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Reynolds number effects on lipid vesicles
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Vesicles exposed to the human circulatory system experience a wide range of flows
and Reynolds numbers. Previous investigations of vesicles in fluid flow have focused
on the Stokes flow regime. In this work the influence of inertia on the dynamics
of a vesicle in a shearing flow is investigated using a novel level-set computational
method in two dimensions. A detailed analysis of the behaviour of a single vesicle
at finite Reynolds number is presented. At low Reynolds numbers the results recover
vesicle behaviour previously observed for Stokes flow. At moderate Reynolds numbers
the classical tumbling behaviour of highly viscous vesicles is no longer observed.
Instead, the vesicle is observed to tank-tread, with an equilibrium angle dependent
on the Reynolds number and the reduced area of the vesicle. It is shown that a
vesicle with an inner/outer fluid viscosity ratio as high as 200 will not tumble if the
Reynolds number is as low as 10. A new damped tank-treading behaviour, where the
vesicle will briefly oscillate about the equilibrium inclination angle, is also observed.
This behaviour is explained by an investigation on the torque acting on a vesicle in
shear flow. Scaling laws for vesicles in inertial flows have also been determined. It
is observed that quantities such as vesicle tumbling period follow square-root scaling
with respect to the Reynolds number. Finally, the maximum tension as a function of
the Reynolds number is also determined. It is observed that, as the Reynolds number
increases, the maximum tension on the vesicle membrane also increases. This could
play a role in the creation of stable pores in vesicle membranes or for the premature
destruction of vesicles exposed to the human circulatory system.

Key words: capsule/cell dynamics, membranes, multiphase flow

1. Introduction
Vesicles have been proposed in various biotechnologies, such as drug delivery

systems (Choon & Cullis 1995; Allen & Cullis 2004; Torchilin 2006). Vesicles
used in such a technology would be exposed to all conditions in the circulatory
system, from creeping flow (Fung & Zweifach 1971) to flows where inertia cannot be
ignored (Ku et al. 1985). As a result, the behaviour of vesicles in external flows has
been of great interest experimentally (Abkarian, Lartigue & Viallat 2002; Abkarian &
Viallat 2005, 2008; Abkarian, Faivre & Viallat 2007; Coupier et al. 2008; Deschamps
et al. 2009a; Deschamps, Kantsler & Steinberg 2009b), theoretically (Vlahovska &
Gracia 2007; Lebedev, Turitsyn & Vergeles 2008; Danker, Vlahovska & Misbah 2009;
Vlahovska, Podgorski & Misbah 2009; Schwalbe, Vlahovska & Miksis 2010) and
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numerically (Du, Liu & Wang 2006; Misbah 2006; Du & Zhang 2008; Du et al.
2009; Veerapaneni et al. 2009a,b). In the Stokes flow regime, two major behaviours
have been observed. The first is a tank-treading motion, where a vesicle’s orientation
remains constant in time while the membrane rotates (Lebedev et al. 2008; Deschamps
et al. 2009a; Veerapaneni et al. 2009b). The second is classified as tumbling, where
an end-over-end rotation of the vesicle is observed (Seifert 1997; Kantsler & Steinberg
2006; Lebedev et al. 2008). A third regime has recently been observed, described
as either trembling (Lebedev et al. 2008; Zhao & Shaqfeh 2009, 2011) or breathing
(Vlahovska & Gracia 2007). This third regime is an intermediate step between the
tank-treading and tumbling cases. In the Stokes regime, a vesicle will transition
from tank-treading to tumbling with an increase in the viscosity ratio between the
encapsulated and external fluid (Kantsler & Steinberg 2006). Dependence on other
parameters, such as density, has not been observed. Here we consider the effect of
inertia on the dynamics of vesicles.

Flows at higher Reynolds number can occur in a number of situations. For example,
consider the formation of clots in an artery, atherothrombosis. The highest shear rate
typically found in normal circulation can reach 4700 s−1 (Tangelder et al. 1988). For
a vesicle with a radius of 4 µm and typical blood fluid properties, this results in a
shear Reynolds number of 0.02. If an artery is restricted due to a clot, then numerical
studies have shown that the shear rate can increase to 84 000 s−1 (Strony et al. 1993)
or even to peaks of 425 000 s−1 (Bark & Ku 2010), resulting in a Reynolds number of
the order of 2. An understanding of how a vesicle drug delivery system behaves under
such conditions is necessary to advance the technology.

As another example, consider ventricular assist devices. These are mechanical
devices that augment or replace the function of one or more chambers of a failing
heart. Device types include centrifugal, axial and pulsatile pump designs. Maximum
Reynolds number in these devices range from 3321 in pulsatile pumps to 155 320
for centrifugal pumps (Fraser et al. 2011). Owing to the unphysiological conditions
in circulatory systems using these devices, a wide range of blood damage can
occur, including damage to erythrocytes, called haemolysis (Siegenthaler et al. 2002;
Heilmann et al. 2009). In haemolysis, haemoglobin is released into the plasma
due to mechanical compromise of the erythrocyte membrane. The mechanism for
haemoglobin release may be the rupture of the cell (Rand 1964) or the formation
of pores appearing in the cell membrane (Zhao et al. 2006). Vesicles form a model
system for red blood cells (Noguchi, Gompper & Lubensky 2005; Abkarian & Viallat
2008), and knowledge of how these model systems respond to various flows will
provide insight into the behaviour of red blood cells.

Recently Salac & Miksis (2010, 2011) presented a numerical method to model
vesicle behaviour in finite-Reynolds-number flows. The method was a level-set
computational scheme using a novel projection method. In that previous work, it
was shown that a vesicle that should be tumbling in a viscous flow will tank-tread
when the Reynolds number is increased. More recently Laadhari, Saramito & Misbah
(2012) have observed similar behaviour.

