249 4.8 × 106

TABLE 5. Experimental conditions for this study.

temperature, T0, is inferred from shock-speed measurements. The free-stream conditions
at the ramp leading edge (subscript ∞) are calculated assuming an isentropic expansion
to the measured Mach number, with a constant-angle divergence beyond the nozzle exit.

In § 5.1, we describe experiments on a free-flying sphere exposed (for some part of its
trajectory) to the free-stream flow; this allowed a drag coefficient to be calculated based on
the computed free-stream conditions. The resulting value was approximately 6 % higher
than in the viscous computation. As we deem both the computed drag coefficient and
the experimental force measurement to be reliable, this probably points to an error in
the calculated free-stream conditions (most likely ρ∞). Thus, in all relevant experimental
results presented hereinafter, we have scaled the dynamic pressure upwards by 6 %.

3.2. Test articles
The test articles for this study consisted of a fixed planar ramp model and expendable
spheres of various diameters. The ramp was 101.6 mm wide and 228.6 mm long, and was
fabricated of stainless steel with a nominally sharp leading edge. The ramp angle could be
continuously adjusted via sliding mounts up to a maximum angle of 34◦, although in the
experiments described herein, only a ramp angle of 10◦ was considered.

The spherical bodies employed were Delrin Acetal spheres with diameters of 1.59, 3.18,
6.35 and 9.54 mm. Two types of experiments were conducted. The bulk of the tests were
concerned with directly investigating the separation of the sphere from the ramp; in each of
these tests, the sphere was held onto the ramp by means of a piece of paper, attached to the
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(a)

(b)

FIGURE 6. Sequences of images showing the start-up of the flow around the sphere (a) when
attached to the ramp and (b) when hung by a length of dental floss. The temporal separation
between consecutive images is 98 µs in (a) and 100 µs in (b).

ramp via adhesive tape behind the sphere, then folded over top of the sphere to prevent
it sliding forwards. Following the arrival of the test gas at the model, the high-speed
flow quickly detached the paper from the ramp, imparting minimal impulse on the sphere
and allowing it to fly freely thereafter. Several tests were also performed to study the
interaction of the sphere solely with the ramp-generated shock. In these experiments, the
sphere was hung above the ramp by means of a length of floss, frayed at the point at
which it attached to the sphere (following the procedure described in Laurence, Parziale &
Deiterding 2012). Upon flow arrival, the thread detached almost instantaneously, leaving
minimal excrescence on the sphere surface.

Sequences of images showing the flow start-up over the sphere are presented for both
test types in figure 6. For the sphere-on-ramp case, from the first appearance of the
starting shock in the visualization region, the flow over the sphere is established within
300 µs, with the paper washed sufficiently far downstream so as to have negligible further
influence 200 µs later. This rapid flow establishment, typical of shock tunnels, is highly
advantageous in the current setting as it closely approximates the sudden impulsive release
of the sphere assumed in the numerical predictions. For the hanging sphere, the flow is
initiated when the starting shock from the secondary diaphragm burst propagates over the
sphere, leading to an unsteady shock–sphere interaction as studied, for example, by Britan
et al. (1995), Tanno et al. (2003) and Sun et al. (2005). In this case, the thread is fully
detached within 300 µs following shock arrival.

To verify the repeatability of the ramp release mechanism, two experiments were
performed with almost identical initial sphere positions: 10.87 mm and 10.96 mm along
the ramp surface from the leading edge (in both cases a 3.18 mm diameter sphere). The
calculated sphere trajectories for these two cases are shown in figure 7. The trajectories are
virtually indistinguishable, giving confidence in the suitability of this release mechanism
for the present problem.

3.3. Shadowgraph visualizations
A focused shadowgraph arrangement (essentially a schlieren set-up with the knife edge
removed) was used to visualize the sphere trajectories and flow structures. Compared
to conventional schlieren or shadowgraphy, focused shadowgraphy allows the sphere to
remain in focus while minimizing the influence of flow features on the tracking accuracy.
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FIGURE 7. Calculated trajectories from two experiments in which the initial sphere location
was within 0.1 mm (sphere diameter 3.18 mm) to verify the repeatability of the sphere release
from the paper mounting.

FIGURE 8. Example of a focused shadowgraph recorded during the experimental campaign.

The light source was either a high-intensity blue LED, run continuously, or a Cavitar
Cavilux pulsed diode laser. Two 152.4 mm diameter, f/10 spherical mirrors were used
to parallelize and refocus the light beam on either side of the test section. Images were
recorded with a Vision Research Phantom v2512, typically at 60 000 frames per second
with 896 × 464 pixel resolution and a 4 µs exposure time (though for the laser the effective
exposure time was the 30 ns pulse width). An example of a recorded image is shown in
figure 8. The ramp oblique shock and boundary layer are clearly visible because of the
extended line-of-sight integration length of these features, but the sphere bow shock is
somewhat weaker. Despite the focusing set-up, some distortion of the sphere profile in
the vicinity of the impingement point of the ramp shock is apparent. A weak viscous
interaction is also evident near the leading edge of the ramp.

The sphere motion was determined using the optical-tracking technique first developed
in Laurence, Deiterding & Hornung (2007), and later refined in Laurence & Karl (2010)
and Laurence (2012). In short, the sphere edge points in each image are located using a
Canny pixel-resolution edge detector followed by subpixel localization. These points are
then fitted in the least-squares sense with a circular profile, resulting in best-fit values
for the sphere radius and the (x, y) location of the sphere centre. The resulting position
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versus time profiles can then be differentiated numerically to obtain the sphere velocity,
with some subsequent smoothing typically necessary because of the noise amplification
intrinsic to numerical differentiation. Because of the optical distortion from the shock
noted earlier, edge points near the intersection of the shock with the sphere outline were
excluded from the fit (distortions of edge segments fully within the shock layer were found
to be minimal).

