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The three-dimensional incompressible flow past a rectangular two-dimensional
shallow cavity in a channel is investigated using large-eddy simulation (LES). The
aspect ratio (length/depth) of the cavity is L/D =2 and the Reynolds number defined
with the cavity depth and the mean velocity in the upstream channel is 3360. The
sensitivity of the flow around the cavity to the characteristics of the upstream flow
is studied by considering two extreme cases: a developing laminar boundary layer
upstream of the cavity and when the upstream flow is fully turbulent. The two
simulations are compared in terms of the mean statistics and temporal physics of
the flow, including the dynamics of the coherent structures in the region surrounding
the cavity. For the laminar inflow case it is found that the flow becomes unstable
but remains laminar as it is convected over the cavity. Due to the three-dimensional
flow instabilities and the interaction of the jet-like flow inside the recirculation region
with the separated shear layer, the spanwise vortices that are shed regularly from the
leading cavity edge are disturbed in the spanwise direction and, as they approach
the trailing-edge corner, break into an array of hairpin-like vortices that is convected
downstream the cavity close to the channel bottom. In the fully turbulent inflow case
in which the momentum thickness of the incoming boundary layer is much larger
compared to the laminar inflow case, the jittering of the shear layer on top of the
cavity by the incoming near-wall coherent structures strongly influences the formation
and convection of the eddies inside the separated shear layer. The mass exchange
between the cavity and the main channel is investigated by considering the ejection
of a passive scalar that is introduced instantaneously inside the cavity. As expected,
it is found that the ejection is faster when the incoming flow is turbulent due to
the interaction between the turbulent eddies convected from upstream of the cavity
with the separated shear layer and also to the increased diffusion induced by the
broader range of scales that populate the cavity. In the turbulent case it is shown
that the eddies convected from upstream of the cavity can play an important role
in accelerating the extraction of high-concentration fluid from inside the cavity. For
both laminar and turbulent inflow cases it is shown that the scalar ejection can be
described using simple dead-zone theory models in which a single-valued global mass
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exchange coefficient can be used to describe the scalar mass decay inside cavity over
the whole ejection process.

1. Background
Cavity flows are encountered in many engineering applications, for example in the

bomb bay and landing systems of aircraft, in the sunroof on cars or in flow over ground
vehicles. In these flows the incoming boundary layer at the leading edge of the cavity
may be laminar or turbulent. The effect of pressure and velocity oscillations induced by
the eddies generated in the shear layer on top of the cavity is to generate aero-acoustic
noise and vibrations that can eventually increase the fatigue of these structures. For
environmental applications, the presence of cavity-like geometries in rivers, lakes or
urban canyons, especially under stratified conditions, is of interest because of the
transport processes (toxic air, pollutants, nutrients, suspended sediments, aerosol,
etc.) that occur between the cavity and the main flow current. Thus the quantitative
characterization of the mass exchange between the cavity and the surrounding is highly
important. Pollutant, denser water or toxic air may accumulate in these cavities and
produce a stagnant pool which may be harmful to the environment. For instance, if
the ejection of the pollutant or stagnant water inside cavity-like regions in rivers is
too slow, fish that generally use these low-velocity regions for shelter from predators
or environmental stressors (e.g. pollution), feeding and reproduction purposes would
have to avoid them. Another environmental application is related to the release of
chemical toxic substances into an urban canyon whose shape resembles in many cases
that of a cavity. In the case of the purging of a pollutant or other hazardous substance
that accumulates or was dumped intentionally or accidentally into a cavity, accurate
prediction of the travel time, maximum concentration and spreading of the pollutant
cloud requires accurate quantification of the exchange processes between the main
channel and the cavity region. In all these examples the flow upstream of the cavity
is generally fully turbulent and incompressible.

The main feature of low-Mach-number cavity flows in what is called the shear
layer mode (which is investigated in the present numerical study) is the presence of a
complex mechanism which consists of the generation of vortices at the leading edge
of the cavity due to Kelvin–Helmholtz instabilities, followed by their convection and
impingement on the trailing-edge. This leads to injection of patches of vorticity inside
the cavity in an unsteady fashion. Strong fluctuations develop at the trailing-edge
corner due to its interaction with these patches of vorticity. These interactions are
expected to be quasi-regular in the case of an incoming laminar boundary layer
and fairly random for a highly turbulent incoming flow especially if the incoming
boundary layer thickness is large. As discussed by Lin & Rockwell (2001), the
possible forcing of the separated shear layer by the unsteady recirculating flow within
the cavity may affect the overall growth and energy amplification in the shear layer
as well as the growth of secondary instabilities that are responsible for the spanwise
three-dimensionality of the separated shear layer. Rockwell & Knisely (1980) studied
experimentally the spanwise structure of the separated shear layer and observed a
secondary longitudinal instability that acts on the primary instability associated with
the growth of the spanwise oriented vortex tubes. In these flows, it was observed that
the form and strength of the pressure and velocity oscillations are strongly dependent
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on the cavity geometry (length to depth ratio) and the flow conditions (Reynolds
number, incoming boundary layer characteristics, etc.).

For quasi-incompressible flows, Sarohia (1977) studied experimentally the flow
around an axisymmetric cavity and measured the minimum cavity length for
oscillations to occur over the cavity. He focused on the study of the variation of
velocity fluctuations along the shear layer on top of the cavity and found that
the oscillations jumped to a higher (frequency) mode as the length was increased.
Rockwell (1977) and Rockwell & Naudasher (1978) predicted the main oscillatory
frequency for incompressible flow over two-dimensional cavities based on linear
inviscid stability theory (laminar conditions at separation). The predictions agreed
well with the experimental data of Ethembabaoglu (1973). Knisely & Rockwell (1982)
studied the streamwise amplification of the shear layer oscillations and their spectral
content for the flow over a rectangular cavity in the shear layer mode. They showed
that besides the fundamental oscillatory frequency, a number of additional, primarily
lower frequency, oscillations can exist. The energy associated with these modes can
be comparable to that of the fundamental oscillatory frequency. Neary & Stephanoff
(1987) studied the shear layer properties of the flow in a shallow cavity (length
over depth ratio L/D = 3.5) with a laminar boundary layer upstream of the cavity.
Pereira & Sousa (1994, 1995) studied the incompressible flow past a rectangular cavity
with turbulent upstream conditions at a moderate Reynolds number (ReD = 3360), in
particular the influence of the trailing-edge geometry on the flow inside the separated
shear layer and cavity. Lin & Rockwell (2001) used particle image velocimetry (PIV)
techniques to study the flow over a two-dimensional cavity (ReD ∼ 27 800) with
a turbulent boundary layer inflow (momentum thickness was θ ∼ 0.049D). They
found that the large-scale eddies in the separated shear layer scale with the mean
momentum thickness of the boundary layer at separation. The frequency of their
formation was close to the one predicted by inviscid theory. They attributed the
presence of smaller eddies that oscillate at higher frequencies inside the shear layer
to the incoming flow structures that are present in the approach turbulent boundary
layer. Cross-wire anemometer and laser Doppler velocimetry (LDV) measurements
of the flow field within a shallow cavity (L/D =4) were recently performed by Grace,
Dewar & Wroblewski (2004) for the case of both a laminar and a turbulent incoming
boundary layer (ReD =12 500 and ReD = 24 800). In both cases measurements of the
velocity spectra in the separated shear layer did not predict any peaks that would
correspond to the quasi-regular formation of large-scale eddies in the separated shear
layer, suggesting that the cavity was in the non-resonating regime in contrast to Lin
& Rockwell’s results. The detailed LDV measurements showed that the distribution
of the Reynolds shear stress was strongly dependent on the upstream flow conditions.

