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Abstract

Both sequential Monte Carlo (SMC) methods (a.k.a. ‘particle filters’) and sequential
Markov chain Monte Carlo (sequential MCMC) methods constitute classes of algorithms
which can be used to approximate expectations with respect to (a sequence of) probabil-
ity distributions and their normalising constants. While SMC methods sample particles
conditionally independently at each time step, sequential MCMC methods sample parti-
cles according to a Markov chain Monte Carlo (MCMC) kernel. Introduced over twenty
years ago in [6], sequential MCMC methods have attracted renewed interest recently
as they empirically outperform SMC methods in some applications. We establish an
Lr-inequality (which implies a strong law of large numbers) and a central limit theo-
rem for sequential MCMC methods and provide conditions under which errors can be
controlled uniformly in time. In the context of state-space models, we also provide con-
ditions under which sequential MCMC methods can indeed outperform standard SMC
methods in terms of asymptotic variance of the corresponding Monte Carlo estimators.
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methods; almost sure convergence; multivariate central limit theorem; time-uniform
convergence
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1. Introduction

Sequential Monte Carlo (SMC) algorithms are used to approximate expectations with
respect to a sequence of probability measures as well as the normalising constants of those
measures. These techniques have found numerous applications in statistics, signal processing,
physics, and related fields (see, e.g., [21] for a recent review). These algorithms proceed in a
sequential manner by generating a collection of N conditionally independent particles at each
time step. An alternative to these schemes in which the particles at each time step are sampled
instead according to a single Markov chain Monte Carlo (MCMC) chain was proposed early on
by [6]. Over recent years, there has been a renewed interest in such ideas as there is empirical
evidence that these methods can outperform standard SMC algorithms in interesting scenarios
(see, e.g., [8], [15], [28] ,[31], and [32] for novel applications and extensions). These methods
have been termed sequential MCMC methods in the literature. However, in this work, we will
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also refer to these as MCMC particle filters (MCMC-PFs), to convey the idea that they rely on
the same importance-sampling construction as particle methods.

Although there is a wealth of theoretical results available for SMC algorithms—see, for
example, [10]—to the best of our knowledge, no convergence guarantees have yet been pro-
vided for MCMC-PFs. The present work fills this gap by providing an Lr-inequality (which
implies a strong law of large numbers) and a central limit theorem for the Monte Carlo esti-
mators of expectations and normalising constants obtained through MCMC-PFs. Our results
show that compared to conventional particle filters (PFs), the asymptotic variance of estima-
tors obtained by MCMC-PFs includes additional terms which can be identified as the excess
variance arising from the autocorrelation of the MCMC chains used to generate the particles.
This implies that a standard PF always provides estimators with a lower asymptotic variance
than the corresponding MCMC-PF if both algorithms target the same distributions and if the
latter relies on MCMC kernels which are positive, i.e. which induce positive autocorrelations
of all orders.

However, MCMC-PFs exhibit a significant advantage over regular PFs. The popular fully-
adapted auxiliary particle filter (FA-APF) introduced by [29] typically significantly outper-
forms the bootstrap particle filter (BPF) of [16], for example when approximating the optimal
filter for state-space models in the presence of informative measurements. Unfortunately, the
FA-APF is implementable for only a very restricted class of models, whereas the MCMC-PF
version of the FA-APF is much more widely applicable. In scenarios in which the FA-APF
is not implementable, but its MCMC-PF version is, and in which the MCMC kernels used
by the latter are sufficiently rapidly mixing, the MCMC-PF can substantially outperform
implementable but rather inefficient standard PFs such as the BPF.

2. MCMC-PFs

2.1. Notation

Let (�,A, P) be some probability space and denote expectation with respect to P by E. For
some set measurable space (H,H), we let B(H) denote the Banach space of all bounded, real-
valued, H-measurable functions on H, equipped with the uniform norm ‖f ‖ := supx∈H|f (x)|.
We also endow this space with the Borel σ -algebra (with respect to ‖ · ‖), and the product
spaces B(H) ×B(H) and B(H)d for d ∈N with the associated product σ -algebras. We also
define the subsets B1(H) := { f ∈B(H) | ‖f ‖ ≤ 1}. Finally, we let 1 ∈B(H) denote the unit
function on H, i.e. 1 ≡ 1.

Let M(H) denote the Banach space of all finite and signed measures on (H,H)
equipped with the total variation norm ‖μ‖ := 1

2 supf ∈B1(H)|μ( f )|, where we use the short-
hand μ( f ) := ∫

H f (x)μ(dx), for any μ ∈M(H) and any f ∈B(H). We define P(H) ⊂M(H) to
be the set of all probability measures on (H,H). For any ν ∈P(H), and any f , g ∈B(H), we
further define covν[ f , g] := ν([ f − ν( f )][g − ν(g)]) and varν[ f ] := covν[ f , f ].

Let (H′,H′) be another measurable space. For any bounded integral operator
M : B(H′) →B(H), defined by f 
→ M( f )(x) := ∫

H′ f (z)M(x, dz) for any x ∈ H, we define
[μ⊗ M]( f ) = ∫

H×H′ μ(dx)M(x, dy)f (x, y) for any μ in P(H) and f ∈B(H × H′). We also
define the operator norm ‖M‖ := supf ∈B1(H′)‖M( f )‖ as well as the Dobrushin coefficient:
β(M) := sup(x,y)∈H′×H′ ‖M(x, · ) − M(y, · )‖.

Finally, ‘→a.s.’ denotes almost sure convergence with respect to P and ‘→d’ denotes
convergence in distribution.

https://doi.org/10.1017/apr.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.9


Limit theorems for sequential MCMC methods 379

2.2. Path-space Feynman–Kac model

We want to approximate expectations under some distributions which are related to a dis-
tribution flow (ηn)n≥1 on spaces (En, En)—with (E1, E1) := (E, E) and (En, En) := (En−1 ×
E, En−1 ⊗ E), for n> 1—of increasing dimension, where

ηn(dxn) := γn(dxn)

Zn
∈P(En)

for some positive finite measure γn on (En, En) and typically unknown normalising constant
Zn := γn(1). Throughout this work, we write xp := x1:p = (xp−1, xp) and zp := z1:p = (zp−1, zp).

We assume that the target distributions are induced by a Feynman–Kac model on the path
space [10]. That is, there exist an initial distribution M1 := η1 ∈P(E1), a sequence of Markov
transition kernels Mn : En−1 × E → [0, 1] for n> 1, and a sequence of bounded (without loss
of generality we take the bound to be 1) measurable potential functions Gn : En → (0, 1] for
n ≥ 1, such that for any fn ∈B(En),

γn( fn) = η1Q1,n( fn),

where we have defined the two-parameter semigroup

Qp,q( fq)(xp) :=
{

[Qp+1 · · · Qq]( fq)(xp) if p< q,

fp(xp) if p = q,

for any 1 ≤ p ≤ q ≤ n, with

Qp+1(xp, dzp+1) := Gp(zp)δxp (dzp)Mp+1(zp, dzp+1).

This implies that γ1 = η1 and, for n> 1,

ηn( fn) =	
ηn−1
n ( fn) := ηn−1Qn( fn)

ηn−1Qn(1)
= γn( fn)

γn(1)
, (1)

where we have defined the following family of probability measures, indexed by μ ∈P(En−1):

	μn (dxn) :=
⎧⎨⎩

M1(dx1) = η1(dx1), if n = 1,

Gn−1(xn−1)

μ(Gn−1)
[μ⊗ Mn](dxn), if n> 1.

We note that 	μ1 does not actually depend on μ, but we keep μ in the superscript in order to
avoid the need to treat the case n = 1 separately.

For later use, we also define the family of normalised operators

Qp,n( fn)(xp) := Qp,n( fn)(xp)

ηpQp,n(1)
.

Note that this implies that ηn( fn) = ηpQp,n( fn) for any 1 ≤ p ≤ n and any fn ∈B(En).
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2.3. Generic MCMC-PF algorithm

In Algorithm 1, we summarise a generic MCMC-PF scheme for constructing sampling
approximations ηN

n of ηn. It admits all the MCMC-PF discussed in this work as special
cases. This algorithm is essentially a PF in which the particles are not sampled conditionally
independently from 	

μ
n at step n, for some μ ∈P(En−1), but are instead sampled accord-

ing to a Markov chain with initial distribution κμn ∈P(En) and Markov transition kernels
Kμn : En × En → [0, 1] which are invariant with respect to 	μn , i.e. 	μn Kμn =	

μ
n . Recall that

	
μ
1 does not actually depend on μ (and we also assume that the same is true for κμ1 and Kμ1 ),

so that we need not define ηN
0 .

Algorithm 1. (Generic MCMC-PF.) At time n ≥ 1,

(1) sample ξ1
n ∼ κ

ηN
n−1

n and ξ i
n ∼ K

ηN
n−1

n (ξ i−1
n , · ), for 2 ≤ i ≤ N;

(2) set ηN
n := 1

N

∑N
i=1 δξ i

n
.