For the present study, a key parameter is the normalized lateral distance from the
sphere centre to the (extrapolated) oblique-shock location; thus, determining the shock
position is also important. The visualized profile of the oblique shock shows the distinctive
dark–bright pattern that one associates with shadowgraphy; the shock position at a given
downstream location was thus assumed to lie at the interpolated point between the dark
and light bands where the image intensity is equal to that of the background. Since the
flow was non-uniform in the streamwise direction (diverging away from the centreline
and increasing in Mach number), a constant shock angle was not assumed. Instead,
a fourth-order polynomial was fitted to the locus of shock points detected throughout
the duration of the relevant experiment. In general, accurately locating the shock was
found to be somewhat more difficult towards the rear of the visualization region: the
intensity gradients induced by the shock were typically weaker, and the shock there was
more subject to oscillations. This latter effect became particularly pronounced for smaller
spheres, where the oscillations were a larger fraction of the sphere diameters.

One further problem that the shadowgraph sequences revealed was the occurrence of
particle impacts on the sphere during the test time, particularly for larger sphere diameters.
Although the shock tunnel was thoroughly cleaned between each experiment, some degree
of free-stream debris originating from the upstream diaphragms was unavoidable. Each
visualization sequence was carefully examined for potential impacts, which resulted in the
discarding of a number of experiments.

4. Numerical results

4.1. Sphere/oblique-shock interactions
In Part 1 of this work, we noted that the interactions of the sphere with the oblique
ramp-generated shock should be dominated by inviscid effects, and thus that the force
coefficients could be calculated to a good approximation under the inviscid assumption.
To verify this, in figure 9 we compare inviscid coefficients calculated for a forced sphere
interacting with the oblique shock generated by a 10◦ ramp in Mach-6 flow using the
AMROC code with equivalent viscous coefficients from the AERO software. In both
cases, to minimize the effects of the sphere motion, the lift curves have been shifted so
that they tend to zero in the free stream and scaled so that L/D fully inside the shock layer
is equal to the tangent of the ramp angle. We see that, for the two codes, both the lift
and drag curves lie very close to one another. The most significant discrepancy is in the
drag curves: neglecting the viscous contributions results in an underprediction of a few
per cent (which also manifests itself in a slightly reduced lift inside the shock layer, since
here a component of the drag is in the y direction). There are also some small differences
in the lift coefficients for the oblique shock impinging away from the sphere centre. The
viscous free-stream drag coefficient is 0.92, which compares well with a value of 0.91
(±2 %) documented by Bailey & Hiatt (1971) for Mach numbers between 5.8 and 6.2 at
an equivalent Reynolds number to the simulation here.

We examine two points along the sphere traverses in additional detail to elucidate
the flow features responsible for differences in the spheres’ surface pressures.
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FIGURE 9. (a) Comparison of (upper curves) drag and (lower curves) lift coefficients from (—)
inviscid and (— —) viscous simulations. (b,d and c,e) Surface pressure and centreline Mach
number from snapshots of (b,c) inviscid and (d,e) viscous solutions at (b,d) ( y − ys)/r = 0 and
(c,e) ( y − ys)/r = 0.6.

Figure 9(b,d) provides a snapshot of both the inviscid (b) and viscous (d) flow fields
at a sphere position of ( y − ys)/r = 0; the centreline Mach number is shown in grey
scale (with sonic line highlighted), together with the surface pressure on the sphere.
Note that, for presentation purposes, the surface pressure is extracted by interpolation
of the fluid pressure onto a surface 1.02r from the sphere’s centre, which causes
obscuration of the thin boundary layer in the viscous simulation. The lift and drag
coefficients show minimal discrepancies at this point of the spheres’ traverse despite
some differences in flow features. Both solutions seem to capture the type-IV shock–shock
interaction with the embedded supersonic jet apparent in the Mach number visualizations,
although its impingement location and width differ. The inviscid solution yields a
narrower band of enhanced pressure at a lower location on the sphere’s surface, which
is likely a result of the opposite directions of travel in the simulations (the inviscid
sphere is moving away from the ramp). Also, as expected, the inviscid solution lacks
an extended wake, resulting in reduced base pressure relative to the viscous flow;
however, this is not expected to contribute significantly to differences in the integrated
surface pressure. In figure 9(c,e), we present Mach numbers and surface pressures for
inviscid and viscous spheres at ( y − ys)/r = 0.6, where we see that the discrepancy in
the lift curve is close to a maximum (note that different pressure normalizations have
been used for the inviscid and viscous cases). Oblique-shock impingement here yields
an augmented lift coefficient for the inviscid sphere, on whose inboard side appears
a secondary region of high pressure (which also appears for the viscous simulation,
but to a lesser degree). As before, this discrepancy likely stems from the differing
directions of cross-range travel and an associated slight re-orientation of the sphere bow
shock. Such a small geometric change is nevertheless apparently sufficient to modify
the class of shock–shock interaction, as evidenced by the pocket of subsonic flow
immediately downstream of the intersection in only the inviscid interaction. Despite
this qualitative difference, the discrepancy in lift coefficient is minor and that in the
drag coefficient negligible. Overall then, we conclude that using inviscid simulations to
compute force coefficients for the sphere–shock interactions at these conditions is well
justified.
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FIGURE 10. Numerical visualizations from the viscous sphere/boundary-layer simulations:
(a–d) 4 mm diameter sphere (r/δ = 2.67) at y/r = (a) 1.125, (b) 1.375, (c) 1.625 and (d) 2.125;
(e–h) 6 mm diameter sphere (r/δ = 4) at y/r = (e) 1.083, ( f ) 1.250, (g) 1.417 and (h) 1.917; and
(i–l) 8 mm diameter sphere (r/δ = 5.33) at y/r = (i) 1.063, ( j) 1.188, (k) 1.4 and (l) 1.8. In each
visualization, a schlieren plane through the sphere centreline is shown, together with pressure
contours on the sphere surface. The wall is coloured according to the calculated wall-normal
temperature gradient.

