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ABSTRACT

This article proposes a claims reserving model for dependent lines of business
with the accommodation of association among triangles by a copula function.
We show that the family of elliptical copulas is a pretty convenient choice to
capture the dependencies introduced by various sources, including the common
calendar year effects. To quantify the associated reserving variability, we resort
to parametric bootstrapping techniques for simulating the predictive distribu-
tion of outstanding liabilities and for calculating the three components of pre-
dictive uncertainty: the model error, the process error and the estimation error.
Numerical analysis is performed for a portfolio of casualty insurance from a
major U.S. insurer.
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1. INTRODUCTION

Claims reserving is a classic actuarial problem in general insurance. The devel-
opment of the capital adequacy regime — Solvency II — emphasizes the role
of reserving variability in the decision process, which motivates the fast-growing
literature in the stochastic loss reservingmodels (see the excellentmonograph by
Wüthrich and Merz, 2008, for a review). In particular, the multivariate reserv-
ing approach has received extensive attention. Most recent examples include
Merz and Wüthrich (2009a, 2009b), Zhang (2010), de Jong (2012) and Happ
and Wuthrich (2013), among others.

Despite the vast studies in the multivariate claims reserving, modeling the
dependency among multiple triangles is still a challenge. Because of the time-
dependent evolution, correlation among payments could be introduced by var-
ious sources, among which the calendar year effect is the focus of the current
literature (see, for example, Shi et al., 2012; Wüthrich, 2012; Salzmann and
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Wüthrich, 2012; Merz et al., 2013). Specifically, losses among triangles could
be correlated due to a common calendar year effect, such as a court judgment
or management decision, that could affect all open claims in the portfolio si-
multaneously.

To model calendar year effects, existing studies rely on the normality as-
sumption or in more general the theory of linear models. Such practice sac-
rifices the flexibility in handling the skewness and heavy tails featured by loss
distributions. To address this issue, we propose a multivariate claims reserving
model with the accommodation of association among triangles by a copula
function. Especially, we show that the family of elliptical copulas is a conve-
nient choice where dependency could be captured by the dispersionmatrix. Var-
ious forms of association are allowed in this framework, including the common
calendar year effects, that could cause correlation within and across triangles.
In addition, two aspects further set our analysis apart from the current stud-
ies. First, we are able to explore the usefulness of the Tweedie distribution in
modeling the aggregated losses in claim triangles. Second, to quantify predic-
tive uncertainty, the parametric nature allows to employ the modern bootstrap-
ping for incorporating the model error along with the process and estimation
errors.

The rest of this paper is organized as follows. Section 2 introduces the
copula modeling framework and discusses the procedures for model estima-
tion and selection. Section 3 focuses on the reserving variability. We adopt
a parametric bootstrap that could be used to derive the predictive distribu-
tion of unpaid losses and calculate mean square error of prediction. Section
4 applies the copula model to a casualty insurance portfolio from a U.S. in-
surer and demonstrates the flexibility of the proposed approach. Section 5 con-
cludes the article. Technical notes and supplementary results are provided in the
Appendix.

2. MODELING

Consider an insurance portfolio of N lines of business. We use Yni j to de-
note the incremental payment in the nth (= 1, . . . , N) run-off triangle, with i
(= 1, . . . , I) and j (= 0, . . . , J) indicating the accident year and development
lag, respectively. Using above notations, I represents the most recent accident
year and J represents the largest development lag, satisfying J ≤ I−1.Without
loss of generality, we consider the case J = I − 1. Thus, by the latest calendar
year J+1, we only observe payments in the upper left-hand triangle. Define the
vector of incremental payments in the upper and lower triangles of the insurance
portfolio respectively asYU = {Yi j : i+ j ≤ J+1} andYL = {Yi j : i+ j > J+1}
with Yi j = (Y1i j , . . . ,YNi j )

′
. From reserving perspective, our goal is to make in-

ference on the unpaid losses in the lower right-hand triangle YL, based on the
observed payments in the upper left-hand triangle YU .

https://doi.org/10.1017/asb.2013.23 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.23