Here we will use an extension of the computational approach of Salac & Miksis
(2011) to provide a systematic numerical investigation of the dynamics of vesicles
in flows where both inertial and viscous effects are important. A parameter study
will be presented showing how inertial effects result in the vesicle transitioning
from the tumbling back to the tank-treading regime as the Reynolds number varies.
The existence of this critical Reynolds number agrees with work dealing with rigid
particles in inertial flow (Zettner & Yoda 2001; Mikulencack & Morris 2004).
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124 D. Salac and M. J. Miksis

The physical problem, including a short description of the mathematical formulation,
and the numerical method are presented in § 2. Verification of the method and a
discussion of the validity of using a two-dimensional computation to model three-
dimensional vesicles is presented in § 3. Numerical results for a single vesicle in
simple inertial shear flow are presented in § 4. A systematic investigation of vesicle
behaviour in inertial flows, including relevant scaling laws, is shown in § 5. A
discussion, including a comparison with rigid particles in inertial shear flows, follows
in § 6. Finally, in § 7 a brief conclusion and possible future work are presented.

2. Problem description and numerical method
Consider a single vesicle suspended in a fluid. This vesicle encapsulates another

fluid with known properties that may differ from those of the surrounding fluid. Under
general flow conditions, the system is governed by the full Navier–Stokes equations
with interfacial boundary conditions on the vesicle membrane. It is assumed that the
velocity field is continuous across the membrane and the stress has a jump in the
normal direction proportional to the force per unit area acting on the membrane. To
enforce surface incompressibility, the velocity at the interface must also be surface-
divergence-free, ∇s ·u= 0.

The force per unit area on the membrane can be derived from the free energy of the
membrane and is equal to bn(∇2

s κ + 1
2κ

3)n − γ κn + ∇sγ s, with a bending rigidity of
bn, an interfacial mean curvature of κ , and a spatially varying tension-like parameter γ .
Here s represents the tangential vector and ∇2

s =∇s ·∇s is the surface Laplacian.
The present study is based on level-set tracking of the vesicle membrane and a

projection method for the fluid equations (Salac & Miksis 2011). The location of
the vesicle is implicitly determined by an auxiliary mathematical function φ(x, t),
where x is a position in space. The vesicle membrane at time t is taken to be
Γ (t) = {x : φ(x, t) = 0}. It is assumed that φ(x, t) < 0 corresponds to the region
enclosed by the membrane. Material parameters such as density and viscosity can be
calculated at any point by f (x, t) = fin + (fout − fin)H(φ(x, t)), where f is the material
quantity needed and H(y) is the Heaviside function such that H(y) = 0 for y < 0 and
H(y)= 1 for y > 0.

Let a two-dimensional vesicle of encapsulated area A have a membrane length of
L. A characteristic length is defined as R0 = L/2π, while velocity is characterized
by u0 = γ̇R0. A vesicle is characterized by a reduced area parameter, ν = A/(πR2

0) =
4πA/L2, which relates the encapsulated area of a vesicle to that of a circle with
the same membrane length. If a characteristic pressure and tension are defined as
p0 = γ̇ µout and γ0 = γ̇R0µout , where µout is the viscosity of the external fluid, then two
dimensionless quantities can be determined. The first is the shear Reynolds number,
Re = ρout γ̇R2

0/µout , while the second is a capillary bending number, Ca = R3
0µout γ̇ /bn.

The capillary bending number relates the strength of applied shear flow to the bending
energy. The density and viscosity are normalized with respect to the external fluid
values. A single Navier–Stokes equation valid in the entire domain can be calculated
as (Salac & Miksis 2011):

ρ
Du
Dt
=− 1

Re
∇p+ 1

Re
∇ · (µ(∇u+∇Tu))+ 1

Re
δ(φ)(|∇φ|∇sγ − γ κ∇φ)

+ 1
CaRe

δ(φ)

(
∇2

s κ +
1
2
κ3

)
∇φ, (2.1)

where δ(φ) is the Dirac delta function given by δ(y)= dH(y)/dy.
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2.1. Numerical method
The method used in this study is an extension of the previous method developed by
Salac & Miksis (2011). Changes from the original method are presented below.

The fluid field is solved using a second-order in time and space lagged
pressure–tension semi-Lagrangian projection method. The semi-Lagrangian component
is based on the work of Xiu & Karniadakis (2001) while the lagged pressure and
tension are based on the work of Brown, Cortez & Minion (2001). This method
represents an improvement on the previous work of Salac & Miksis (2011). To
advance the fluid field from a time tn to a time tn+1 = tn + 1t, it is assumed that
the velocity at times tn−2, tn−1 and tn are known. The lagged pressure pn−1/2 and
tension γ n−1/2 are also known.

The first step is a semi-implicit velocity approximation given by

ρ
3u∗ − 4un

d + un−1
d

21t
=− 1

Re
∇pn−1/2 + 1

Re
∇ ·

(
µ
(
∇u∗ + (∇ûn+1

)T
))

+ 1
ReCa

(
∇2

s κ +
1
2
κ3

)
δ(φ)∇φ

+ 1
Re
δ (φ) (∇sγ

n−1/2 − γ n−1/2κn), (2.2)

where un
d and un−1

d are the departure velocities at times tn and tn−1. The quantity
ûn+1 is a second-order approximation to the true velocity field un+1. Standard
second-order extrapolation resulted in unstable oscillations of the fluid field in
certain situations. To avoid this instability, the approximate velocity is defined as
ûn+1 = un + minmod(un − un−1,un−1 − un−2), where minmod(x, y) equals 0 if xy < 0,
x if |x|< |y|, and y otherwise.

