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SQUARE WITH BUILT-IN DIAMOND-PLUS

ASSAF RINOT AND RALF SCHINDLER

Abstract. We formulate combinatorial principles that combine the square principle with various strong
forms of the diamond principle, and prove that the strongest amongst them holds in L for every infinite
cardinal.
As an application, we prove that the following two hold in L:
1. For every infinite regular cardinal �, there exists a special �+-Aronszajn tree whose projection is
almost Souslin;

2. For every infinite cardinal �, there exists a respecting �+-Kurepa tree; Roughly speaking, this means
that this �+-Kurepa tree looks very much like the �+-Souslin trees that Jensen constructed in L.

§1. Introduction. In his seminal paper [13], Jensen initiated the study of the fine
structure of Gödel’s constructible universe, L, and proved that in this model, for
every uncountable cardinal κ which is not weakly compact, there exists a κ-Souslin
tree. These fine-structural-constructions of Souslin trees were then factored through
the combinatorial principles♦ and� (also due to Jensen), making the construction
accessible to a wider audience of mathematicians.
In [9],Gray introduced a combinatorial principle that forms a strong combination
of ♦ and �, which he denoted by ♦ . This principle turned out to be very fruitful,
and, for instance, has recently been used to answer an old question of Hajnal in
infinite graph theory [17].
In this paper, we introduce principles that combine � with stronger forms of ♦,
such as ♦∗ and ♦+. We study the implication between these principles, and prove
that the strongest amongst them, ♦ †

�, holds in L for every infinite cardinal �.
As ♦ and � have countless applications in infinite combinatorics, we expect the
principles of this paper to prove fruitful, and allow deeper applications of the nature
of L, outside of L.
In this paper, we demonstrate the utility of the new principles by presenting
applications to the theory of trees. It is proved:
1. ♦ ∗

� + �
<� = � entails the existence of a ��-respecting special �+-Aronszajn

tree whose projection is almost Souslin (to be defined below);
2. ♦ +

� entails the existence of a ��-respecting �+-Kurepa tree;
3. ♦ †

� entails the existence of a��-respecting �+-Kurepa tree with the additional
feature of having no �+-Aronszajn subtrees.
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810 ASSAF RINOT AND RALF SCHINDLER

Before giving the definition of a respecting tree, we first motivate it by briefly
recalling how Jensen constructed a �+-Souslin tree from the hypothesis that
��(E) +♦(E) holds for some stationary subset E ⊆ �+.1
Let 〈Cα | α < �+〉 and 〈Sα | α ∈ E〉 witness the hypothesis. The construc-
tion of the tree T is by recursion, where at stage α < �+, the αth-level, Tα , is
constructed. We start with T0 a singleton, and for Tα+1, we simply make sure
that any node of Tα admits two incompatible extensions in Tα+1. The heart of
the matter is the definition of Tα for α limit nonzero, once T � α =

⋃
�<α T�

has already been constructed. Here, for every node x ∈ T � α, one identifies a
canonical branch bαx which is cofinal in T � α and goes through x. Of course,
to be able to construct such a branch, we need to make sure that the process of
climbing up through the levels of T � α is always successful, i.e., that we never
get stuck when trying to take a limit. For this, we advise with the �-sequence,
ensuring in advance that if ᾱ ∈ acc(Cα), then bᾱx would make an initial segment
of bαx .

2

But we also need to seal antichains! For this, we advise with the ♦-sequence,
to decide whether Tα should be equal to {bαx | x ∈ T � α}, or only to some
carefully-chosen subset of it.

Here is a possible abstraction of the above process.

Definition 1.1. Suppose that T is a downward-closed family of functions
from ordinals to some fixed set Ω, so that (T,⊂) forms a �+-tree. Denote T � X =
{t ∈ T | dom(t) ∈ X}.
We say that T is ��-respecting if there exists a stationary subset E ⊆ �+, and a
sequence of mappings

〈bα : T � Cα → αΩ ∪ {∅} | α < �+〉
such that:
1. 〈Cα | α < �+〉 is a ��(E)-sequence;
2. Tα ⊆ Im(bα) for every α ∈ E;
3. if ᾱ ∈ acc(Cα) and x ∈ T � Cᾱ , then bᾱ(x) = bα(x) � ᾱ.
In particular, for every α ∈ E, any node y ∈ Tα is essentially the limit of some
canonical branch bα(x) for some x ∈ T � Cα .
While working on their paper, the authors of [3] were considering the problem
of constructing, say, an ℵ3-Souslin tree whose reduced ℵ0-power is ℵ3-Aronszajn,
and whose reduced ℵ1-power is ℵ3-Kurepa. They realized that such a tree may be
constructed, provided that there exists a respecting ℵ3-Kurepa tree.
Question. Can a �+-Kurepa tree be ��-respecting?
At a first glance, this sounds unlikely, as �+-Kurepa trees are usually obtained in
a top-down fashion (one outright identifies �++ many whole functions from �+ to
2, and then verifies that the number of traces on any α < �+ is rather small), while
respecting trees are described in a bottom-up language. However, in this paper,
we shall demonstrate that ♦ +

� allows the construction of such a �
+-Kurepa tree.