For any time n ≥ 1 and for any fn ∈B(En), γ N
n ( fn) := ηN

n ( fn)
∏n−1

p=1 η
N
p (Gp) is an estimate of

γn( fn). In particular, an estimate of the normalising constant Zn is

ZN
n := γ N

n (1) =
n−1∏
p=1

ηN
p (Gp) =

n−1∏
p=1

1

N

N∑
i=1

Gp(ξ i
p). (2)

We hereafter write 	N
n :=	

ηN
n−1

n , κN
n := κ

ηN
n−1

n , and KN
n := K

ηN
n−1

n to simplify the notation.
Note that standard PFs are a special case of Algorithm 1 corresponding to KN

n (xn, · ) ≡
	N

n (·) = κN
n (·). Unfortunately, implementing standard PFs can become prohibitively costly

whenever there is no cheap way of generating N independent and identically distributed (IID)
samples from 	N

n —which can be the case when 	N
n is chosen for reasons of statistical effi-

ciency rather than computational convenience, as in the case of the FA-APF of [29]. In contrast,
Algorithm 1 only requires the construction of MCMC kernels which leave this distribution
invariant.

Practitioners typically initialise the Markov chains close to stationarity by selecting κN
n =

[ηN
n−1 ⊗ M′

n](KN
n )Nburnin for some approximation M′

n(xn−1, dxn) of Mn(xn−1, dxn) (see, e.g., [8],
[15] ,[31], [32]). Here, Nburnin ≥ 1 denotes a suitably large number of iterations whose samples
are discarded as ‘burn-in’. Corollary 1, below, will demonstrate that, under regularity condi-
tions, such algorithms can provide strongly consistent estimates of quantities of interest in spite
of this out-of-equilibrium initialisation.

In situations in which it is possible to initialise the Markov chains at stationarity, i.e. in
which we can initialise ξ1

n ∼ κN
n =	N

n , [14] showed that the estimator ZN
n given in (2) is unbi-

ased as for standard PFs [10]. This unbiasedness property permits—in principle—the use of
MCMC-PFs within pseudo-marginal algorithms [3], and thus makes it possible to perform
Bayesian parameter inference for state-space models. As such an initialisation only requires
one draw from 	N

n , the use of relatively expensive methods, such as rejection sampling, may
be justifiable. This is in contrast to standard PFs, which require N such draws, the cost of
which may be prohibitive. However, as we discuss below in Subsections 2.5 and 4.2, the main
advantage of MCMC-PFs over standard PFs is that the former can sometimes be implemented
in scenarios in which the potential functions Gn cannot be evaluated and then the estimate ZN

n
from (2) cannot be evaluated either.
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Furthermore, the conditional SMC scheme proposed in [1] can also be extended to MCMC-
PFs as demonstrated in [33]. As discussed in [14], the resulting ‘conditional’ MCMC-PF
can be used within the particle Gibbs sampler from [3]. Importantly, it requires neither
the construction of a suitable initial distribution κN

n nor the ability to evaluate the potential
functions Gn.

The literature on MCMC algorithms provides numerous ways in which to construct the
Markov kernels Kμn . For instance, we could use Metropolis–Hastings (MH) [6], the Metropolis-
adjusted Langevin algorithm, Hamiltonian Monte Carlo and hybrid kernels [31], [32], or
kernels based on invertible particle flow ideas [22] or on the bouncy particle sampler [28].
As an illustration, Example 1 describes a simple independent MH kernel with a proposal
distribution tailored to our setting.

Example 1. (Independent MH.) For any n ≥ 1 and any μ ∈P(En−1), define the proposal
distribution

�μn (dxn) :=
⎧⎨⎩

R1(dx1) if n = 1,

Fn−1(xn−1)

μ(Fn−1)
[μ⊗ Rn](dxn) if n> 1,

for some sequence of nonnegative bounded measurable functions Fn : En → [0,∞), some
distribution R1 ∈P(E1) with M1 � R1, and some sequence of Markov transition kernels
Rn : En−1 × E → [0, 1] with Mn(xn−1, · ) � Rn(xn−1, · ), for any xn−1 ∈ En−1; for any n ≥ 1,
both Fn−1 and Rn are assumed to satisfy

sup
xn∈En

Gn−1(xn−1)

Fn−1(xn−1)

dMn(xn−1, · )

dRn(xn−1, · )
(xn)<∞. (3)

The independent MH kernel Kμn with proposal distribution �μn and target/invariant distri-
bution 	μn is given by

Kμn (xn, dzn) := αn(xn, zn)�μn (dzn)

+
(

1 −
∫

En

αn(xn, dx′
n)�μn (dx′

n)

)
δxn (dzn),

with acceptance probability

αn(xn, zn) := 1 ∧ d	μn
d�μn

(zn)

/
d	μn
d�μn

(xn)

= 1 ∧
Gn−1

Fn−1
(zn−1)

Gn−1

Fn−1
(xn−1)

dMn(zn−1, · )

dRn(zn−1, · )
(zn)

dMn(xn−1, · )

dRn(xn−1, · )
(xn)

. (4)

This acceptance probability notably does not depend on μ.

2.4. Computational cost

If we are interested only in approximating the normalising constant Zn, and if Gn−1(xn−1)
and Mn(xn−1, · ) depend upon only a fixed number of the most recent component(s) of xn−1
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(as is the case in the state-space models discussed below), Algorithm 1 can be implemented at
a per-time-step complexity (in both space and time) that is linear in the number of particles N
and constant in the time horizon n.

2.5. Application to state-space models

Let (F,F) be another measurable space. The MCMC-PF may be used for (but is not lim-
ited to) performing inference in a state-space model given by the bivariate Markov chain
(Xn, Yn)n≥1 on (E × F, E ∨F) with initial distribution L1(dx1)g1(x1, y1)ψ(dy1) and with
Markov transition kernels (for any n> 1)

Ln(xn−1, dxn)gn(xn, yn)ψ(dyn).

Here, L1 ∈P(E) is some initial distribution for X1, and Ln : E × E → [0, 1], for n> 1, is a
Markov transition kernel. Furthermore, ψ is some suitable σ -finite dominating measure on
(F,F) and some positive bounded function gn( · , yn) so that gn(xn, yn)ψ(dyn) represents the
transition kernels for the observation at time n. Usually, we can only observe realisations of
(Yn)n≥1, whereas the process (Xn)n≥1 is latent.

Assume that we have observed realisations yn = (y1, . . . , yn) of Yn := (Y1, . . . , Yn); then
we often wish to compute (expectations under) the

• filter: πn( fn) :=E[ fn(Xn)|Yn = yn], for fn ∈B(En);

• predictor: π̃n( fn) :=E[ fn(Xn)|Yn−1 = yn−1], for fn ∈B(En);

• marginal likelihood: Ln :=E[
∏n

p=1 gp(Xp, yp)].

Note that the definitions of ‘filter’ and ‘predictor’ here refer to the historical process, as we
are taking a path-space approach. These terms are sometimes reserved for the final-component
marginals of πn and π̃n; we will use the terms marginal filter and marginal predictor for those
objects.

Example 2. (BPF-type flow.) If, for any n ≥ 1,

Gn(xn) := gn(xn, yn),

Mn(xn−1, dxn) := Ln(xn−1, dxn), (5)

then ηn = π̃n is the time-n predictor, ηn(Gnfn)/ηn(Gn) = πn( fn) recovers the time-n filter, and
Zn+1 =Ln is the marginal likelihood associated with the observations yn (with Z1 = 1).

In this case, Algorithm 1 can be implemented (e.g. using the independent MH kernel from
Example 1) as long as gn, Fn, and dLn(xn−1, · )/dRn(xn−1, · ) can be evaluated pointwise.

Example 3. (FA-APF-type flow.) If, for any n ≥ 1,

Gn(xn) := Ln+1(gn+1( · , yn+1))(xn), (6)

Mn(xn−1, dxn) := Ln(xn−1, dxn)gn(xn, yn)

Ln(gn( · , yn))(xn−1)
, (7)

then ηn = πn is the time-n filter, ηn−1 ⊗ Ln = π̃n recovers the time-n predictor, and Zn =Ln is
the marginal likelihood associated with the observations yn.
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For this flow, it follows from (1) that sampling ξ i
n from 	N

n requires first sampling an index
J = j ∈ {1, ...,N} with probability proportional to Gn−1(ξ j

n−1), setting the first n − 1 compo-
nents of ξ i

n equal to ξ
j
n−1, and then sampling the final component according to Mn(ξ j

n−1, · ).
There are many scenarios in which this is not feasible as both (6) and (7) involve an intractable
integral. However, designing an MCMC kernel of invariant distribution 	N

n is a much eas-
ier task, as the product Gn−1(xn−1)Mn(xn−1, dxn) does not involve any intractable integral. For
example, if we use the independent MH kernel from Example 1 then the acceptance probability
in (4) reduces to the following (for simplicity, we take Fn−1 ≡ 1):

αn(xn, zn) = 1 ∧ gn(zn, yn)

gn(xn, yn)

dLn(zn−1, · )

dRn(zn−1, · )
(zn)

dLn(xn−1, · )

dRn(xn−1, · )
(xn)

.