A COPULA REGRESSION FORMULTIVARIATE LOSS TRIANGLES 87

2.1. Copula model

In loss reserving context, claims in each run-off typically represent aggregated
losses, i.e. the sum of claims from all policyholders insured by the insurer, mo-
tivating the employment of the Tweedie (1984) distribution in modeling the in-
cremental payments in triangles. In actuarial science, the Tweedie’s compound
Poisson model has been used for ratemaking (see Jørgensen and De Souza,
1994; Smyth and Jørgensen, 2002) and claims reserving analysis (see Wüthrich,
2003; Peters et al., 2009; Meyers and Shi, 2011). Along the group of reserving
models, we consider a version of Tweedie’s compound Poisson distribution with
the constant dispersion parameter φ and the power parameter 1 < p < 2, i.e.
f (yni j ; μni j , φ, p), for the incremental claim Yni j . A log link function is further
specified for the mean parameter log(μni j ) = αni + βnj , where αni and βnj cap-
ture the fixed effects along accident year and development year, respectively. As
usual, identification constraints apply here.

Now, we introduce a copula modeling framework for jointly examining
claims from multiple triangles. The proposed model is built on and extends that
of Shi and Frees (2011), where like most existing studies, the authors relied on
the independence assumption across accident years and focused on the pair-
wise association, i.e. each cell in one triangle relates to the equivalent cell in
another triangle. We propose to use elliptical copulas to model dependencies
among multiple loss triangles, relaxing the independence assumption across ac-
cident years. As we will show, the dispersion matrix in elliptical copulas offers
great flexibility in accommodating various types of association.

Because common calendar year effects introduce association within and
across triangles, a copula function is specified for the vector of claims occurred
in each calendar year. To be more specific, collect all claims in calendar year
t = i + j in the nth triangle into the vector Ynt = {Yni j : i + j = t}, then
stack vectors Ynt, n = 1, . . . , N, into the vector Yt = (Y

′
1t, . . . ,Y

′
Nt)

′. For
t = 1, . . . , I + J, the claims in the vector Yt are joined through an elliptical
copula:

ct(u1, . . . , utD) = htD(H
−1 (

u1), . . . , H−1(utD)
) tD∏
d=1

1

h
(
H−1(ud)

) . (1)

Here, h(·) and H(·) indicate the density function and distribution function of a
univariate elliptical distribution, respectively, and htD denotes the density func-
tion of a tD-variate elliptical distribution with

htD(x) = c√|�|g
(
1
2
x′�−1x

)
,

where c is a normalizing constant and g(·) is the density generator function (see,
for example, Fang et al., 2003). Without loss of generality, the elliptical distri-
bution is assumed to have zero mean and unit variance, since elliptical copulas
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remain invariant under an increasing transformation of components. It is worth
mentioning the dimension of Yt and thus of the corresponding copula function
tD:

tD =
{
tN, if 1 ≤ t ≤ I,
(I + J + 1 − t)N, if I + 1 ≤ t ≤ I + J.

The critical part in the copula specification is the dispersion matrix �t cor-
responding to the vector Yt. We adopt an approach similar to de Jong (2012)
and motivate the specification of �t with a Gaussian copula, a special case of
the elliptical family. Under a Gaussian copula, one could assume

(� ◦ F)(yni j ) = ηn,t=i+ j + εni j , (2)

where F(·) is the Tweedie distribution function. The variable ηnt indicates the
calendar year effect in year t for the nth triangle, and εni j , independent of ηnt,
indicates the cell-specific effect for the nth triangle corresponding to accident
year i and development lag j . We introduce correlations among loss triangles
by further specifying the distributions of ηt = {ηnt; n = 1, . . . , N} and εi j =
{εni j : n = 1, . . . , N} as

ηt =

⎛⎜⎝ η1t
...

ηNt

⎞⎟⎠ ∼ N(0, �) and εi j =

⎛⎜⎝ ε1i j
...

εNi j

⎞⎟⎠ ∼ N(0, �),

with

� =Y

⎛⎜⎜⎜⎜⎝
c21 c1c2λ12 · · · c1cNλ1N

c2c1λ21 c22 · · · ...
...

...
. . .

...

cNc1λN1 cNc2λN2 · · · c2N

⎞⎟⎟⎟⎟⎠ and

� =

⎛⎜⎜⎜⎜⎝
s21 s1s2ω12 · · · s1sNω1N

s2s1ω21 s22 · · · ...
...

...
. . .

...

sNs1ωN1 sNs2ωN2 · · · s2N

⎞⎟⎟⎟⎟⎠ .