The next step is a pressure and tension correction step:

ρ
un+1 − u∗

1t
=− 1

Re
∇p̂+ 1

Re
δ(φ)(∇sγ̂ − γ̂ κn) (2.3)

subject to the constraints ∇ ·un+1 = 0 in Ω and ∇s ·un+1 on Γ . This equation is solved
using an iterative technique to enforce both conditions. The pressure and tension for
the next iteration are given by pn+1/2 = pn−1/2+3p̂/2 and γ n+1/2 = γ n−1/2+3γ̂ /2. Using
this correction form, the pressure and tension are at least first-order accurate, ensuring
that the velocity field is second order (Brown et al. 2001).

All results presented will be for a single vesicle with the same density as the
exterior fluid. The vesicle is contained in a square computational domain of size 2L
centred at the origin. The goal is to investigate inertial effects on vesicle behaviour,
and thus ideally the vesicle would be in an infinite domain. To approximate this
condition, the velocity boundary conditions on the domain are periodic in the x
direction and Dirichlet velocity boundary conditions of u = (±L, 0) in the y direction.
A confinement parameter is introduced as h = R0/L, where R0 is the radius of a
circular vesicle with the same membrane length. Unless otherwise stated, all results
will be obtained using a confinement parameter of h= 1/5.

The simulations are solved on an adaptive non-graded Cartesian grid (Min & Gibou
2006, 2007) using a maximum grid spacing 0.156 25 and a minimum grid spacing
of 0.0390 625 with a uniform time step of 0.001. In all cases the enclosed area
and membrane length have been tracked. These quantities never deviate from their
initial values by more than 0.1 %. All of the simulations are started by assuming zero
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126 D. Salac and M. J. Miksis

pressure, zero tension and an initial velocity field of u0 = (y, 0). The simulation is then
run for 50 iterations while keeping the vesicle stationary to obtain an initial pressure,
tension and velocity field.

Inclination angles are determined by calculating the eigenvalues and eigenvectors of
the vesicle’s inertia tensor about its centre of mass. The eigenvector corresponding to
the larger of the two eigenvalues provides the direction of the long axis of a vesicle.
In the following, inclination angles are reported as the angle of the the vesicle in
the right half of the domain and the positive x axis. This results in the angle having
values between −π and +π. A jump will be seen when the angle of the vesicle
becomes lower than −π, as the angle will now be measured with respect to the
opposite tip. Vesicles will also be described by a deformation parameter given by
D= (L− B)/(L+ B), where L and B are the long and short axes of an ellipse with the
same inertia tensor (Ramanujan & Pozrikidis 1998).

3. Verification and influence of confinement
In this section, verification of the numerical method and the influence of

confinement will be presented. The verification will be compared to both two- and
three-dimensional results. It will be shown that, despite being a two-dimensional
simulation, the results correctly predict the behaviour of three-dimensional vesicles.
It will also be seen that confinement of the domain plays an important part in the
behaviour of vesicles in inertial flows.

3.1. Verification of the method

To validate the method, results from the present scheme are compared to available
Stokes flow results. First, consider vesicles ranging from a reduced area of ν = 0.6 to
ν = 0.9, all with a unit viscosity ratio, η = 1, placed in a simple shear flow described
by Re = 10−3 and Ca = 100. It is known that the vesicle will reach an equilibrium
inclination angle with respect to the flow direction. The equilibrium inclination angle
using the scheme presented above has been measured and compared to the work of
Kraus et al. (1996), Kantsler & Steinberg (2006) and Veerapaneni et al. (2009b).
To compare with the three-dimensional experimental results of Kantsler & Steinberg
(2006), it is first necessary to convert the reduced volume of a three-dimensional
vesicle into a reduced area of a two-dimensional vesicle. This is accomplished
by considering the maximum section in the shear plane of a three-dimensional
vesicle under shear flow and then calculating the reduced area of this shear plane
(Ghigliotti, Biben & Misbah 2010). Using both numerical (Zhao & Shaqfeh 2009)
and experimental (Kantsler & Steinberg 2005; Zabusky et al. 2011) three-dimensional
data, the relationship ν = ν1.639

V has been determined, where ν is the two-dimensional
reduced area used here and νV is the three-dimensional reduced volume. The result
for the equilibrium angle is seen in figure 1. The two-dimensional results of this
work agree well with previous two-dimensional numerical and three-dimensional
experimental results.

At equilibrium, a tank-treading vesicle with η = 1 will obtain a constant shape.
This shape can be described by the deformation parameter D described above. For
three-dimensional vesicles it has been predicted that the parameter D scales as

√
∆,

where ∆ is the excess area of a vesicle (Seifert 1999). In two dimensions the
parameter ∆ is the excess interfacial length and is related to the reduced area by
∆ = 2(1 − √ν)/(π√ν). Using the method outlined above, the deformation parameter
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FIGURE 1. (Colour online) The equilibrium inclination angle for various vesicles in simple
shear flow with η = 1, Re = 10−3 and Ca = 100. The result is compared to previously
published results of Kraus et al. (1996) and Veerapaneni et al. (2009b) and the experimental
results of Kantsler & Steinberg (2006).

for a tank-treading vesicle is shown as a function of excess length in figure 2. As can
be seen, the deformation parameter scales as predicted.

