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SUMMARY
We present an analytical method for the concurrent calculation of optimal parallel compliant
elements and frequency of reference trajectories for serial manipulators performing cyclic tasks. In
this approach, we simultaneously shape and exploit the robot’s natural dynamics by finding a set of
compliant elements and task frequency that result in minimization of an energy-based cost function.
The cost function is the integral of a weighted squared norm of the generalized forces. We prove that
the generalized force needed for tracking the reference trajectory is a linear function of compliance
coefficients and a quadratic function of task frequency. Therefore, the cost function is quadratic with
respect to stiffness coefficients and quartic with respect to the task frequency. These properties lead
to a well-posed optimization problem with a closed-form solution. Using three case studies, we
elucidate the properties of our method.

KEYWORDS: Energy efficiency; Optimum compliance; Optimum Frequency; Cyclic tasks; Natural
dynamics.

1. Introduction
Many robotic tasks include cyclic motions; major examples are pick-and-place tasks and legged
locomotion. The periodic nature of cyclic motions can be potentially exploited to increase energy
efficiency. Nevertheless, in industrial robots, this potential is not sufficiently used since an energy
source is easily available in industrial environments. However, other strategies, like reducing the
weight of robots, are widely used in the industry. In contrast, in legged locomotion, intensive attention
to all possible means for increasing energy efficiency, including exploiting the cyclic nature of walking,
is necessary due to limited capacity of legged robots in carrying their energy supply.

Broadly speaking, the existing researches about using the cyclic nature of tasks for energy
efficiency can be divided into two broad categories: Natural Dynamics Modification (NDM) and
Natural Dynamics Exploitation (NDE). The first category includes researches on robots’ bodies
aimed at decreasing energy consumption. These studies mainly employ two types of methods. In the
first type, the robot’s whole body is designed to perform a given periodic task efficiently (see refs.
[5,11,24,30]) while in the second type, some specific parts of the robot’s body are tuned or adapted
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2364 Compliance and frequency optimization

(see refs. [1,8,10,16,22,24–31]). Although the first set of methods results in more efficient robots for a
given task, their application is restricted. This happens because in many cases, a robot should perform
multiple tasks and changing its whole body over the tasks is costly or even impossible. In contrast,
changing or adapting simple but more effective parts of the robots for achieving energy efficiency per
task is doable; see [16].

Compliant elements, with simple installation at joints, are appropriate candidates for decreasing
energy consumption in cyclic tasks. Such elements appear in two different configurations: serial and
parallel. Both configurations provide room for natural dynamic modification and lowering energy
consumption; see refs. [10,16,22,31] as examples of using parallel elastic actuators [refs. 8,33,34],
as examples of using serial elastic actuators, and [ref. 6] for a comparison between these two.
Nevertheless, the parallel configuration is more favored due to the facts that, unlike the serial one, a
parallel compliance does not enlarge the robot’s configuration space and has a well-posed quadratic
cost function for energy consumption minimization with respect to the compliance coefficients; see
ref. [16].

The optimal parallel compliance can be found either in offline or online manners. Online adaptation
of compliant elements is more beneficial in the case of frequently varying tasks and system dynamics;
see refs. [31,16]. However, it requires more efforts on variable compliance design, employing sensory
feedback, and actuating the compliance. On the other hand, offline methods are more applicable for
predefined and scheduled tasks and systems.

While the NDM methods reduce energy consumption by manipulation of the robot’s structure,
the NDE approaches alter the robot’s motion to achieve efficiency (see ref. [27] as an example).
This alteration is done by exploring the feasible trajectory space. Redundancy resolution is one
of the NDE methods which provides energy efficient joints trajectories by searching in the null-
space of redundant robots; see ref. [18]. Another approach is to use a reference trajectory generated
by biological or mechanical structures; e.g., animals or passive walkers; see refs. [13 and 14].
This approach is based on this assumption that such trajectories are optimum for that specific
structures. CPG (Central Pattern Generator) oscillators provide us with an adaptive tool to learn
periodic reference trajectories; see refs. [7,19,25]. It is shown in some examples that CPGs can
synchronize the reference trajectory with the resonant frequency of the robot which consequently
results in energy efficiency. However, there are no proofs of convergence and optimality for this
method in general; see refs. [3 and 7]. In addition, DMP (Dynamic Movement Primitives) is another
approach which improves a given task to satisfy an objective function (e.g., energy consumption);
see ref. [20].

In our previous works [refs. 9,15], we introduced two adaptive oscillators with linear and non-linear
dynamical equations (ANO and NANO) to tune the frequency and the shape of the cyclic motions for
energy efficiency. In contrast with CPG and DMP, our oscillators have optimality and convergence
proofs for 1-DOF robotic joints.

In this paper, we develop an analytical and offline method to benefit from both possibilities, NDE
and NDM , for energy consumption minimization. That is, we concurrently calculate both the optimum
compliances at the joints and the frequency of the reference trajectory which result in maximum energy
efficiency. In doing so, we consider the dynamical model of a serial manipulator and compute the
optimum parameters in an analytical closed-form manner. In our method, compliant elements are
non-linear and are in the parallel configuration. Interestingly, based on ref. [29], dynamical equations
of a legged robot, except in some limited intervals (as “instant double support”), are compatible
with a manipulator. Hence, without loss of generality, the presented method can be applied to both
manipulators and legged robots in order to optimize the compliances and the task frequency.

The rest of the paper is organized as follows: the problem is stated in Section 2. The mathematical
analyses are presented in Section 3. In Section 4, three case studies are presented to give a tangible
insight of the approach. Conclusions and discussions are given in the last section.