Example 4. (General auxiliary particle filter (APF)-type flow.) Let η1 be some approximation
of π1. For n ≥ 1, let Mn+1(xn, dxn+1) be some approximation of (7), and let

Gn(xn) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dL1

dη1
(x1)g1(x1, y1)g̃1(x1, y2) if n = 1,

dLn(xn−1, · )

dMn(xn−1, · )
(xn)

gn(xn, yn)g̃n(xn, yn+1)

g̃n−1(xn−1, yn)
if n> 1.

Here, g̃n(xn, yn+1) denotes some tractable approximation of (6) which can be evaluated
pointwise. More generally, we could incorporate information from observations at times
n + 1, . . . , n + l for some l ≥ 1 into Mn+1(xn, dxn+1) and replace g̃n(xn, yn+1) by some approx-
imation of

∫
El

∏n+l
p=n+1 Lp(xp−1, dxp)gp(xp, yp), as in the case of lookahead methods (see [23],

for example).

Note that the (general) APF flow admits the two other flows as special cases. That is, taking
Mn as in (5) and g̃n ≡ 1 yields the BPF-type flow; taking Mn as in (7) and g̃n(xn, yn+1) =
Ln+1(gn+1( · , yn+1))(xn) yields the FA-APF-type flow.

In the remainder of this work, we will refer to Algorithm 1 as the MCMC bootstrap particle
filter (MCMC-BPF) whenever the distribution flow (ηn)n≥1 is defined as in Example 2, as the
MCMC fully-adapted auxiliary particle filter (MCMC-FA-APF) whenever the flow is defined
as in Example 3, and as MCMC auxiliary particle filters (MCMC-APF) whenever the flow
is defined as in Example 4. Furthermore, we drop the prefix ‘MCMC’ when referring to the
conventional PF-analogues of these algorithms, i.e. in the case that Kμn (xn, · ) ≡	

μ
n = κ

μ
n .

3. Main results

In this section, we state an Lr-inequality (Proposition 1)—which also implies a strong law
of large numbers (SLLN) (Corollary 1)—and a central limit theorem (CLT) (Proposition 2) for
the approximations of the normalised and unnormalised flows (ηn)n≥1 and (γn)n≥1 generated
by an MCMC-PF.

3.1. Assumptions

We make the following assumptions about the MCMC kernels used to sample the particles
at each time step.
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(A1) For any n ≥ 1, there exists in ∈N and εn(K) ∈ (0, 1] such that for all μ ∈P(En−1) and
all xn, zn ∈ En,

(Kμn )in (xn, · ) ≥ εn(K)(Kμn )in (zn, · ).

(A2) For any n ≥ 1, there exists a constant Γn <∞ and a family of bounded integral operators
(Γ μn )μ∈P(En−1) from B(En) to B(En−1) such that for any (ν, μ) ∈P(En−1)2 and any
fn ∈B(En),

‖[Kνn − Kμn ]( fn)‖ ≤
∫
B(En−1)

|[ν −μ](g)|Γ μn ( fn, dg)

and ∫
B(En−1)

‖g‖Γ μn ( fn, dg) ≤ ‖fn‖Γn.

The first assumption on the MCMC kernels ensures that they are suitably ergodic (it cor-
responds to assuming that the kernels used are uniformly ergodic, uniformly in their invariant
distribution) and is the only assumption required to obtain the Lr-inequality and the SLLN.
More precisely, recall that for any bounded integral operator M : B(H) →B(H), the associ-
ated Dobrushin coefficient is given by β(M) := sup(x,y)∈H×H‖M(x, · ) − M(y, · )‖. Note that
Assumption A1 implies that

sup
μ∈P(En−1)

β((Kμn )in ) ≤ 1 − εn(K)< 1.

In particular, if (ξ i
p)i≥1 and (ξ̃ i

p)i≥1 are Markov chains with transition kernels Kμn , with (ξ̃ i
p)i≥1

initialised from stationarity, then a standard coupling argument shows that A1 also implies that
for any N, r ≥ 1 and any fn ∈B(En) with ‖fn‖ ≤ 1,

E

[∣∣∣∣ N∑
i=1

fn(ξ i
n) − fn(ξ̃ i

n)

∣∣∣∣r] 1
r≤

N∑
i=1

E
[∣∣fn(ξ i

n) − fn(ξ̃ i
n)

∣∣r] 1
r

≤ 2‖fn‖
N∑

i=1

(1 − εn(K))�i/in�

≤ 2in/εn(K) =: Tn. (8)

The second assumption on the MCMC kernels is a local Lipschitz condition. As shown in
Lemma 3, this assumption ensures that for any r ≥ 1,

√
N-convergence of [ηN

n−1 − ηn−1]( fn−1)

to zero in Lr (for all fn−1 ∈B(En−1)) implies
√

N-convergence of ‖[K
ηN

n−1
n − Kηn−1

n ]( fn)‖ to
zero in Lr. By extension, in the proof of the CLT, specifically in Lemma 4, this property enables
us to conclude that the (suitably scaled) variance of the particle approximation converges to a
well-defined limiting asymptotic variance as N → ∞.

Assumptions A1 and A2 are similar to those imposed in [5]. They are strong and rarely hold
for non-compact spaces. It might be possible to adopt weaker conditions such as those in [2],
but this would involve substantially more technical and complicated proofs. As an illustration,
we show that Assumptions A1 and A2 hold if we employ the independent MH kernels from
Example 1, at least if E is finite.
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Example 5. (Independent MH, continued.) Assumption A1 is satisfied thanks to [26, Theorem
2.1]. To see this, note that by (3), for any n ≥ 1 and any μ ∈P(En−1), since Fn−1 is bounded
and Gn−1 > 0,

sup
xn∈En

d	μn
d�μn

(xn) ≤ ‖Fn−1‖
μ(Gn−1)

sup
xn∈En

Gn−1(xn−1)

Fn−1(xn−1)

dMn(xn−1, · )

dRn(xn−1, · )
(xn)<∞.

Assumption A2 was proved for finite spaces E (and in the case Fn ≡ 1, Rn = Mn) in [5,
Section 2].

When proving time-uniform convergence results, we also make the following assump-
tions on the mutation kernels and potential functions of the Feynman–Kac model. The first
of these ensures that Assumption A1 holds uniformly in time. The second and third of these
constitute strong mixing conditions that have been extensively used in the analysis of SMC
algorithms; although they can often be relaxed in similar settings, this comes at the cost of
greatly complicating the analysis (see, e.g., [36], [12]).

(B1) ı̄ := supn≥1 in <∞ and ε(K) := infn≥1 εn(K)> 0.

(B2) There exist m ∈N and ε(M) ∈ (0, 1] such that for any n ≥ 1, any xn, zn ∈ En and any
ϕ ∈B(E), ∫

Em

[ m∏
p=1

Mn+p(xn+p−1, dxn+p)

]
ϕ(xn+m)

≥ ε(M)
∫

Em

[ m∏
p=1

Mn+p(zn+p−1, dzn+p)

]
ϕ(zn+m).

(B3) There exist l ∈N and ε(G) ∈ (0, 1] such that for any n ≥ 1 and any xn, zn ∈ En,

Gn(xn) = Gn((zn−l−1, x((n−l)∨1):n)) and Gn(xn) ≥ ε(G)Gn(zn).

Under these conditions, time-uniform bounds will be obtained when the test function
under study has supremum norm of at most 1 and depends upon only its final coor-
dinate marginal; i.e. we will restrict our attention to test functions fn ∈B�1(En)d, where
B�1(En) := {f ′

n ∈B�(En) | ‖f ′
n‖ ≤ 1} with

B�(En) := {ϕ ◦ ζn | ϕ ∈B(E)}.
Here, for any n ≥ 1, ζn : En → E denotes the canonical final-coordinate projection operator
defined through xn 
→ ζn(xn) := xn. In the state-space model context this corresponds, essen-
tially, to considering the approximation of the marginal filter and predictor rather than their
path-space analogues.

3.2. Strong law of large numbers

The first main result in this work is the Lr-inequality given in Proposition 1, the proof of
which will be given in Appendix C. As an immediate consequence, we obtain the SLLN stated
in Corollary 1.
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Proposition 1. (Lr-inequality.) Under Assumption A1, for each r, n ≥ 1 there exist an, br <∞
such that for any fn ∈B(En) and any N ≥ 1,

E
[∣∣[ηN

n − ηn]( fn)
∣∣r] 1

r ≤ anbr√
N

‖fn‖. (9)

Under the additional Assumptions B1–B3 and if fn ∈B�1(En), the right-hand side of (9) is
bounded uniformly in time; i.e. there exists a<∞ such that supn≥1 an ≤ a.

Corollary 1. (Strong law of large numbers.) Under Assumption A1, for any n, d ≥ 1 and fn ∈
B(En)d, as N → ∞,

(1) ηN
n ( fn)→a.s.ηn( fn);

(2) γ N
n ( fn)→a.s.γn( fn).