4.2. Near-wall flow features and sphere forces
We now turn our focus to the VULCAN simulations and the interactions between a sphere
and a high-speed boundary layer. A series of representative visualizations for the 4, 6 and
8 mm diameter spheres (r/δ = 2.67, 4 and 5.33) are shown in figure 10: in each case,
a streamwise numerical schlieren is shown on a plane through the sphere centreline, the
wall-normal temperature gradient (i.e. heat flux) is visualized on the wall surface, and the
sphere surface is coloured by pressure.

For the 4 mm sphere at y/r = 1.125 (the nearest-wall position investigated), the
boundary layer separates approximately 7.2 radii upstream. As depicted in figure 10(a),
this creates a situation in which the sphere lies entirely within the separation-shock
layer, with a type-V interaction between the sphere bow shock and the separation
shock. For the nearest wall 6 mm and 8 mm cases (figure 10e,i), the separation shock
impinges on the upper sphere surface, despite these computations having been carried
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out for slightly smaller values of y/r. Nevertheless, all three cases exhibit similar fluid
structures within the separated region that closely resembles those computed by Tutty
et al. (2013) for hypersonic flow around a blunted fin–body junction. Note, for example,
the secondary separation regions and associated vortices within the primary separation
zone that manifest themselves as curved heat-flux features on the wall. Beyond this
initial near-wall spacing, the flow features for all three sphere diameters evolve in similar
fashion, but for different values of y/r. As the sphere is displaced further from the
wall, as in figure 10(b, f, j), it imposes less blockage on the boundary layer, allowing
the boundary-layer separation point to move downstream; however, the shock–shock
interaction is now a stronger type-IV, resulting in elevated pressure near the sphere
nose. By figure 10(c,g,k) in each case, the separation-shock interaction has developed
towards type-III, wetting only the lower half of the sphere with doubly shocked flow, but
nevertheless producing a localized high-pressure region there (which we would expect to
contribute primarily to the lift coefficient). For larger wall-normal displacements, the only
remaining wall influence comes from a type-II or type-I interaction (or a wake interaction),
which will but weakly affect the sphere aerodynamics.

Figure 11 shows the lift and drag coefficients determined in the viscous simulations,
plotted versus y/r for all sphere diameters; these are also compared to results from a
forced inviscid (AMROC) simulation of a sphere interacting with a reflecting boundary at
the same Mach number. We see that the force coefficients are altered dramatically by the
presence of the wall boundary layer. Most notable is the effect on the lift coefficient for
small diameters: rather than the repulsive forces seen in Part 1, the lateral force is close to
zero for the d = 6 mm sphere, and for the d = 4 mm sphere it is attractive in the immediate
vicinity of the wall. As y/r increases for both these cases, CL trends upwards, becoming
weakly positive before necessarily reverting back to zero sufficiently far from the wall. The
d = 8 mm case demonstrates the beginning of a trend reversal close to the wall, as the lift
is already positive near the wall and rises to only a slight peak at y/r = 1.6 before dropping
to zero. Increasing the sphere diameter to d = 12 mm shows a continuation of this trend
reversal: the lift clearly peaks near the wall and drops more rapidly as y/r is increased.
This behaviour is to be expected considering that, as r/δ increases, the boundary-layer
length scale becomes insignificant and the solution must approach the inviscid limit. As
for the drag coefficient, the effect of the boundary-layer interaction near the wall is to
reduce CD slightly relative to the inviscid solutions. As CL increases with y/r for the 4,
6 and 8 mm simulations, CD also shows a small increase (to ∼1.05), before falling back
to the free-stream value of 0.94. The latter number compares with a value of 0.92 (±2 %)
as given by Bailey & Hiatt (1971) for Mach numbers between 4.8 and 5.2 and similar
Reynolds numbers to the computations; considering the slightly lower Mach number here,
this can be considered acceptable agreement. Increasing the sphere diameter to 12 mm
once again reveals a near-wall trend reversal: the drag has begun to qualitatively resemble
the inviscid trend with a clear maximum lying very near the wall, although recovery to the
free-stream value is still significantly delayed. Overall, these simulations demonstrate that
the influence of the wall is felt significantly farther away than in the inviscid computations,
particularly for smaller sphere diameters.