As the viscosity ratio increases, it is known that a vesicle in simple shear flow
will transition from the tank-treading regime to the tumbling regime. The viscosity
ratio required for this transition has been determined for various vesicles in shear
flow described by Re = 10−3 and Ca = 100. The result is compared to the analytic
result of Keller & Skalak (1982) and the experimental result of Kantsler & Steinberg
(2006) using the reduced volume–reduced area conversion above. The comparison is
seen in figure 3. The behaviour of the present method compares well to both the
analytic method and experimental results. This result, in addition to the results shown
in figures 1 and 2, demonstrates that the two-dimensional results presented here predict
the correct behaviour.

3.2. Influence of confinement

To explore the influence of the computational domain on the behaviour of the vesicle,
a study has been performed using a single vesicle with a reduced area of ν = 0.7
under the conditions of Re = 10−3 and Ca = 100 with various confinement levels.
First, consider a vesicle with no viscosity contrast, η = 1, placing the vesicle in the
tank-treading regime. The behaviour of the vesicle for varying levels of confinement
are shown in figure 4. It appears that, at confinement levels greater than h = 1/4, the
influence of the boundary begins to be minimized.

If the viscosity contrast is increased to η = 8, the vesicle will now be in the
tumbling regime. The dynamic behaviour of the vesicle for various confinement levels
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FIGURE 2. The deformation parameter, D, at equilibrium versus the vesicle excess length,
∆, during tank-treading in simple shear flow with η = 1, Re = 10−3 and Ca = 100. The
deformation scales as

√
∆ as shown by Seifert (1999).
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FIGURE 3. The viscosity ratio required to transition from the tank-treading to tumbling
regimes for vesicles with various reduced areas in a flow described by Re = 10−3 and
Ca = 100. The result is compared to the analytic work of Keller & Skalak (1982) and the
experimental results of Kantsler & Steinberg (2006).
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FIGURE 4. (Colour online) Influence of the confinement on the behaviour of a tank-treading
vesicle given by ν = 0.7 and η = 1 with Re = 10−3 and Ca = 100. (a) The inclination angle
of the vesicle over time for values of h from 1/2 to 1/5. (b) The equilibrium inclination angle
versus confinement level.
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FIGURE 5. (Colour online) Influence of the confinement on the behaviour of a tumbling
vesicle given by ν = 0.7 and η = 8 with Re = 10−3 and Ca = 100. (a) The inclination angle
of the vesicle over time for values of h from 1/2 to 1/5. (b) The tumbling period versus
confinement level.

under these conditions is given in figure 5. As before, the influence of the boundaries
begins to diminish for confinement levels greater than h= 1/4.

The need for a low confinement level can be further demonstrated by considering
the same vesicle with a reduced area of ν = 0.7 and viscosity ratio η = 20 in a
flow described by Re = 2 and Ca = 100. This vesicle is placed in two computational
domains. The first is a domain of size [−2, 2] × [−2, 2], giving a confinement value of
h= 1/2 in both directions. The second is a domain of size [−5, 5] × [−2, 2], giving a
confinement value of 1/5 in the x direction and 1/2 in the y direction. As the domain
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FIGURE 6. (Colour online) Inclination angle of a vesicle described by ν = 0.7 and η = 20 in
a flow with Re = 2 and Ca = 100 for two computational domains of [−5, 5] × [−2, 2] and
[−2, 2] × [−2, 2]. The influence of the boundary conditions in the x direction for the smaller
domain is clearly demonstrated.

sizes are the same in the y direction, any change in behaviour will be due solely to the
boundary conditions enforced in the x direction. The resulting behaviour of the vesicle
over time is shown in figure 6. Clearly, the behaviour of the vesicle is drastically
altered by the utilization of a small computational domain. Based on the results of
this section, and to avoid any overt influence of boundary conditions on the results, a
uniform confinement level of h= 1/5 is chosen for the remaining results.

4. Inertial effects on a vesicle with ν = 0.7

To explore the influence of inertia on the behaviour of vesicles this section will
consider a single vesicle with a reduced area of ν = 0.7 and a capillary number
of Ca = 100. We begin by setting the viscosity ratio to η = 10. In viscous flows,
this is firmly in the tumbling regime – see figure 3. The inclination angle and
deformation of the vesicle over time in various Reynolds number flows are shown
in figure 7. An increase in the Reynolds number results in a longer tumbling period.
Above a critical Reynolds number, the vesicle no longer tumbles and returns to the
tank-treading behaviour. Additionally, it appears that the maximum change in the
deformation parameter increases as the Reynolds number increases. A detailed look at
this vesicle and the fluid field for Reynolds numbers of 0.1 and 1.0 is presented in
figure 8. The lower-Reynolds-number flow demonstrates the classical tumbling motion,
while the higher-Reynolds-number flow clearly shows the tank-treading behaviour. An
example of this transition was briefly mentioned in Salac & Miksis (2011). Preliminary
results were also presented by the authors at the 63rd Annual Meeting of the APS
Division of Fluid Dynamics (Salac & Miksis 2010).
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FIGURE 7. (Colour online) (a) Inclination angle and (b) deformation of a vesicle with
reduced area of ν = 0.7 and viscosity ratio of η = 10 with Ca = 100 and various Reynolds
numbers. As the Reynolds number increases, the vesicle transitions from the tumbling regime
back to a tank-treading state.
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FIGURE 8. (Colour online) Dynamic behaviour of a vesicle with reduced area of ν = 0.7 and
viscosity ratio of η = 10 with Ca = 100 at times of t = 0, 5, 10, 20 for Reynolds numbers Re
of (a) 0.1 and (b) 1.0.