Most numerical investigations of cavity flows, especially the ones in which eddy
resolving techniques like direct numerical simulation (DNS) or large-eddy simulation
(LES) were used, have focused on the compressible case (both subsonic and supersonic
regimes) with a developing laminar or, in the case of LES, relatively thin turbulent
incoming boundary layer. Among recent DNS studies are the two-dimensional DNS
investigations of Rowley, Colonius & Basu (2002) who investigated the subsonic
flow (Mach number, Ma =0.2−0.8) over two-dimensional cavities of different aspect
ratios with laminar inflow conditions (ReD =1500). The investigation focused on
the differences between the flow past cavities in the shear layer mode and in
the wake mode, as well as on the transition between them. Shieh & Morris
(2001) performed three-dimensional Reynolds-averaged Navier–Stokes (RANS) and
detached eddy simulation (DES) calculations of the flow over two-dimensional and
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three-dimensional cavities at Ma =0.6 and ReD = 2 × 105. A turbulent boundary
layer profile was specified upstream of the cavity. The wake mode was found to
be present in the simulations of the two-dimensional cavities, and the shear mode
in their simulations of flow past three-dimensional cavities. Gloerfelt et al. (2002)
performed three-dimensional DNS simulations at Ma = 0.6 − 0.8 for two-dimensional
cavities with a laminar inflow boundary layer on fine meshes (∼ 5.4 × 106 cells). They
also used three-dimensional LES to study the case in which a turbulent incoming
boundary layer was present. Larchevêque et al. (2003) performed LES of subsonic
(Ma = 0.8) flow over a deep cavity (L/D = 0.42) at a Reynolds number, defined
with the length of the cavity, of 860 000 using both a mixed subgrid-scale model
in which case a mixed two-dimensional/three-dimensional method was used and a
monotonically integrated large-eddy simulation (MILES) scheme in which case full
three-dimensional simulations were performed. Wall functions were used, and the
mesh sizes were in the range of 0.7 × 106 to 1.7 × 106 cells. Overall, they found
good agreement with the experimental data of Forestier, Jacquin & Geffroy (2003).
The same group (Larchevêque et al. 2004) performed simulations of the flow over a
shallow cavity (L/D = 5.0) at Re =7 × 106 and Ma =0.85 on a mesh with 6 × 106 cells
and demonstrated that the upstream part of the separated shear layer is dominated
by the Kelvin–Helmholtz instability that appears to be forced near the origin of the
layer, while the downstream zone behaves similarly to a free mixing layer over which
spreading is linear. They used spectral analysis to investigate in detail the dynamics
of the coherent structures and the characteristics of the Rossiter modes.

For incompressible cavities, Pereira & Sousa (1995) used two-dimensional DNS
to study the coupling between the shear layer and the recirculating flow in a two-
dimensional cavity. Yao, Cooper & Raghunthan (2001) used LES with a dynamic
subgrid-scale model to calculate the flow past a three-dimensional cavity (L/D = 4.0,
W/L =3.0, where W is the width of the cavity). A laminar Blasius profile was assumed
at the inlet. The authors are not aware of any three-dimensional LES or DNS of
the incompressible flow over a cavity for the case in which the incoming flow is fully
turbulent.

The objectives of the present paper are to use highly resolved simulations to:
(i) examine three-dimensional flow features of incompressible cavity flows with a
laminar boundary layer and fully turbulent flow upstream of the cavity, in particular
the changes in the shear layer structure between the two regimes; (ii) investigate
the influence of the recirculating flow inside the cavity on the separated shear layer;
(iii) study the nature of the interactions between the large-scale eddies and the trailing-
edge corner; (iv) study the amplification of the instabilities and/or turbulence in the
shear layer on the top of the cavity; (v) investigate the effect of the near-wall coherent
structures that are present in the approach channel on the dynamics of eddies inside
the separated shear layer and ultimately on the nature of the interactions between
these eddies and the trailing-edge corner for the case in which the incoming flow is
fully turbulent; (vi) investigate the mass exchange processes between the cavity and
the channel by studying the ejection of a passive scalar introduced instantaneously
inside the cavity; (vii) quantify the acceleration of the purging process in the case in
which the flow upstream of the cavity is fully turbulent.

2. Numerical method
In the present work, a non-dissipative massively parallel finite-volume DNS/LES

code developed by Pierce & Moin (2001) is employed. The code solves the conservative
form of the incompressible Navier–Stokes equations on non-uniform Cartesian
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Figure 1. Computational domain.

meshes. The Pressure Poisson algorithm uses a staggered conservative space–time
discretization with a semi-implicit iterative method to advance the equations in
time such that the algorithm is second-order accurate in space and time. The
numerical method discretely conserves energy. This ensures robustness at relatively
high Reynolds numbers while using strictly non-dissipative (central) discretizations
to solve for the momentum and pressure. The scalar transport is modelled using
an advection–diffusion equation in which the convective terms are discretized using
QUICK scheme to alleviate the problems associated with the formation of wiggles in
the scalar fields. For LES, the subgrid-scale viscosity and diffusivity coefficients are
calculated dynamically (Pierce & Moin 2001). The viscous Schmidt number Sc was
taken equal to 1. No assumptions are needed on the value of the turbulent Schmidt
number as the dynamic procedure estimates directly, based on the resolved velocity
and concentration fields, the value of the eddy diffusivity. The code was parallelized
using MPI. Details on the numerical method and code validation for non-reacting
and reacting flow simulations are available in Pierce & Moin (2001).

3. Simulations overview
The computational domain considered in the present work is similar to that in the

water tunnel experiments of Pereira & Sousa (1994, 1995) for which the upstream
flow was turbulent. The aspect ratio (length/depth) of the shallow cavity is L/D =2
and the Reynolds number ReD defined with the cavity depth (D) and the mean
velocity in the upstream channel (U ) is 3360. The Reynolds number defined with
the upstream channel height is ReH =20 450. Figure 1 shows the overall geometry
and computational domain. The length of the computational domain in the spanwise
direction is equal to 6D. The flow in the simulations is considered to be periodic in
the spanwise direction (two-dimensional cavity). The mesh size is close to 14 million
cells (320 × 224 × 192 in the streamwise, vertical and spanwise directions). The first
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ReD δ/D δ∗/D θ/δ H θ/L L/θ Reδ

Laminar 3360 0.18 0.07 0.160 2.50 0.0144 69.5 604
Turbulent 3360 2.50 0.43 0.110 1.55 0.134 7.2 8400
Experiment 3360 2.48 – 0.097 – 0.121 8.3 8382

Table 1. Boundary layer parameters for the present simulations and experiment of Pereira &
Sousa (1995).

point away from the solid surfaces is located at about 0.15 wall units (assuming
turbulent flow and a mean friction velocity of uτ/U ∼ 0.05); the characteristic cell
size in the cavity region is close to 6 wall units. In the spanwise direction the grid
spacing is about 5 wall units which is sufficient to accurately resolve the low- and
high-speed streaks in the near-wall region. The resolution in the cavity region for the
turbulent inflow case is comparable to DNS requirements. All the walls were treated
as no-slip surfaces and no wall functions were used. At the outflow a convective
boundary condition was used. A statistically steady solution was obtained after about
50D/U after which statistics were collected over 100D/U . The sensitivity of the flow
to the characteristics of the upstream flow is studied by considering two extreme cases.
In the first case the velocity profile immediately upstream of the cavity corresponds
to a developing laminar boundary layer, while in the second case the flow is fully
turbulent.

In the laminar inflow case (LC) the flow in the inlet section is uniform and no
fluctuations are added in time. The solution is jittered at the start of the simulation
to allow instabilities to develop. At the leading cavity edge the thickness of the
developing boundary layer (Blasius profile) is δ/D =0.18. The other characteristics of
the boundary layer at separation, including the displacement thickness δ∗, momentum
thickness θ and the shape factor H , are indicated in table 1. The flow is observed
to remain laminar over the cavity and immediately downstream of it. This is not a
consequence of the subgrid-scale viscosity introduced by the LES model. The dynamic
model was found to predict very low values of the subgrid-scale viscosity compared
with the molecular viscosity over practically the whole domain. This is expected to
happen in a simulation using a dynamic LES model in regions in which the flow
remains laminar.

In the fully turbulent inflow case (TC), the instantaneous velocity components
at the inflow section were obtained from a preliminary simulation of the flow in a
straight channel of identical section to the one which contains the cavity on its bottom
wall. In this simulation the flow was assumed periodic in the streamwise direction
and the channel Reynolds number was identical to the corresponding one in the full
simulation that included the cavity (ReH =20 450). The instantaneous velocity fields
were then fed in a time accurate way through the inlet section during the simulation of
the flow past the cavity. In this way the incoming flow contains the expected near-wall
coherent structures including the wall streaks that are accurately resolved in both the
preliminary channel simulation and the cavity simulation. Table 1 contains the para-
meters characterizing the incoming turbulent boundary layer at the cavity leading edge
corresponding to the fully turbulent inflow simulation and the experiment (Pereira &
Sousa 1994, 1995). The measured turbulence intensity at the channel centreline
upstream of the cavity was 4 % in the experiment and about 3.6 % in the LES.