Proof . Without loss of generality, we prove the result for scalar-valued test functions fn ∈
B(En). Part 1 is a direct consequence of Proposition 1, for some r> 2, using the Borel–Cantelli
lemma together with Markov’s inequality. Part 2 follows from Part 1 and boundedness of the
potential functions Gp, i.e.

γ N
n ( fn) = ηN

n ( fn)
n−1∏
p=1

ηN
p (Gp)→a.s.ηn( fn)

n−1∏
p=1

ηp(Gp) = γn( fn),

as N → ∞. This completes the proof.

3.3. Central limit theorem

The second main result is Proposition 2, which adapts the usual CLT for SMC algorithms
from [10, Propositions 9.4.1 & 9.4.2] to our setting. Its proof is given in Appendix C. As in [11],
[5], we will make extensive use of the resolvent operators Tμn , defined, for any μ ∈P(En−1)
and any fn ∈B(En), by

Tμn ( fn) :=
∞∑

j=0

[(Kμn )j −	μn ]( fn).

These operators satisfy the Poisson equation

(Kμn − Id)Tμn =	μn − Id, (10)

	μn Tμn ≡ 0. (11)

Under Assumption A1, [5, Proposition 3.1] shows that, for Tn as defined in (8),

sup
μ∈P(En−1)

‖Tμn ‖ ≤Tn. (12)

In the following, for n ≥ 1, we consider a vector-valued test function fn = ( f u
n )1≤u≤d ∈

B(En)d. Using the resolvent operators, for any 1 ≤ u, v ≤ d, we define the covariance function
Cμn ( f u

n , f v
n ) : En →R by

Cμn ( f u
n , f v

n )(xn)

:= Kμn [(Tμn ( f u
n ) − Kμn Tμn ( f u

n )(xn))(Tμn ( f v
n ) − Kμn Tμn ( f v

n )(xn))](xn) (13)

= covKμn (xn, · )[T
μ
n ( f u

n ), Tμn ( f v
n )]
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for any xn ∈ En. Under Assumption A1, we have Cμn ( f u
n , f v

n ) ∈B(En) for any 1 ≤ u, v ≤ d and
any μ ∈P(En−1). Indeed, using (12), it is straightforward to check that

sup
μ∈P(En−1)

‖Cμn ( f u
n , f v

n )‖ ≤ 4T 2
n ‖f u

n ‖‖f v
n ‖. (14)

Throughout the remainder of this work, let V = (Vn)n≥1 be a sequence of independent and
centred Gaussian fields with

E[Vn( f u
n )Vn( f v

n )] = ηnCηn−1
n ( f u

n , f v
n ), (15)

and define the (d,d)-matrix Σn( fn) := (Σn( f u
n , f v

n ))1≤u,v≤d by

Σn( f u
n , f v

n ) :=
n∑

p=1

E[Vn(Qp,n( f u
n ))Vn(Qp,n( f v

n ))], (16)

for any n ≥ 1, any fn = ( f u
n )1≤u≤d ∈B(En)d, and any 1 ≤ u, v ≤ d. Additionally, let N(0, Σ)

denote a (multivariate) centred Gaussian distribution with some covariance matrix Σ .

Proposition 2. (Central limit theorem.) Under Assumptions A1 and A2, for any n, d ≥ 1 and
any fn ∈B(En)d, as N → ∞,

√
N

γn(1)
[γ N

n − γn]( fn)→d

n∑
p=1

Vp(Qp,n( fn)) ∼ N(0, Σn( fn)),

and likewise, writing f̄n := fn − ηn( fn),

√
N[ηN

n − ηn]( fn)→d

n∑
p=1

Vp(Qp,n(f̄n)) ∼ N(0, Σn(f̄n)). (17)

Under the additional Assumptions B1–B3 and if fn ∈B�1(En)d, the asymptotic variance in (17)
is bounded uniformly in time, i.e. there exists c<∞ such that

supΣn(f̄ u
n , f̄ v

n ) ≤ c, (18)

where the supremum is over all n ≥ 1, fn ∈B�1(En)d, and 1 ≤ u, v ≤ d.

4. Comparison with standard PFs

4.1. Variance decomposition

In this section, we first examine the asymptotic variance from Proposition 2. We then
illustrate the trade-off between MCMC-PFs and standard PFs.

To ease the exposition, we consider only scalar-valued test functions fn ∈B(En) throughout
this section. As noted in [5, Proposition 3.6], the terms 	μn Cμn ( fn, fn) from (15), which, via
(16), appear in the expressions for the asymptotic variance in Proposition 2, can be written in
the following form, which is more commonly used in the MCMC literature:
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	μn Cμn ( fn, fn) = ∫
E2

n
	
μ
n (dxn)Kμn (xn, dzn)

[
Tμn ( fn)(zn) − Kμn Tμn ( fn)(xn)

]2

=	μn
(
Tμn ( fn)2 − Kμn Tμn ( fn)2)

=	μn
(
Tμn ( fn)2 − [	μn ( fn) − fn + Tμn ( fn)]2) [by (10)]

=	μn
(−[ fn −	μn ( fn)]2 − 2[	μn ( fn) − fn]Tμn ( fn)

)
=	μn

(−[ fn −	μn ( fn)]2 + 2fnTμn ( fn)
)

[by (11)]

= var	μn [ fn] × iactKμn [ fn]. (19)

Here, for any probability measure ν ∈P(En) and any ν-invariant Markov kernel K, we have
defined the integrated autocorrelation time (IACT):

iactK[ fn] := 1 + 2
∞∑

j=1

covν[ fn,Kj( fn)]

varν[ fn]
.

If the MCMC kernels Kμn are perfectly mixing, that is if Kμn (xn, · ) =	
μ
n (·) for all xn ∈ En,

then iactKμn [ fn] = 1, i.e. 	μn Cμn ( fn, fn) = var	μn [ fn], and the expressions for the asymptotic
variances in Proposition 2 (as specified through (15) and (16)) simplify to those obtained in
[9], [10] ,[20] for conventional SMC algorithms. Thus, by the decomposition from (19), the
terms appearing in the asymptotic variance of the MCMC-PF are equal to those appearing in
the asymptotic variance of standard PFs multiplied by the IACT associated with the MCMC
kernels used to generate the particles.

To derive a variance ordering between standard PFs and MCMC-PFs, we assume in the
remainder of this section that the MCMC operators are self-adjoint and positive, in the sense
that [	μn ⊗ Kμn ]( fn ⊗ fn) ≥ 0 for any 	μn -square integrable real-valued functions fn. For posi-
tive (and self-adjoint) MCMC operators, the IACT terms are greater than 1 for any fn ∈B(En)
([24, p. 20] as cited in [27, Theorem 3.7.1]). They thus represent the variance ‘penalty’
incurred due to the additional between-particle positive correlations in MCMC-PFs relative
to standard PFs. We note that this assumption is mild since the MCMC kernels which could
be deployed in practical settings are almost always positive. Examples of positive operators
include the independent MH kernel [25] discussed in Example 1, the MH kernel with Gaussian
or Student-t random walk proposals [4] or autoregressive positively correlated proposals with
normal or Student-t innovations [13], and some versions of the hit-and-run and slice sampling
algorithms [30].

4.2. Variance–variance trade-off

There is an efficiency trade-off involved in deciding whether to employ a standard PF or
an MCMC-PF for a particular application. For the same distribution flow (ηn)n≥1, the former
always has a lower asymptotic variance than the latter if the MCMC draws are positively
correlated. However, as we seek to illustrate in the remainder of this section, an MCMC-PF
may still be preferable (in terms of asymptotic variance) to a standard PF in certain situations,
even if a positive MCMC kernel is used, because it can sometimes be used to target a more
efficient distribution flow, i.e. a flow for which the variance terms var	μn [ fn] are reduced far
enough to compensate for the IACT-based ‘penalty’ terms iactKμn [ fn] in (19). Additionally,
the computational cost of generating one particle in an MCMC-PF can be smaller than the
corresponding cost in a standard PF.
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As an illustration, we compare the asymptotic variances of approximations πN
n of the filter

πn computed using either the standard PFs or MCMC-PFs targeting the BPF and FA-APF
flows in the state-space model from Subsection 2.5. In the remainder of this section, we let
Sp,n : B(Ep) →B(En) be a kernel that satisfies πpSp,n = πn and is given by

Sp,n( fn)(xp) := Lp

Ln

∫
En

fn(zn)δxp (dzp)
n∏

q=p+1

gq(zq, yq)Lq(zq−1, dzq).

We begin by deriving expressions for the asymptotic variances in each case.

• BPF flow. For the BPF flow from Example 2, expectations under the filter πn( fn) =
ηn(Gnfn)/ηn(Gn) are approximated by πN

n ( fn) = ηN
n (Gnfn)/ηN

n (Gn). Accounting for this
transformation, e.g. as in [17], yields

[πN
n − πn]( fn) = ηn(Gn)

ηN
n (Gn)

ηN
n (Gn[ fn − πn( fn)])

ηn(Gn)

= ηn(Gn)

ηN
n (Gn)

[ηN
n − ηn](Gn[ fn − πn( fn)]/ηn(Gn)).