To obtain a better understanding of the near-wall aerodynamic trends in figure 11, two
additional flow visualizations are shown in figure 12 for the d = 4 and 16 mm cases, where
the off-wall spacing is 0.25 mm for each (i.e. y/r = 1.125 and 1.031). The length scale
of each image has been normalized based on sphere radius and the wall visualization
has been removed to improve visibility of the pressure distribution on the underside of the
spheres; sonic lines have also been superimposed on the numerical schlieren to distinguish
regions of subsonic and supersonic flow. Additionally, in the right graph of the figure we
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FIGURE 11. (a) Lift and (b) drag coefficients of a sphere near a viscous wall at Mach 4.65 as
functions of normalized distance from the wall: (—) inviscid; (�) d = 4 mm, r/δ = 2.67; (•)
d = 6 mm, r/δ = 4; (�) d = 8 mm, r/δ = 5.33; (�) d = 12 mm, r/δ = 8; and (�) d = 16 mm,
r/δ = 10.67. The dashed lines are interpolated curves between the discrete computed points.
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FIGURE 12. (a,b) Flow visualizations for the d = 4 mm (r/δ = 2.67) and 16 mm (r/δ = 10.67)
sphere cases, each with an off-wall spacing of 0.25 mm (y/r = 1.125 and 1.031); sonic lines
are overlaid in blue. (c) Sphere centreline pressures for these two cases: (�) r/δ = 2.67; (�)
r/δ = 10.67 (θ < 0 is the near-wall hemisphere).

have plotted the pressure profile along the sphere centreline in each case. For both sphere
diameters, the interaction with the separation shock appears to shift the peak pressure
slightly to the upper side of the sphere, and this is confirmed in the pressure plots. This
shift will produce a negative lift contribution, which is more than offset in the d = 16 mm
case by a region of high pressure on the underside of the sphere (peaking at around −70◦).
For the d = 4 mm sphere, however, this underside pressure peak is much reduced, probably
because of the reduced fluid momentum in the boundary layer. The overall lift coefficient
is thus dominated by the nose region and becomes negative, in contrast to the larger sphere.
The pressure levels on the smaller sphere are also generally lower, leading to the reduced
drag coefficient.

The accelerated recovery of the aerodynamic coefficients to their free-stream values
for larger spheres can be attributed to a reduction in the relative size of the separated
region. This trend can be seen in figure 13, where we have plotted the separation
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FIGURE 13. Normalized separation length as a function of y/r for: (�) r/δ = 2.67; (•)
r/δ = 4; (�) r/δ = 5.33; (�) r/δ = 8; and (�) r/δ = 10.67.

length (normalized by the sphere radius) versus the normalized wall-normal displacement.
The separation point is determined as the most upstream location at which the streamwise
wall shear stress drops below zero; we then define the separation length as the streamwise
distance between the separation point and the centre of the sphere. A clear trend is
observed for the normalized separation length to decrease with increasing sphere diameter.
Thus, assuming that the separation-shock angle does not change with sphere diameter, the
impingement point of this shock on the sphere will be swept off the sphere surface earlier
(at smaller y/r) for larger spheres, explaining the observed trend.

4.3. Trajectory modelling
We have seen that the sphere force coefficients near the wall can differ markedly if a
boundary layer is present, and we wish to gain insight into the effects on the sphere
separation behaviour that this might have. This will also assist in interpreting the
experimental results described in § 5. In order to make approximate predictions, we employ
the viscous force coefficients from VULCAN within a decoupled methodology as was
described in Part 1 of this work. The procedure employed is as follows. First, for a given
r/δ, we interpolate between the discrete computed CL and CD values to create continuous
functions of y/r for the viscous wall interactions. These interpolated curves are shown
together with the discrete computed values in figure 11. With these coefficient profiles
specified for a flat-plate flow, it is straightforward to transform to the coefficients that
would be experienced by the sphere near the surface of an inclined ramp (assuming the
ramp-generated shock to be well away from the sphere, and that the post-shock Mach
number is the same as that of the free stream in the original flat-plate computation); this
is accomplished by a simple rotation (by the ramp angle) and a rescaling of the dynamic
pressure (so that it is representative of the pre-shock conditions).

The decoupled model amounts to assuming that the sphere–wall interactions just
described and the sphere–shock interactions contribute independently to the force
coefficients. Considering the minimal differences between the inviscid and viscous
coefficients for the sphere–shock interactions noted in § 4.1, it is appropriate to use inviscid
AMROC simulations to determine the latter contributions, as in Part 1 of this work;

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.757


906 A29-18 C. S. Butler, T. J. Whalen, C. E. Sousa and S. J. Laurence

to ensure consistency, however, we scale the undisturbed inviscid drag coefficients so
as to match the viscous values. In this manner, we can construct full force-coefficient
profiles as functions of y/r for any downstream location, and by integrating the equations
of motion using these profiles, we can derive trajectory predictions. Note, however, that
the decoupled assumption will be more approximate here than in the inviscid situation
examined in Part 1. First, the wall force-coefficient profiles are interpolated rather than
computed directly. Second, figure 10 shows that when the sphere is close to the wall,
the induced separation shock can extend above the top of the sphere; this is in contrast
to the inviscid case, for which the wall effects were restricted to the lower part of the
sphere, and will mean that it is less valid to treat the sphere–wall and sphere–shock effects
independently. Last, as the sphere separates from the wall, it will also move along the ramp,
meaning that the local boundary-layer thickness will increase. In the decoupled model,
however, we effectively treat this thickness as constant (though, since the boundary-layer
growth is slow, this will not be a major concern). In light of these points, the decoupled
predictions in this subsection should be considered qualitative indications of the sphere
behaviour rather than rigorous predictions.