2. Problem Statement and Definitions
Consider an n-DOF robotic manipulator which conforms with the following continuous dynamical
equation:

M (q) q̈ + C (q, q̇) q̇ + G (q) = −Fc (q) − Bq̇ + u, (1)
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where u ∈ R
n is the vector of actuator forces/torques, q, q̇, q̈ ∈ R

n are the vectors of joint positions,
velocities and accelerations, respectively, M (q) ∈ R

n×n is the positive-definite inertia matrix,
C (q, q̇) ∈ R

n×n denotes the centrifugal and Coriolis forces, G (q) ∈ R
n denotes forces due to the

gravity, Fc (q) ∈ R
n is the vector of parallel compliance forces/torques, and B = diag(b1, b2, . . . , bn)

is the positive-definite viscosity matrix where b1, b2, . . . , bn ∈ R
+ are the viscosity coefficients.

Equation (1) is assumed to be well known.
Through the text, we consider the following points:

1. For the sake of simplicity, we forbear specifying the argument of dynamical equation elements
except where required.

2. Ai represents the ith element of the vector A and Aij represents the element of ith row and j th
column of the matrix A.

Definition 1 (Parallel compliance force/torque). The parallel compliance force at the ith joint is
defined as

fci (qi) =
∑m

j=1
kijφij ; ∀

{
i = 1, . . . , n

j = 1, . . . , m,
(2)

where φij = φj (qi) and kij are the j th basis function and compliance coefficient of the ith joint,
respectively.

The compliance coefficients are all considered as free parameters which are left to be optimized
along with the task frequency. Note that by proper selection of the basis functions (φj ), this definition
represents any compliance force profile (e.g., a set of polynomial basis functions [17, pp. 233]).
Nevertheless, the production constraints should be considered in defining the basis functions (see
refs. [2,14,21,23] as examples for non-linear compliance design). Based on this definition, the vector
of compliant forces (Fc (q)) is represented as Fc (q) = [fc1, fc2, . . . , fcn]T .

Definition 2 (Inverse kinematics solution). There exists a sufficiently smooth and bijective
mapping between task-space (X ⊂ R

p) and joint-space (Q ⊂ R
n) as

q = T (x) ; T : X → Q ; x ∈ X , q ∈ Q.

Note that this mapping is not necessarily unique (see Section 5.1).

According to the presented definition, any kind of control objectives can be easily included in the
task space; e.g., the end-effector’s position and orientation.

Definition 3 (Robot’s task). The robot’s task is to periodically move in the task space (X) on
sufficiently smooth and non-self-crossing closed curves r = R (θ) ; R : R → X. Here, R is periodic
with respect to θ and it is defined in such a way that the robot never gets singular.

Definition 4 (Task frequency). By defining ω ∈ R
+ as the task frequency, we have θ (t) = ωt . In

this paper, ω is a time-invariant free parameter which is left to be optimized.

Based on Definitions 2–4, the reference joint trajectory is

qr (ωt) = T(R(ωt)). (3)

Definition 5 (Cost function). The cost function is

W =
∫ 2π

0
uT Nudθ = ω

∫ 2π
ω

0
uT Nudt, (4)

where N ∈ R
n×n is a positive-definite weighting matrix.

The presented cost function is proportional to the total energy consumption when DC-motors are
employed for actuation of the joints.
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3. Mathematical Analysis

3.1. Desired forces/torques extraction
To extract the desired forces/torques, we find u such that q̈ = q̈r , q̇ = q̇r , and q = qr ; where qr is
the reference trajectory. Hence, based on Eq. (1), we have

u = M(qr )q̈r + C(qr , q̇r )q̇r + G(qr ) + Fc(qr ) + Bq̇r . (5)

Theorem 1 (Transformed desired forces/torques). By considering the stated assumptions and
definitions, the desired forces/torques are transformed as

u = ω2� (ωt) + ωBq′
r (ωt) + G (qr (ωt)) + Fc (qr (ωt)) , (6)

where �(ωt) = [ψ1(ωt), ψ2(ωt), . . . , ψn(ωt)]T and ψi(ωt) is

ψi(ωt) =
n∑

j=1

((Mij (qr )q′′
rj

)

+ 1

2
q′

rj
(ωt)

n∑
k=1

(
∂Mij (qr )

∂qrj

+ ∂Mik(qr )

∂qrj

− ∂Mkj (qr )

∂qri

)q′
rk

(ωt))

Also, we have q′
r (ωt) = ∂qr (ωt)

∂(ωt) and q′′
r (ωt) = ∂2qr (ωt)

∂(ωt)2 .
See Appendix A for proof.

3.2. Cost function optimization
Based on Eq. (6), uT Nu is calculated as

uT Nu = ω4�T N� + 2ω3�T NBq′
r + ω2(2�T N(G + Fc) + q′T

r BNBq′
r ) (7)

+ 2ωq′T
r BN(G + Fc) + (G + Fc)T N(G + Fc).

By substituting Eq. (7) into Eq. (4), we have

W = α4ω
4 + α3ω

3 + ω2(α2 +
n∑

i=1

m∑
j=1

γij kij ) + ω(α1 +
n∑

i=1

m∑
j=1

λij kij )

+ α0 +
n∑

i=1

m∑
j=1

ξij kij +
n∑

i=1

m∑
j=1

n∑
l=1

m∑
s=1

ζij lskij kls, (8)

where αp (p = 0, . . . , 4), γij , λij , ξij , and ζij ls ( i, l = 1, . . . , n , j, s = 1, . . . , m) are constant values
(see Appendix B for the detailed calculations). According to Eq. (8), the cost function is a quadratic
function with respect to the compliances coefficients (kij ) and is quartic with respect to the task
frequency (ω). By exploiting this property, we compute the optimum values of these free parameters
(z∗) analytically as

z∗ = arg min
z

W (z) ; z = [k11, . . . , k1m, . . . , kn1, . . . , knm, ω]T

subject to ω � 0.