The mass exchange between the cavity and the main channel is investigated by
considering the ejection of a passive scalar that is introduced instantaneously at a
certain time (after the velocity fields become statistically steady) inside the cavity
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(c)(a) (b)

Figure 2. Mean flow streamlines: (a) laminar; (b) turbulent; (c) experiment of Pereira &
Sousa (1994).
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Figure 3. Momentum and shear layer (vorticity) thickness over the cavity, with mean slope
as shown by dashed lines: (a) θ laminar; (b) δω laminar; (c) θ turbulent; (b) δω turbulent.

domain (2D × 1D × 6D). The non-dimensional scalar concentration C is initialized as
C = 1 inside the cavity and C = 0 outside it at the time at which the mass exchange
process between the channel and the cavity starts. This time is formally taken as
t = 0D/U .

4. Results and discussion
4.1. Mean quantities and flow statistics

Figure 2 shows the mean streamlines corresponding to the two simulations along with
the ones determined from the experiment. Two large recirculation eddies are observed
in both simulations, though in the TC the main downstream recirculation eddy is
smaller compared to the LC. The size and relative position of the two main eddies
inside the cavity for the TC are very similar to the corresponding (sharp trailing-edge
corner experiment) mean flow streamlines visualizations of Pereira & Sousa (1994). In
particular, the simulation (compare figures 2b and 2c) captures very well the elongated
shape of the main recirculation eddy in the upper upstream region of the cavity.

The shear layer on top of the cavity is expected to differ from a mixing layer mainly
due to the effect of the cavity flow below that can modify the entrainment rate. The
momentum thickness (θ) and the vorticity shear layer thickness (δω) variation over
the cavity are plotted in figure 3. Though normally the momentum thickness is used
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to characterize the shear layer thickness growth, because of the presence of the cavity
and the associated recirculation region, there is some ambiguity in defining it for
the case of the flow over cavity. The vorticity thickness which is a measure of the
maximum local shear is defined in a non-ambiguous way.

In the LC (L/θ =69.5) the spreading rate varies between 0.035 (x/D < 1) and
0.17 (1.4 < x/D < 1.7). For x/D > 1.7 the blocking effect due to the presence of
the trailing-edge induces a sharp decay in the spreading rate. The averaged rate of
dδω/dx (x < 1.7) is 0.07 which is close to those obtained by Rowley et al. (2002) in
their two-dimensional DNS compressible flow simulations with an incoming laminar
boundary layer. The mean spreading rates in their simulations were 0.05 for L/θ = 59
and 0.07 for L/θ = 90. The values obtained by Sarohia (1977) for similar conditions
were 0.056 and 0.064. The main difference with Sarohia’s results is the rather sharp
increase in the spreading rate around x/D = 1. This is because for our conditions (no
fluctuations added at the inflow) the separated shear layer starts shedding relatively
late, at around x/D = 1 (see also discussion of figure 8). When the shedding of the
quasi-two-dimensional spanwise vortices starts, the growth of the shear layer thickness
should be larger. A secondary effect that contributes to this accelerated growth is
the fact that the growth of the three-dimensional instabilities over the second half
of the cavity length is larger (e.g. formation of the hairpin vortices as a result of
the interactions with the trailing-edge corner) and the downstream part of the cavity
contains more three-dimensional structures. Interestingly, the spreading rate of the
momentum thickness is relatively constant at around 0.015 (0 < x/D < 1.6) which
is within the range measured by Sarohia (1977) for laminar thin incoming boundary
layers with similar values of L/θ at x/D = 0 and in which the second mode of
oscillation was observed in experiments.

As expected the growth rate of δω is higher in the TC. The spreading rate is close
to 0.18 for x/D < 0.7 and then is practically constant at 0.35 for 1 < x/D < 1.7.
The value of dδω/dx over the upstream part of the cavity (x/D = 0.7) is very close
to that measured by Brown & Roshko for a turbulent free shear layer (0.162). As
shown later (e.g. see discussion of figure 16) the near-wall structures convected from
upstream of the cavity strongly disturb from above the vorticity sheet associated with
the separated shear layer. As a result of these interactions, for x/D > 0.7 patches of
isolated vorticity are forming and are then convected toward the trailing-edge corner
(see discussion of figures 9 and 11). Instantaneous visualizations of the evolution of
these three-dimensional eddies show that merging occurs frequently, pointing to the
strong nonlinear interactions among these eddies as a possible mechanism responsible
for the higher growth rates for x/D > 0.7. A secondary effect that is taking place
around x/D =0.8 − 1 is the forcing due to the modulations in the intensity of
the jet-like flow inside the cavity. Due to the interactions with the trailing-edge
corner, patches of vorticity are entrained inside cavity and then recirculated. As they
approach the top of the cavity they further jitter from below the structures present
in the downstream part of the shear layer on top of the cavity and contribute to the
overall growth of the shear layer over this region. The momentum thickness growth
rate is around 0.01 for x/D < 0.7 and close to 0.036 for 1 < x/D < 1.7 which is
within the typical range (0.03–0.04) expected for turbulent incoming boundary layers
(Gloerfelt et al. 2002; Larcheveque et al. 2003, 2004; Forestier et al. 2003). Note that
the range of 0.03–0.04 corresponds to thin incoming boundary layers (L/θ > 60)
while in our case L/θ ∼ 8. The reasons for the change in the growth rate of θ are
same as the ones given for δω. The variation of dθ/dx over the cavity is different
to that observed for an incoming thin turbulent boundary layer by Larcheveque
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Figure 4. Mean streamwise velocity profiles at different streamwise stations. Symbols
correspond to the experiment of Pereira & Sousa (1995).

et al. (2003). In their simulation a region of large spreading rates was identified over
the upstream part of the cavity. The main reasons identified by the authors were the
pairing of quasi-two-dimensional vortices observed to occur over the initial region
on top of the cavity and the subharmonic forcing by pressure waves. In our TC
case (figures 8 and 16) no quasi-two-dimensional vortices are present in the separated
shear layer.

The comparison of the longitudinal mean velocity profile with the experimental data
of Pereira & Sousa (1995) is shown in figure 4 at seven stations from x/D = − 0.1 to
x/D =2.1. A very good agreement is observed at all stations between the experimental
data and the TC predictions. In the LC the profiles show clear differences with the
experiment, especially across the shear layer and above it, but this is expected as in
the experiment the flow upstream of the cavity was turbulent. In the LC the decay
of vorticity inside the separated shear layer is much sharper on the side toward the
channel and the streamwise decay of vorticity is much milder than in the TC. This
explains the very abrupt streamwise velocity variation across the shear layer observed
at all streamwise stations.

Profiles of the resolved normal stresses in all three directions and of the shear stress
u′v′ at different streamwise locations starting just upstream of the cavity (x/D = −0.1)
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Figure 5. Resolved stresses for laminar (solid line) and turbulent (dashed line) inflow cases
at different streamwise stations. Symbols correspond to experimental measurements of Pereira
& Sousa (1994). (a) u′u′; (b) v′v′; (c) w′w′; (d) u′v′.

and continuing until x/D = 1.7, close to the cavity trailing-edge (x/D =2) are shown
in figure 5 for the two simulations along with the experimental measurements of
Pereira & Sousa (1994). All the stresses are non-dimensionalized by the mean velocity
at the channel centreline upstream of the cavity (in the laminar case the value is equal
to the bulk velocity U ). For the LC the stresses correspond to the apparent stress
induced by the laminar instabilities and the convection of coherent structures present
in the separated shear layer and cavity regions. As the flow upstream of the cavity is
steady, the averaging process generates relatively high values only in the downstream
half of the shear layer and then inside the cavity and near the bottom of the channel,
downstream of the cavity. In the TC the resolved stress is a consequence of the
turbulence (small scales) and organized (large scales) motions. Though relatively
large streamwise fluctuations are observed in the incoming turbulent boundary layer
(the largest values are observed around a plane situated 0.09D from the channel
bottom), there is a significant intensification of these fluctuations inside the separated
shear layer. In the case of the spanwise and vertical fluctuations, the amplification is
present but takes place mostly over the downstream half of the detached shear layer
and in the downward jet-like flow close to the trailing-edge. Overall the vertical and
spanwise fluctuations are significantly lower than the streamwise ones.