As Corollary 1 ensures that ηn(Gn)/ηN
n (Gn)→a.s.1, Slutsky’s lemma and Proposition 2

are sufficient to show that for the BPF and MCMC-BPF, respectively,
√

N[πN
n − πn]( fn)

converges in distribution to a Gaussian distribution with zero mean and variance

ΣBPF
n ( fn) =

n∑
p=1

varπ̃p[f̃p,n], (20)

ΣMCMC-BPF
n ( fn) =

n∑
p=1

varπ̃p [f̃p,n] × iact
K
π̃p−1
p

[f̃p,n], (21)

where, using that ηn(Gn[ fn − πn( fn)]/ηn(Gn)) = 0,

f̃p,n(xp) := Qp,n(Gn[ fn − πn( fn)]/ηn(Gn))(xp)

= gp(xp, yp)
Lp−1

Lp
Sp,n( fn − πn( fn))(xp).

• FA-APF flow. For the FA-APF flow from Example 3, πn = ηn, so that we may
approximate the filter by πN

n := ηN
n . Hence, Proposition 2 shows that for the FA-APF

and MCMC-FA-APF, respectively,
√

N[πN
n − πn]( fn) converges in distribution to a

Gaussian distribution with zero mean and variance

ΣFA-APF
n ( fn) =

n∑
p=1

varπp [ fp,n], (22)

ΣMCMC-FA-APF
n ( fn) =

n∑
p=1

varπp[ fp,n] × iact
K
πp−1
p

[ fp,n], (23)

where

fp,n(xp) := Qp,n( fn − πn( fn))(xp) = Sp,n( fn − πn( fn))(xp).
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For the remainder of this section, assume that the asymptotic variance of the standard FA-
APF is lower than that of the standard BPF for the given state-space model. More precisely,
we assume that for each p ≤ n,

varπp [ fp,n] ≤ varπ̃p [f̃p,n],

and hence that
ΣFA-APF

n ( fn) ≤ΣBPF
n ( fn).

This is thought to hold in many applications and has been empirically verified e.g. in [35],
although it is possible to construct counterexamples [18]. Assuming that the MCMC kernels
Kμp are positive operators, the IACTs take values in [1,∞), and hence

ΣBPF
n ( fn) ≤ΣMCMC-BPF

n ( fn) and ΣFA-APF
n ( fn) ≤ΣMCMC-FA-APF

n ( fn).

However, as noted in Example 3, there are many scenarios where FA-APF cannot be
implemented as we cannot generate N (conditionally) IID samples from 	N

n . In this case,
practitioners typically have to resort to using the standard BPF instead. In contrast, the MCMC-
FA-APF can usually be implemented. In such circumstances, use of MCMC-PFs (specifically
in the form of the MCMC-FA-APF) can be preferable, e.g. if the variance reductions attained
by targeting the FA-APF flow are large enough to outweigh the additional variance due to the
increased particle correlation, i.e. if for each 1 ≤ p ≤ n,

varπp [ fp,n] × iact
K
πp−1
p

[ fp,n] ≤ varπ̃p [f̃p,n],

because then

ΣMCMC-FA-APF
n ( fn) ≤ΣBPF

n ( fn).

4.3. Numerical illustration

We end this section by illustrating the ‘variance–variance trade-off’ mentioned above on
two instances of the state-space model from Subsection 2.5.

The first model is a state-space model on a binary space E = F := {0, 1} and with n = 2
observations: y1 = y2 = 0. Furthermore, for some α, ε ∈ [0, 1] and for any x1, x2 ∈ E, μ ∈
P(En−1) and any n ∈ {1, 2},

L1({x1}) := 1/2, L2(x1, {x2}) := α1{x2 = x1} + (1 − α)1{x2 �= x1},
gn(xn, yn) := 0.991{yn = xn} + 0.011{yn �= xn},
Kμn (xn, · ) := εδxn + (1 − ε)	μn .

While this is clearly only a toy model, we consider it for two reasons. Firstly, it allows us to
analytically evaluate the asymptotic variances for standard PFs and MCMC-PFs given in (20),
(21), (22) and (23). Secondly, as discussed in [18], the model allows us to select the parameter
α in such a way that the FA-APF has either a lower or a higher asymptotic variance than
the BPF.

Figure 1 displays the asymptotic variances relative to the asymptotic variance of the stan-
dard BPF for the test function f2(x2) = x2 for two different values of the parameter α. As
displayed in the first panel, a relatively large value of α leads to the somewhat contrived case
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FIGURE 1: Asymptotic variances (relative to the asymptotic variance of the BPF) of the algorithms
discussed in Subsection 4.2 in the case that the BPF flow is more efficient than the FA-APF flow (first
panel) and in the case that the BPF flow is less efficient than the FA-APF flow (second panel).

that the BPF is more efficient than the FA-APF. However, as displayed in the second panel, a
small value of α makes the FA-APF more efficient than the BPF. This is because if the system
is in state 0 at time 1, the time-2 proposal used by the FA-APF incorporates the observation
y2 = 0, whereas the time-2 proposal used by the BPF almost always proposes moves to state 1.
In this case, the MCMC-FA-APF then outperforms the BPF as long as the autocorrelation of
the MCMC kernels used by the former, ε, is not too large.

We stress that in practical situations, one might expect a much more pronounced differ-
ence between the performance of the FA-APF and the BPF than is observed in this toy model;
hence Markov kernels with rather modest mixing properties can sometimes still give rise to an
MCMC-FA-APF that outperforms the BPF. Indeed, such algorithms showed dramatic improve-
ments in the practical applications in [32], and the MCMC-FA-APF also outperforms the BPF
in our second model, discussed below.

The second model is a d-dimensional linear Gaussian state-space model. Let E = F :=R
d

and write realisations of the d-dimensional state and observation vectors at time n as xn =
(xn,i)1≤i≤d and yn = (yn,i)1≤i≤d, respectively; then

dL1

dλ⊗d
(x1) =

d∏
i=1

φ(x1,i),
dLn(xn−1, · )

dλ⊗d
(xn) =

d∏
i=1

φ(xn,i − xn−1,i/2),

gn(xn, yn) =
d∏

i=1

φ(xn,i − yn,i),

where λ denotes the Lebesgue measure on R and φ denotes a Lebesgue-density of a univariate
standard normal distribution. We take Kμn (xn, · ) to be an MH kernel with proposal

�μn (xn, dzn) =
⎧⎨⎩

R(x1, dz1) if n = 1,

Fn−1(zn−1)

μ(Fn−1)
μ(dzn−1)R(xn, dzn) if n> 1,

where R is a Gaussian random-walk kernel on E with transition density

dR(xn, · )

dλ⊗d
(zn) =

d∏
i=1

√
dφ(

√
d[zn,i − xn,i]),
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FIGURE 2: Relative estimates of the marginal likelihood Ln in the linear Gaussian state-space model,
generated by the algorithms discussed in Subsection 4.2 using N = 10, 000 particles (with the MCMC-
FA-APF using N = 10, 000 − Nburnin particles to compensate for the additional cost of generating the
samples discarded as burn-in). Based on 1,000 independent runs of each algorithm, each run using a
different observation sequence of length n = 10 sampled from the model. For the BPF flow, Ln =Zn+1 =
γn(Gn) is estimated by LN

n := γ N
n (Gn); for the FA-APF flow, Ln =Zn = γn(1) is estimated by LN

n :=
ZN

n = γ N
n (1).

and where Fn(xn) = gn(xn, yn) for the MCMC-BPF and Fn ≡ 1 for the MCMC-FA-APF.
For the MCMC-BPF, the MCMC chains at each time step are initialised from

stationarity, i.e.

κμn (dxn) =	μn (dxn) = μ(dxn−1)gn−1(xn−1, yn−1)

μ(gn−1( · , yn−1))
Ln(xn−1, dxn),

as this is almost always possible in practice. For the MCMC-FA-APF, the MCMC chains
are initialised by discarding the first Nburnin = 100 samples as burn-in, i.e. κμn = [μ⊗
Ln](Kμn )Nburnin .

Figure 2 displays estimates of the marginal likelihood relative to the true marginal likelihood
obtained from the (MCMC-)BPF and (MCMC-)FA-APF. In this case, the MCMC-FA-APF
outperforms the BPF in both dimension d = 1 and d = 5.

Note that Assumptions A1–A2 and B1–B3 are violated in this example. The results there-
fore appear to lend some support to the conjecture that these assumptions are stronger than
necessary for the results of Propositions 1–2 to hold.

5. Conclusion

In this work, we have established an Lr-inequality (which implies an SLLN) and a central
limit theorem for a class of algorithms known as sequential MCMC methods or or MCMC
particle filters (MCMC-PFs) and provided conditions under which the associated errors can
be controlled uniformly in time. When the MCMC-PFs are based around MCMC opera-
tors that are positive (in the sense of inducing positive autocorrelations of all orders), the
asymptotic variances of particle filter (PF) estimators are always lower than those of the cor-
responding MCMC-PF estimators. However, even if the MCMC kernels provide positively
correlated draws, MCMC-PFs can remain of practical interest compared to PFs. Indeed, there
are many scenarios in which a sophisticated PF such as the fully-adapted auxiliary particle
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filter (FA-APF) would significantly outperform a bootstrap particle filter (BPF) but cannot be
implemented, whereas the corresponding MCMC-FA-APF is essentially always applicable. If
the MCMC operators used within the MCMC-FA-APF are thus displaying ‘reasonable’ inte-
grated autocorrelation time, the asymptotic variance of the resulting estimators can be smaller
than that of an implementable PF such as the BPF.