1The full details may be found in, e.g., [6, Theorem IV.2.4] or [18, Lemma 11.68].
2Here, acc(A) = {α < sup(A) | sup(A ∩ α) = α > 0}.
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In fact, we shall construct a �+-Kurepa tree satisfying a considerably stronger form
of ��-respecting, that is, ��(�+)-respecting (see Definition 4.4 below).
In another front, we shall prove that ♦ ∗

� entails the existence of a ��-sequence
�C for which the �+-Aronszajn trees derived from the process of walks on ordinals
[23] along �C are respecting. This is also somewhat surprising, as the standard
description of these trees is also top-down. However, the fact that these trees could
be��-respecting is already hinted in [21, Equation (∗) on p. 267], based on a concept
affine to Definition 1.1 and implicit in the proof of [20, Theorem 4.1]. Of course,
the derived trees obtained here will be moreover ��(�+)-respecting.
For � regular uncountable, we shall also ensure that the derived tree T (�1) (which
is a projection of the special tree T (�0)) is almost Souslin.3 As for � = ℵ0, in [22], it
was proved that Cohen modification of aC -sequence on �1 makes its T (�1) almost
Souslin. In [10], a similar result was obtained from♦∗(�1). Altogether, we conclude
that in L, for every infinite regular cardinal �, there exists a special �+-Aronszajn
tree whose projection is almost Souslin.

1.1. Organization of this paper. In Section 2, we recall the definition of the
principle ♦ �, introduce the principles ♦ ∗

� ,♦ +
� ,♦

†
�, and discuss the interrelations

between them.
In Section 3, we prove that if V = L, then ♦ †

� holds for every infinite cardinal �.
In Section 4, we use the new principles to derive new types of �+-trees.

§2. Hybrid squares and diamonds. In [9], Gray introduced the principle ♦ � for
� a regular uncountable cardinal. In [1, Section 2], the definition was generalized to
cover the case of � singular. Then, in [2], the principle was generalized to cover the
case � = ℵ0, as well. The outcome is as follows:

Definition 2.1 ([9], [1], [2]). ♦ � asserts the existence of 〈(Cα, Sα) | α < �+〉
such that:

1. Cα is a club in α of order-type ≤ (� · �);
2. Sα ⊆ α;
3. if ᾱ ∈ acc(Cα), then
(a) Cᾱ = Cα ∩ ᾱ;
(b) Sᾱ = Sα ∩ ᾱ;

4. for every X ⊆ �+ and every club D ⊆ �+, there exists a limit α < �+ with
otp(acc(Cα)) = �, such that Sα = X ∩ α and acc(Cα) ⊆ D.

Note that 〈Sα | α < �+〉 forms a♦(E�+cf(�))-sequence, and if � is uncountable, then
〈Cα | α < �+〉 forms a ��-sequence. By [2], ♦ � is equivalent to ♦(�1). By [19],
�� + ♦(�+) does not imply ♦ � for � regular uncountable. By [16], �� + ♦(�+) is
equivalent to ♦ � for every singular cardinal �.

Definition 2.2. ♦ ∗
� asserts the existence of 〈(Cα,Xα,fα) | α < �+〉 such that:

1. Cα is a club in α of order-type ≤ �;
2. Xα is a subset of P(α), of size ≤ �;
3. fα : Cα → Xα is a function, and a surjection whenever otp(Cα) = �;

3The relevant definitions may be found on Section 4 below.
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4. if ᾱ ∈ acc(Cα), then
(a) Cᾱ = Cα ∩ ᾱ;
(b) fᾱ(�) = fα(�) ∩ ᾱ for all � ∈ Cᾱ ;

5. for every subset X ⊆ �+ and a club C ⊆ �+, the set{
α < �+ | Cα ⊆∗ C & X ∩ α ∈ Xα

}
contains a club;4

6. {α < �+ | otp(Cα) = �} is stationary in �+.

Of course, 〈Xα | α < �+〉 forms a ♦∗(�+)-sequence, and 〈Cα | α < �+〉 forms
a strong club-guessing sequence in the sense of [8]. In particular, by [12], ♦ ∗

� is
actually stronger than♦∗(�1).

Definition 2.3. ♦ +
� asserts the existence of 〈(Cα,Nα,fα) | α < �+〉 such that:

1. Cα is a club in α of order-type≤ �;
2. Nα is a rud-closed transitive set, � = |Nα| ⊆ Nα , with {f� | � < α} ∪ {α} ⊆
Nα ;

3. fα : Cα → P(α) ∩Nα is a function;
4. if ᾱ ∈ acc(Cα), then
(a) Cᾱ = Cα ∩ ᾱ;
(b) fᾱ(�) = fα(�) ∩ ᾱ for all � ∈ Cᾱ ;

5. for every subset X ⊆ �+ and a club C ⊆ �+, there exists a club D ⊆ �+ such
that for all α ∈ D:
• Cα ⊆∗ C ;
• X ∩ α,D ∩ α ∈ Nα ;
• if otp(Cα) = �, then X ∩ α ∈ Im(fα);

6. {α < �+ | fα is surjective} is stationary in �+;
7. {Nα | α < �+} is an increasing ⊆-chain converging toH�+.

Note that 〈P(α) ∩Nα | α < �+〉 forms a ♦+(�+)-sequence. As before, the result
of [12] entails that ♦ +

� is stronger than♦+(�1).

Definition 2.4. ♦ †
� asserts the existence of 〈(Cα,Nα,fα) | α < �+〉 such that

Clauses (1)–(7) of Definition 2.3 hold, with Clause (6) strengthened to

(6) for every n,m < �, end every Πnm-sentence 	 valid in a structure

(�+,∈, 〈Ai | i < �〉),5

there are stationarily many α < �+ for which all of the following hold:
• fα is surjective;
• 〈Ai � α | i < �〉 ∈ Nα ;
• Nα |= “	 is valid in (α,∈, 〈Ai � α | i < �〉)”.