Principally, we are facing a constrained optimization problem here. Relaxing the constraint, we can
find z∗:

∂W (z)

∂z
|z=z∗ = 0 &

∂2W (z)

∂z2
|z=z∗ > 0. (9)

In case of ω∗ ≤ 0, we infer that there is no optimum frequency for the given task.
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3.3. Effect of precompression on the optimization process
Maximization of Eq. (8) in different situations may result in non-zero optimum frequencies; see
Section 4 for some examples. This may raise this question: Why moving on the desired path is more
efficient than holding a particular position? To answer this question, we should note that the rest
lengths of the compliant elements are predefined, and the equilibrium points of the manipulator may
not be on the desired path. Therefore, moving with an optimum non-zero frequency can be more
energy efficient than staying idle on the path. Now, by adding some constants to the basis functions,
we include the rest lengths of the compliant elements to the list of free parameters for the optimization.
Adding the rest lengths provides the possibility of having precompression in the compliances. In this
case, in Eq. (1), Fc is modified as follows:

Fc(q) = F̂c(q) + F0; F̂c(0) = 0.

Applying this modification to the optimization process results in zero optimum frequency and optimal
cost function (ω∗ = 0 , W ∗ = 0), for all coefficients of the basis functions. Interestingly, the optimum
rest length is calculated as F0 = −G(0). In other words, by adding the precompression in the set of
basis functions, this degree of freedom is utilized to create an equilibrium point on the desired path.

Clearly, according to Section 3, ω∗ = 0 is in contradiction with our assumption on the acceptable
frequencies (ω > 0). To deal with this problem, here we change the constraint on the acceptable
frequencies to ω ≥ ω0.

Henceforth, we should solve Eq. (8) as a constraint optimization problem, taking precompressions
into account. First, assume that the constraint is inactive, which results in ω∗ = 0 and W ∗ = 0. This
is the only global optimum frequency of the cost function based on its quartic form. In addition, the
obtained result is in contradiction with the assumed constraint (ω∗ ≥ ω0). Hence, we can conclude
that the assumed constraint is active and ω∗ = ω0 is the global optimum frequency. Consequently,
the optimum compliance coefficients including precompressions are obtained by substituting ω = ω0

in Eq. (8) and minimizing the resultant cost function.

3.4. Sensitivity of the cost function to model inaccuracy
In Section 2, we assumed that the parameters of the model are known. Although these parameters
could be obtained using system identification methods with high precision, a narrow band of the
parameter-estimation-error is inevitable. Also, some parameters of the system usually change with
aging. Therefore, we study the effect of deviation from nominal model parameters on the optimal
value of the cost function.

Consider β as an uncertain parameter of the model with nominal value β0 and β = β0 + �β.
Based on the presented method in Section 3.2 and using Taylor series, in a relatively small vicinity
of β0, we have

W ∗(β) = W ∗(β0) + ∂W ∗(β)

∂β

∣∣
β=β0�β + O(�β),

where lim�β→0
O(�β)

�β
= 0.

Defining �W ∗(β0) � ∂W ∗(β)
∂β

∣∣
β=β0�β, we have

W ∗(β) ≈ W ∗(β0) + �W ∗(β0).

Considering S(β0) � �W ∗(β0)/W ∗(β0) as a sensitivity factor, we obtain an intuition about the
sensitivity of the presented method in the vicinity of nominal model parameters. In other words, less
sensitivity factor means that the presented method can find the optimum frequency and compliance
coefficients in a wider vicinity of nominal parameters of the system.

3.5. Dealing with model uncertainty
Having a complete model might seem a strong assumption since unmodeled dynamics are unavoidable.
Here, we relax this assumption and include the effects of parametric uncertainties in the dynamical
model. In case of stochastic uncertainty in the model parameters, each related term in the cost function
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(αi , λij , γij , ξij , and ζij ls in Eq. (8)) comes from a stochastic distribution. Therefore, we minimize the
expected value of the cost function; i.e.,

E(W ) = E(α4)ω4 + E(α3)ω3 + ω2(E(α2) +
n∑

i=1

m∑
j=1

E(γij )kij )

+ ω(E(α1) +
n∑

i=1

m∑
j=1

E(λij )kij ) + E(α0)

+
n∑

i=1

m∑
j=1

E(ξij )kij +
n∑

i=1

m∑
j=1

n∑
l=1

m∑
s=1

E(ζij ls)kij kls,

where E is the expectation operator. The process of computing the optimum frequency and the
compliance coefficients for this cost function is exactly the same as in Eq. (8).

3.6. Multiple tasks optimization
Our method is model-based and works offline. Therefore, it is applicable when a single or a defined
set of cyclic tasks are repeatedly performed for a sufficiently extended period of time. In multi-task
cases where changing the compliant elements over tasks is not feasible, the cost function is a weighted
sum of the original cost functions defined over the tasks (Eq. (8)). The following equation represents
the unified cost function:

Wu =
d∑

i=1

CiWi ;
d∑

i=1

Ci = 1,

where Wu is the unified cost function, Wi is the cost function for each task, d is the number of
tasks, and Ci is the positive weight value for each task. Computation of the optimum frequency and
compliance coefficients is exactly the same as in Section 3.2.

4. Case Studies
In this section, first we apply the presented optimization method on a simple 2-DOF prismatic
serial manipulator where the whole procedure could be easily followed due to the simplicity of
the system and the calculations. Also, the effect of adding extra basis functions to the compliance
profile is studied. Then, we apply the method on a two-link manipulator with rotary joints and
finally, to show the applicability and generality of our method, we consider a RRP manipulator
performing a 3D task with multi-basis compliances at its joints. The simulations are performed using
MATLAB/Simulink/Simmechanis.12

In the simulations, the dimension of frequency is [rad/s], the dimension of linear compliance
in rotary joints is [Nm/rad], the dimension of cubic compliance in rotary joints is [Nm/rad3], the
dimension of linear compliance in prismatic joints is [N/m], and the dimension of cubic compliance
in prismatic joints is [N/m3].