Following the above formulation, correlations among multiple triangles could
be caused by both calendar year effect and cell-specific effect. To be more spe-
cific, the covariance matrix � captures the association within and across run-
offs due to accounting year effects, and � accommodates the pair-wise associa-
tion among different triangles. To guarantee a standard normal marginal in the
Gaussian copula, one requires c2n + s2n = 1 for n = 1, . . . , N.

Now, we can derive the dispersion matrix in the Gaussian copula for the
vector of claims in calendar year t, i.e.Yt. Collecting (2) for all claims in calendar
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year t from the insurance portfolio, we have

(� ◦ F)(yt) = (IN ⊗ 1t) ηt + (IN ⊗ It) εt,

where 1t indicates the vector of 1s of length tD/N, and It and IN indicate a tD/N-
and N-dimensional identity matrix, respectively. Note that εt is defined in the
same order as Yt. Then, the dispersion matrix corresponding to Yt could be
shown as

�t = (IN ⊗ 1t)� (IN ⊗ 1t)
′ + (IN ⊗ It)� (IN ⊗ It)′ = � ⊗ 1t1

′
t + � ⊗ It, (3)

which could be easily adapted to the entire family of elliptical copulas.

2.2. Model estimation

One advantage of the model-based approach is that the likelihood-based
method could be easily implemented for inference purposes. Let θ denote the
vector of parameters, including both the Tweedie model and the elliptical cop-
ula. Based on the above specification, the log-likelihood function for the claims
in calendar year t in the insurance portfolio is

Lt(θ) = ln ct
(
F(y1,1,t−1), . . . , F(y1,t−1,1), . . . . . . , F(yN,1,t−1), . . . , F(yN,t−1,1)

)
+

N∑
n=1

∑
i+ j=t

ln f (yni j ; μni j , φ, p).

Assuming independence across calendar years, the log likelihood for all claims
in the insurance portfolio is the sum of the log likelihood over all calendar years,
which could be expressed as

L(θ) =
I∑

t=1

N∑
n=1

∑
i+ j=t

ln f (yni j ; μni j , φ, p)

+
I∑

t=1

{
ln g

(
1
2
x

′
t�

−1
t xt

)
− ln

√
|�t| −

tD∑
d=1

ln h(xd)

}
.

Here, we define the vector xt = (x1,1,t−1, . . . , x1,t−1,1, . . . . . . , xN,1,t−1, . . . ,

xN,t−1,1)
′
, with the element xni j = H−1(F(yni j ; μni j , φ, p)) and xd indicating

the dth component of xt. The dispersion matrix �t is defined according to (3).
A full-information maximum likelihood estimation (MLE) could be imple-

mented to calibrate the model, i.e. θ̂MLE = argmax L(θ). However, maximum
likelihood is computationally difficult for multivariate copula-based models. As
an alternative, one could resort to a two-stage estimation approach, known as
the method of inference function for marginals (IMF), where the first stage
maximizes the likelihood from marginals, and the second stage maximizes the
likelihood of dependence parameters with parameters in marginals held fixed
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from the first stage. Accordingly, one could split the likelihood function into
two pieces:

L(θ) = L1(θ
Tweedie, θCopula) + L2(θ

Tweedie, θCopula),

where

L1(θ
Tweedie, θCopula)

=
I∑

t=1

N∑
n=1

∑
i+ j=t

{
ln a(yni j ; φ, p) + 1

φ

[
yni j bni j − c(bni j ; p)

]}
,

and

L2(θ
Tweedie, θCopula) =

I∑
t=1

{
g

(
1
2
x

′
t(� ⊗ 1t1

′
t + � ⊗ It)−1xt

)

− ln
√

|� ⊗ 1t1
′
t + � ⊗ It| −

tD∑
d=1

ln h(xd)

}
.

Then, the two-stage estimation could be implemented as follows:
Step I: θ̂Tweedie = argmax L1(θ

Tweedie, θCopula), s.j.t., θCopula = θ̂Copula.
Step II: θ̂Copula = argmax L2(θ

Tweedie, θCopula), s.j.t., θTweedie = θ̂Tweedie.
To achieve the asymptotic efficiency ofMLE, one needs to reiterate the two-step
estimation r times so that the IMF will converge in probability to the MLE, i.e.
(θ̂Tweedie, θ̂Copula)

r=+∞−−−→ θ̂MLE (see Joe, 2005).