Note that if 〈(Cα,Nα,fα) | α < �+〉 witnesses ♦ †
�, then 〈Nα | α < �+〉 is not far

from being a witness to Devlin’s notion of a ♦
(�+)-sequence (see [5]). Specifically,
there are two differences:

4Here, A ⊆∗ B stands for the assertion that sup(A\B) < sup(A).
5“Validity in a structure” here has the obvious meaning, cf. [5, p. 891].
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• In ♦
(�+), the models Nα are required to be p.r.-closed, while here they are
only rud-closed;

• In♦
(�+), the reflection property is restricted to Π12-sentences, while here there
is no restriction on the complexity of the sentences.
Lemma 2.5. ♦ ∗

� entails the existence of a ♦ ∗
�-sequence 〈(Cα,Xα,fα) | α < �+〉

with the additional property that for every clubD ⊆ �+, there exists some limit α < �+
with otp(Cα) = � such that Cα ⊆ D.
Proof. Let 〈(Cα,Xα,fα) | α < �+〉 be a witness to ♦ ∗

� . Fix � : �→ � such that
for all i < �, �(i) ≤ i and �−1{i} is cofinal in �. Let α < �+ be arbitrary. For all
j < �, denote

Cjα = {� ∈ Cα | otp(Cα ∩ �) ≥ j}.
Let 
α : otp(Cα) → Cα denote the monotone enumeration of Cα. Define f′

α :
Cα → Xα by stipulating

f′
α(�) = fα(
α(�(


−1
α (�))).

It is easy to see that if ᾱ ∈ acc(Cα), then 
ᾱ = 
α � otp(Cᾱ), and hence
f′
ᾱ(�) = f

′
α(�) ∩ ᾱ for all � ∈ Cᾱ . In addition, if otp(Cα) = �, then for all j < �:

Im(f′
α � Cjα ) = Im(fα) = Xα.

Claim 2.5.1. There exists some j < � such that for every clubD ⊆ �+, there exists
some limit α < �+ with otp(Cα) = � and C

j
α ⊆ D.

Proof. Suppose not. Then for all j < �, we may pick a club counterexample
Dj ⊆ �+. Let C =

⋂
j<� Dj . By Clauses (5) and (6) of Definition 2.3, then, there

must exist some α < �+ with otp(Cα) = � and Cα ⊆∗ C . Pick j < � such that
Cjα ⊆ C . In particular, Cjα ⊆ Dj contradicting the choice of Dj . �
Let j < � be given by the preceding claim. For all α < �+, let

C •
α =

{
Cjα , if otp(Cα) > j;
Cα, otherwise.

Put f•
α = f

′
α � C •

α , and X
•
α = Xα . Then 〈(C •

α ,X
•
α , f

•
α) | α < �+〉 forms a

♦ ∗
�-sequence with the additional desired property. �
Lemma 2.6. For every infinite cardinal �, ♦ †

� =⇒ ♦ +
� =⇒ ♦ ∗

� =⇒ ♦ �.

Proof. Let � be an arbitrary infinite cardinal. The implication ♦ †
� =⇒ ♦ +

� is
trivial. To see that ♦ +

� =⇒ ♦ ∗
� , let 〈(Cα,Nα,fα) | α < �+〉 be a ♦ +

� -sequence.
For all α < �+, let

Xα =

{
P(α) ∩Nα, if otp(Cα) < �;
Im(fα), otherwise.

Then 〈(Cα,Xα,fα) | α < �+〉 forms a ♦ ∗
�-sequence.

Out next task is showing that ♦ ∗
� =⇒ ♦ �. By [2], ♦(�1) implies ♦ �, hence we

hereafter assume that � is uncountable. In particular, � · � = �.
Let 〈(Cα,Xα,fα) | α < �+〉 be given by Lemma 2.5. Fix a bijection � : �×�+ →
�+. Let E = {α < �+ | �[� × α] = α}. For every α < �+, let 
α : otp(Cα) → Cα
denote the monotone enumeration of Cα, and then for i < �, write

Siα = {� < α | �(i, �) ∈ fα(
α(i))}.
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Claim 2.6.1. There exists an i < � such that for every club D ⊆ �+ and every
X ⊆ �+, there exists some limit α < �+ with otp(acc(Cα)) = �, such thatSiα = X ∩α
and Cα ⊆ D.
Proof. Suppose not, and so for all i < �, pick a counterexample (Di,Xi). Let
X = {�(i, �) | i < �, � ∈ Xi}. By Clause (5) of Definition 2.2, we may find a
club D ⊆ E ∩

⋂
i<� Di such that X ∩ α ∈ Xα for all α ∈ D. Now, fix a limit

ordinal α < �+ such that otp(Cα) = � and Cα ⊆ D. In particular, α ∈ E. Note
that since � is uncountable, moreover otp(acc(Cα)) = �. Next, as otp(Cα) = �,
we infer from Clause (3) of Definition 2.2 the existence of some i < � such that
X ∩ α = fα(
α(i)). By definition of X and since 
[�× α] = α, we conclude that

Siα = {� < α | �(i, �) ∈ X ∩ α} = Xi ∩ α.