The tumbling period for a vesicle with reduced area of ν = 0.7 as a function
of Reynolds number is shown in figure 9 for viscosity ratios from 10 to 80.
Initially, the tumbling period only increases slightly as the Reynolds increases. As
the Reynolds number approaches the critical Reynolds number, the tumbling period
increases dramatically. As will be seen in § 5, the tumbling period obeys an inverse
square-root scaling with respect to the Reynolds number.
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FIGURE 9. (Colour online) The tumbling period versus Reynolds number for a vesicle with
reduced area ν = 0.7 and various viscosity ratios. The tumbling period grows slowly until the
Reynolds number approaches the critical Reynolds number, and then increases dramatically.

The influence of the Reynolds number and viscosity on the equilibrium angle of a
vesicle with reduced area of ν = 0.7 is presented in figure 10. For a given viscosity
ratio, an increase in the Reynolds number results in an increase in the equilibrium
tank-treading angle. For a given Reynolds number, an increase in the viscosity ratio
results in a decrease in the equilibrium inclination angle. From these results there
exists a maximum equilibrium inclination angle possible. Any further increase in
Reynolds number would only result in slightly higher angles.

To verify the equilibrium angles observed at elevated Reynolds numbers, a vesicle
with a reduced area of ν = 0.7 and a viscosity ratio of η = 10 is started with
inclination angles of θ0 = 0, 0.1, 0.2 and π. The inclination angle and deformation
parameter versus time for a shear flow characterized by Re = 1 are given in figure 11.
For the vesicles starting at initial angles of θ0 = 0 and θ0 = 0.1, a partial tumbling is
observed, while for θ0 = 0.2 no tumbling is observed. In all cases the final equilibrium
angle and deformation parameter match those of the vesicle starting vertically, θ0 = π.
To further demonstrate the partial tumbling observed, the evolution of a vesicle with
an initial angle of 0 is shown in figure 12. The partial tumbling and final equilibrium
shape are clearly demonstrated.

Increasing the Reynolds number provides a further stabilizing influence, as seen
in figure 13. Here the same vesicle is considered as in figure 11, with ν = 0.7 and
η = 10. This vesicle is placed in flow with a Reynolds number of Re = 5. Four major
observations can be made. First, the equilibrium inclination angle for the Re = 5 case
is larger than for the Re = 1 case, matching the result seen in figure 10. Second, the
equilibrium deformation parameter appears to remain constant despite an increase in
the Reynolds number. This behaviour is further explored in the next section. Third,
no partial tumbling is observed, even in the initially horizontal vesicle. Finally, the
behaviour of the vesicle demonstrates a damped tank-treading behaviour, where the
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FIGURE 10. (Colour online) The equilibrium angle of a vesicle described by ν = 0.7 with
various viscosity ratios in flows given by Ca= 100 and various Reynolds numbers.
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FIGURE 11. (Colour online) (a) Inclination angle and (b) deformation of a vesicle described
by ν = 0.7 and η = 10 in a flow given by Ca = 100 and Re = 1 for various initial starting
angles.

vesicle rotates past the equilibrium angle and then returns. This damped tank-treading
will also be further explored in § 6.

The tumbling behaviour of extremely high-viscosity-ratio vesicles can also be
suppressed using only moderate Reynolds numbers, as seen in figure 14, where the
response of a ν = 0.7 vesicle with η = 200 is shown for a flow given by Re = 10 and
Ca= 100. Even at this extremely high viscosity ratio, the vesicle will not tumble.
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Time
Time

FIGURE 12. Snapshots of the vesicle shape for the θ0 = 0 case in figure 11. The snapshots
are in time increments of 1 and begin in the upper left corner, with time increasing to the right
and down.
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FIGURE 13. (Colour online) (a) Inclination angle and (b) deformation of a vesicle described
by ν = 0.7 and η = 10 in a flow given by Ca = 100 and Re = 5 for various initial starting
angles.
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FIGURE 14. The angle of a vesicle described by ν = 0.7 and η = 200 in a flow given by
Ca= 100 and Re= 10.
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FIGURE 15. (Colour online) Log–log plot of the tumbling period as a function of the
difference between the actual and critical Reynolds numbers for vesicles of various reduced
areas and viscosity ratios. The symbol shapes indicate the reduced area, ν, of the vesicle,
while the colours represent the viscosity ratio, η. The solid line corresponds to a scaling of
(Rec − Re)−1/2.

5. A systematic investigation of vesicle behavior in inertial flows
This section will explore the generalized behaviour of vesicles in inertial flows.

This is done by systematically considering the behaviour of four characteristic vesicles
given by ν = 0.6, 0.7, 0.8 and 0.9, with viscosity ratios ranging from η = 1 to η = 80.
The range of Reynolds numbers considered here will be from Re≈ 10−2 to Re= 10.

First, consider the tumbling period of vesicles below the critical Reynolds number.
The tumbling period for a range of vesicles as a function of Rec − Re, where Rec

is the critical Reynolds number for a given vesicle, is plotted in figure 15. In all
cases, a tumbling vesicle observes a large increase in the tumbling period as the
Reynolds number approaches the critical value (see figure 9 for an unscaled example).
Similar to rigid particles in inertial flows (Ding & Aidun 2000; Zettner & Yoda 2001;
Mikulencack & Morris 2004), it is observed that the tumbling period, GT , is related to
the Reynolds number by

GT ∝ (Rec − Re)−1/2 . (5.1)

It was suggested by Ding & Aidun (2000) that this type of scaling is valid for all
rigid particles, independent of the particle shape. The results shown here demonstrate
that this scaling also holds for deformable bodies where the surface area is held fixed.
The −1/2 exponent in the scaling also indicates that vesicles undergo a saddle-node
bifurcation as the Reynolds number increases, since the oscillation period scales to this
exponent for any saddle-node bifurcation (Lichtenberg & Lieberman 1992).