4.1. 2-DOF manipulator with prismatic joints
Consider a two-link planar manipulator with compliant prismatic joints (Fig. 1a). In this setup, for
the sake of simplicity, the mass of links is neglected in comparison with the mass of end-effector. The
manipulator’s dynamical equations are

{
mẍ + fx (x) + bxẋ = ux

mÿ + fy (y) + byẏ = uy,

where m is the end-effector mass, bx and by are the damping coefficients in x and y directions,
respectively. Considering φx1 = x, φx3 = x3, φy1 = y, and φy3 = y3, the compliance forces are

{
fx (x) = kx1x + kx3x

3

fy (y) = ky1y + ky3y
3.
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(a) (b)

(c)

=

Fig. 1 The case studies setups: (a) A two link manipulator with prismatic joints. (b) A two link manipulator with
rotary joints. (c) A three link spherical manipulator (RRP) with two revolute and one prismatic joints.

The desired path for the end-effector is

r (t) = R (ωt) =
[

0.4 sin (ωt)
0.2 cos (ωt) − 0.4

]
.

Augmenting the free parameters in vector z, we have

z = [
kx1, kx3, ky1, ky3, ω

]T
.

Using Eq. (8), we obtain the cost function as

W (z) = π

5
ω4m2 + πω2

25
(4b2

x + b2
y) − πω2m

1250
(400kx1 + 48kx3 + 100ky1 + 51ky3)

− π

125
(200gky1m + 44gky3m) + 9π

25
(k2

y1 + 227

450
ky1ky3 + 1103

15, 000
k2
y3)

+ 4π

25
(k2

x1 + 6

25
kx1kx3 + 2

125
k2
x3) + 2πg2m2. (10)

Solving Eq. (9) results in k∗
x1 = mω∗2, k∗

x3 = 0, k∗
y1 = m

227 (1120g − 171ω∗2), and k∗
y3 =

m
227 (800ω∗2 − 2000g); where the optimum frequency is

ω∗ =
√

1000gm2 − 5540b2
x − 1385b2

y/20m.
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Table I. The optimum parameters and the minimum value of
the cost functions for linear and cubic basis functions.

Linear and cubic Linear Cubic

ω∗ 2.68 4.71 5.584
(k∗

x1 , k∗
x3) (1.43 , 0.00) (4.43 , –) (– , 46.875)

(k∗
y1 , k∗

y3) (7.03 , −9.99) (4.93 , –) (– , 18.104)
W ∗ 0.39 0.59 5.504

ω [rad/s]
0 1 2 3 4 5

C
os

t

0.45

0.55

0.65

(a)

k
x3

[N/m3]

−2

0

2
0

k
x1

[N/m]

123

1.5

1

0.5

0

2

C
os

t X: 1.43
Y: 0
Z: 0.392

(b)

k
y3

[N/m3]

−12

−10

−856

k
y1

[N/m]

78
0

2

6

4

C
os

t

X: 7.03
Y: -9.88
Z: 0.392

(c)

Fig. 2 Validation of the results through search in the parameter space of the 2-DOF prismatic manipulator case.
The cost function is plotted vs.: (a) the frequency when the optimum compliances are considered in the joints.
(b/c) The compliance coefficients at the first/second joint when the optimum compliance is placed at the other
joint and the task is performed at the optimum frequency.

In order to have a deeper inspection, suppose bx = by = b. Hence, the necessary condition for the
existence of an optimum frequency is b < m

√
(1000/6925)g which results in 0 < ω∗ �

√
2.5g.

To study the obtained results numerically, suppose m = 0.2 kg, bx = by = 0.2 Ns/m, and g =
9.8m/s2. The calculations are performed first using two basis functions (linear and cubic) for the
compliance forces and then are repeated with only one of them. The results are presented in Table I.

The results show the importance of having linear compliance in this example. That is, in case of
cubic-only compliance, the cost is almost 10 times higher. Having both linear and cubic compliances at
the same time results in the lowest cost at the expense of about two times slower motion. Nevertheless,
linear-only compliance has the best outcome in terms of COT; i.e., fast motion at low cost. To validate
the obtained results, the cost function and the optimum parameters are illustrated in Fig. 2 using a
numerical approach. Obviously, the numerically obtained optimum parameters confirm the analytical
ones.
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4.2. 2-DOF manipulator with revolute joints
Consider a two-link planar manipulator in the vertical plane with linear compliant revolute joints
(Fig. 1b). In this setup, a parallel linear spring is considered in each joint with stiffness coefficients
ki ; i = 1, 2. In addition, the damping coefficient in each joint is bi = b � 0; i = 1, 2. The length,
the width, and the mass of each link are l = 0.3 m, d = 0.04 m, and m = 0.5 kg, respectively. This
manipulator can play the role of a swing leg in a locomotor robot. The manipulator’s dynamical
equations are presented in Appendix C. Considering φ1 = q1 and φ2 = q2, the compliance forces are
as follows: {

f1 = k1q1

f2 = k2q2.

The desired path for the end-effector is

r (t) = R (ωt) =
[

0.3A sin (ωt) − 0.1
0.1A cos (ωt) − 0.4

]
,

where A is the amplitude scaling factor. Here, we set A = 1; see Section 5.2 for some other cases.
According to Definition 3, there are countable mappings for the inverse kinematics. Here, the elbow-
up solution in two-link manipulators is chosen (Fig. 1); see Section 5.1 for analyzing the elbow-down
solution. Using Eq. (8), we calculate the cost function as

W = 0.002067ω4 + (−0.05233k1 + 0.01170k2 − 0.1088 + 0.7158b2)ω2

+ 2.048 + 0.9002k1 + 1.370k2 + 1.617k2
1 + 1.961k2

2 .