Appendix A. Sampling error decomposition

A.1. Proof strategy

Recall that given an approximation ηN
p−1 of ηp−1, Algorithm 1 replaces	

ηN
p−1

p by a sampling-
approximation ηN

p which is generated via an MCMC algorithm. This strategy is necessary
because 	μp is typically intractable for any probability measure μ. However, it introduces an
additional local error at each time step.

In this section, we relate the ‘global’ approximation error at time n, ηN
n ( fn) − ηn( fn), to

the local errors introduced at times 1 ≤ p ≤ n via a well-known telescoping-sum decomposi-
tion. Key to the proofs of our main results is then a martingale approximation of the local
errors given in Section B. The proofs of Propositions 1 and 2 and are then given in Section C.
Specifically, in Subsection C.2, we give a proof of the Lr-inequality (Proposition 1) which
relies on induction (in the time index p). In this context, the martingale approximation allows
us to appeal to the Burkholder–Davis–Gundy inequality for martingales to control the local
error at time p in Lr. Similarly, in Subsection C.3, we give a proof of the CLT (Proposition 2).
In this context, the martingale approximation allows us to appeal to the CLT for triangular
arrays of martingale difference sequences in order to show that the local errors converge in
distribution to independent centred Gaussian random variables.

To simplify the notation, for any n ≥ 1, we will hereafter often write

	N
n :=	

ηN
n−1

n , KN
n := K

ηN
n−1

n , TN
n := T

ηN
n−1

n , CN
n := C

ηN
n−1

n ,

	n :=	
ηn−1
n ( = ηn), Kn := Kηn−1

n , Tn := Tηn−1
n , Cn := Cηn−1

n .

In addition, for any 1 ≤ p ≤ n and any fn ∈B(En), we define the family of probability mea-
sures 	μp,n associated with the Feynman–Kac model by 	

μ
p,n( fn) :=μQp,n( fn)/μQp,n(1).

Furthermore, we allow f := ( fn)n≥1 to denote a sequence of test functions where for any n ≥ 1,
fn = ( f u

n )1≤u≤d ∈B(En)d. For any 1 ≤ u ≤ d, we also sometimes write f u := ( f u
n )n≥1.

A.2. Global-error decomposition

To control the overall approximation error at time n, we make use of a telescoping-
sum decomposition commonly used in the analysis of Feynman-Kac models (see, e.g., [10,
Chapter 7]):

√
N[ηN

n − ηn]( fn) = √
N

n∑
p=1

	
ηN

p
p,n( fn) −	

	N
p

p,n ( fn). (24)

Here, we recall that 	μ1 does not depend on μ, so that 	
ηN

0
1 =	N

1 = η1 without the need for
actually defining ηN

0 . Note that the pth term in the sum on the right-hand side can be viewed
as the part of the overall approximation error at time n that can be attributed to the local error
introduced at time p. Specifically, the local error at time p is a consequence of propagating the
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particle system from time p − 1 to time p not by the nonlinear semigroup of the limiting model,
which would yield	N

p , but by forming an approximation ηN
p of	N

p via MCMC sampling. That
is, the local error at time p—which is propagated to time n via the probability measures 	μp,n
in (24)—is given by

VN
p ( fp) := √

N[ηN
p −	N

p ]( fp). (25)

It is well known (see Subsection C.1 for details) that the ‘strong mixing’ Assumption B2–B3
is sufficient to guarantee stability of the probability measures 	μp,n, so that the influence of
earlier local errors diminishes over time. This stability property therefore plays a key rôle
in establishing the time-uniform bounds on the Lr-errors and on the asymptotic variance in
Propositions 1 and 2.

A.3. Local-error decomposition

For the purpose of isolating the part of the error that is due to to a potential non-stationary
initialisation of the MCMC chains, let (ξ̃

i
p)i≥1 be a Markov chain which evolves according to

the same transition kernels as (ξ i
p)i≥1 but which is initialised from stationarity, i.e. ξ̃

1
p ∼	N

p
and ξ̃

i
p ∼ KN

n (ξ̃
i−1
p , · ), for 2 ≤ i ≤ N. Furthermore, let η̃N

p := 1
N

∑N
i=1 δξ̃

i
p

denote the associated

occupation measure. The local error defined in (25) can then be decomposed as

VN
p ( fp) = [ṼN

p + RN
p ]( fp),

where

ṼN
p ( fp) := √

N[η̃N
p −	N

p ]( fp),

RN
p ( fp) := √

N[ηN
p − η̃N

p ]( fp), (26)

represent, respectively, the local error introduced at time p if the MCMC chain used to generate
the sampling-approximation of 	N

p is initialised from stationarity and the additional error due
to non-stationary initialisation. Tighter control of the latter could be obtained by explicitly
coupling (ξ̃ i

p)i≥1 and (ξ i
p)i≥1, but it is sufficient for our purposes to treat the two systems as

being entirely independent.
Using the tower property of conditional expectation, it can be easily checked that

E[ṼN
p ( fp)] = 0 as in standard PFs. However, contrary to standard PFs, the particles ξ̃ i

p and
ξ̃

j
p, for i �= j, are not necessarily conditionally independent given FN,N

p−1 , where FN,N
0 := {∅, �}

and, for any p ≥ 1 and 1 ≤ k ≤ N,

FN,k
p :=FN,N

p−1 ∨ σ (ξ i
p, ξ̃

i
p | 1 ≤ i ≤ k). (27)

Because of the lack of conditional independence, we obtain, for any 1 ≤ u ≤ d,

E[ṼN
p ( f u

p )2] =E

[
E

(
ṼN

p ( f u
p )2

∣∣FN,N
p−1

)]
=E

[
	N

p

[
( f u

p −	N
p ( f u

p ))2]]
+ 2

N−1∑
j=1

(
1 − j

N

)
E

[
	N

p

[
( f u

p −	N
p ( f u

p ))(KN
p )j( f u

p −	N
p ( f u

p ))
]]

. (28)
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To see this, note that (conditional on FN,N
p−1 ) the inner expectation in (28) is simply the vari-

ance of N−1/2 ∑N
i=1 h(Yi), where h(y) := f u

p (y) −	N
p ( f u

p ) and where (Yi)i≥1 is a stationary
Markov chain with invariant distribution 	N

p and transition kernels KN
p . The last line then fol-

lows by exploiting stationarity of that Markov chain and grouping equivalent terms. This is
a generalisation, when Kμp is not perfectly mixing, of the result for a standard PF in which
Kμp (xp, · ) =	

μ
p = κ

μ
p for all xp ∈ Ep, in which case

E[ṼN
p ( f u

p )2] =E[VN
p ( f u

p )2] =E[	N
p ([ f u

p −	N
p ( f u

p )]2)].

Following [11], [5], we further decompose (26) as

ṼN
p ( fp) = 1√

N

N∑
i=1

[
fp(ξ̃ i

p) −	N
p ( fp)

]
= 1√

N

N∑
i=1

[
TN

p ( fp)(ξ̃ i
p) − KN

p TN
p ( fp)(ξ̃ i

p)
]

[by (10)]

= UN
p ( fp) + LN

p ( fp),

where, letting ξ̃N+1
p be a random variable distributed, independently conditional upon FN,N

p ,

according to KN
p (ξ̃N

p , · ), we have (weakly) defined

UN
p ( fp) := 1√

N

N∑
i=1

[
TN

p ( fp)(ξ̃ i+1
p ) − KN

p TN
p ( fp)(ξ̃ i

p)
]
,

LN
p ( fp) := 1√

N

[
TN

p ( fp)(ξ̃1
p) − TN

p ( fp)(ξ̃N+1
p )

]
.

This allows us to write the local error at time p as

VN
p = UN

p + LN
p + RN

p . (29)

In the next section, we show that the terms LN
p and RN

p vanish as N → ∞, so that the local
sampling error at time p, VN

p , can be approximated by UN
p . The latter has a martingale property

which is at the centre of our proofs of the Lr-inequality from Proposition 1 and the CLT from
Proposition 2.

Appendix B. Martingale construction

B.1. Martingale approximation at time p

For a given p, 1 ≤ p ≤ n, and every N ∈N, define the filtration FN
p := (FN,i

p )0≤i≤N , where
FN,i

p is given by (27) with the convention that FN,0
p =FN,N

p−1 . We now construct a martingale
approximation of the local error at time p as the number of particles grows. That is, we show
that for 1 ≤ p ≤ n and each N ∈N, UN

p ( fp) is the terminal value of an FN
p -martingale (and for

fixed p these martingales, indexed by N, form a triangular array), while LN
p ( fp) and RN

p ( fp) are
remainder terms which vanish almost surely as N → ∞.