Next, consider the critical Reynolds number for the tumbling to tank-treading
transition. An exact critical Reynolds number is difficult to obtain, as a vesicle that
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FIGURE 16. (Colour online) (a) The critical Reynolds number as a function of the viscosity
ratio for vesicles ranging from ν = 0.6 to ν = 0.9. The results are shown with a confidence
of ±0.05. For any given vesicle, the region below the curve is the tumbling regime, while the
region above the curve is the tank-treading regime. (b) Log–log plot of the critical Reynolds
number normalized by the parameter S as a function of the viscosity ratio for four reduced
areas. The dashed line corresponds to a scaling of Rec/S ∝ (η − ηc)

1/2.

appears to be tank-treading could actually be tumbling with an extremely large period.
Based on the results shown in figure 9, the critical Reynolds number is estimated as
the highest Reynolds number for which a vesicle will tumble within 100 units of time.
Clearly this is only valid for vesicles with viscosity ratios greater than the Stokes
flow critical viscosity ratio. The unscaled results are presented in figure 16(a). The
critical Reynolds number results are shown with a confidence of ±0.05. The region
below these curves is the tumbling regime, while above the curves a vesicle would be
tank-treading.

Several observations can be made. First, even for vesicles with high reduced area
and high viscosity ratios, only moderate Reynolds numbers, less than Re = 10, are
needed to stabilize a vesicle. Second, as the viscosity ratio increases, then so does
the critical Reynolds number. Finally, for a given viscosity ratio, the critical Reynolds
number depends on the reduced area, as vesicles with higher reduced areas have
higher critical Reynolds numbers. This last point is similar to the general trend seen in
viscous flows regarding the critical viscosity ratio associated with the transition from
tank-treading to tumbling.

To determine how the critical Reynolds number varies with the viscosity ratio,
a new parameter is introduced, S = Ca

√
ν/(100(1 − √ν)). This parameter behaves

similarly to the parameter 7πCa/(3
√

3∆), where ∆ is the excess area parameter, used
in investigations of three-dimensional vesicles in viscous flows (Lebedev et al. 2008;
Deschamps et al. 2009b). In both cases the parameter is a measure of the strength of
the shear flow compared to the bending of the vesicle. The critical Reynolds number
normalized by S is plotted against the difference between the viscosity ratio and the
critical viscosity ratio for the tank-treading/tumbling transition in Stokes flow, η − ηc.
The result is seen in figure 16(b). Using this scaling it is observed that

Rec ∝ S (η − ηc)
1/2 . (5.2)
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FIGURE 17. (Colour online) The difference between the final equilibrium angle and the
actual equilibrium angle as a function of Re − Rec, where Rec is the critical Reynolds
number for the tumbling to tank-treading transition if η > ηc and Rec = 0 if η < ηc. The
symbol shapes indicate the reduced area, ν, of the vesicle, while the colours represent
the viscosity ratio, η. The solid line corresponds to exponential decay with the equation
θ = θ∞ − 0.377 exp[−0.605(Re − Rec)]. In this case the final equilibrium angle was taken
to be the angle at Re = 40. Inset: The deformation parameter of the same vesicles. For
the cases considered, the deformation at equilibrium still scales at

√
∆, where ∆ is the

excess length.

As is seen in figure 10, the equilibrium angle of a vesicle approaches a constant
value with increasing Reynolds number. In figure 17 the difference between the
equilibrium angle, θ , and the maximum equilibrium angle, θ∞, is shown versus
Re − Rec, where Rec is the critical Reynolds number for a given vesicle. For the
case where the viscosity ratio is below the viscous critical viscosity ratio, then Rec = 0.
Using the combined data, exponential decay of the form

θ = θ∞ − 0.377e−0.605(Re−Rec) (5.3)

is observed for all vesicles.
The deformation parameter for tank-treading vesicles at elevated Reynolds numbers

is shown in the inset of figure 17. As in the viscous-dominated result seen in figure 2,
the deformation parameter scales as

√
∆, regardless of the Reynolds number. This

behaviour should be expected in the tank-treading regime. During tank-treading the
forces exerted on the vesicle by the surrounding fluid are at a minimum. The bending
energy will drive the vesicle towards a more energetically favourable configuration. It
should be expected that the strength of the bending energy, denoted by the parameter
Ca, will most probably play a role in the final inclination angle but not the equilibrium
deformation. This will be explored in future research.
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6. Discussion
6.1. The total torque on a vesicle

The results shown above bear a striking resemblance to work performed using rigid
elliptical particles in inertial flows, both experimental (Zettner & Yoda 2001) and
numerical (Ding & Aidun 2000; Mikulencack & Morris 2004). In these previous
works, rigid elliptical particle of various sizes were studied in simple inertial shear
flows. At low Reynolds numbers these particles would tumble end over end, similar
to a vesicle. As the Reynolds number was increased, the rigid particles obtained
an equilibrium angle with respect to the shear flow direction. This critical Reynolds
number was of the order of Re = 10 and found to depend on the aspect ratio of
the rigid particle. Despite the differences between rigid particle and flexible vesicles,
namely that vesicles can dissipate energy through shape changes while rigid particles
cannot, vesicles in finite-Reynolds-number flows observe the same scalings as rigid
particles. This is due to the fact that the membrane length is fixed and we considered
relatively stiff vesicles. Therefore, rigid particles may provide insight into the vesicle
behaviour seen here.