Augmenting the free parameters in vector z, we have

z = [k1, k2, ω]T .

Based on Eq. (9), the optimum parameters are obtained as k∗
1 = −0.2784 + 0.01618ω∗2, and k∗

2 =
−0.3492 − 0.0029ω∗2; where the optimum frequency is

ω∗ = 14.83
√

−b2 + 0.137.

Hence, b < 0.3708 is the condition that implies a non-zero optimum frequency. Depending on the
damper value, we have 0 < ω∗ � 5.49 and W ∗ = −78.8 b4 + 21.637 b2 + 0.1979. For instance,
for b = 0.1 Nms/rad, we have k∗

1 = 0.1735 Nm/rad, k∗
2 = −0.4302 Nm/rad, ω∗ = 5.28 rad/s, and

W ∗ = 0.4064. To validate the obtained results, the cost function and the optimum parameters are
illustrated in Fig. 3 using a numerical approach. Obviously, the numerically obtained optimum
parameters confirm the analytical ones.

4.3. RRP manipulator with a 3D task
Consider a three-link RRP manipulator with compliant joints (Fig. 1). In this robot, a multi-basis
compliance structure (linear and cubic) is considered in each joint with stiffness coefficients of
ki1, ki3, i = 1, 2, 3. In addition, the damping coefficients in the revolute and the prismatic joints
are br and bp, respectively. The first and the third links are assumed to be a solid cylinders with
radius of r1 and r3, respectively. Also, the second link is assumed to be a thick-walled cylindrical
tube with inner radius of r2i and outer radius of r2o. The length and the mass of each link are
li ; i = 1, 2, 3 and mi ; i = 1, 2, 3, respectively. The parameters’ values are presented in Table II and
the manipulator’s dynamical equations are presented in Appendix D. Considering φ11 = q1, φ13 = q3

1,
φ21 = q2, φ23 = q3

2, φ31 = q3, and φ33 = q3
3, the compliance forces are calculated as follows:

⎧⎨
⎩

f1 (q1) = k11q1 + k13q3
1

f2 (q2) = k21q2 + k23q3
2

f3 (q3) = k31q3 + k33q3
3.
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ω

(a) (b)

Fig. 3 Validation of the results through search in the parameter space of the 2-DOF revolute manipulator case.
The cost function is plotted vs.: (a) the frequency when the optimum compliances are considered in the joints.
(b) The compliance coefficients at the first and the second joints when the task is performed at the optimum
frequency.
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Fig. 4 Validation of the results through search in the parameter space of the 3-DOF RRP manipulator case. The
cost function is plotted vs.: (a) the frequency when the optimum compliances are considered in the joints. (b/c/d)
The compliance coefficients at the first/second/third joint when the optimum compliances are considered at the
other joints and the task is performed at the optimum frequency.
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Table II. The RRP robot’s parameters.

Parameter Nominal value Parameter Nominal value

r1, r2o 10 cm r3,r2i 8 cm
l1 1 m m1 1 kg
l2, l3 0.5 m m2,m3 0.5 kg

Table III. The optimum parameters and the minimum value of the cost functions for
linear and cubic basis functions.

Linear and cubic Linear Cubic

ω∗ 3.6061 3.0524 3.6376
(k∗

11, k∗
13) (1.88, 0.567) (0.1458 , –) (– , 0.5307)

(k∗
21, k∗

23) (−12.96, −213.07) (1.5112 , –) (– , 64.353)
(k∗

31, k∗
33) (2.68, −8.79) (0.8630 , –) (– , 9.9514)

W ∗ 68.62 84.28 78.96

The desired path for the end-effector is

⎧⎨
⎩

xr = 0.5 + 0.2 cos(ωt)
yr = 0.5 + 0.2 sin(ωt)
zr = 1 + 0.2 sin(ωt).

Augmenting the free parameters in vector z, we have

z = [k11, k13, k21, k23, k31, k33, ω] .

Using Eq. (8), we obtain the cost function as

W (z) = 0.0570ω4 + 0.0023(br − bp)ω3 + (−0.1296k11 − 0.2477k13

− 0.0802k21 − 0.0053k23 − 0.1746k31 − 0.0269k33 + 0.1231b2
p

+ 0.5465b2
r − 0.7607)ω2 + 1.1939(br − bp)ω + 6.7154k11k13

+ 0.0368k21k23 + 0.1206k31k33 + 4.1357k2
11 + 0.4680k2

31 + 0.2606k2
21

+ 0.0016k2
23 + 3.0869k2

13 + 0.0088k2
33 − 0.0408k21 − 0.1358k23

+ 0.8181k31 + 0.1808k33 + 87.7369.

Based on Eq. (9), the optimum parameters are k∗
11 = −0.1446ω∗2, k∗

13 = 0.1974ω∗2, k∗
21 =

−15.5193 + 0.1964ω∗2, k∗
23 = 220.9104 − 0.6026ω∗2, k∗

31 = 3.8387 − 0.0887ω∗2, and k∗
33 =

−36.5770 + 2.1364ω∗2. Where the optimum frequency is the positive real root of the following
equation:

0.0586ω3 + 0.0069(br − bp)ω2

+ (1.0930b2
r + 0.2462b2

p − 0.7463)ω + 1.1939(br − bp) = 0.

Considering bp = 0.2 Ns/m and br = 0.1 Nms/rad, we have ω∗ = 3.6061 rad/s. Same as in the
first case study, the optimum parameters for one and two basis functions are reported in Table III.

Here, in contrast with the first case study, the cubic basis function is more effective in the cost
function minimization in comparison with the linear one. In addition, the optimum frequency in case
of using only cubic basis function is almost equal to the optimum frequency in case of using both
linear and cubic bases. The results indicate that adding the linear part affects the cost function but
does not have a significant effect on the optimum frequency. To validate the obtained results in the
case of using both basis functions, the cost function and the optimum parameters are illustrated in

https://doi.org/10.1017/S0263574717000030 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000030


2374 Compliance and frequency optimization

Table IV. The optimum parameters and the minimum value of the cost
functions in different configurations.