2.3. Model selection

Because reserving problems typically involve small samples, the usual criteria
AIC and SIC could lead to overfitting. Thus, we consider their bias-corrected
versions, AICc (see Sugiura, 1978; Hurvich and Tsai, 1989) and SICc (see
McQuarrie, 1999). To incorporate the model error and demonstrate its effect
on reserving variability, we consider various specifications.

M1: Assume αni = 0 for i = 1, . . . , I. In this model, the evolution of claims
depends solely on the development lag, regardless of the year when losses are
incurred. Note that one does not necessarily assume this for all lines of busi-
ness simultaneously. We will consider different combinations in the insurance
portfolio.

M2: Assume � = diag{s21 , . . . , s2N}. This model presumes that all dependen-
cies among multiple triangles are caused by common calendar year effects. This
type of model has been examined by de Jong (2012).

M3: Assume cn = 0 for n = 1, . . . , N. It is easy to see that no calendar
year correlation is considered in this case. As in Shi and Frees (2011), the model
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focuses on pair-wise association, assuming that the calendar year correlation
has already been captured by the effects of accident year and development lag.

M4: Assume that � = diag{s21 , . . . , s2N}, and cn = 0 for n = 1, . . . , N. Sup-
pose that the claims in different lines of business are independent of each other,
and this model does not incorporate any dependency among loss triangles.

M5: The full model specified in Section 2.1.
Note that model selection focuses on the specifications of the mean of loss

distributions and the dependence structure among payments rather than the
parametric forms. Specifically, the choice of the Tweedie distribution is moti-
vated by the aggregated claims, and the employment of elliptical copulas is due
to the flexible specification of the pair-wise dependence through the dispersion
matrix.However, statistical inference allows for the selection of functional forms
though it is not the focus of this study. For instance, to select the generator g
in the elliptical family, one could refer to the t-statistic proposed by Sun et al.
(2008) and Shi (2012).

3. PREDICTIVE UNCERTAINTY

Define reserve R as a linear function of YL, i.e. R = g(YL), where g(x) = η
′
x

and η is a known vector of the same length as x. Our interest is to derive the pre-
dictive distribution of R conditional on the realized losses. We resort to modern
parametric bootstrapping to derive the predictive distribution of reserves while
incorporating both the parameter uncertainty and model error. In addition, we
present the (conditional) mean-squared error of prediction (MSEP) for the re-
serve R = g(YL) when conditioning on a specific model and averaging over
different models. The detailed proofs are provided in Section A.1 of the Ap-
pendix.

3.1. Conditioning on a model

The expectation and variance of reserve R given the model M and associated
parameters θ could be expressed as

R̃M = E[R|θ ,M]

and

ṼM = Var[R|θ ,M].

Simple calculations show that the best estimate of reserve that minimizes the
conditional MSEP given modelM is

R̂BM = E
[
R̃M|YU,M] = E

[
R|YU,M]

. (4)
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Here, R̂BM is a consistent estimator andYU-measurable. Thus, the (conditional)
mean-squared prediction error for a given modelM could be decomposed as

MSEPR|YU ,M
(
R̂BM

) = E
[
ṼM|YU,M] + Var

[
R̃M|YU,M]

. (5)

Note that in this context the unknown parameter vector θ is modeled stochas-
tically. Hence, the above decomposition of MSEP is similar to the Bayesian
perspective, the first term quantifying the process error and the second term
quantifying the parameter error.

3.2. Mixing over models

One step further, one could incorporate the model error into the predictive un-
certainty by mixing over different models. Specifically, the best consistent esti-
mate of reserve incorporating the model error could be derived as

R̂B = E
[
R̃|YU] = E[R|YU ],

where
R̃= E

[
R̃M|θ] = E[R|θ ]. (6)

Since R̂B is YU-measurable, we show that the prediction uncertainty could be
decomposed into three terms as follows:

MSEPR|YU

(
R̂B) =E

[
E

[
ṼM|θ] |YU] + E

[
Var

[
R̃M|θ] |YU]

+Var
[
E

[
R̃M|θ] |YU]

. (7)

The first and second terms in (7) correspond to the process error and the
parameter error, respectively, when averaging over various models. The last
term explicitly quantifies the model error in the reserving variability. The
calculations of the three components are implemented based on parametric
bootstrapping.

4. APPLICATION

4.1. Data characteristics

We consider an insurance portfolio consisting of two casualty lines of busi-
ness, workers’ compensation and commercial auto liability. The triangle data
are from the Schedule P of the National Association of Insurance Commis-
sioners (NAIC) database. Our analysis focuses on the run-offs with incremental
paid losses. The triangles of the two casualty lines of business are summarized
in Section A.2 for reference purposes.