Figure 14 shows trajectories for several starting locations calculated using this decoupled
approach and the r/δ = 2.67 viscous-wall coefficients; trajectories are shown (i) in
physical space (y/r versus x/r), (ii) in terms of the normalized distance of the sphere
from the shock, ( y − ys)/r, versus normalized distance downstream and (iii) in the
η − vη phase plane. Here, η = ( y − ys)/r and vη = dη/dt̂ = v̂y − tan βv̂x , where v̂x =√

ρb/ρavx/V , v̂y = √
ρb/ρavy/V are the normalized streamwise and lateral velocities,

and t̂ = √
ρa/ρbVt/r is the normalized time; ρb and ρa are the sphere and free-stream

gas densities and V the free-stream velocity. Employing such a phase-plane analysis was
shown in Part 1 of this work to be highly useful for understanding the sphere dynamics. All
trajectories start on the vη = 0 axis; shifting the release location downstream corresponds
to decreasing the starting value of η. Since we are assuming constant r/δ, the different
trajectories shown should not strictly be thought of as corresponding to simply moving the
sphere along the ramp to different release locations while maintaining constant inflow
conditions (as in the experiments); instead, either the sphere radius or the Reynolds
number would need to be correspondingly adjusted to maintain a constant r/δ. In all these
trajectories, we see that the negative lift (suction) close to the wall dominates the sphere
behaviour, resulting in direct entrainment for all release locations. For the trajectories
that start close to the ramp leading edge, the positive lift generated by the sphere–shock
interactions enable the sphere to ride the shock a short distance downstream; however,
the negative change in vη produced in interacting with the wall means that even these
trajectories are pushed out of the stable region in the phase plane, and the sphere becomes
entrained within the shock layer. Releasing further downstream essentially results in the
sphere simply moving along the wall (which we may consider a special case of the
direct-entrainment trajectory type). As we would expect the viscous lift coefficients to
become increasingly negative for small r/δ values, we conclude that direct entrainment is
the dominant behaviour for smaller spheres.

Figure 15 shows equivalent results using the r/δ = 4 viscous-wall coefficients. In this
case we observe much more interesting behaviour than previously. Near the wall, the
viscous lift coefficient is close to zero and the drag is only slightly enhanced, meaning that
the trajectories in the phase plane are not too different from those the sphere would follow
if the wall were not present at all. As a result, the majority of the trajectories that begin
in the stable region indicated by the closed dashed line (i.e. those that begin relatively
close to the leading edge) remain in this region as the sphere separates from the wall,
producing surfing behaviour in these cases. The reader is reminded that, for an inviscid
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FIGURE 14. (a) Calculated separation trajectories in physical space for a Mach-6 free stream
and a ramp angle of 10◦, using the wall force coefficients for r/δ = 2.67 and starting locations
of x0/r = 5, 7, 9, 11, 12.5 and 13; (b) trajectories plotted as normalized distance from the shock
versus x/r, with the dashed lines indicating the locations of the stationary points; (c) trajectories
in the phase plane, with the separatrix indicated by the dashed line and the centre stationary point
by the ×.

wall with this combination of ramp angle and Mach number as examined in Part 1, surfing
was not found to be possible: all derived trajectories were of the expulsion/re-entrainment
or direct-entrainment types. We thus see that, at least under certain circumstances,
viscous effects are enabling for surfing behaviour. As the starting location is translated
downstream, there is still a small range of positions for which expulsion/re-entrainment
trajectories result (x0/r values between 10.1 and 11.8). This is because of the slightly
positive lift coefficient (and negligible drag enhancement) characteristic of the r/δ = 4
curves a small distance from the wall; this lift enhancement acts to push the sphere outside
the stable region for trajectories when it would otherwise have been close to the boundary.
Overall, however, the dominant behaviours for this set of viscous-wall coefficients are
surfing (for relatively small x0/r) and direct entrainment (for larger x0/r).

Corresponding trajectories for the r/δ = 5.33 viscous-wall coefficients are shown in
figure 16. As noted earlier, these coefficients have an increased tendency towards the
inviscid profiles and this is reflected in the sphere behaviour. For starting locations near
the ramp leading edge, surfing remains possible (in contrast to the inviscid case), but from
x0/r = 8.8 the ejection/re-entrainment-type trajectories that predominated in inviscid flow
for these conditions are observed. This behaviour transitions to direct entrainment for
starting locations from x0/r = 12.6, a short distance downstream of the saddle point.
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FIGURE 15. (a) Calculated separation trajectories in physical space for a Mach-6 free stream
and a ramp angle of 10◦, using the wall force coefficients for r/δ = 4 and x0/r = 5, 7, 9, 11, 12.5,
and 13 (as in figure 14); (b) trajectories plotted as normalized distance from the shock versus x/r;
(c) trajectories in the phase plane.
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FIGURE 16. Calculated separation trajectories for a Mach-6 free stream and a ramp angle
of 10◦, using the wall force coefficients for r/δ = 5.33 and x0/r = 5, 7, 9, 11, 12.5, and 13
(as in figure 14); (a) trajectories plotted as normalized distance from the shock versus x/r;
(b) trajectories in the phase plane.
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The computed viscous-wall coefficients will be valid not only for the combination of
a Mach-6 flow with a 10◦ ramp examined thus far, but also for other combinations of
free-stream Mach number and ramp angle that produce a Mach-4.65 post-shock flow.
In Part 1 of this work, it was found that the relative predominance of surfing could
depend strongly on each of these parameters. Therefore, to gain insight into the separation
problem for another set of flow conditions, trajectories for an 18◦ ramp in a Mach-10 flow
(post-shock Mach number 4.60) were also calculated for the various sphere diameters;
the results are shown in figures 17 and 18. In general, increasing the Mach number and
ramp angle causes the force coefficients generated by the sphere–shock interactions to
grow significantly (see Part 1), and we might thus expect the sphere–shock interactions
to dominate increasingly over the sphere–wall interactions. This is indeed seen in these
sphere trajectories, which for the most part show only minor differences from if the wall
were absent. In particular, surfing and direct-entrainment behaviours are predominant,
with only a limited range of release locations leading to ejection/re-entrainment (a
trajectory type that is only possible because of wall interactions). Otherwise, the influence
of the wall is seen most strongly in the r/δ = 2.67 trajectories of figure 17. The transition
to direct entrainment occurs here slightly upstream of the saddle point (because of wall
suction), but more interestingly, for release positions close to the leading edge (near the
centre location), the wall suction is sufficient to drag the sphere out of the stable region,
also resulting in direct entrainment. Note, however, that here the decoupled assumption
will be highly questionable, so it is not clear that such trajectories would be observed in
reality.