By the choice of (Di ,Xi), it must then be the case that Cα � Di . However, Cα ⊆
D ⊆ Di . This is a contradiction. �
Let i < � be given by the previous claim. For all α ∈ E�+� , let cα be a cofinal
subset of α of order-type �. Finally, for all α < �+, let

C •
α =

⎧⎪⎨
⎪⎩
Cα ∩ E, if sup(E ∩Cα) = α;
Cα \ sup(E ∩ α), if sup(E ∩ α) < α;
cα, otherwise,

and

S•α =

{
Siα, if sup(E ∩ Cα) = α;
∅, otherwise.

Claim 2.6.2. 〈(C •
α , S

•
α) | α < �+〉 is a ♦ �-sequence.

Proof. It is clear that for all limit α < �+, C •
α is a club subset of α of order-type

≤ �. Next, suppose that α < �+ and ᾱ ∈ acc(Cα).
� If sup(E ∩ Cα) = α, then C •

α = Cα ∩ E and hence ᾱ ∈ acc(Cα), and
sup(E ∩ Cᾱ) = sup(E ∩ Cα ∩ ᾱ) = ᾱ. Consequently, C •

ᾱ = Cᾱ ∩ E = C •
α ∩ ᾱ,

fᾱ(
ᾱ(i)) = fα(
α(i)) ∩ ᾱ, and

S•α ∩ ᾱ = Siα ∩ ᾱ = {� < ᾱ | �(i, �) ∈ fα(
α(i))}.

As sup(E ∩ Cᾱ), we get in particular that ᾱ ∈ E, and hence the right hand side of
the preceding is equal to

{� < ᾱ | �(i, �) ∈ fα(
α(i)) ∩ ᾱ} = Siᾱ = S•ᾱ .

� If sup(E ∩α)<α, thenC •
α =Cα\ sup(E ∩α), and ᾱ ∈ acc(Cα).Consequently,

C •
ᾱ = Cᾱ\ sup(E ∩ ᾱ) = Cα ∩ ᾱ\ sup(E ∩ ᾱ) = Cα ∩ ᾱ\ sup(E ∩ α) = C •

α ∩ ᾱ,

and S•α ∩ ᾱ = ∅ = S•ᾱ .

Finally, let X ⊆ �+ and a club D ⊆ �+ be arbitrary. By the choice of i , let us
pick a limit ordinal α < �+ with otp(acc(Cα)) = � such that Siα = X ∩ α and
Cα ⊆ D ∩E. Then S•α = Siα = X ∩ α, as sought. �

�
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§3. The strongest principle holds in L.
Theorem 3.1. ♦ †

� holds in L for all infinite cardinals �.
Proof. We follow the proof of [18, Theorem 11.64], making use of arguments
from [1], [11], and [14]. We assume V = L. Let � denote an arbitrary infinite
cardinal.
Consider the set C = {α < �+ | Jα ≺Σ� J�+}, which is a club subset of �+
consisting of limit ordinals above �. Note thatC ∩E�+>� ⊆ acc(C ). Let ϕ : �+ → C
be the monotone enumeration of C .
Let α ∈ C . Obviously, � is the largest cardinal of Jα . Note that as Jα |= ZFC−,
we have ��(Jα) = α. We may therefore define �(α) to be the largest � > α such that
α is a cardinal in the viewpoint of J� .6

Note also that if � < α, then by Jα |= |J� | = �, we have that P(�) ∩ J� �
P(�) ∩ Jα . So, �(�) < α < �(α) for all � ∈ C ∩ α.
As ��(J�(α)) = �, let n(α) be the unique n < � such that � = �n+1(J�(α)) < α ≤
�n(J�(α)).
Let us write R for the set of all α < �+ such that �(ϕ(α)) = �̄ + � for some �̄
such that α is the only cardinal of J�̄ strictly above �.
For all α < �+, set

Nα =

{
J�(ϕ(α))+�, if α ∈ R;
J�(ϕ(α)), otherwise.

As �◦ϕ is an increasing function from�+ to �+,we have just established Clause (7)
of Definition 2.4.
Let us now define a ��-sequence by what became the standard construction, cf.
e.g., [18, pp. 270ff.], modulo various crucial adjustments. As we’ll have to refer to
some details of this construction later on in this proof, let us repeat this construction
here for the convenience of the reader.
First, for α ∈ C , we define Dα as follows. We let Dα consist of all ᾱ ∈ C ∩ α
such that n(ᾱ) = n(α) and there is a weakly rΣn(α)+1-elementary embedding

� : J�(ᾱ)−→ J�(α)
such that � � ᾱ = id, �(pn(ᾱ)+1(J�(ᾱ))) = pn(α)+1(J�(α)), and if ᾱ ∈ J�(ᾱ), then
α ∈ J�(α) and �(ᾱ) = α. It is easy to see that if ᾱ ∈ Dα , then there is exactly one
map � witnessing this, namely the one which is given by

h
n(ᾱ)+1,pn(ᾱ)+1(J�(ᾱ))
J�(ᾱ)

(i, �x) �→ hn(α)+1,pn(α)+1(J�(α))J�(α)
(i, �x), (1)

where i < � and �x ∈ [�]<� . We here make use of the notation for fine structural
iterated Σ1 Skolem functions as presented, e.g., in [18, Equation (11.29) on p. 252].
We shall denote the unique map as given by (1) by �ᾱ,α .
Notice that if α ∈ C , then

J�(α) = h
n(α)+1,pn(α)+1(J�(α))
J�(α)

“(� × [�]<�),
so that if ᾱ ∈ Dα , then

Im(�ᾱ,α) �⊆ h
n(α)+1,pn(α)+1(J�(α))
J�(α)