W ∗ ω∗ k∗
1 k∗

2

Elbow-up 0.1979 5.4891 0.2091 −0.4394
Elbow-down 0.2139 3.8866 −0.5371 −0.2389

Fig. 4 using a numerical approach. Obviously, the numerically obtained optimum parameters confirm
the analytical ones.

4.4. Effects of unmodeled dynamics
In order to check the effects of unmodeled dynamics on the results, we compute the sensitivity
factor presented in Section 3.4 for variations in the damping coefficients. In the first case study
(Section 4.1), with assumption of 10% deviation in the damping coefficients, we have S(bx0) � 25%
and S(by0) � 6.2%. This implies that the horizontal damper must be identified or constructed more
precise than the vertical one in order to be as energy efficient as the optimization suggests. Similarly,
in the second case study (Section 4.2), we have S(b0) � 10% which means that 10% error in the
nominal value of damping coefficients does not lead to a drastic change in the optimal value of the cost
function. Also, in the third case study (Section 4.3), we have S(bp0) � 0.11% and S(br0) � 0.08%
for 10% deviation of the damper coefficients from their nominal values. These results show the
robustness of the optimum parameters with respect to the deviations of the damping coefficients.

5. Conclusions and Discussions
We proved that for a serial manipulator, the vector of the desired generalized forces/torques to
track a reference cyclic trajectory is a linear function of the parallel compliance coefficients and a
quadratic function of the task frequency. These properties provided us with a powerful toolbox for
analytical and global minimization of any force-based cost function. Accordingly, we demonstrated
that, the defined cost function has a quadratic shape with respect to the compliance coefficients
and a quartic shape with respect to the task frequency. Using these properties, we presented an
analytical method for minimization of energy consumption in cyclic tasks. Our method is based
on simultaneous modification and exploitation of the robot’s natural dynamics through optimization
of the task frequency and the compliance coefficients, installed in parallel with actuators at joints.
Therefore, employing this method leads to a drastic reduction in energy consumption by using two
complementary means, natural dynamics shaping and exploiting, simultaneously. According to our
mathematics, the defined cost function is a function of the robot’s dynamical equations, hence,
increasing DOFs of the robot highly increases computational complexity.

In the following subsections, we discuss some interesting results achieved in the case studies.

5.1. Effect of pose
Here, we investigate the effects of different inverse kinematics solutions on the optimum compliances
and the task frequency in the second case study (Section 4.2). In that case, we studied the elbow-up
inverse kinematics solution. If we select the elbow-down solution, the results are k∗

1 = −0.5719 +
0.0023ω∗2 and k∗

2 = −0.2541 + 0.0010ω∗2, where the optimum frequency is

ω∗ = 13.45
√

−b2 + 0.0835.

Hence, b < 0.289 is the condition to have a non-zero optimum frequency. It means, depending on
the damper values, we have 0 < ω∗ � 3.8866 and W ∗ = −49.09 b4 + 8.20 b2 + 0.2139. Clearly, the
upper bound on the damper value in the elbow-up configuration is lower than in the elbow-down
configuration. The optimum parameters and the minimum value of the cost function for b = 0 in both
solutions are presented in Table IV.

According to this table, the elbow-up configuration results in lower energy consumption and faster
movement. Interestingly, swing legs of walking systems are mostly in the elbow-up configuration.
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Fig. 5 Effects of the amplitude scaling factor on the optimum compliances and the task frequency.

One of the reasons, besides others, might be to have a lower COT (in legged locomotion, COT is
defined as the energy consumed by the robot divided by its forward velocity, which is proportional
with the gait frequency).

5.2. Effects of amplitude scaling
In this subsection, we study the effect of task amplitude (A in the second case study Section 4.2)
on the optimum parameters for zero damping (b = 0); see Fig. 5. The optimum frequency and the
first joint’s compliance coefficient are inversely correlated with the task amplitude while the second
joint’s optimum compliance does not change much. In other words, in case of varying task amplitude,
the second joint’s compliance can be kept constant while the compliance at the first joint and the task
frequency require tuning to attain the maximum energy efficiency. Nevertheless, the figure shows that,
the robot with a fixed task frequency and compliances at the joints remains almost energy efficient for
a small variation in the task amplitude. Note that here, the task amplitude is equivalent to stride length
in legged locomotion; see ref. [26] as a structure with coupled frequency-amplitude. Therefore, our
results point to the importance of having variable compliance at hip while having constant stiffness
at knee suffices.

5.3. Effects of motor’s dynamical equations
In the presented approach, the cost function is defined over the actuator’s applied torque. However, by
means of our mathematics, we can include the effects of motor’s dynamics in the optimization process.
Assuming permanent magnet DC-motors’ dynamical equations, we can define the cost function over
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the input voltages of the motors. The dynamical equations of motors are as follows:

um − u = Jmq̈ + Bmq̇, (11)

um = KT Im, (12)

Vm = RmIm + Lmİm + Kvq̇, (13)

where um = [um1, um2, . . . , umn]T is the vector of motors’ torques, u = [u1, u2, . . . , un]T is the
vector of applied torques to the robot (Eq. (1)), Jm = diag(Jm1, Jm2, . . . , Jmn) is the rotors’
moment of inertia matrix, Bm = diag(Bm1, Bm2, . . . , Bmn) is the damping coefficients matrix,
KT = diag(KT 1, KT 2, . . . , KT n) is the torque constant matrix, Im = [Im1, Im2, . . . , Imn]T is the
input currents vector, Rm = diag(Rm1, Rm2, . . . , Rmn) is the matrix of terminal resistance, Lm =
diag(Lm1, Lm2, . . . , Lmn) is the matrix of terminal inductance, Kv = diag(Kv1, Kv2, . . . , Kvn) is the
back emf constant matrix, and Vm = [Vm1, Vm2, . . . , Vmn]T is the vector of motors’ terminal voltages.
Substituting Eqs. (1) and (12) into Eq. (11), we have