The results corresponding to the TC are in good overall agreement with the
experimental data. For instance, the predicted distributions of u′u′ accurately capture
the peak values at practically all sections and the rates of decay across the separated
shear layer. As observed in figure 5(a), the decay is relatively mild toward the
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channel side. On the cavity side the TC simulation captures the secondary peak
in the streamwise normal stress at x/D =0.6 and x/D = 1.0 associated with the
detachment of the wall-jet-like current from the cavity bottom. Some disagreement
between simulation and experiment is however observed in the profile at x/D = 1.7 in
the region corresponding to the middle of the cavity. In the LC the flow at the cavity
leading edge is steady and flow remains laminar over the cavity. This explains the
fact that u′u′ is equal to zero at x/D = −0.1. Over the upstream part of the cavity the
shear layer starts oscillating but does not shed, thus the small peak value recorded
near y/D = 0.0 at x/D =0.6. Some larger values are recorded inside the cavity. They
are due to the quasi-periodic convection of patches of vorticity inside the cavity (see
also discussion of figure 10) followed by separation of the jet-like current similar to
the TC.

The vertical normal stress v′v′ distribution (figure 5b) in the TC is also in close
agreement with the experiment with the exception of stations x/D = 0.3 and 1.4
where on the channel side for y/D > 1 (y/D =−1 on the cavity bottom) larger
vertical fluctuations are observed in the experiment. The shape of the profile in
the incoming flow (x/D =−0.1) is very well reproduced but the levels are slightly
lower suggesting the mean turbulence level in the incoming flow was slightly lower
in the simulation compared to the experiment, which is indeed the case. This may
also explain the underestimation of v′v′ at the two stations. Unlike the variation of
u′u′ in the upstream part of the separated shear layer, the growth of v′v′ is milder
as the stress remains relatively low over the first third of the cavity length. The
simulation also predicts quite accurately the vertical fluctuation levels inside the main
recirculation eddy (e.g. see sections x/D =1.4 and 1.7 for y/D < 0). In the LC, the
vertical fluctuations are sharply amplified for x/D > 1.2. The quasi-regular shedding
of the coherent spanwise vortices induces very high values of the vertical fluctuations
close to the trailing-edge. Similarly to the evolution of the vertical stress, the spanwise
stress w′w′ (no measurements are available) starts being amplified substantially inside
the shear layer at x/D = 0.9 in the TC.

In both simulations the location of the maximum shear stress u′v′ rises slightly
over the mouth of the cavity in the latter half of the cavity. For example, in the TC
the maximum shear stress at x/D = 0.6 is located almost at the cavity mouth while
near the trailing-edge the maximum stress is located at about 0.05D above the cavity
mouth. This phenomenon was also observed by Neary & Stephanoff (1987). Most
probably this is a consequence of the interaction between the large-scale vortices
and the trailing-edge. Another possible explanation is that in the turbulent case the
turbulent eddies that are convected from upstream of the cavity interact with the
eddies inside the shear layer over the cavity. Sometimes the result of this interaction
is the formation of a larger coherent structure whose mean position is skewed toward
the channel side. The shear stress levels inside the shear layer (figure 5d), especially
for x/D > 1.4, are accurately predicted by the turbulent inflow simulation. The decay
of u′v′on the channel side at x/D = 1.0 is milder in the simulation; however the same
decay is very close to the experimental data at the upstream and downstream stations
situated at x/D = 0.6 and x/D = 1.4, respectively. In the LC, up to x/D = 1 the shear
stress is almost negligible; however it then grows at a higher rate than in the TC such
that the values are comparable near the trailing-edge corner.

4.2. Instantaneous data and spectral analysis

The time history of the vertical velocity at three stations situated just upstream of the
leading-edge corner (station 6), just downstream of it (7) and just upstream of the
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Figure 6. Vertical velocity time history for laminar (continuous line) and turbulent
(dashed line) inflow cases.

trailing-edge corner (10) are shown in figure 6. In the LC the flow is steady at station 6
(figure 6). Immediately downstream of the separation (station 7), the shear layer
starts oscillating regularly (see also inset in figure 6, station 7) at the fundamental
frequency corresponding to a Strouhal number St= f D/U =0.51 (figure 7a). The
amplitude of these oscillations is growing in the streamwise direction. Concomitantly,
very low-frequency modulations are clearly observed in the same time series. We
suspect that these very low-frequency oscillations are a consequence of the shear layer
interactions with the trailing-edge and with the recirculating motions inside the cavity.
The energy associated with these low-frequency oscillations is sensibly smaller than
that corresponding to the fundamental frequency. In the LC, the amplitude of the
pressure (not shown) and vertical velocity oscillations at the fundamental frequency
is amplified by 13–25 times between stations 7 and 10 situated 0.3D downstream of
the leading edge and 0.4D upstream of the trailing-edge. The amplification factor is
much smaller (close to two times) in the TC.

Vertical velocity power spectra at stations situated just below (stations 1 to 4) and
just over (stations 7 to 10) the cavity mouth (y/D =0) are shown in figure 7 for both
cases. Additionally, spectra at two stations (5 and 6) upstream of the cavity leading-
edge corner and at three stations (11 to 13) downstream of the trailing-edge corner
are included. In the LC, the velocity spectra contain only a few discrete energetic
frequencies (St =0.51, 1.02, 1.53 and St = 0.6, 1.2) in the region around the cavity. This
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Figure 7. Power spectra of vertical velocity for laminar (a) and turbulent (b) inflow cases.
The position of the stations is shown in the inset sketch. Spectrum at station 10 is also shown
on a log-log scale.

indicates that the flow remains laminar. The growth of Kelvin–Helmholtz instabilities
into large-scale oscillations takes place somewhere in between stations 7 (x/D = 0.25)
and 8 (x/D =0.75). The energy distribution in the spectra at the downstream stations
remains qualitatively similar. The most energetic frequency (St = 0.51) at all these
stations corresponds to the second mode frequency predicted by Rockwell (1977)
(St ∼ 0.5, see figure 7 in his paper with StL = 2St for L/D = 2) for incompressible
flow over a cavity with L/D = 2.0. The same frequency non-dimensionalized with
the momentum thickness of the boundary layer at separation is Stθ = f θ/U = 0.015.
The experimental data of Ethembababoglu (1973) for a cavity with L/D = 2.0 and
a laminar incoming boundary layer indicate values between 0.49 and 0.58 for the
Strouhal number associated with the second mode. For the second mode Sarohia
(1977) measured in his experiments over an axisymmetric cavity a Strouhal number
in the range 0.41 < St < 0.49 while Ahuja & Mendoza (1995) found St ∼ 0.55. In the
theoretical model of Howe (1997) the Strouhal number of the second mode for very
low-Mach-number cavity flows was predicted to be St = 0.68. Alvarez, Kerschen &
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Tumin (2004) found St ∼ 0.5 for the second mode of a two-dimensional cavity flow at
Ma =0.3 using their theoretical model. A secondary, much less energetic, frequency
is visible in the spectrum at around St =0.60 (along with its first harmonic in the
log-log plot of the spectrum) probably due to the three-dimensional jittering effect
by the recirculating flow. At the downstream stations the energy of the oscillations
associated with the fundamental frequency increases, e.g., by about one order of
magnitude between stations 8 and 10 (x/D = 1.25). The energy levels associated
with the discrete frequencies in the spectra reach their peak at stations 10 and 4 just
upstream of the trailing-edge corner and then start decaying downstream of the cavity.
The first harmonic of the fundamental mode (St = 1.02) is also observed in the spectra
downstream of station 9 (x/D = 1.25). The log-log spectrum at station 10 shows that
even the second harmonic (St = 1.53) is relatively energetic. The energy associated
with the fundamental frequency decreases sensibly faster than that associated with its
first harmonic downstream of the cavity, indicating an increase in the intensity of the
nonlinear interactions between the coherent structures (array of hairpin-like vortices)
as they are convected past the trailing-edge corner.