“(� × [�]<�),

6In particular, J�+� can see that α has cardinality �.
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which means that there must be i < � and �x ∈ [�]<� such that the left hand side of
(1) is undefined, whereas the right hand side of (1) is defined.
Also notice that the maps �ᾱ,α commute, i.e., if ᾱ ∈ Dα and α ∈ Dα′ , then
ᾱ ∈ Dα′ and

�ᾱ,α′ = �α,α′ ◦ �ᾱ,α.
Having constructed 〈Dα | α ∈ C 〉, we claim the following:
Claim 3.1.1. Let α ∈ C . All of the following hold true:
(a) Dα is closed ;
(b) If cf(α) > �, then Dα is unbounded in α;
(c) If ᾱ ∈ Dα thenDα ∩ ᾱ = Dᾱ .
Proof. This is Claim 11.65 of [18]. �
Notation. For α ∈ C, i < � and �x ∈ [�]<� , we shall denote

hα(i, �x) = h
n(α)+1,pn(α)+1(J�(α))
J�(α)

(i, �x).

Let α ∈ C . If sup(Dα) < α, let �(α) = 0. Now, suppose sup(Dα) = α. We shall
obtain some limit ordinal �(α), and sequences 〈�αi | i ≤ �(α)〉 and 〈�αi | i < �(α)〉,
by recursion, as follows.
� Set �α0 = min(Dα).
� Given �αi with �αi < α, we let �αi be the least � < � such that

hα(k, �x) /∈ Im(��αi ,α)
for some k < � and some �x ∈ [�]<� . Given �αi , we let �αi+1 be the least ᾱ ∈ Dα
such that

hα(k, �x) ∈ Im(�ᾱ,α)
for all k < � and �x ∈ [�αi ]<� such that hα(k, �x) exists.
� Given 〈�αj | j < i〉, where i is a limit ordinal, we set �αi = supj<i �αj .
Naturally, �(α) will be the least i such that �αi = α.

For any α ∈ C , denote Eα = {�αi | i < �(α)}.
Claim 3.1.2. Let α ∈ C . All of the following hold true:
(a) 〈�αi | i < �(α)〉 is a strictly increasing sequence of ordinals below �;
(b) otp(Eα) = �(α) ≤ �;
(c) �(α) > 0 iff Eα is a club in α;
(d) If ᾱ ∈ acc(Eα), then Eα ∩ ᾱ = Eᾱ .
Proof. (a) is immediate, and it implies (b).
(c) is trivial.
(d) Let ᾱ ∈ acc(Dα). We have Eα ⊆ Dα , and Dᾱ = Dα ∩ ᾱ by Claim 3.1.1(c).
We now show that 〈�ᾱi | i < �(ᾱ)〉 = 〈�αi | i < �(ᾱ)〉 and 〈�ᾱi | i < �(ᾱ)〉 = 〈�αi |
i < �(ᾱ)〉 by induction:
Say �ᾱi = �

α
i , where i + 1 ∈ �(ᾱ) ∩ �(α). Write � = �ᾱi = �αi . As ��,α =

�ᾱ,α ◦ ��,ᾱ , for all k < � and �x ∈ [�]<� ,
hᾱ(k, �x) ∈ Im(��,ᾱ) =⇒ hα(k, �x) ∈ Im(��,α) �= ∅.

This gives �αi+1 ≤ �ᾱi+1. On the other hand, Im(��αi+1 ,α) contains the relevant
witness so as to guarantee conversely that �ᾱi+1 ≤ �αi+1. �
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Recall that ϕ : �+ → C denotes the monotone enumeration of C . For all
α ∈ acc(�+), we have ϕ(α) ∈ acc(C ), so we set

C ′
α = ϕ

−1“Eϕ(α).

Since Eϕ(α) ⊆ Dϕ(α) ⊆ C = Im(ϕ), we have otp(C ′
α) = �(ϕ(α)) ≤ �, and C ′

α is
a club in α iff �(ϕ(α)) > 0.
Because E� ⊆ D� ⊆ C ∩ � for every � ∈ C , we have that if ᾱ ∈ acc(C ′

α), then
C ′
ᾱ = C

′
α ∩ ᾱ.

Claim 3.1.3. Let α ∈ E�+� be such that ϕ(α) = α.
Then there exists a cofinal subset d of α of order-type� satisfying the following:
(a) If c ∈ J�(α) is a club in α, then d ⊆∗ c;
(b) d ∈ Nα′ whenever α < α′ < �+.
Proof. The argument is a simplified version of the proof of [11, Theorem 4.15].
Fix α ∈ E�+� such that ϕ(α) = α, so that α ∈ C . Recall that � = �n(α)+1(J�(α)) <
α ≤ �n(α)(J�(α)). Let us write � = �(α), n = n(α), and

� = sup({� < � | J� |= |�| ≤ α}).
That is, either α is the largest cardinal of J� in which case � = �, or else � = α+J� .