We normalize the payment by dividing by the net premiums earned in the
corresponding accident year. Themultiple time-series plots of loss ratios are dis-
played in the first two panels in Figure 1. Each curve corresponds to an accident
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FIGURE 1: Loss development characteristics. The first two figures show the multiple time-series plots of
cumulative loss ratios for workers’ compensation and commercial auto liability. The third figure shows the

scatter plot of incremental loss ratios.

year, showing the development pattern of losses over time. A comparison of the
two panels suggests a strong accident year effect in workers’ compensation and
a higher volatility in commercial auto liability. We also observe a larger ultimate
loss ratio in commercial auto liability line, presumably because of the relatively
lower legal costs.

To obtain some knowledge on the correlation between the two lines of busi-
ness, the third panel in Figure 1 presents the scatter plot of incremental loss
ratios. This plot suggests a strong positive, although nonlinear, relationship
with the corresponding Pearson correlation 0.911. Note that the scatter plot de-
scribes a pair-wise correlation. However, a common calendar year effect could
introduce correlation between different lines as well as within a single line. Thus,
the loss ratios in each calendar year are differentiated by a unique symbol. We
observe the heterogeneity in correlation cross calendar years, indicating a mixed
effect of calendar year correlation and pair-wise correlation.

4.2. Model inference

The five classes of models described in Section 2.3 are estimated using the
likelihood-based method. The model selection criteria suggest that the best
model assumes the Tweedie’s compound Poisson distribution for the two lines
of business in the insurance portfolio, with the fixed effects of both accident
year and development year for the workers’ compensation and the fixed effects
of only development year for the commercial auto liability. A Gaussian copula
is used to accommodate the association among different lines due to common
calendar year effect as well as line-specific effect. Table 1 summarizes the estima-
tion results for the best model with associated confidence interval derived using
the bootstrap method.

Consistent with Figure 1, we observe strong effects of both accident year
and development year for the workers’ compensation and the effects of only
development year for the commercial auto liability. The higher power parame-
ter of the Tweedie model for the commercial auto liability suggests the higher
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TABLE 1

PARAMETER ESTIMATES FOR THE COPULA MODEL.

Workers’ Compensation Commercial Auto Liability

Estimate 95% CI Estimate 95% CI Estimate 95% CI

int −1.606 [−1.715, −1.499] int −1.399 [−1.514, −1.288]
α2 0.045 [−0.069, 0.158] β2 0.077 [0.003, 0.150] α2 −0.298 [−0.469, −0.129]
α3 0.040 [−0.079, 0.159] β3 −0.642 [−0.736, −0.550] α3 −0.764 [−0.961, −0.571]
α4 −0.219 [−0.349, −0.089] β4 −1.329 [−1.457, −1.206] α4 −1.056 [−1.281, −0.841]
α5 −0.282 [−0.417, −0.146] β5 −1.770 [−1.933, −1.614] α5 −1.456 [−1.726, −1.199]
α6 −0.242 [−0.382, −0.103] β6 −2.552 [−2.801, −2.321] α6 −1.967 [−2.316, −1.651]
α7 −0.256 [−0.403, −0.109] β7 −3.415 [−3.820, −3.062] α7 −2.290 [−2.719, −1.910]
α8 −0.459 [−0.625, −0.297] β8 −3.833 [−4.401, −3.361] α8 −5.570 [−6.708, −4.005]
α9 −0.290 [−0.463, −0.119] β9 −6.897 [−24.592, −4.444] α9 −5.958 [−7.516, −3.649]
α10 −0.161 [−0.383, 0.053] β10 −10.502 [−28.983, −4.184] α10 −22.268 [−34.156, −4.739]
p 1.165 [1.013, 1.480] p 1.387 [1.166, 1.715]
φ 0.002 [0.001, 0.005] φ 0.019 [0.008, 0.039]
c1 0.272 [0.021, 0.442]
c2 0.511 [0.427, 0.566]
c12 0.226 [−0.061, 0.577]
s12 0.161 [0.017, 0.325]
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volatility in loss development. The association parameters in the copula func-
tion indicate the significant dependency between the two lines after controlling
for the effects in both accident years and development years. The results also
support the model assumption that the correlation between lines comes from
two sources: parameters c12 and s12 measure the correlation due to common
calendar year effects and line-specific effects, respectively, and parameters ci
or si (i = 1, 2) determine the weight of the two sources when arriving at the
pair-wise association among paid losses. For this particular insurance portfo-
lio, 14% of the association could be explained by calendar year effects and 82%
could be attributed to the pair-wise correlation. The implied correlation between
loss payments of the two lines represents a combined result. The correlation be-
tween lines has important implications on the reserve indication. To emphasize
this point, a simulation study is provided in Section A.3 to show the combined
effect of c12 and s12 on the implied correlation between incremental payments
and thus on the predictive distribution of outstanding liabilities of the insurance
portfolio.