In the TC, as the flow upstream of the cavity is fully turbulent, the velocity at
stations 5 and 6 displays a broad spectrum with energetic frequencies up to St < 1.0.
At stations situated downstream of the leading edge corner the energy is increasing
considerably (by about eight times between stations 7 and 10) over the whole range of
energetic frequencies. Moreover, the energetic part of the spectrum appears to broaden
toward higher frequencies (St < 1.7). All this indicates an increase in the turbulence
intensity and the presence of smaller fairly energetic scales in the separated shear
layer as it approaches the trailing-edge. However, the energy amplification within the
separated shear layer is not the same for the main energetic frequencies. Up to the
trailing-edge the peak in the turbulent spectrum is observed to occur at St = 0.38
which corresponds to the first mode predicted by Rockwell’s (1977) analysis for
flow past a cavity with L/D = 2. This frequency is consistent with the estimated
value of the mean convection velocity of the coherent structures over the cavity (see
discussion of figure 12). It is also interesting to note that Lin & Rockwell (2001) in
their experiments with turbulent inflow identified the frequency associated with the
formation of large-scale patches of vorticity over the cavity to be Stθ =0.017 which
matches the value predicted by linear stability theory for a convective-type instability.
In their experiments this translates into St = 0.35 as D/θ = 20.32. This value is close
to our predicted value of St =0.38. Ahuja & Mendoza (1995) found St = 0.35 and
the theory of Howe (1997) for cavity tones in the limit Ma = 0 predicts St = 0.39 for
the first mode frequency. However, these oscillations in the TC are very different to the
ones observed in the LC where they were associated with the quasi-regular shedding
of two-dimensional spanwise vortices. Due to the large thickness of the incoming
boundary layer, no shedding of quasi-two-dimensional structures is observed in the
turbulent case. The second mode at St = 0.51, though constantly present in the spectra,
appears to be less energetic. Starting with station 9, the velocity spectra contain a
second very energetic frequency at St =0.185 which is close to the first subharmonic
of the fundamental frequency. The presence of this component near the trailing-edge
was also observed in the experiments of Lin & Rockwell (2001) in which the incoming
flow was turbulent. At downstream stations 12 and 13 the energy is decaying over
practically the whole spectrum. Pereira & Sousa (1995) predicted the most energetic
frequency to be St = 0.51 in their two-dimensional DNS simulations on fairly coarse
meshes. In fact, we also predicted a very similar spectrum to that of Pereira & Sousa
using three-dimensional detached eddy simulation on grids with about 0.5 × 106 cells
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(a) (b)

(c) (d)

(e) ( f )

0.5D

Figure 8. Instantaneous coherent structures visualized using the Q criterion in the laminar
and turbulent inflow cases; (a) laminar (T/4); (b) laminar (T/2); (c) laminar (3T/4);
(d) laminar (T ); (e) laminar xy-section (T/4); (f ) turbulent.

for the same flow. In these simulations the shedding of the shear layer vortices is
quasi-regular and their coherence over the span is very high, which is not the case in
the present LES simulation for TC (figure 8f ).

4.3. Coherent structures

The Q criterion proposed by Hunt, Wray & Moin (1988) was used to educe the
vortical structures in figure 8. The isosurface corresponds to Q =1.0(U/D)2. Figures
8(a) to 8(d) show the coherent structures T/4 apart in the LC, where T is the
period associated with the fundamental frequency (St =0.51). Figure 8(e) shows an
xy-section through the arrays of hairpin vortices that are convected downstream of
the cavity. Figure 8(f ) shows the coherent structures in the TC.

In the LC, spanwise aligned vortices are generated in the channel–cavity interface
region and eventually interact with the trailing-edge corner. The shedding starts in
the downstream half of the cavity and due to the relatively low aspect ratio (L/D = 2)
pairing of successively shed spanwise vortices does not occur. A secondary instability
acts on these spanwise vortices; it deforms their axis and induces thin streamwise
oriented weak vortices which sometimes connect two successive spanwise vortices.
The cavity trailing-edge significantly enhances the stretching of the primary spanwise
vortices and increases the intensity of three-dimensional vortical structures. The critical
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role of the interactions between the spanwise vortices and the trailing-edge corner
was also discussed by Rockwell & Knisely (1980). Their observations are consistent
with the above discussion. As the spanwise vortex approaches the corner, it is severely
deformed. The core is clipped into two parts, one that is convected downward inside
the cavity and one that is convected in the streamwise direction very close to the
channel bottom downstream of the cavity. As a result of the impingement process,
the vorticity convected downstream reorganizes itself into an array of hairpin-like
vortices that are generated across the whole span. This array of hairpin vortices
(figure 8e) is then convected downstream in a fairly regular fashion. The process is
quasi-periodic dictated by the fundamental frequency at which spanwise vortices are
shed in the separated shear layer. The mean width of these hairpin-shaped coherent
structures is 90 wall units, their length is 240 wall units and their height is around
85 wall units (we used the mean friction velocity in the channel upstream of the
cavity to non–dimensionalize the different dimensions). The distance between two
arrays of hairpin vortices immediately downstream of the cavity is 180 wall units. As
these rows of hairpin structures are convected downstream, secondary instabilities are
developing with the effect that some of the hairpins are growing in size while others
are diminishing. Sometimes partial merging is observed.

The relatively high level of organization of coherent structures in the LC is
practically lost in the TC (figure 8f ) due to the jittering of the separated shear layer by
the upstream turbulence and by the strong unsteady modulations of the recirculating
flow inside the cavity. In fact it appears that the upstream turbulence determines to
a great extent the development of disturbances downstream of separation. Snapshots
which show the time evolution of the coherent structures educed using the Q criterion
do not indicate the presence of any large dominant flow structures. More details
about the coherent structures present in the TC can be inferred from vorticity
contours in figure 9. Figure 9(a) shows instantaneous out-of-plane vorticity contours
in a plane positioned slightly over the cavity mouth at y/D = 0.05. Relatively large
elongated vorticity streaks formed in the upstream part of the channel (see also the
associated streamwise velocity streaks in the same plane shown in figure 16a) are
convected over the separated shear layer and are, in most cases, strongly interacting
with it. We think that most of these structures are related to the hairpin-like vortices
responsible for the formation of the low-speed streaks on the channel bottom. As
these streaks of vorticity are convected over the cavity, due to their strong interaction
with the separated shear layer and the recirculating flow beneath it, they lose their
predominantly elongated shape in the streamwise direction for x/D > 1. We shall
see (in discussion of figure 16) that the presence of these streaks over the channel
can have an important effect in terms of controlling the mass exchange processes
between the cavity and the channel. At times, the vorticity and energy levels inside
these predominantly streamwise oriented coherent structures are larger than the ones
inside the upstream part of the separated shear layer. In the yz-section situated
at middle cavity length x/D = 1 (figure 9c) one can see how the vorticity sheet is
severely disturbed compared to the LC. The vorticity levels around these disturbances
are significantly lower. This allows the momentum and mass transfer between the
cavity and the flow on top of it to intensify locally. Ejections of fluid from beneath
the separated shear layer into the overflow are visible in figure 9(c).

In the xy-section in figure 9(b) (TC) several high-vorticity patches associated with
the convection of the near-wall coherent structures from upstream of the cavity are
observed. As they move over the cavity these patches of vorticity can be convected over
the top or be fully or partially entrained inside it (see also vorticity plots in figure 11).
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(a) (a)

(b) (b)

(c) (c)

0 1 3 4 6 7 0 1 3 4 6 7

Figure 9. Instantaneous vorticity contours for laminar (left) and turbulent (right) inflow
conditions. (a) out-of-plane vorticity in the y/D = 0.06 section; (b) vorticity magnitude in an
xy-section (c) vorticity magnitude in x/D = 1 section.

According to Rockwell & Knisely (1980) these events are called complete escape,
partial clipping and complete clipping, respectively. The occurrence of one event or
another is not deterministic; however, in agreement with the observations of Pereira &
Sousa (1994) for the case of a sharp trailing-edge corner, the complete clipping events
are found to be less frequent than the other two in the simulation. As the complete
escape and partial clipping events are injecting fluid into the jet-like flow parallel to
the trailing edge, it is expected that the amplitude of the flow oscillations inside the
cavity will increase when such an event happens. Time series of the vertical velocity in
the jet-like flow near the trailing-edge and vorticity animations in xy-planes confirmed
this phenomenon, also observed in the experiment. As observed in figure 9(b), due
to the interaction of near-wall eddies coming from upstream of the cavity with the
separated shear layer over the cavity, the flow downstream of the cavity appears to
be populated with energetic eddies over a larger distance from the channel bottom
compared to the flow upstream of the cavity. Moreover, the three-dimensionality of
the flow structures in the region downstream of the cavity is clearly higher.