Case 1. cf(�) = �.
Let (�m | m < �) be a sequence witnessing cf(�) = �. For each m < �, we may
inside J� pick some club cm ⊆ α such that cm ⊆∗ c for every club c ⊆ α, c ∈ J�m .
For example, we may let cm be the diagonal intersection of all clubs c ⊆ α, c ∈ J�m ,
as being given by some enumeration in J� in order typeα. Let then (�m | m < �) be
a strictly increasing sequence which is cofinal in α and such that for every m < �,
�m ∈

⋂
k≤m c

m. Set d = {�m | m < �}. Then for every c ∈ J� which is a club in α,
we have d ⊆∗ c.
Case 2. cf(�) > �.
By [14, Lemma 1.2], we must then have that �n(J�) = α, and if � < n is largest
such that ��(J�) > α, then cf(��(J�)) = cf(�) > �. We then have � + 1 ≤ n and

��(J�) > ��+1(J�) = �n(J�) = α > �n+1(J�) = �.

Let (αm | m < �) be a sequence witnessing cf(α) = �. By cf(�) �= �, there must
be some m < � such that

hJ�� “(α
m ∪ {p(J �� )}) ∩ �

is cofinal in �. Note that as � = cf(α) < cf(�� (J�)) and α is a regular cardinal in
J� ,

hJ�� “(α
m ∪ {p(J �� )}) ∩ α

cannot be cofinal in α. Set

H = hJ�� “(α
m ∪ {p(J �� )}) and α̃ = sup(H ∩ α).

Let us write � = cf(��(J�)) = cf(�), and let (�i : i < �) be a strictly increasing
sequence witnessing cf(�) = �, where �i ∈ H for every i < �. For each i < �, in
much the same way as in Case 1 we may inside H pick some club ci ⊆ α such that
ci ⊆∗ c for every c ∈ J�i which is a club in α. Notice that we may arrange ci ∈ H
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by �i ∈ H . We may assume without loss of generality that ci ∈ J�i+1 for every i < �.
We then get

H |= ci ⊆∗ cj
for all j < i < �, which by the choice of α̃ readily implies that

ci \ α̃ ⊆ cj \ α̃

for all j < i < �. But as cf(α) �= �, this gives that

c̃ =
⋂
i<�

(ci \ α̃)

is club in α.
We may then let d be a cofinal subset of c̃ of order type �. Then for every club
c ∈ J� which is a club in α, we have d ⊆∗ c.
We thus in both cases found a set d which satisfies (a) from Claim 3.1.3. The
existence of some such d is a Σ1-statement in the parameter J�(α). Therefore, if we
pick d <L-least with (a), then by Nα ∈ Jϕ(α′) ≺ J�+ for α′ > α we will also get (b)
from Claim 3.1.3. �
Let us now for each α ∈ E�+� define cα ⊆ α as follows. If ϕ(α) = α, then we
let cα be the <L-least d which satisfies the conclusion of Claim 3.1.3. If ϕ(α) �= α,
then just let cα be the <L-least cofinal subset of α of order-type �.
Finally, for all α < �+, let

Cα =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∅, if α = 0;
{�}, if α = � + 1;
C ′
α, if α ∈ acc(�+) & �(ϕ(α)) > 0;
cα, otherwise.

Clearly, Cα is a club in α of order-type ≤ �. By Claims 3.1.1(c) and 3.1.2(d), if
ᾱ ∈ acc(Cα), then Cᾱ = Cα ∩ ᾱ. Altogether, 〈Cα | α < �+〉 satisfies Clauses (1)
and (4a) of Definition 2.3.

Let Γ: OR→ �×[OR]<� be some simply-definable enumeration of�×[OR]<� .
Using Kleene’s “�” notation, for α < �+, let gα be the partial function with
dom(gα) ⊆ � such that

gα(�) � hϕ(α)(Γ(�)).
Claim 3.1.4. Let α < �+. All of the following hold :

(a) J�(ϕ(α)) = {gα(i) | i < �, gα(i) is defined};
(b) If sup(acc(Cα)) = α, � < otp(Cα), and gα(�) is defined, then there exists
some ᾱ ∈ acc(Cα) such that gᾱ(�) is defined ;

(c) If ᾱ ∈ acc(Cα), � < otp(Cᾱ) and gᾱ(�) ∈ ϕ(ᾱ)2, then gα(�) ∈ ϕ(α)2 and
gᾱ(�) = gα(�) � ϕ(ᾱ).

Proof. (a) Since J�(ϕ(α)) = hϕ(α)“(� × [�]<�), as pointed out earlier.
(b) is clear from the construction, as J�(ϕ(α)) results from the direct limit of the
system (J�(ϕ(�)), �ϕ(�),ϕ(�′) | � ≤ � ′ ∈ Cα).
(c) Let α, ᾱ, and � be as in the hypothesis of (c). Then gα(�) ∈ ϕ(α)2 fol-
lows immediately from the fact that gᾱ(�) ∈ ϕ(ᾱ)2, as �ϕ(ᾱ),ϕ(α) is Σ0-elementary
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and sends its critical point ϕ(ᾱ) to ϕ(α). Moreover, if � < ϕ(ᾱ), then gα(�) =
�ϕ(ᾱ),ϕ(α)(gᾱ)(�) = �ϕ(ᾱ),ϕ(α)(gᾱ(�)) = gᾱ(�). �
We have already defined 〈(Cα,Nα) | α < �+〉, and our next goal is to define

〈fα | α < �+〉.
� If � = ℵ0, then for every α ∈ acc(�+), we have acc(Cα) = ∅, and hence we
simply let fα : Cα → P(α) ∩Nα be the <L-least surjection. For α ∈ �+ \ acc(�+),
we let fα : Cα → {0} be constant.
� If � > ℵ0, we do the following. Let � : � → � be the <L-least function such
that �−1{i} is cofinal in � for all i < �. Given α ∈ acc(�+), let φα : Cα → otp(Cα)
denote the order-preserving isomorphism. Then, for all � ∈ Cα , set

Z�α = {� ∈ acc(Cα) ∩ � | �(φα(�)) < φα(�) & g�(�(φα(�))) ∈ ϕ(�)2},
and

fα(�) =

{
{ε < α | gα(�(φα(�)))(ε) = 1}, if Z�α �= ∅;
∅, otherwise.