To incorporatemodeling error into the prediction of unpaid losses, one needs
the distribution of M. Assuming that M contains all possible specifications in
the five classes in Section 2.3, we derive its probabilistic distribution using para-
metric bootstrap. Specifically, the pseudo-payments in bootstrap are generated
from the best model and then are used to calibrate the candidates. Then, M
takes the model chosen by the information-based model selection criteria. The
empirical distribution of M is estimated by repeating the model selection pro-
cess a large number of times.

4.3. Reserve indication

With the estimation results in the previous section, one could derive the predic-
tive distribution of unpaid losses. To illustrate, the resulting average predictive
distribution of loss reserves that takes account for the model error is displayed
in Figure 2. The model averaging is implemented using the selection distribu-
tion from SICc because it provides the most favorable results for this particular
insurance portfolio. Though not reported here, our analysis shows that other
model selection criteria could lead to significantly different predictions, empha-
sizing the predictive variability due to mis-specification error. Agreeing with a
previous analysis, we observe higher uncertainty in workers’ compensation than
commercial auto liability. In fact, the loss reserves are 18,839 [15,923, 22,006]
and 17,722 [15,840, 19,677] for the worker’s compensation and the commercial
auto liability, respectively, where the numbers in brackets represent the 95% con-
fidence band. When aggregating reserves from individual lines, one obtains the
reserve for the insurance portfolio. Our estimate is 36,561 with confidence inter-
val [32,893, 40,437]. The narrower confidence band than the silo method simply
demonstrates the diversification effect due to the positive association among
different lines in the portfolio.
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TABLE 2

COMPARISON OF RESERVING VARIABILITY.

Workers’ Comp Commercial Auto Insurance Portfolio

Conditioning on a model√
PE 755.303 1271.347 1478.786√
EE 1795.316 1110.040 2193.791√
MSEP 1947.728 1687.754 2645.661

Averaging over models√
PE 1040.853 1198.596 1587.453√
EE 1575.248 1974.456 2678.812√
ME 1311.468 99.751 1275.185√
MSEP 2298.854 2311.939 3364.839
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FIGURE 2: Predictive distribution of reserves for individual lines as well as the portfolio.

We conclude the analysis with a comparison between the two-component
MESP using (5) and the three-component MSEP using (7). The results for
each individual line as well as the insurance portfolio are exhibited in Table 2.
We condition on the model with the best fit in (5) and average over mod-
els with the SICc-based distribution in (7). The comparison shows that, first,
though the model error accounts for a small percentage of predictive variabil-
ity, it indeed introduces extra uncertainty in the prediction of reserves. Sec-
ond, the uncertainty of model mis-specification is lower in commercial auto
liability than in workers’ compensation, presumably due to the non-significant
effect along accident years. Finally, the subadditivity of MSEP demonstrates
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the diversification effects when aggregating losses from dependent lines of
business.

5. CONCLUSION

This article considered joint modeling run-off triangles from dependent lines of
business. We proposed a model-based reserving approach and showed its flexi-
bility in accommodating the unique features of the triangle data when compared
with existing studies. We focused on the family of elliptical copulas because its
dispersion matrix is a convenient vehicle to introduce various types of associ-
ation. In particular, the dependency structure was specified in a way that both
calendar year effects and pair-wise association could cause dependency among
triangles. To quantify the associated reserving variability, we took advantage of
the powerful parametric bootstrapping that allows for the incorporation of pa-
rameter uncertainty as well as model error into the reserving variability. We also
provided guidance on the calculation of the mean-squared error of prediction
accordingly.