KT Im = (M(q) + Jm)q̈ + (C(q, q̇) + Bm + B)q̇ + G(q) + F(q). (14)

Taking first time derivative of Eq. (14), we have

KT İm = (M + Jm)
...
q + Ṁmq̈ + (C + Bm + B)q̈ + Ċq̇ + Ġ + Ḟ. (15)

Substituting İm from Eq. (13) and Im from Eq. (14) into Eq. (15), we obtain the required voltage of
the motors as

Vm = LmK−1
T ((M + Jm)

...
q + (Ṁ + C + Bm + B)q̈ + Ċq̇ + Ġ + Ḟ)

+ Kvq̇ + RmK−1
T ((M + Jm)q̈ + (C + Bm + B)q̇ + G(q) + F(q)).

Substituting q(k) = q(k)
r (ωt) ; k = 0, 1, 2, 3, we can find the desired motor voltages for the robot to

perform the task. Henceforth, we can easily transform the desired motor voltages similar to what we
did in Eq. (6). Interestingly, in this case, the transformed motors’ voltage vector is cubic with respect
to the task frequency and is linear with respect to the compliance coefficients. Now we can redefine
the cost function as the total energy consumed by the DC-motors during one cycle as

W =
∫ 2π

0
Vm

T NVmdθ = ω

∫ 2π/ω

0
Vm

T NVmdt .

This cost function is hexic with respect to the task frequency and is quadratic with respect to the
compliance coefficients. Increasing the order of frequency in the cost function can be explained by
increasing the order of differential equations by adding dynamical equations of DC-motors.

To consider the speed limitation of DC-motors, we have to impose an upper bound on the optimum
frequency. Hence, in this case, the optimum parameters (z∗) could be obtained by solving the following
optimization problem:

z∗ = arg min
z

W (z) ; z = [k11, . . . , k1m, . . . , kn1, . . . , knm, ω]T

subject to : 0 ≤ ω ≤ ωmax,

where ωmax is the maximum permissible speed for the motors.
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16, 231–247 (2008).

18. J. Peters, M. Mistry, F. Udwadia, J. Nakanishi and S. Schaal, “A unifying framework for robot control with
redundant dofs,” Auton. Robots 24, 1–12 (2008).

19. L. Righetti, J. Buchli and A. J. Ijspeert, “Dynamic hebbian learning in adaptive frequency oscillators,” Phys.
D: Nonlinear Phenom. 216, 269–281 (2006).

20. S. Schaal, J. Peters, J. Nakanishi and A. Ijspeert, “Learning Movement Primitives,” Proceedings of the 11th

International Symposium Robotics Research, Springer (2005) pp. 561–572.
21. A. Schepelmann, K. A. Geberth and H. Geyer, “Compact Nonlinear Springs with User Defined Torque-

Deflection Profiles for Series Elastic Actuators,” Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), IEEE, Hong Kong, China (2014) pp. 3411–3416.

22. N. Schmit and M. Okada, “Simultaneous Optimization of Robot Trajectory and Nonlinear Springs to
Minimize Actuator Torque,” Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), IEEE, St. Paul, MN, USA (2012) pp. 2806–2811.

23. Schmit, N. and M. Okada, “Optimal design of nonlinear springs in robot mechanism: simultaneous design
of trajectory and spring force profiles,” Adv. Robot. 27, 33–46 (2013).

24. S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang and S. Kim, “Design Principles for Highly Efficient
Quadrupeds and Implementation on the Mit Cheetah Robot,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), IEEE, Karlsruhe, Germany (2013) pp. 3307–3312.

25. N. Shafii, N. Lau and L. P. Reis, “Generalized Learning to Create an Energy Efficient zmp-Based Walking,”
Robocup 2014: Robot World Cup xviii, Springer (2015) pp. 583–595.

26. M. Shakiba, M. H. Shadmehr, O. Mohseni, R. Nasiri and M. N. Ahmadabadi, “An Adaptable Cat-Inspired
Leg Design with Frequency-Amplitude Coupling,” Proceedings of the 4th RSI International Conference on
Robotics and Mechatronics (ICROM), IEEE, University of Tehran, Tehran, Iran (2016).

27. H.-K. Shin and B. K. Kim, “Energy-efficient gait planning and control for biped robots utilizing the
allowable zmp region,” IEEE Trans. Robot. 30, 986–993 (2014).

https://doi.org/10.1017/S0263574717000030 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000030


2378 Compliance and frequency optimization

28. M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control, vol. 3 (Wiley, New York,
2006).

29. K. Sreenath, H.-W. Park, I. Poulakakis and J. W. Grizzle, “A compliant hybrid zero dynamics controller for
stable, efficient and fast bipedal walking on mabel,” Int. J. Robot. Res. 30, 1170–1193 (2011).

30. N. G. Tsagarakis, Z. Li, J. Saglia and D. G. Caldwell, “The Design of the Lower Body of the Compliant
Humanoid robot Ccub,” Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), IEEE, International Conference Center, Shanghai, China (2011) pp. 2035–2040.

31. M. Uemura, H. Goya and S. Kawamura, “Motion control with stiffness adaptation for torque minimization
in multijoint robots,” IEEE Trans. Robot. 30, 352–364 (2014).

32. R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst and D. Lefeber, “Maccepa, the mechanically
adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped
robot,” Robot. Auton. Syst. 55, 761–768 (2007).

33. B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O.
Eiberger, W. Friedl and G. Ganesh, “Variable impedance actuators: A review,” Robot. Auton. Syst. 61,
1601–1614 (2013).