For α ∈ �+ \ acc(�+), let fα : Cα → {0} be constant.
Having constructed 〈fα | α < �+〉, we claim the following:
Claim 3.1.5. Let α < �+ be arbitrary. All of the following hold :
(a) fα is a (well-defined ) function from Cα to P(α) ∩ Nα . Moreover, Im(fα) ⊆
J�(ϕ(α));

(b) If ᾱ ∈ acc(Cα) and � ∈ Cᾱ , then fᾱ(�) = fα(�) ∩ ᾱ;
(c) If otp(Cα) = �, then Im(fα) = P(α) ∩ J�(ϕ(α));
(d) fα is surjective iff α ∈ �+ \R<, where

R< = R ∪ {α < �+ | otp(Cα) < �}.
Proof. To avoid trivialities, assume � > ℵ0 and α ∈ acc(�+).
(a) Let � ∈ Cα be arbitrary. IfZ�α = ∅, thenfα(�) = ∅which is indeed an element
of P(α) ∩ J�(ϕ(α)). Suppose that Z�α �= ∅. Write � = �(φα(�)). Fix � ∈ Z�α . Then
� ∈ acc(Cα) and � < φα(�). Consequently, � < otp(C�) and g�(�) ∈ ϕ(�)2, and then
by Clause (c) of Claim 3.1.4, gα(�) ∈ ϕ(α)2. By Clause (a) of Claim 3.1.4, gα(�) ∈
J�(ϕ(α)). Since the latter is rud-closed, it follows that fα(�) ∈ P(α) ∩ J�(ϕ(α)).
By definition of Nα (cf. page 815), we have J�(ϕ(α)) ⊆ Nα .
(b) Suppose ᾱ ∈ acc(Cα) and � ∈ Cᾱ . Then Cᾱ = Cα ∩ ᾱ, φᾱ = φα � ᾱ, and
�(φᾱ(�)) = �(φα(�)), say, it is �. AsZ

�
α ⊆ Cα ∩� andZ�ᾱ ⊆ Cᾱ ∩� , we altogether

infer thatZ�α = Z
�
ᾱ . In particular, if the latter is empty, thenfᾱ(�) = ∅ = fα(�)∩ᾱ.

Next, suppose that Z�ᾱ is nonempty, and fix a witnessing element �. By � ∈ Z
�
ᾱ ,

we know that � < otp(C�) and g�(�) ∈ ϕ(�)2, and then by Clause (c) of Claim 3.1.4,
we know that gᾱ(�) ∈ ϕ(ᾱ)2. By ᾱ ∈ acc(Cα) and � < otp(C�) < otp(Cᾱ)
and Clause (c) of Claim 3.1.4, we then know that gα(�) ∈ ϕ(α)2 and gᾱ(�) � ᾱ =
gα(�) � ᾱ. Consequently, fᾱ(�) = fα(�) ∩ ᾱ.
(c) Suppose that otp(Cα) = �, and let x be an arbitrary element ofP(α)∩J�(ϕ(α)).
By x ⊆ α ⊆ ϕ(α), let �x : ϕ(α) → 2 denote the characteristic function of x.
Since ϕ(α) ∈ J�(ϕ(α)) and since the latter is rud-closed, we have �x ∈ J�(ϕ(α)). By
Clause (a) of Claim 3.1.4, wemay fix some ordinal i < � such that gα(i) = �x. Since
otp(Cα) = � is an uncountable cardinal, we have sup(acc(Cα)) = sup(Cα) = α, and
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then byClauses (b) and (c) ofClaim 3.1.4, let us fix a large enough ᾱ ∈ acc(Cα) such
that i < otp(Cᾱ) and gᾱ(i) = gα(i) � ϕ(ᾱ). Now, by the choice of �, there exists a
large enough j with φα(ᾱ) < j < � such that �(j) = i . As otp(Cα) = � > j, let
� ∈ Cα be the unique element to satisfy φα(�) = j. Then:

Z�α = {� ∈ acc(Cα) ∩ � | i < φα(�) & g�(i) ∈ ϕ(�)2}.
By i < otp(Cᾱ) = φα(ᾱ) and gᾱ(i) ∈ ϕ(ᾱ)2, we have ᾱ ∈ Z�α . So

fα(�) = {ε < α | gα(�(φα(�)))(ε) = 1}
= {ε < α | gα(�(j))(ε) = 1}
= {ε < α | gα(i)(ε) = 1}
= {ε < α | �x(ε) = 1}
= x,

as sought.
(d) If α ∈ R, then by Clause (a), Im(fα) ⊆ J�(ϕ(α)) � J�(ϕ(α))+� = Nα .
If otp(Cα) < �, then | Im(fα)| < � = |Nα|, so α is not onto. Finally, if α �∈ R
and otp(Cα) = �, then by Clause (c) and the definition of Nα in this case,
Im(fα) = P(α) ∩ J�(ϕ(α)) = P(α) ∩Nα . �
Thus, we have established Clauses (3) and (4b) of Definition 2.4.
Claim 3.1.6. Let α < �+. All of the following hold :
(a) {C� | � < α} ⊆ Nα . Moreover:
(b) {f� | � < α} ⊆ Nα .
Proof. Denote � = ϕ(α) and � = �(�). Clearly, α ≤ � < � and Nα = J� or
Nα = J�+� . Let � < α be arbitrary.
(a) If C� = c� , then by � ∈ C \ (� + 1), we get that J� ≺Σ� J�+ and J� |=
cf(�) = �. In particular, if c� is the <L-least cofinal subset of � of order-type �,
then c� ∈ J� ⊆ J� . If c� is not of this form, then it was obtained by Claim 3.1.3
which also ensures that c� ∈ Nα .
Next, suppose that C� = C ′