The proposed method was applied to a casualty insurance portfolio con-
sisting of workers’ compensation and commercial auto liability from a U.S.
property-casualty insurer. We showed that the association along calendar years
was non-ignorable and the dependencies due to both calendar year effect and
pair-wise correlationwere well captured by the elliptical copula.When quantify-
ing the prediction uncertainty, we calibrated various models with different spec-
ifications. Our analysis suggested that the model mis-specification error should
be treated carefully, though its effect could be mitigated when an appropriate
model selection criterion is used.
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MERZ, M., WÜTHRICH, M. and HASHORVA, E. (2013) Dependence modeling in multivariate
claims run-off triangles. Annals of Actuarial Science, 7(1), 3–25.

MEYERS, G. and SHI, P. (2011) The retrospective testing of stochastic loss reserve models. Casualty
Actuarial Society E-Forum, Summer 2011, http://www.casact.org/pubs/forum/11sumforum/.
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SALZMANN, R. and WÜTHRICH, M. (2012) Modeling accounting year dependence in runoff tri-
angles. European Actuarial Journal, 2(2), 227–242.

SHI, P. (2012) Multivariate longitudinal modeling of insurance company expenses. Insurance:
Mathematics and Economics, 51(1), 204–215.

SHI, P., BASU, S. and MEYERS, G. (2012) A Bayesian log-normal model for multivariate loss re-
serving. North American Actuarial Journal, 16(1), 29–51.

SHI, P. and FREES, E. (2011) Dependent loss reserving using copulas. ASTIN Bulletin, 41(2), 449–
486.

SMYTH, G. and JøRGENSEN, B. (2002) Fitting Tweedie’s compound Poisson model to insurance
claims data: Dispersion modelling. ASTIN Bulletin, 32(1), 143–157.

SUGIURA, N. (1978) Further analysis of the data by Akaike’s information criterion and the finite
corrections. Communications in Statistics: Theory and Methods, 7(1), 13–26.

SUN, J., FREES, E. and ROSENBERG, M. (2008) Heavy-tailed longitudinal data modeling using
copulas. Insurance Mathematics and Economics, 42(2), 817–830.

TWEEDIE, M. (1984) An index which distinguishes between some important exponential families.
In Statistics: Applications and New Directions. Proceedings of the Indian Statistical Institute
Golden Jubilee International Conference (eds. J. Ghosh and J. Roy), pp. 579–604. Calcutta,
India: Indian Statistical Institute.
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WÜTHRICH, M. (2012) Discussion of “A Bayesian log-normal model for multivariate loss reserv-
ing”. North America Actuarial Journal, 16(3), 398–401.
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APPENDIX

A.1 Technical notes

Proof of (4):

R̂BM = E
[
R̃M|YU ,M] =

∫
E [R|θ ,M] f (θ |YU,M)dθ

=
∫

R
[∫

f (R|θ ,M) f (θ |YU,M)dθ

]
dR=

∫
R

[∫
f (R, θ |YU,M)dθ

]
dR

=
∫

Rf (R|YU,M)dR= E
[
R|YU,M]

.

Proof of (5):

MSEPR|YU ,M
(
R̂BM

) = E
[(
R− R̂BM

)2 |YU,M
]

= Var
[
R|YU ,M] + E

[(
E

[
R|YU,M] − R̂BM

)2 |YU,M
]

= E
[
Var(R|θ ,M)|YU,M] + Var

[
E(R|θ ,M)|YU ,M]

= E
[
ṼM|YU ,M] + Var

[
R̃M|YU ,M]

.

Proof of (6):

R̂B = E
[
R̃|YU

] = E
[
E [E [R|θ ,M] |θ ] |YU

]
=

∫ ∫ ∫
Rf (R|θ ,M) f (M|θ) f (θ |YU)dMdRdθ

=
∫ ∫

Rf (R|θ) f (θ |YU)dRdθ =
∫

E [R|θ ] f (θ |YU)dθ

=
∫

Rf (R|YU)dR= E
[
R|YU

]
.

Proof of (7):

MSEPR|YU
(
R̂B

)
= E

[(
R− R̂B

)2 |YU
]

= Var
[
R|YU

] + E
[(
E

[
R|YU

] − R̂B
)2 |YU

]
= E

[
Var(R|M)|YU

] + Var
[
E(R|M)|YU

]
= E

[
E [Var[R|θ ,M]|M] |YU

] + E
[
Var [E[R|θ ,M]|M] |YU

] + Var
[
E [E[R|θ ,M]|M] |YU

]
= E

[
E

[
ṼM|M] |YU

] + E
[
Var

[
R̃M|M] |YU

] + Var
[
E

[
R̃M|M] |YU

]
.