5. Experimental results

5.1. Shock-surfing phenomenon
From the experiments, we first wish to verify that surfing behaviour is indeed possible for
the configuration employed (in particular the combination of a 10◦ ramp angle with a Mach
∼6 flow). In the hanging sphere tests, the sphere was initially positioned in the undisturbed
free stream; its trajectory would subsequently take it through the shock and into the
shock layer, enabling a full range of force coefficients to be calculated as functions of
normalized lateral distance from the shock, ( y − ys)/r. A visualization sequence from one
such experiment is shown in figure 19, together with the force coefficients and lift-to-drag
ratios calculated from three experiments. While some variation is present between the
experimental results, the trends are consistent with each other and with the numerical
curves shown in § 4.1. In the L/D curves, in all cases we see that the peak L/D exceeds the
tangent of the shock angle (β was calculated directly from the visualizations). This is both
a necessary and sufficient condition for surfing to be possible, indicating that we should be
able to observe this phenomenon at the present conditions. To verify this, an experiment
was conducted in which a 1.59 mm diameter sphere was initially placed directly on the
oblique shock (i.e. nominally within the stable region) at the ramp leading edge. The
sphere’s trajectory can be seen in the sequence of shadowgraph images in figure 20.
Surfing of the shock is clearly observed (note, for example, that in the second and fourth
images the sphere is close to its maximum and minimum penetration into the shock layer),
demonstrating that our prediction of the possibility of this phenomenon is indeed accurate
here.

In figure 19(b), we have also plotted fitted coefficient curves based on the viscous
computations described in § 4.1; these have been shifted, scaled and stretched to best
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FIGURE 17. (a) Calculated separation trajectories in physical space for a Mach-10 free stream
and a ramp angle of 18◦, using the wall force coefficients for r/δ = 2.67 and x0/r = 4, 5, 7,
11, 15, 17, and 19; (b) trajectories plotted as normalized distance from the shock versus x/r;
(c) trajectories in the phase plane.
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FIGURE 18. Phase-plane trajectories for an 18◦ ramp in Mach 10 flow using the wall force
coefficients for (a) r/δ = 4 and (b) r/δ = 5.33. The release locations in both cases are x0/r = 5,
9, 13, 15, 17, 18 and 19.
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FIGURE 19. (a) Sequence of shadowgraph images showing the passage of an initially hanging
sphere through the ramp-generated oblique shock. (b) Derived drag (——) and lift (— —)
coefficients for three such hanging sphere tests (thin coloured lines) together with fitted profiles
(thick black lines) based on the computed viscous coefficients. (c) Lift-to-drag ratio for the three
hanging experiments; the dashed horizontal line indicates the average value of tan β calculated
from the visualizations.

FIGURE 20. Experimental shadowgraph sequence showing the trajectory of a 1.59 mm
diameter sphere released near the ramp’s leading edge.

match the average experimental curve. These coefficient profiles will be used in the next
subsection to assist in interpreting the shedding experiments.

5.2. Shedding behaviour
Visualization sequences for 3.18 mm and 9.53 mm diameter spheres released from the
ramp surface are shown in figures 21 and 22, respectively, and the derived sphere
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(a) (b)

FIGURE 21. Sequences of shadowgraph images showing a 3.18 mm diameter sphere released
from the surface of the ramp at (a) x0/r = 3.9 and (b) x0/r = 9.1. The temporal spacing between
images is (a) 862 µs and (b) 627 µs.
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(a) (b)

FIGURE 22. Sequences of shadowgraph images showing a 9.53 mm diameter sphere released
from the surface of the ramp at (a) x0/r = 10.4 and (b) x0/r = 11.0. The temporal spacing
between images is (a) 813 µs and (b) 869 µs.
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FIGURE 23. Experimentally measured sphere trajectories in normalized physical space for
(a) 3.18 mm and (b) 9.53 mm diameter spheres.

trajectories over the sets of experiments for these two sphere diameters are plotted in
figure 23. Supplementary movies of several cases are available at https://doi.org/10.1017/
jfm.2020.757. For all sphere diameters, the general trend as the release location is shifted
downstream along the ramp is as would be expected from § 4.3: for relatively upstream
starting locations, either surfing or ejection/re-entrainment was observed (though it could
be difficult to distinguish between these two trajectory types purely from the visualizations
as, particularly for larger spheres, there was not sufficient downstream length for a full
oscillation about the shock to be completed), transitioning to direct entrainment at some
critical distance downstream. Note that, even for the largest, 9.53 mm diameter sphere, if
the release location was far enough downstream, the sphere would simply move along the
ramp surface, indicating the lift coefficient in the ramp-aligned coordinate system to be
less than or equal to zero.

To obtain a more comprehensive picture of the sphere behaviour in the different cases,
trajectories determined for the 3.18 mm, 6.35 mm and 9.53 mm diameter spheres are shown
in x/r–η space and the η–vη phase plane in figure 24. In the x/r–η graphs, the locations of
the two stationary points are indicated by horizontal dashed lines, while in the phase-plane
plots we have included a calculated separatrix to assist in interpreting the trajectories.
The stationary-point locations and separatrix profile were calculated based on the fitted
coefficient curves shown in figure 19(b). The experimental results are also summarized
in table 6, where we have provided x0/r values and corresponding estimates of r/δ,
together with indications of the trajectory type. The boundary-layer thickness here, δ, is
the 99 %-velocity thickness determined from VULCAN simulations of the experimental
set-up, the details of which are included in the Appendix.