34. L. C. Visser, R. Carloni, R. Unal and S. Stramigioli, “Modeling and Design of Energy Efficient Variable
Stiffness Actuators,” Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), IEEE, Egan Convention Center, Anchorage, AK, USA (2010) pp. 3273–3278.

Appendix A. Desired Forces/Torques Extraction
Based on [28, pp. 202], we have

Cij (qr , q̇r ) = 0.5
n∑

k=1

(
∂Mij (qr )

∂qrj

+ ∂Mik(qr )

∂qrj

− ∂Mkj (qr )

∂qri

)
q̇rk

. (A1)

On the other hand, we have

q̇r = ∂qr (ωt)

∂(ωt)

d(ωt)

dt
= ωq′

r (ωt), (A2)

q̈r = ∂2qr (ωt)

∂(ωt)2

(
d(ωt)

dt

)2

= ω2q′′
r (ωt). (A3)

Substituting Eqs. (A3), (A2), and (A1) into Eq. (5), we have

ui = ω2ψi + biωq′
ri

+ Gi(qr ) + Fci
(qr ),

where ψi(ωt) is

ψi(ωt) =
n∑

j=1

((Mij (qr )q′′
rj

)

+ 1

2
q′

rj
(ωt)

n∑
k=1

(
∂Mij (qr )

∂qrj

+ ∂Mik(qr )

∂qrj

− ∂Mkj (qr )

∂qri

)q′
rk

).

Hence, the vector of desired forces/torques is

u = ω2� (ωt) + ωBq′
r (ωt) + G (qr (ωt)) + Fc (qr (ωt)) ,

where �(ωt) = [ψ1(ωt), ψ2(ωt), . . . , ψn(ωt)]T .
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Appendix B. Cost Function Coefficients

α0 = ω

∫ 2π
ω

0
GT NGdt , α1 = 2ω

∫ 2π
ω

0
q′T

r BNG(ωt)dt,

α2 = ω

∫ 2π
ω

0

(
2�T (ωt)NG(ωt) + q′T

r BNBq′
r

)
dt,

α3 = ω

∫ 2π
ω

0
2�T (ωt)NBq′

rdt , α4 = ω

∫ 2π
ω

0
�T (ωt)N�(ωt)dt,

γij = ω

∫ 2π
ω

0
(2φij

n∑
l=1

ψlNli)dt , ζij ls = ω

∫ 2π
ω

0
φijφlsNildt,

λij = ω

∫ 2π
ω

0
(2φij

n∑
l=1

q′
rl
blNli)dt , ξij = ω

∫ 2π
ω

0
(2φij

n∑
l=1

GlNli)dt .

Appendix C. Dynamical Parameter of the 2-DOF Revolute Manipulator

M11 = l1l2m2 cos(q2(t)) + ((d2 + 12l2
2 + 4l2

2)m2 + m1(d2 + 4l1
2))/12,

M12 = m2(6l1l2 cos(q2(t)) + d2 + 4l2
2)/12,

M21 = m2(6l1l2 cos(q2(t)) + d2 + 4l2
2)/12 , M22 = m2(d2 + 4l2

2)/12,

C11 = 0 , C22 = 0,

C12 = − sin(q2(t))l1l2m2(
.

q2(t) + 2
.

q1(t))/2,

C21 = sin(q2(t))
.

q1(t)l2m2l1/2,

G1 = (m2l2 cos(q1(t) + q2(t)) + l1 cos(q1(t))(m1 + 2m2))g/2,

G2 = m2gl2 cos(q1(t) + q2(t))/2.

Appendix D. Dynamical Parameters of the RRP spherical Manipulator

M11 = (12q3(t)2m3 + 24m3 (l2 − l3/2) q3(t) + (
12l2

2 − 12l2l3 + 4l3
2 − 3r3

2
)
m3

− 3m2
(
r2o

2 + r2i
2 − 4l2

2/3
)
) cos(2q2(t))/24 + q3(t)2m3/2 + m3(l2 − l3/2)q3(t)

+ (12l2
2 − 12l2l3 + 4l3

2 + 9r3
2)m3/24 + l2

2m2/6 + (9r2i
2 + 9r2o

2)m2/24

+ m1(l1
2 + 3r1

2)/12 , M22 = q3(t)2m3 + 2m3(l2 − l3/2)q3(t)

+ (12l2
2 − 12l2l3 + 4l3

2 + 3r3
2)m3/12 + m2(l2

2 + 3r2i
2/4 + 3r2o

2/4)/3,

M33 = m3 , M12 = M23 = M13 = 0 , C11 = 0,

C12 = − .
q1(t)(q3(t)2m3 + 2m3(l2 − l3/2)q3(t)

+ (l2
2 − l2l3 + l3

2/3 − r3
2/4)m3 + m2(l2

2 − 3r2i
2/4 − 3r2o

2/4)/3) sin(2q2(t)),

C13 = m3
.

q1(t)(q3(t) + l2 − l3/2)(cos(2q2(t)) + 1),

C21 = .
q1(t)(q3(t)2m3 + 2m3(l2 − l3/2)q3(t) + (l2

2 − l2l3 + l3
2/3 − r3

2/4)m3

+ m2(l2
2 − 3r2i

2/4 − 3r2o
2/4)/3) sin(2q2(t))/2,
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C22 = 0 , C33 = 0 , C23 = .
q2(t)m3 (2q3(t) + 2l2 − l3) ,

C31 = −m3
.

q1(t)(q3(t) + l2 − l3/2)(cos (2q2(t)) + 1)/2,

C32 = − .
q2(t)m3(2q3(t) + 2l2 − l3)/2 , G1 = 0,

G2 = (q3(t)m3 + m3(l2 − l3/2) + m2l2/2) cos(q2(t))g, G3 = m3 sin(q2(t))g.
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