A.2 Run-off triangles

See Tables A.1 and A.2.
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TABLE A.1

INCREMENTAL PAID LOSSES FOR WORKERS’ COMPENSATION.

Development Lag

Accident Year 0 1 2 3 4 5 6 7 8 9

1988 3,178 3,225 2,420 1,063 733 334 121 23 27 19
1989 3,708 4,982 3,039 1,300 970 285 285 54 13
1990 5,220 5,771 2,628 1,566 770 458 42 260
1991 4,198 4,874 2,040 1,148 669 328 128
1992 3,597 3,878 1,578 794 616 244
1993 4,281 4,134 1,855 1,233 442
1994 5,329 5,401 2,171 626
1995 4,631 4,475 1,641
1996 4,217 4,530
1997 4,169

TABLE A.2

INCREMENTAL PAID LOSSES FOR COMMERCIAL AUTO LIABILITY.

Development Lag

Accident Year 0 1 2 3 4 5 6 7 8 9

1988 2,491 1,935 1,058 791 269 284 275 0 8 4
1989 2,526 2,164 1,383 963 1,103 171 63 5 46
1990 2,760 1,682 1,087 1,436 568 659 727 64
1991 2,633 2,491 1,688 375 695 506 15
1992 2,502 2,278 1,010 915 488 280
1993 3,226 1,872 1,678 1,557 686
1994 3,567 2,229 1,757 769
1995 3,215 2,410 1,030
1996 3,516 2,509
1997 3,628

TABLE A.3

CORRELATION OF UNPAID LOSSES AMONG LINES OF BUSINESS.

ω12

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

−0.75 −0.676 −0.499 −0.396 −0.159 −0.107 0.098 0.181
−0.50 −0.549 −0.368 −0.317 −0.115 −0.082 0.101 0.261
−0.25 −0.527 −0.419 −0.194 −0.110 0.031 0.116 0.309

λ12 0.00 −0.434 −0.320 −0.072 0.103 0.120 0.221 0.381
0.25 −0.329 −0.183 −0.031 0.041 0.278 0.368 0.538
0.50 −0.237 −0.134 −0.019 0.174 0.300 0.457 0.541
0.75 −0.118 −0.078 0.065 0.316 0.384 0.497 0.632
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FIGURE 3: Simulated distribution of the outstanding liability of the insurance portfolio.
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A.3 Simulated correlation effects

It is well known that the dependencies among losses from different lines of business have a
great implication on the determination of reserves and the associated predictive variability
for the portfolio that aggregates losses from individual lines. This section provides a sim-
ple simulation study to show that the proposed method offers such flexibility to capture the
complicated dependence structure within and between individual lines.

In this work, the dependency between workers’ compensation and commercial auto lia-
bility is accommodated by� and�, where λ12 introduces the correlation due to calendar year
effect andω12 introduces the pair-wise correlation. To illustrate theway that such specification
affects the correlation between payments in the two triangles, we present in Table A.3 the im-
plied correlation coefficients based onMonte Carlo simulations under different combinations
of (λ12, ω12). In the simulation, we fix other association parameters at their estimated value,
i.e. c1 = 0.272 and c2 = 0.511. Apparently, the correlation among payments is determined
jointly by λ12 and ω12: when fixing either one of the two parameters, increasing the other one
increases the correlations. Thus extra flexibility is gained when allowing the two parameters
to determine the dependence structure among triangles.

To further demonstrate the implications of dependency on reserve prediction, we show
the predictive distribution of the outstanding liabilities for the insurance portfolio in Figure 3.
The first panel shows the prediction under different c12 while holding s12 at its estimates 0.161.
Similarly, the second panel shows the prediction under different s12 when fixing c12 at its
estimates 0.226. First, we see that in both panels a larger association parameter lead to a
wider predictive distribution, since a larger association parameter results in a higher implied
association among losses and thus a weaker diversification effect. The implication for risk
management practice is that the risk capital could be reduced when taking advantage of the
dependencies among different lines of business. Second, the effect of s12 on diversification
effects is larger than that of c12. This is because that implied correlation among losses is also
affected by the parameters ci or si (i = 1, 2) that determine the weight of calendar year effect
and pair-wise correlation. Recall that for our insurance portfolio, only 14%of the dependency
is attributed to the common calendar year effect.
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