It was suggested that the total torque acting on a rigid particle may provide insight
into the counter-intuitive behaviour seen as the influence of inertia increases. The work
of Ding & Aidun (2000) and Mikulencack & Morris (2004) demonstrated that, for
rigid particles in flows above the critical Reynolds number, there existed torque-free
conditions at certain inclination angles that matched the observed equilibrium angles.
To explore this possibility, a sample vesicle described by ν = 0.7 and Ca = 100 is
placed in flows characterized by Re = 0.1 and Re = 5. Viscosity ratios of η = 5 and
η = 10 are considered. For a vesicle undergoing motion, the total torque is calculated
as

Tnet =
∫
Ω

(1− H(φ))(r× F) · ez dA, (6.1)

where r is the vector from the vesicle centre of mass to a point, ez = (0, 0, 1) is the
unit normal in the z direction and F = Du/Dt is the force being applied to a point.
The integral is performed over the entire computational domain. The 1 − H(φ) term
ensures that only the region enclosed by the vesicle membrane has a contribution to
the overall torque. In this formulation, a positive torque represents a net force rotating
the vesicle in the anticlockwise direction (an increase in the angle).

The inclination angle and torque response of the Re = 0.1 and ν = 10 case are
shown in figure 18. Overall, the vesicle will tumble with a period of approximately
12.75. Initially, the vesicle has a positive net torque, which slows down the rotation
rate. As the vesicle passes through the horizontal axis, a net negative torque is
observed, accelerating the rotation rate in the clockwise direction. As the vesicle
nears the θ = π (vertical) orientation, a large jump in the torque results in the vesicle
decelerating.

Next consider the Re= 5 and ν = 10 case. Unlike the Re= 0.1 situation, this vesicle
will not tumble but instead reaches a stable inclination angle of approximately θ = 0.5.
Owing to the higher inertia, the vesicle rotates past the equilibrium angle, reaching a
minimum angle of θ = 0.45, before achieving equilibrium. The net torque is enough to
reverse the angular velocity of the vesicle. As the vesicle rotates past the equilibrium
angle, a net negative torque drives it to the final state.

In general, the forces exerted on a vesicle will rotate the vesicle. The tank-treading
angle can be understood as the configuration where the net torque acting on the vesicle
is zero. For a vesicle to remain at an inclination angle other than the equilibrium
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FIGURE 18. (a) Inclination angle and (b) torque of a vesicle with ν = 0.7 and η = 10 in a
flow for Re= 0.1.

T
or

qu
e

0 5 10

Time
15 20 0

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10

Time
15 20

0.5

1.0

In
cl

in
at

io
n 

an
gl

e

1.5
(a) (b)

FIGURE 19. (a) Inclination angle and (b) torque of a vesicle with ν = 0.7 and η = 10 in a
flow for Re= 5.

angle, an external force must be applied. To demonstrate the overall torque acting on
a vesicle, the total torque needed to fix a vesicle at a particular inclination angle has
been determined. An additional external force of the form Fτ =−(1−H(φ))(r×ez)T/I,
where T is the total externally applied torque and I is the moment of inertia of the
vesicle, is added to (2.1). The externally applied torque is varied until the desired
stable angle is achieved. Note that, while the angle is fixed, the vesicle is allowed to
deform. This deformation resulted in the inability to determine the torque needed to
fix a vesicle at small (near zero) and large (near π/2) inclination angles. The applied
torques needed to fix a vesicle angle are shown in figure 20. This torque counters the
forces on the vesicle due to the external fluid. Therefore the total torque applied to a
vesicle due to the external fluid is equal to the negative of the applied torque.
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FIGURE 20. The external torque required to fix an inclination angle for vesicles with ν = 0.7
and (a) η = 5 or (b) η = 10. Owing to membrane fluctuations it was not possible to fix small
or large inclination angles.

It is expected that vesicles in the tumbling regime will have no zero-torque
conditions, while those in the tank-treading regime will have at least one (Zettner
& Yoda 2001; Mikulencack & Morris 2004). The results in figure 20 demonstrate
this fact. For the shear flow characterized by Re = 0.1, vesicles with either viscosity
ratio will tumble. In both cases the applied torque is strictly positive. The η = 5 case
requires a smaller applied torque compared to the higher-viscosity-ratio case because
η = 5 is closer to the initial tank-treading/tumbling critical viscosity ratio. For the
higher-Reynolds-number case, Re= 10, vesicles with both viscosity ratios demonstrate
the same zero-torque condition at approximately θ = 0.5. This matches the result
demonstrated in figure 17.

Rigid particles in inertial flows observe two torque-free conditions (Zettner & Yoda
2001; Mikulencack & Morris 2004). The first is the stable equilibrium angle, while
the second is an unstable torque-free condition. For a flexible vesicle, it was not
possible to determine the angle at which this second, unstable, torque-free condition
will occur. Based on the result for the Re = 5 flow and the fact that the torque
should be periodic with respect to inclination angle, it can be inferred that this second
torque-free condition does exist.