4.4. Interaction between coherent structures and trailing-edge corner

Lin & Rockwell (2001) were the first to relate the instantaneous pressure fluctuations
near the trailing-edge corner to the instantaneous, global variations of the flow pattern.
They found that large-scale pressure variations are produced by the interactions
between the large-scale eddies that are convected in the cavity–channel interface
region and the trailing-edge corner. This issue is of importance as one can think
of geometrical modifications of the shape of the corners that could attenuate
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Figure 10. Visualizations of flow around the cavity (laminar inflow case) at time instants
when a minimum (1) and a maximum (2) value of the pressure at the trailing-edge corner are
recorded: (a) pressure; (b) out-of-plane vorticity; (c) two-dimensional streamlines; (d) in-plane
velocity vectors.

pressure fluctuations inside the critical region near the trailing-edge corner. To clarify
this relationship we plot in figures 10 and 11 the pressure time series along with
the instantaneous pressure, out-of-plane vorticity, two-dimensional streamlines and
velocity vectors (only one in every four grid points are shown in both directions) in
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Figure 11. For caption see next page.
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an xy-section. The instantaneous contour plots are shown at several instants when a
pressure minimum or a maximum is recorded near the trailing-edge corner.

In the LC the pressure variation is fairly regular with no substantial modulations
between successive peaks. The interaction between the large-scale spanwise vortices
and the trailing-edge corner is always in the form of a partial clipping event. As
clearly observed in figure 10, the minimum pressure values (e.g. point 1) are recorded
during the clipping event when the vortex core, inside which the pressure values are
low, starts interacting with the trailing-edge. The approaching vortex is clearly visible
in figures 10(a) to 10(c) (frames corresponding to point 1). This event in the shedding
cycle corresponds to frame at t = T/4 in figure 8(a). The pressure attains its maximum
value (e.g. point 2) half of a period later in the shedding cycle (t = 3T/4, figure 8c)
when the large spanwise vortex is situated at approximately mid-distance between
the shedding point and the trailing-edge as observed in figures 10(a) and 10(b). It is
also interesting to note the modulations in the intensity of the wall-jet-like flow near
the downstream part of the bottom cavity wall where the magnitudes of the velocity
vectors are larger in the frame corresponding to a maximum pressure event (point 2).
The instantaneous streamlines and velocity vector plots show that the pressure lows
are associated with an upward deflection of the flow near the corner while the opposite
is observed in the case of a pressure high.

In the TC, the pressure follows a much more complex variation in which the
values corresponding to successive highs and lows can be quite different. Examination
of pressure time series and of the pressure spectrum show that usually the time
interval between two successive minimum or maximum pressure values is close to
T = 2.63D/U corresponding to the most energetic frequency in the separated shear
layer (St = 0.38). However, the time interval is sometimes closer to twice that value
which corresponds to its first subharmonic (St = 0.19). This is confirmed by the velocity
spectra in figure 7 at stations 10 and 11 close to the trailing-edge corner where these
two frequencies are the most energetic. The presence of pressure highs and lows spaced
mostly at T or 2T in time is in agreement with the findings in the experimental study
of Lin & Rockwell (2001). Three representative events corresponding to points 1, 2
and 3 in figure 11 were selected for further analysis. Point 1 corresponds to a relative
pressure maximum but the value of the pressure is lower than that recorded at point
3 which is representative of the largest pressure peaks observed to occur over a large
time interval. Point 2 corresponds to a pressure minimum. The pressure and vorticity
contours corresponding to point 1 show that around this time a complete clipping
event takes place. The patch of vorticity denoted V1 is clearly going to be fully
entrained into the cavity. As V1 is at a level below the cavity mouth, the pressure at
the trailing-edge remains relatively high. Still, the interaction with V1, inside which the
pressure values are lower, reduces the normal peak values recorded for time instants
when no patch of vorticity was present near the trailing-edge corner (e.g. point 3).
In the case of point 2, a complete escape event is observed in which a patch (V2) of
high vorticity and very low pressure values is convected over the trailing-edge corner.
As V2 is swept just above it, the pressure at the trailing-edge corner is reduced and
fluid is ejected out of the cavity (see corresponding velocity vector plot in the region

Figure 11. Visualizations of flow around cavity (turbulent inflow case) at time instants when
a relative maximum (1), a minimum (2) and a maximum (3) value of the pressure at the
trailing-edge corner are recorded: (a) pressure; (b) out-of-plane vorticity; (c) streamlines; (d) in-
plane velocity vectors.
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Figure 12. Convective velocity (top) and trajectories (bottom) of the structures convected on
top of the cavity in the laminar (a) and turbulent (b) inflow cases.

around the cavity mouth at x/D ∼ 1.5). Observe also that in this case the streamlines
just over the trailing-edge corner are deflected upwards in contrast to the downward
deflections observed in the same region at the time instances corresponding to points
1 and 3. Finally, point 3 corresponds to a high pressure peak. In this case the vorticity
plot shows no patches of vorticity in the vicinity of the trailing-edge corner. A streak
of high vorticity denoted V3 has just passed the middle of the cavity but is still
far from the corner. Regarding the modulations in the intensity of the jet-like flow,
comparison of the snapshots corresponding to the three events suggests that when
the pressure near the trailing-edge corner is at a minimum the width of the jet-like
flow near the cavity bottom is smaller and the velocity magnitude inside it is higher.

Figure 12 shows the mean trajectories and convection velocities of the coherent
structures starting at the position where spanwise vortices are shed (close to mid-
cavity length in LC) or where patches of vorticity are clearly distinguishable (TC).
The convective velocity was determined from analysis of successive frames showing
the evolution in time of vortical structures near the cavity mouth in xy-planes.

In the LC the spanwise vortices are convected for 1 < x/D < 1.6 with a (phase-
averaged) convective velocity roughly equal to Uc(x)/U ∼ 0.65. Then, as they start
interacting with the trailing-edge corner, they decrease their velocity to about 0.4U .
The convective velocity over the plateau region (1 <x/D < 1.6) is very close to the
values observed in the simulation of Larcheveque et al. (2003) and in the experiments
by Ahuja & Mendoza (1995) for large structures in a weakly compressible resonant
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cavity. The mean convection velocity inferred from figure 12 in the LC is Ucm/U ∼ 0.55.
The mean convection velocity over the region where shedding is present appears to
be close to the value inferred from Sarohia’s (1977) results for the propagation speed
of the second modes of cavity oscillations (L/δ =11.1 in LC) which is equal to 0.52U .
One should also observe that applying Rossiter’s (1964) formula in the limit of Ma = 0
with a value of the phase delay of 0.25 and the above-determined mean convective
velocity, one obtains for the second mode a value of the Strouhal number St ∼ 0.48
which is close to that measured in the velocity spectra in figure 7.

In the TC the trajectories are analysed as a function of the type of interaction of the
coherent structure with the trailing-edge corner. As the formation of these structures is
random, the plots in figure 12 for the TC correspond to averages over ten realizations
for each kind of interaction. For the eddies that will be finally entrained into the cavity
(total clipping) the mean convective velocity is the smallest and shows the largest
variations with the streamwise position. This is expected because of the complex
interactions with the eddies inside the cavity. We suspect that the relative maximum
at around x/D = 1.7 is due to the interactions with the patches of vorticity convected
at a larger velocity that are associated with a partial clipping event. Observe that
at that location the trajectories associated with the two kinds of events are very
close to each other. The eddies that will be convected over the cavity (total escape
events) appear to attain a practically constant velocity for x/D > 1.2 equal to 0.55U .
Probably this is due to the fact that once they are convected slightly over the cavity
channel interface, they interact very little with the other energetic eddies that populate
the shear layer region. From the plots in figure 12 for the TC one can infer a mean
‘global’ convection velocity regardless of the type of interaction between the eddy and
the trailing-edge corner. Its value is Ucm/U ∼ 0.41.

4.5. Mass exchange processes between cavity and channel

The instantaneous scalar concentration plots in an xy-plane in figure 13 suggest that
in the LC most of the mass exchange between cavity and channel is taking place
over the downstream part of the separated shear layer where large spanwise vortices
are shed. Figure 14 helps to elucidate the role played by these vortives in the scalar
ejection process. The instantaneous pressure contours at the cavity–channel interface
(y/D = 0) are shown in figure 14(a). The core of the vortex corresponds to the narrow
band of low pressure levels. The axis of the vortex is marked with the dashed line.
Its position is also indicated in figure 14(b) showing the vertical velocity and in
figure 14(c) in which the scalar concentration contours are plotted at the same time
instant. As observed in figures 14(b) and 14(c), the spanwise vortex is convecting
low-concentration fluid from the channel toward the cavity on its upstream side
(relative to its axis) and high-concentration fluid from inside the cavity toward the
channel on its downstream side. This is evident as the region of high-concentration
fluid is practically the same as the band where the vertical velocity is positive (outflow
region), while the region downstream of the vortex axis contains low-concentration
fluid and the vertical velocity is negative (inflow region). The mass transport process
is fairly uniform in the spanwise direction, though some variations due to the three-
dimensional perturbations of the core of these vortices can be observed over the span.
Though figure 14 illustrates the effect of the spanwise vortices on the scalar transport
at an isolated moment in time, the process is very similar over the whole shedding
cycle. Most of the high-concentration fluid entrained by the spanwise vortices is
then convected downstream of the trailing-edge corner. The streaks of relatively
high-concentration fluid observed on the channel bottom downstream of the cavity
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Figure 13. For caption see next page.
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Figure 14. Instantaneous distributions of pressure, vertical velocity and scalar in the
y/D = 0 section in the laminar inflow case.