For the 3.18 mm diameter spheres, the most upstream release location (x0/r = 3.9)
clearly results in a surfing trajectory, with the phase-plane orbit well within the stable
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FIGURE 24. Experimentally measured sphere trajectories plotted (a,c,e) as η = ( y − ys)/r
versus x/r and (b,d,f ) in the η−vη phase plane for sphere diameters of (a,b) 3.18 mm, (c,d)
6.35 mm and (e, f ) 9.53 mm. In (a,c,e), the dashed lines indicate the locations of the computed
stationary points and, in (b,d,f ), the profile of the computed separatrix.

region bounded by the separatrix. The nature of the x0/r = 6.7 trajectory is more
ambiguous as it almost coincides with the separatrix curve; ejection/re-entrainment
appears to be the most likely outcome here, although surfing may also be possible. In
any case, for the next most downstream release location (x0/r = 7.2), we appear to be
back to surfing behaviour, with the trajectory lying wholly within the stable region of the
phase plane (we attribute the apparent crossing of the x0/r = 3.9 trajectory to difficulties
in precisely locating the shock position, as noted in § 5.1). A progression from surfing to
ejection/re-entrainment and then back to surfing with increasing x0/r was not observed
in the simulated trajectories of § 4.3 (where ejection/re-entrainment always transitioned
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Sphere diameter [mm] x0/r r/δ Trajectory type

3.18 3.9 5.6 Surfing
6.7 4.3 Ejection/re-entrainment or surfing
7.2 3.9 Surfing
7.9 3.7 Direct entrainment
9.1 3.7 Direct entrainment

6.35 8.1 5.7 Ejection/re-entrainment
9.5 4.9 Ejection/re-entrainment

10.0 4.7 Direct entrainment

9.53 7.7 7.1 Surfing
9.5 6.3 Ejection/re-entrainment

10.4 5.6 Ejection/re-entrainment
11.0 5.4 Direct entrainment
17.6 4.4 Direct entrainment (along wall)

TABLE 6. Summary of shedding experiments performed.

to direct entrainment), but here we have the added complexity of a decreasing r/δ with
increasing x0/r, which will lead to increased wall suction for larger values of x0/r, and
could explain the observed behaviour (as this suction will act against the tendency towards
initial ejection). For x0/r = 7.9 and above, the sphere is directly entrained.

For the 6.35 mm diameter spheres, the two most upstream release locations result in
ejection/re-entrainment, although the x0/r = 9.5 case appears to be right on the boundary
with direct entrainment; at x0/r = 10, we clearly see transition to the latter trajectory type.
For the largest, 9.53 mm diameter spheres, we again observe a surfing trajectory at the
most upstream release location (x0/r = 7.7). This transitions to ejection/re-entrainment
moving downstream to x0/r = 9.5 and 10.4 (although for x0/r = 9.5, the phase-plane
trajectory appears to enter the stable region from outside towards the end of the observed
sphere motion – we again attribute this to difficulties in accurately locating the shock
position towards the rear of the shadowgraph visualization region). A transition to direct
entrainment is then obtained between x0/r = 10.4 and 11.0.

Comparing the three sphere diameters, we see a clear trend for the x0/r value at which
transition to direct entrainment occurs to move further downstream as the sphere diameter
is increased. This trend was present in the numerical predictions of § 4.3, but is even more
pronounced here. A contributing factor may be the viscous interaction noted earlier in
the shadowgraph images. This will push the shock location out further from the ramp,
resulting in smaller η values at a given x0/r than would be predicted by inviscid shock
theory (as was employed in § 4.3); however, since the viscous interaction acts near the
leading edge, its effects will be less significant for release locations farther downstream.
We can also compare select experimental results with the numerical predictions, again
focusing on the transition x0/r to direct entrainment (with the caveat of slightly different
free-stream Mach numbers). For the 3.18 mm diameter sphere, we see that this transition
occurs at an r/δ value of approximately 3.8, which facilitates a comparison with the
predictions based on the viscous force coefficients for the 6 mm diameter sphere. We
note that the transition occurs at a somewhat smaller value of x0/r in the experiment –
between 7.2 and 7.9, as compared to 11.8 in the simulation (which is in fact larger than
the transition x0/r for the largest sphere in experiments). This is again consistent with the
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influence of the viscous interaction displacing the shock to larger ys in experiments and
thus decreasing the effective value of η at the release location.

6. Conclusions

We have investigated the dynamics of a spherical particle separating from a planar ramp
in a high Mach number flow, here concentrating on the influence of the ramp boundary
layer on the sphere behaviour. Numerical simulations and experiments were employed to
elucidate the role of the ramp boundary layer in modifying the behaviour observed in
the inviscid case explored in Part 1 of this work. First, static numerical simulations of a
sphere interacting with a high-speed laminar boundary layer revealed how the sphere force
coefficients were altered by the presence of the boundary layer. For small values of r/δ
(2.67), the lift coefficient near the wall was negative, indicating wall suction; CL became
increasingly positive (i.e. repulsive) as the sphere size was increased, but even for r/δ = 8
the repulsion was significantly lower than for the inviscid case at the same Mach number.
The drag coefficients, in contrast, showed only modest variations from inviscid values.