To better understand the physical behaviour of the system at varying Reynolds
numbers, the streamlines of a vesicle at a fixed angle and varying Reynolds number
can be investigated (Ding & Aidun 2000). The external streamlines for a vesicle with a
reduced area of ν = 0.7, viscosity ratio of η = 10, fixed inclination angle of θ = 0.45
and Reynolds numbers ranging from Re = 0.1 to Re = 10 are shown in figure 21.
Internal streamlines are not shown, as they are qualitatively similar to those in figure 8.
Figure 21 demonstrates that there are two major regimes of external fluid flow. There
are shear flow layers near the walls and a recirculation region in the centre of the
domain. The shear layers produce a net clockwise (negative) torque on the vesicle.
This is countered by a net anticlockwise (positive) torque in the centre, recirculation
region. As the Reynolds number increases, this recirculation region increases in width,
resulting in an increase in the anticlockwise torque. Once the critical Reynolds number
is reached, the torque in the recirculation region is able to counter the shear flow
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FIGURE 21. (Colour online) The streamlines for a vesicle with ν = 0.7, η = 10, at a
fixed angle θ = 0.45 for various Reynolds number shear flows: (a) Re = 0.1; (b) Re = 1;
(c) Re = 10. All cases demonstrate two regimes of fluid flow: a shear layer near the moving
walls and a recirculation layer in the centre of the domain. The shear layer produces a
clockwise (negative) torque, while the recirculation layer produces an anticlockwise (positive)
torque.

torque, and thus the vesicle will reach a stable inclination angle. If the flow is at
an elevated Reynolds number and the vesicle is below the equilibrium angle, a larger
portion of the vesicle is exposed to the recirculation region. This produces a net torque
that drives the vesicle to the equilibrium angle.

6.2. Maximum tension on the membrane
One aspect that has not yet been discussed in detail is the tension on the interface.
It has been observed both experimentally (Sandre, Moreaux & Brochard-Wyart 1999)
and theoretically (Tieleman et al. 2003; Farago & Santangelo 2005; Wang & Frenkel
2005) that the stretching of a vesicle interface will result in the formation of pores.
Depending on the physical conditions, these pores may be unstable and periodically
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FIGURE 22. (Colour online) Log–log plot of the maximum tension on the interface during
tank-treading as a function of Re − Rec, where Rec is the critical Reynolds number for the
tumbling to tank-treading transition if η > ηc and Rec = 0 if η < ηc. The symbol shapes
indicate the reduced area, ν, of the vesicle, while the colours represent the viscosity ratio, η.
The solid line corresponds to a scaling of (Re− Rec)

3/8.

occurring (Sandre et al. 1999) or stable (Farago & Santangelo 2005). Vesicles have
been proposed as possible drug delivery systems (Choon & Cullis 1995; Allen &
Cullis 2004; Torchilin 2006). During use as a drug delivery system, a vesicle could
experience all of the conditions in the circulatory system many times over. In certain
parts of the human circulatory system the effect of inertia cannot be ignored (Ku et al.
1985), or inertial effects can be introduced by way of restricted arteries (Bark & Ku
2010) or mechanical circulatory aids (Fraser et al. 2011).

The results herein have demonstrated that in inertial flows a vesicle will tank-tread
with an equilibrium inclination angle dependent on the Reynolds number. As the
Reynolds number increases, the inclination angle increases until a saturation angle is
achieved. It was also demonstrated that, despite this change in inclination angle, the
overall deformation of a vesicle does not change with an increase in inertia. For this
to be possible, a corresponding increase in the tension must occur to enforce the
constant-surface-area constraint and the constant deformed shape. In this model the
tension varies on the membrane to account for the local velocity field. To demonstrate
the change in the tension, figure 22 reports the maximum tension seen on the vesicle
membrane for various tank-treading vesicles. For a given Reynolds-number flow, a
vesicle with a lower viscosity ratio will have a higher tension compared to those
vesicles with higher viscosity ratios. Compared to higher-viscosity encapsulated fluids,
the lower-viscosity fluids apply less drag on the flow field. This results in an increase
in the tank-treading velocity on the interface and thus requires an increase in the
tension. For a given viscosity ratio, the maximum tension on the interface is found to
increase as inertial effects increase.
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It is also observed that the maximum tension on the membrane scales as

γmax ∝ (Re− Rec)
3/8 (6.2)

regardless of the viscosity ratio. This scaling is particularly prevalent when the
equilibrium angle saturates at the maximum value, which occurs for Re > Rec + 5.
This tension increase could become an issue for a poorly designed vesicle-based drug
delivery system. A drug may be accidentally released during high inertia flows, which
lowers the effectiveness of the drug or may cause serious side effects.

7. Conclusion
Here, an improved level-set based model of inertial vesicles is used to investigate

the influence of the inertia on the behaviour of vesicles in simple shear flows. For
viscous flows there exists a viscosity ratio below which the vesicle will tank-tread.
If the viscosity ratio is increased, the vesicle will begin to tumble end over end. In
inertial flows there exists a critical Reynolds number for which a vesicle will transition
from the tumbling regime back to the tank-treading regime. Numerical evidence
suggests that only moderate Reynolds numbers, below Re = 10, will suppress the
tumbling of vesicles with viscosity ratios as high as 200. A systematic investigation
has shown that, as the reduced area of a two-dimensional vesicle increases, the critical
Reynolds number also increases. Additionally, an increase in inertial effects resulted in
the equilibrium inclination angle of a vesicle increasing. Scaling laws for the tumbling
period, critical Reynolds number, equilibrium angle and maximum tension on the
interface are shown.

This tumbling to tank-treading transition was explored by considering the total
torque applied on the vesicle due to the flow field. It was calculated that, during
tank-treading inertial flows, a torque-free condition exists that corresponds to the
equilibrium condition determined. The influence of Reynolds number on the tension
of the vesicle membrane was also considered. As the Reynolds number increases, the
tension rises. This could become an issue if the tension reaches the lysis tension, a
level where poration could occur.

To further explore the influence of inertia, future work will be to investigate three-
dimensional vesicles in inertial flows. The additional freedom given by the higher
dimensionality may result in additional modes of vesicle behaviour. Using the results
presented here and that of rigid particles (Zettner & Yoda 2001), work is under way to
experimentally explore inertial effects on vesicles.
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