(e.g. see figures 13e and 13g) correspond to the arrays of hairpin-like vortices in
figure 8.

The patches of low-concentration fluid injected into the cavity are entrained into
the jet-like flow in between the core of the recirculation region and the cavity walls
(e.g. see figure 13d). As these patches are convected inside the jet, they mix with the
high-concentration fluid around them. This illustrates the critical role of the jet-like
flow in intensifying the mixing inside the cavity. In the LC the main recirculation
region extends over most of the cavity (see figures 2a and 10c) and thus the mixing
in the upstream part of the cavity is relatively high. For t > 80D/U (frames e to i

in figure 13) the highest concentrations are observed inside the central region of the
main recirculation eddy. Eventually this high-concentration fluid diffuses away from
the central region and is mixed with the surrounding lower concentration fluid.

In the TC, initially (figure 15a) most of the scalar exchange between channel and
cavity is due to the engulfing of high-concentration fluid from the cavity by the
eddies that populate the interface region. During partial or complete clipping events
patches of low-concentration and relatively high-vorticity fluid are pushed downward
parallel to the trailing-edge of the cavity and then recirculated by the jet-like flow
(similar to the LC) inside the downstream half of the cavity. The mixing of these
low-concentration eddies with the surrounding high-concentration fluid inside the
centre of the main recirculation eddy and with the fluid situated in the upstream
part of the cavity occurs at a higher rate than in the LC because of the presence of
small-scale three-dimensional eddies throughout the cavity (see also figure 9c). This
process is clearly visible in figures 15(c) and 15(d). The correlation between the jet-like
flow and the advection of the low-concentration patches of fluid inside the cavity is
evident by comparing figure 15(c) with the velocity vector plots in figure 11(d). At
times, due to modulations in the jet intensity and direction, once it separates from
the bottom cavity, the main recirculation eddy is increasing in size and squeezes the
high-concentration fluid in the upstream recirculation eddy. This has the effect of
pushing the top right corner of the upstream recirculation eddy into the separated

Figure 13. Instantaneous contours showing evolution of scalar concentration in an xy-section
for laminar inflow case. (a) t U/D = 2.0, (b) 20, (c) 40, (d) 60, (e) 80, (f ) 100, (g) 120, (h) 140,
(i) 160.
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Figure 15. Instantaneous contours showing evolution of scalar concentration in an xy-section
for turbulent inflow case. (a) t U/D = 2.0, (b) 20, (c) 40, (d) 60, (e) 80, (f ) 100, (g) 120,
(h) 140, (i) 160.
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shear layer and also inducing further disturbances into the shear layer. Animations of
the mass exchange process show that at these moments some high-concentration fluid
from the top part of the secondary recirculation eddy escapes the cavity. However,
only a small amount of high-concentration scalar trapped originally in the upstream
(secondary) recirculation eddy is able to leave the cavity through the upper part. This
is because the separated shear layer even in the TC is at most times just a vorticity
sheet extending over the first third of the cavity that does not allow any large-scale
mixing via engulfing. Another entrainment mechanism present only in the TC is due
to the action of the streamwise oriented coherent structures originating from the
near-wall region of the channel bottom (figure 16a) which in some cases can extract
fluid from beneath the separated shear layer including from its upstream part.

Figures 16 and 17 help to clarify the role played by the near-wall quasi-streamwise
vortices present on top of the cavity in the mass exchange process. Djenidi,
Elavarasan & Antonia (1999) in an experimental study of the flow over an array
of two-dimensional square (L/D = 1, L/θ ∼ 3) cavities placed transversely to the flow
direction observed that the occurrence of inflows and outflows from and into the
cavity was random. They also observed that these events were associated with the
passage of quasi-streamwise vortices and the corresponding low-speed streaks over
the array of two-dimensional cavities. Their visualizations showed that low-speed
streaks were present in the layer on top of the cavities, similarly to the case of the
flow over a smooth wall. In our case the cavity ratio L/D is twice the one in the
experiment of Djenidi et al. (1999) while L/θ = 7.3, and it appears that on average
the low-speed streaks maintain their orientation and coherence only over the first
half of the cavity length (up to x/D ∼1). This can be observed from the streamwise
velocity contours in a plane situated at y/D = 0.06 in figure 16(a). Occasionally some
of the streaks extend over the whole cavity length and some distance downstream of
it. However, on average, due to the interaction with the eddies inside the separated
shear layer that is additionally disturbed by the recirculation flow inside the cavity
(especially for x/D > 1), the streaks lose their predominantly streamwise orientation
and increase their width and three-dimensionality over the downstream half of the
cavity and past it. The interaction between the streaks and the separated shear layer
is very clear in animations. It is also apparent in the vorticity contours in figure 11(b).
In fact, over the downstream half of the cavity it is very hard to distinguish between
the vortical structures that originated from the separated shear layer and the ones
associated with the streaks on top of it.

As the flow is incompressible, at each moment of time the sum of the outflows
over the cavity mouth (y/D =0) should be balanced by the sum of the inflows. In
the case of the mass exchange process, the inflows are generally associated with
convection of low-concentration fluid inside the cavity, and the outflows with ejection
of higher concentration fluid from the cavity. Animations of the flow on top of the
cavity over large periods of time has shown that the occurrence of the inflows and
outflows is random, and in many cases the inflow or outflow regions are persistent for
relatively long intervals of times (of the order of 1−10D/U ). In fact, the events when
outflow/inflow regions maintain their character for long time intervals appear to be
predominantly the ones that are due to the presence of streamwise streaks over them.
Such an event is visualized in figure 17 where the streamwise velocity, concentration
and vertical velocity contours are plotted at the cavity–channel interface. Four frames
at an interval of 1.3D/U apart are shown.

A first interesting observation is that consistently the outflow regions correlate
with the ones in which the streamwise velocity is relatively low (the high-momentum
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Figure 16. Visualizations of the instantaneous flow structure and scalar transport around
the cavity. (a) streamwise velocity, y/D = 0.06; (b) streamwise velocity, x/D = 1.25 and 1.75;
(c) vorticity magnitude, x/D = 1.25 and 1.75; (d) streamwise vorticity, x/D = 1.25 and 1.75;
(e) scalar concentration, x/D = 1.25 and 1.75; (f ) detail showing the streamwise vortical
structures near the interface visualized using two-dimensional streamlines, x/D = 1.25.
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Figure 17. Instantaneous distributions of streamwise velocity, scalar concentration and ver-
tical velocity (negative regions are blanked) at the cavity–channel interface (y/D = 0) in the
turbulent inflow case.

regions in the streamwise velocity contour plots correlate with the blanked inflow
regions in the vertical velocity contour plots). The regions characterized by a relatively
high concentration appear to be a subset of the outflow regions. The low-momentum
fluid trapped inside the cavity is more easily entrained into the channel, hence the
correlation between the outflow regions and the low-streamwise-velocity regions on
top of the cavity. The occurrence of an outflow can further perturb the flow and the
originally streamwise oriented streaks and thus increase the three-dimensionality of
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the flow over the downstream part of the cavity and the formation of small-scale
vortical structures.