To investigate the qualitative effects of these sphere–wall interactions on the dynamics
of the sphere when shed from the ramp, these viscous-wall coefficients were combined
with inviscid coefficient curves for a sphere interacting with an oblique shock to create an
approximate predictive model. For a 10◦ ramp in Mach-6 flow, relatively small spheres
(r/δ = 2.67 or smaller) were predicted to be exclusively entrained directly within the
shock layer. A variation of the direct-entrainment-type trajectory not observed in the
inviscid case, in which the sphere simply moves along the ramp surface, also becomes
possible with the negative lift coefficients close to the wall. As r/δ increases, however, a
more interesting variety of sphere behaviours becomes possible, including shock surfing
(which was not possible for this combination of ramp angle and Mach number in the
inviscid case). Increasing the sphere size further eventually leads to a predominance of
ejection/re-entrainment over surfing trajectories, as the repulsive wall lift coefficients tend
to push the sphere outside the stable surfing region (as in the inviscid case). Increasing
the Mach number or the ramp angle is predicted to lead to an increasing dominance of
the sphere–shock interactions over the sphere–wall interactions, meaning in particular
that direct entrainment will become less prevalent even for smaller r/δ values; this will
nonetheless become the fate of spheres released sufficiently far back along the ramp.

A series of experiments was conducted in a shock tunnel at Mach 6.3 using a
fixed 10◦ ramp and free-flying spheres of various diameters. Quick-release mechanisms
were employed that, together with the rapid flow establishment, provided a good
approximation to the idealized impulsive sphere release under consideration in this work.
An optical-tracking technique applied to high-speed shadowgraph sequences allowed
accurate determination of the sphere motion. After verifying the possibility of shock
surfing, shedding experiments, with the sphere released from the ramp surface, were
performed with three different sphere diameters; this allowed the influence of both
x0/r (i.e. the release location) and r/δ (the relative scales of the sphere and boundary
layer) on the sphere behaviour to be elucidated. An analysis of the sphere motions
showed that all three trajectory types predicted by the numerical methodology – surfing,
ejection/re-entrainment and direct entrainment (as well as simple sphere motion along the
wall) – could be achieved in experiments. The qualitative trends with increasing x0/r,
in particular the transitions between the different trajectory types, generally mirrored the
numerical predictions. The effect of varying r/δ on the transition x0/r value leading to
direct entrainment was also consistent between predictions and experiments (i.e. this x0/r
value increased with increasing r/δ); however, the presence of a viscous interaction at the
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ramp leading edge in the experiments, and its resultant outward displacement of the ramp
shock, was thought to be responsible for the observed quantitative discrepancy between
this transition x0/r value in experiments compared to numerical predictions.

The present study has focused primarily on the Mach-6, 10◦-ramp configuration. Future
investigations could explore more fully the roles of Mach number and ramp angle, as
well as boundary-layer characteristics such as the wall-temperature ratio. In particular, the
assumption made here – that the parameter r/δ will be most important in characterizing
the influence of the ramp boundary layer – should be examined. Variations of the
shedding-object geometry could also lead to behaviour quite distinct from that observed
herein for spheres.
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Appendix

Numerical simulations were carried out at each experimental condition to properly
account for the flow divergence caused by the conical nozzle geometry and its effect
on the boundary-layer thickness along the ramp. The entire flow expansion from tunnel
reservoir through the nozzle was modelled, resulting in the computational domain shown
in figure 25(a); the entire domain consisted of 6.13 million cells. The 10◦ ramp was placed
with its leading edge situated 9.3 mm below the nozzle centreline and 46 mm downstream
from the nozzle exit plane, matching the experimental configuration. A zoomed-in image
of the centreline grid along the upstream half of the ramp can be seen in figure 25(b). The
wall-normal spacing of the grid was selected to maintain y+ < 1 over the entire ramp,
which was resolved with 92 and 164 nodes in the spanwise and streamwise directions,
respectively.

The inflow boundary conditions matched the reservoir conditions given in table 5.
Motivated by the high stagnation temperature, a thermally perfect but calorically imperfect
assumption was employed. The nozzle walls and ramp surface were treated as isothermal
walls at 300 K. The boundary layer along the nozzle wall was solved with the Menter-SST
turbulence model, assuming an inflow turbulence intensity of 1 % and a turbulent viscosity
ratio of 0.1. This turbulence model was switched off on the ramp surface, resulting in a
fully laminar boundary-layer. The outer cylindrical edge of the domain downstream of the
nozzle exit was treated as an outflow surface with a constant pressure of 100 Pa, as were
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(a) (b)

FIGURE 25. (a) Full computational domain for the ramp boundary-layer simulations and (b) a
centreline slice of the grid in the vicinity of the ramp leading edge.
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FIGURE 26. Comparison of computed boundary-layer thickness using VULCAN (——) with
the similarity profile assuming constant edge conditions (— —) for condition A.

the exit planes at the downstream end of the domain. The centreline of the computational
domain was a symmetry plane.

The 99 % velocity boundary-layer profile extracted for Condition A is given in figure 26
alongside the theoretical profile calculated using the Illingworth transformation (White
1991) based on the flow conditions at the leading edge of the ramp (after being passed
through an oblique shock with a deflection angle of 10◦). The similarity solution
underestimates the boundary-layer thickness over the length of the plate, which can be
attributed to the nozzle divergence causing the unit Reynolds number to decrease in the
streamwise direction. This underestimation is relatively minor close to the leading edge
(3.4 % at x = 0.2 m), but grows significantly further downstream (9.2 % at x = 0.8 m).
An identical trend was obtained for Condition B.
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