• Martingale. For each N ≥ 1, UN
p ( fp) = ∑N

i=1 ΔUN,i+1
p ( fp) is the terminal

value of a martingale defined through the FN
p -martingale difference sequence

(ΔUN,i+1
p ( fp))1≤i≤N , where
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ΔUN,i+1
p ( fp) := 1√

N

[
TN

p ( fp)(ξ̃ i+1
p ) − KN

p TN
p ( fp)(ξ̃ i

p)
]
.

Indeed, for any 1 ≤ i ≤ N and any 1 ≤ u, v ≤ d,

E
[
ΔUN,i+1

p ( f u
p )

∣∣FN,i
p

] = 0, (30)

E
[
ΔUN,i+1

p ( f u
p )ΔUN,i+1

p ( f v
p )

∣∣FN,i
p

] = 1

N
CN

p ( f u
p , f v

p )(ξ̃ i
p), (31)

where the second line follows directly from the definition in (13).

• Remainder. By (12), for any 1 ≤ u ≤ d, the remainder signed measure LN
p is bounded as

|LN
p ( f u

p )| ≤ 2√
N

|TN
p ( f u

p )| ≤ 2Tp‖f u
p ‖√

N
. (32)

By (8), under Assumption A1, for any N, r ∈N and any 1 ≤ u ≤ d, we have

E
[|RN

p ( f u
p )|r] 1

r ≤
Tp‖f u

p ‖√
N

. (33)

Note that by Markov’s inequality and the Borel–Cantelli lemma, (33) implies that
RN

p ( f u
p )→a.s.0 as N → ∞.

B.2. Martingale approximation up to time n

For any N ≥ 1, the sum of all local errors up time n—of which we again construct a
martingale approximation—is given by

VN
n ( f ) :=

n∑
p=1

VN
p ( fp) = UN

n ( f ) +LN
n ( f ) +RN

n ( f ).

The three quantities appearing on the right-hand side are defined as follows.

• Martingale. Let FN := (FN
n )n≥1 with FN

p :=FN,N
p ; then the terms

UN
n ( f ) :=

n∑
p=1

UN
p ( fp)

define an FN-martingale (UN
n ( f ))n≥1. As detailed in Section C.3, these martingales can

be constructed by combining martingale increments from the local error decompositions
in an appropriate lexicographic order. Again, we will treat this collection, indexed by N,
as a triangular array.

• Remainder. Again,

LN
n ( f ) :=

n∑
p=1

LN
p ( fp) and RN

n ( f ) :=
n∑

p=1

RN
p ( fp)

constitute remainder terms. Note that for any n ≥ 1 and any 1 ≤ u ≤ d, by (32) and (33),

lim
N→∞|LN

n (f u)| = 0 and |RN
n ( f u)|→a.s.0.
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Appendix C. Convergence proofs

C.1. Auxiliary results needed for time-uniform bounds

For any 1 ≤ p ≤ n and any fn ∈B(En), we define

rp,n := sup
xp,zp∈Ep

Qp,n(1)(xp)

Qp,n(1)(zp)
, Pp,n( fn) := Qp,n( fn)

Qp,n(1)
≤ 1.

In the remainder of this work, whenever we restrict our analysis to test functions fn ∈
B�(En)d, we can replace β(Pp,n) by

β�(Pp,n) := 1

2
sup|Pp,n( f ′

n)(xp) − Pp,n( f ′
n)(zp)|,

where the supremum is over all xp, zp ∈ Ep and all f ′
n ∈B�(En) such that ‖f ′

n‖ ≤ 1.

Lemma 1. Under Assumptions A1 and B1–B3, for any 1 ≤ p ≤ n,

Tp ≤T, where T := 2ı̄/ε(K)<∞;

rp,n ≤ r̄, where r̄ := ε(G)−(m+l)ε(M)−1 <∞;

β�(Pp,n) ≤ β̄�(n−p)/m�, where β̄ := (1 − ε(G)m+lε(M)2)< 1.

Proof . This follows by arguments similar to those used in the proof of [10, Proposition
4.3.3].

C.2. Auxiliary results needed for the Lr-inequality

Lemma 2. Under Assumption A1, for any r ≥ 1, there exists br <∞ such that for any n ≥ 1,
any fn ∈B(En), and any N ∈N,

E
[|UN

n ( fn)|r] 1
r ≤ 2brTn‖fn‖.

Proof. Without loss of generality, assume that ‖fn‖ ≤ 1. The quadratic variation associated
with the martingale UN

n ( fn) satisfies

N∑
i=1

E
(
ΔUN,i+1

n ( fn)2
∣∣FN,i

n

) = η̃N
n CN

n ( fn, fn) [by (31)]

≤ 4T 2
n [by (14)].

Hence, by the Burkholder–Davis–Gundy inequality (see, e.g., [19, Theorem 17.7]) there exists
br <∞ such that

E
[|UN

n ( fn)|r] 1
r ≤ 2brTn.

This completes the proof.
We are now ready to prove the Lr-inequality in Proposition 1.

Proof. Without loss of generality, assume that ‖fn‖ ≤ 1 for all n ≥ 1 and that the constants
br in Lemma 2 satisfy infr≥1 br ≥ 1.
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We begin by proving the first part of the proposition, i.e. the Lr-error bound without the
additional Assumptions B1–B3. The proof proceeds by induction on n by similar arguments as
in [7]. At time n = 1, by Minkowski’s inequality combined with Lemma 2 as well as (32) and
(33), we have

√
NE

[|[ηN
1 − η1]( f1)|r] 1

r = √
NE

[|[ηN
1 −	N

1 ]( f1)|r] 1
r

≤E
[|UN

1 ( f1)|r] 1
r +E

[|LN
1 ( f1)|r] 1

r +E
[|RN

1 ( f1)|r] 1
r

≤ 2brT1 + 3T1√
N

≤ a1br,

e.g. with a1 := 5T1 <∞.
Assume now that the first part of the proposition holds at time n − 1, for some n> 1. By

Minkowski’s inequality,

√
NE

[|[ηN
n − ηn]( fn)|r] 1

r

≤ √
NE

[|[ηN
n −	N

n ]( fn)|r] 1
r + √

NE
[|[	N

n − ηn]( fn)|r] 1
r (34)

≤ 2brTn + 3Tn√
N

+ 2bran−1

ηn−1(Gn−1)
≤ anbr, (35)

e.g. with an := 5Tn + 2an−1/ηn−1(Gn−1)<∞. Here, the bound on the first term in (34) follows
by the same arguments as at time 1. The bound on the second term in (34) follows from the
following decomposition (note that ηn−1(Qn(1)) = ηn−1(Gn−1)):

ηn−1(Gn−1)|[	N
n − ηn]( fn)|

= ∣∣ηn−1(Gn−1)	N
n ( fn) − ηN

n−1(Qn( fn)) + ηN
n−1(Qn( fn)) − ηn−1(Qn( fn))

∣∣
= ∣∣	N

n ( fn)[ηn−1 − ηN
n−1](Qn(1)) + [ηN

n−1 − ηn−1](Qn( fn))
∣∣

≤ ‖	N
n ( fn)‖|[ηn−1 − ηN

n−1](Qn(1))| + |[ηN
n−1 − ηn−1](Qn( fn))|.

Minkowski’s inequality along with ‖Qn(1)‖ ≤ 1 and ‖Qn( fn)‖ ≤ 1 as well as the bound
‖	N

n ( fn)‖ ≤ ‖fn‖ ≤ 1 combined with the induction assumption then readily yields the bound
given in (35), i.e.

√
NE

[|[	N
n − ηn]( fn)|r] 1

r ≤ 2bran−1

ηn−1(Gn−1)
.

This completes the first part of the proposition.
As the bounds obtained through the previous induction proof cannot easily be made time-

uniform, we prove the second part of the proposition via the more conventional telescoping-
sum decomposition given in (24). Using the arguments in [10, pp. 244–246], we obtain the
following bound for the pth term in the telescoping sum:

√
N|[	η

N
p

p,n −	
	p

N

p,n ]( fn)| ≤ 2
√

N|[ηN
p −	N

p ](QN
p,n( fn))|rp,nβ(Pp,n)

= 2|[UN
p + LN

p + RN
p ](QN

p,n( fn))|rp,nβ(Pp,n),
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where the second line is due to (29) and where

QN
p,n( fn) := QN

p,n( fn)

‖QN
p,n( fn)‖ ,

QN
p,n( fn) := Qp,n(1)

	N
p (Qp,n(1))

Pp,n

(
fn − 	N

p (Qp,n( fn))

	N
p (Qp,n(1))

)
.