A second observation from figure 17 is the presence of two high-velocity streaks
that extend over most of the cavity length toward the bottom of these frames. In
between them a region of high positive vertical velocities and high concentration
is observed in all four frames (the arrow points toward it). Meanwhile, over this
time the high-speed streaks maintain their coherence while slowly changing their
position and intensity. This strong outflow region formed as a consequence of
eddies being advected in the overlaying flow just over the separated shear layer.
The counter-rotating streamwise vortices associated with these velocity streaks were
able to break the vorticity sheet associated with the separated shear layer and entrain
high-concentration fluid from beneath. The ejected high-concentration fluid is then
convected downstream. Evidence of this kind of event is offered in figures 16(b) to
16(e) which show the streamwise velocity, total vorticity, streamwise vorticity and
concentration in two yz-sections situated at x/D = 1.25 and x/D = 1.75. The total
vorticity is a good indicator of the position of the vorticity sheet on top of the
cavity. The deformation of the vorticity sheet and the probability the sheet will
break up, allowing the relatively high concentration fluid from below to escape, are
increasing as the trailing-edge is approached. This can be observed by comparing the
two frames in figures 16(c) and 16(e). Mushroom-like eddies are observed in regions
where patches of vorticity associated with the presence of relatively strong counter-
rotating streamwise vortices are present near the cavity–channel interface. The axis
defined by these vortices is not necessarily parallel to the interface which explains
why the direction of the high-concentration intrusions is not always perpendicular
to the interface. In some cases, depending on the rotation direction of these counter-
rotating vortices, low-concentration fluid can be injected into the cavity. These
events are clearly observed in figures 16(b) to 16(e) in which the locations where
high-concentration fluid is entrained into the low-concentration region correlate
well with the positions where pairs of patches of streamwise vorticity of opposite
sign are present, with the deformation of the vorticity sheet on top of the cavity
and with the locations where low streamwise momentum fluid is present over the
channel–cavity interface. More evidence of the fact that the intrusions of high-
concentration fluid over the mean interface between the low- and high-concentration
regions correlate with the presence of patches of streamwise vorticity is given in
figure 16(f ) in which two-dimensional streamlines were superimposed on the concen-
tration field in the x/D = 1.25 section.

Finally, we analyse in a quantitative way the influence of the flow conditions
upstream of the cavity on the ejection of the scalar from the cavity. Figure 18 shows the
decay in time of the scalar mass inside the cavity plotted in a log-linear scale. The
time needed to eject 90 % of the scalar introduced inside the cavity is about 166D/U

in the TC and 208D/U in the LC. Especially in environmental engineering, one-
dimensional models relying on empirical dispersion coefficients (Uijttewaal, Lehmann
& van Mazijk 2001) are used to globally describe the mass exchange between cavities
and the main channel. These models simply assume that the local rate of decay
of scalar/pollutant mass inside the cavity is proportional to the mean concentration
difference between the channel and cavity. If this law is assumed, then the decay of the
scalar mass in time is exponential M/M0 = exp(−t/T0) where T0 is the characteristic
time scale and M0 is the initial mass of scalar inside cavity. If one non-dimensionalizes
T0 using D and U , one obtains the so-called non-dimensional exchange coefficient k0.
A constant value of k0 corresponds to a linear variation of the total mass in time,
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Figure 18. Variation of scalar mass inside the cavity.

F
lu

x

50 100 1500

0.008

0.016

0.024
(a) (b)

125 130 135 140

0.002

0.003

tU/DtU/D
0 50 100 150

0.008

0.016

0.024

125 130 135 140

0.002

0.003

Figure 19. Variation of instantaneous flux through the cavity–channel interface for laminar
(a) and turbulent (b) inflow cases.

if the mass is plotted in a log scale. Figure 18 strongly suggests that the decay can
be approximated fairly well by a straight line over the whole duration of the decay
process (less than 10 % of initial scalar mass left inside cavity) for both simulations.
This is in contrast to the ejection of fluid from a channel with a bottom cavity
and a lateral sidewall (McCoy, Constantinescu & Weber, 2005) where the ejection
process has two phases. In that case, both the initial and final phase can be described
using the simple one-dimensional model but the associated values of the exchange
coefficient are different. In the present turbulent inflow simulation the inferred value
of k0 is 0.015 which is in the expected range for the given flow conditions and cavity
sizes. For the LC, the value is about 15 % lower, k0 = 0.013.

A more detailed understanding of the way the scalar leaves the cavity is given by
the time history of the mass flux (

∫
Cv DA) through the cavity–channel interface

surface which is shown in figure 19. In the LC, at the start of the scalar ejection
process the value of the mean flux is the largest. The decay of the mean flux
appears to be close to exponential and is modulated by the oscillations due to the
engulfment of high-concentration flow from inside the cavity by the spanwise vortices
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convected over the second half of the cavity. These oscillations are taking place at the
fundamental oscillatory frequency (St = 0.51) and can be clearly observed in the inset
in the corresponding frame in figure 19. In the TC, the mean decay appears to be
qualitatively similar though the high-frequency oscillations do not occur at a discrete
frequency at any stage of the ejection process. This is somewhat expected, as the mass
exchange process is determined in a great measure by the interaction between the
near-wall structures convected from upstream of the channel and the separated shear
layer as well as by the nature of the interactions between the patches of vorticity that
populate the region around the interface. These interactions are relatively random
and thus no clear oscillatory frequency is observed for the scalar flux in the TC.

5. Summary
The three-dimensional incompressible flow past a rectangular two-dimensional

cavity in a channel was investigated using LES. Two simulations at the same cavity
Reynolds number (ReD = 5000) in which a developing laminar boundary layer (LC)
and a fully turbulent flow (TC) were present at the leading cavity edge were performed.
As these simulations were carried out in the absence of any acoustic resonant
phenomena, the complex phenomena associated with resonant cavities were not
present. In both cases it was found that the resolved stresses in the downstream part
of the separated shear layer dominate those of the cavity region and approaching
boundary layer (turbulent case only) and that the injection of patches of large-scale
vorticity inside the cavity near the trailing-edge corner induces important modulations
of the jet-like flow that develops near the cavity trailing-edge and bottom. This jet-like
flow was found to induce further oscillations of the separated shear layer.

In the LC, the predicted dominant frequency in the shear layer (St = 0.51) was
found to agree well with the second mode frequency predicted by Rockwell (1977).
The velocity spectra at different locations around the cavity showed that the
flow remained laminar over the whole domain. The growth of three-dimensional
instabilities originating at the leading edge induced deformations of the cores of the
spanwise vortices that were shed quasi-regularly in the separated shear layer. The
spanwise vortices were found to break into an array of hairpin-like vortices as a
result of their interaction with the trailing-edge corner which resulted in a partial
clipping event. In the TC, a broad spectrum was observed over the whole length
of the separated shear layer. The jittering of the separated shear layer due to the
interaction with the incoming turbulent eddies from the near-wall region upstream
of the cavity was very strong. As a consequence, the quasi-regular shedding of large
spanwise structures observed in the LC was not present. The interaction between
the large-scale eddies that populate the region around the cavity mouth and the
trailing-edge corner was found to be random.

Observation of the mass exchange process between a scalar introduced
instantaneously inside the cavity and the channel showed that injection of patches
of low-concentration fluid near the trailing-edge enhanced the scalar mixing inside
the cavity in both cases. The simulations also showed there are important differences
between the mechanisms responsible for scalar transport and ejection in the two
cases. In the LC the main mechanism is very simple and consists of simultaneous
engulfment of low-concentration fluid from the channel that is convected into the
cavity and of high-concentration fluid from below the cavity–channel interface that is
convected into the channel by the large-scale spanwise vortices. This exchange occurs
over the downstream half of the interface. In the TC, though engulfment near the
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interface is still important, it does not take place more or less uniformly over the
span as was the case in the laminar simulation. The separated shear layer is strongly
perturbed by interactions with the eddies advected from upstream of the cavity and
with the highly three-dimensional eddies inside the cavity that are convected by the
jet-like flow toward the shear layer. The engulfment takes place randomly and can
be observed over a larger region of the interface compared to the laminar case. An
additional mechanism, also induced by the near-wall coherent structures advected
from upstream of the cavity, is due to the presence from time to time of strong
counter-rotating vortical structures on top of the cavity associated with low-speed
streaks similar to the ones observed in the flow over a smooth wall. Sometimes these
streamwise oriented coherent structures are strong enough to break the vorticity sheet
associated with the separated shear layer and to entrain substantial amounts of high-
concentration and low-momentum fluid from beneath. In both cases it was found
that the decay of the passive scalar mass inside the cavity can be approximated well
by a simple one-dimensional dead-zone model which assumes an exponential decay
of the mean concentration inside the cavity in time. Moreover it was found that a
single-valued dispersion coefficient can describe the mass decay inside the cavity over
the whole ejection process.
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work on this study during his stay in IIHR Hydroscience and Engineering at the
University of Iowa. The authors would also like to thank the National Center for
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Larchevêque, L., Sagaut, P., Mary, I., Labbé, O. & Comte, P. 2003 Large-eddy simulation of a
compressible flow past a deep cavity. Phys. Fluids 15, 193–210.
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