Hence, by (24),
√

NE
[|[ηN

n − ηn]( fn)|r] 1
r

≤ 2
n∑

p=1

E
[|[UN

p + LN
p + RN

p ](QN
p,n( fn))|r] 1

r rp,nβ(Pp,n)

≤ 2
n∑

p=1

(
2brTp + 3Tp√

N

)
rp,nβ(Pp,n) ≤ anbr

with an := 10
∑n

p=1
Tprp,nβ(Pp,n), where the last line follows from Minkowski’s inequality

combined with Lemma 2, (32), and (33). Since fn ∈B�(En), we can replace β(Pp,n) by β�(Pp,n)
in the derivation above. Lemma 1 then yields the time-uniform bound

an ≤ 10Tr̄
n∑

p=1

β̄�(n−p)/m� ≤ 10Tr̄m
∞∑

n=0

β̄n ≤ 20ı̄m

ε(K)ε(M)3ε(G)2(m+l)
=: a.

This completes the proof.

C.3. Auxiliary results needed for the CLT

In this subsection, we prove the CLT stated in Proposition 2. The proof relies on Lemma 4,
which establishes convergence of the covariance function, and whose proof in turn relies on
Lemma 3. The latter illustrates how local Lipschitz conditions of the type given in Assumption
A2 are used within this work.

Lemma 3. For measurable spaces (H,H) and (H′,H′), let Mν : B(H′) →B(H) be bounded
integral operators indexed by ν ∈P(H). Let (μN)N≥1 be a sequence of random probability
measures on (H,H) and μ ∈P(H). Assume that

(1) for any r ≥ 1, there exists br <∞ such that for any g ∈B(H) and any N ≥ 1,

E
[|[μN −μ](g)|r] 1

r ≤ br√
N

‖g‖; (36)

(2) there exist a constant Γ <∞ and a family of bounded integral operators (Γ ν)ν∈P(H)
from B(H′) into B(H) such that for any f ∈B(H′) and any ν0, ν1 ∈P(H),

‖[Mν1 − Mν0 ]( f )‖ ≤
∫
B(H)

|[ν1 − ν0](g)|Γ ν0 ( f , dg), (37)

with ∫
B(H)

‖g‖Γ ν0 ( f , dg) ≤ ‖f ‖Γ. (38)
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Then for any r ≥ 1, f ∈B(H′), and N ≥ 1,

E
[‖[MμN − Mμ]( f )‖r] 1

r ≤ br Γ√
N

‖f ‖.

Proof. For any r ≥ 1,

E[‖[MμN − Mμ]( f )‖r]
1
r ≤E

[∣∣∣∣∫B(H)
|[μN −μ](g)|Γ μ( f , dg)

∣∣∣∣r] 1
r

≤
∫
B(H)

E[|[μN −μ](g)|r]
1
r Γ μ( f , dg)

≤ br√
N

∫
B(H)

‖g‖Γ μ( f , dg)

≤ br Γ√
N

‖f ‖.

Here, the first line follows from (37); the second line is due to the convexity of the Lr-norm;
the last two lines follow from (36) and (38), respectively.

Lemma 4. Under Assumptions A1–A2, for any n ≥ 1, there exists Υn <∞ such that for any
N, r ≥ 1 and any ( fn, gn) ∈B(En)2,

E
[‖C

ηN
n−1

n ( fn, gn) − Cηn−1
n ( fn, gn)‖r] 1

r ≤ an−1br Υn√
N

‖fn‖‖gn‖,

where an−1, br <∞ are from Proposition 1.

Proof . We use a similar argument to that used in the first part of the proof of [5, Theorem
3.5]. That is, under Assumptions A1 and A2, and using [5, Proposition 3.1], a telescoping-sum
decomposition allows us to find a constant Υn <∞ and a family of bounded integral operators
(Υ νn )ν∈P(En−1) from B(En)2 into B(En−1) such that for any (ν, μ) ∈P(En−1)2,

‖Cνn( fn, gn) − Cμn ( fn, gn)‖ ≤
∫
B(En−1)

|[ν −μ](h)|Υ μn (( fn, gn), dh),

with ∫
B(En−1)

‖h‖Υ μn (( fn, gn), dh) ≤ ‖fn‖‖gn‖Υn.

The proof is then completed by appealing to Lemma 3.
We now prove the following proposition, which adapts [5, Proposition 4.3] (see also [10,

Theorem 9.3.1]) to our setting.

Proposition 3. Let f := ( fn)n≥1, where fn = ( f u
n )1≤u≤d ∈B(En)d. The sequence of martin-

gales UN( f ) = (UN
n ( f ))n≥1 converges in law as N → ∞ to a Gaussian martingale U ( f ) =

(Un( f ))n≥1 such that for any n ≥ 1 and any 1 ≤ u, v ≤ d,

〈U ( f u), U ( f v)〉n =
n∑

p=1

ηpCp( f u
p , f v

p ).
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Proof . We begin by re-indexing the processes defined above. For any (p, i) ∈N×
{1, . . . ,N}, define the bijection θN by

θN(p, i) := (p − 1)N + i − 1.

Define the filtration GN := (GN
k )k≥1, where GN

k := ∨(p,i) : θN (p,i)≤kFN,i
p . We then have

UN
n ( f ) = ŨN

k ( f ) whenever k = θN(n,N), where

ŨN
k ( f ) :=

k∑
j=1

ΔŨN
j ( f )

defines a GN-martingale (ŨN
k ( f ))k≥1 with increments

ΔŨN
j ( f ) :=ΔUN,i

p ( fp) for θN(p, i) = j.

Indeed, by (30) and (31), for any 1 ≤ u, v ≤ d,

E
[
ΔŨN

j ( f u)
∣∣GN

j−1

] = 0,

E
[
ΔŨN

j ( f u)ΔŨN
j ( f v)

∣∣GN
j−1

] = 1

N
CN

p ( f u
p , f v

p )(ξ̃ i
p),

where p ≥ 1 and 1 ≤ i ≤ N satisfy θN(p, i) = j.

We now apply the CLT for triangular arrays of martingale difference sequences (see, e.g.,
[34, Section VII.8, Theorem 4; p. 543]). The Lindeberg condition is satisfied because the test
functions fn are bounded. Finally, for any p ≥ 1,

(p+1)N∑
k=(pN)+1

E[ΔŨN
k ( f u)ΔŨN

k ( f v)|GN
k−1] = 1

N

N∑
i=1

CN
p ( f u

p , f v
p )(ξ̃ i

p)

= η̃N
p CN

p ( f u
p , f v

p )

→a.s.ηpCp( f u
p , f v

p ).

The last line follows by Markov’s inequality combined with the Borel–Cantelli lemma after
noting that for any r, p ≥ 1, Minkowski’s inequality combined with (33), Lemma 4, and
Proposition 1 guarantees the existence of a′

p, b′
r <∞ such that for any N ≥ 1,

E
[‖η̃N

p CN
p ( f u

p , f v
p ) − ηpCp( f u

p , f v
p )‖r] 1

r ≤E
[‖[η̃N

p − ηN
p ](CN

p ( f u
p , f v

p ))‖r] 1
r

+E
[‖CN

p ( f u
p , f v

p ) − Cp( f u
p , f v

p )‖r] 1
r

+E
[‖[ηN

p − ηp](Cp( f u
p , f v

p ))‖r] 1
r

≤ a′
pb′

r√
N

‖f u
n ‖‖f v

n ‖.

As a result, for any n ≥ 1, as N → ∞,

(n+1)N∑
k=1

E[ΔŨN
k ( f u)ΔŨN

k ( f v)|GN
k−1]→a.s.

n∑
p=1

ηpCp( f u
p , f v

p ).

This completes the proof.
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As an immediate consequence of Proposition 3, we obtain the following corollary. Its proof
is a straightforward modification of the proof of [10, Corollary 9.3.1].

Corollary 2. As N → ∞, the sequence of random fields VN = (VN
n )n≥1 converges in law (and

in the sense of convergence of finite-dimensional marginals) to the sequence of independent
and centred Gaussian random fields V = (Vn)n≥1 with covariance function as defined in (15).

We are now ready to give the proof of the CLT in Proposition 2.

Proof . The proof of the CLT now follows by replacing [10, Theorem 9.3.1 & Corollary
9.3.1] in the proofs of [10, Propositions 9.4.1 & 9.4.2] with Proposition 3 and Corollary 2,
respectively.

For the time-uniform bound on the asymptotic variance in (17), we note that for any 1 ≤
u ≤ d,

‖Qp,n( f u
n − ηn( f u

n ))‖ =
∥∥∥∥ Qp,n(1)

ηpQp,n(1)

[
Pp,n( f u

n ) −�
ηp
p,nPp,n( f u

n )
]∥∥∥∥

≤ rp,n‖[Id −�
ηp
p,n]Pp,n( f u

n )‖
≤ 2‖f u

n ‖rp,nβ
�(Pp,n),

where we have used that ηn =�
ηp
p,nPp,n, where

�
ηp
p,n(dxp) := ηp(dxp)Qp,n(1)(xp)

ηpQp,n(1)
.

Hence, by (14) and Lemma 1, the time-uniform bound on the asymptotic variance in (18)
holds, e.g. with

c := 8T2r̄2
n∑

p=1

β̄2�(n−p)/m� ≤ 8T2r̄2m
∞∑

n=0

β̄n ≤ 32ı̄2m

ε(K)2ε(M)4ε(G)3(m+l)
.

This completes the proof.
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