� . Notice first that

ϕ(�) < �(ϕ(�)) < �(ϕ(�)) + � < ϕ(α) < �(ϕ(α)) = Nα ∩OR. (2)

We have that C� = φ−1“Eϕ(�), where φ = ϕ � � . By definition of C and since
ϕ(�) ∈ C , we know that C ∩ ϕ(�) is Σ1-definable over Jϕ(�)+�. By Equation (2),
Jϕ(�)+� ∈ Nα andφ ∈ Nα , and it suffices to show thatEϕ(�) ∈ Nα . But an inspection
of the construction of Eϕ(�) yields that Eϕ(�) is Σ1-definable over J�(ϕ(�))+�. Hence
by Equation (2) again, Eϕ(�) ∈ Nα .
(b) We have already shown that C� ∈ Nα . This immediately gives φ� ∈ Nα . We
have that g� is definable over J�(ϕ(�)), so that g� ∈ Nα by N� ∈ Nα . Certainly,
� ∈ Nα . Taken together, f� ∈ Nα . �
Having Clause (c) of Claim 3.1.5 in mind, we now turn to verify Clause (5) of
Definition 2.4.
Claim 3.1.7. Suppose that A ⊆ �+ is some set, and B ⊆ �+ is a club.
Then there exists a club D ⊆ {α ∈ C | ϕ(α) = α} such that for all α ∈ D:
(a) A ∩ α,B ∩ α ∈ J�(α);
(b) D ∩ α ∈ Nα ;
(c) Cα ⊆∗ B.
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Proof. (a) Let h�J�++ denote the closure under Σn Skolem functions for J�++ , for
all n < �, which are uniformly definable over all J� , � ≥ � · �, in a canonical
fashion.
Let us recursively define 〈Xi | i < �+〉 as follows.

X0 = h�J�++ (� × [� ∪ {A,B}]<�),
Xi+1 = h�J�++ (� × [� ∪ {A,B, 〈Xj | j ≤ i〉}]<�), and

Xi =
⋃

{Xj | j < i} for limit i > 0.

For i < �+, let �(i) be such that


i : J�(i) ∼= Xi ≺ J�++ ,

and write α(i) = Xi ∩ �+ = �+J�(i) . Notice that {C,ϕ} ⊆ X0, and hence α(i) is a
closure point underϕ, andϕ−1(α(i)) = α(i). Consider the setD = {α(i) | i < �+}
which is a club subset of {α ∈ C | ϕ(α) = α}.
For i < �+,

J�(i)+� |= α(i) is a cardinal,
while the definition of �(α(i)) entails that �(α(i)) ≥ �(i) + �, and hence

�(α(i)) > �(i). (3)

Of course, A ∩ α(i) = 
−1i (A) ∈ J�(i). Thus, A ∩ α ∈ J�(α) for every α ∈ D, and
likewise, B ∩ α ∈ J�(α) for every α ∈ D.

(b) First, we point out that for all i < �+, Equation (3) implies:

〈
−1i “Xj | j < i〉 ∈ Nα(i). (4)

To see this, notice that the elementary embedding 
i will respect the uniformly
defined Σn Skolem functions for J�++ and J�(i), respectively, and hence


−1i “X0 = h
�
J�(i)
(� × [� ∪ {A ∩ α(i), B ∩ α(i)}]<�),


−1i “Xi+1 = h
�
J�(i)
(� × [� ∪ {A ∩ α(i), B ∩ α(i), 〈
−1i “Xj | j ≤ i〉}]<�), and

Xi =
⋃

{Xj | j < i} for limit i > 0.

This gives that if α = α(i) ∈ D, then the sequence from (4) is Δ1-definable over
J�(i)+� . However, we obviously have that in this situation α is the only cardinal of
J�(i), so that if �(i) + � = �(α), then α ∈ R and Nα ∩ OR = �(i) + � · 2, hence
Equation (4) holds true. If �(α) > �(i) + �, then the sequence from Equation (4)
is in J�(α) ⊆ Nα .
Thus, we have verified thatD ∩ α ∈ Nα for every α ∈ E.

(c) Let α ∈ D be arbitrary, and we shall show that Cα ⊆∗ B. By B ∩ α ∈ J�(α),
ϕ(α) = α and Claim 3.1.3, we may assume that Cα �= cα . That is, Cα = C ′

α =
ϕ−1“Eα , and we must show that Eα ⊆∗ ϕ“B.
Let i < �+ be such that α = α(i), and let � ∈ Eα be large enough such that

{�(i), (ϕ“B) ∩ α} ⊆ Im(�ϕ(�),α). (5)
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Write �̄ = �−1
ϕ(�),α(�(i)). We have that �ϕ(�),α � J�̄ : J�̄ → J�(i) is fully elementary, so

that in fact ϕ(�) is a limit point of (ϕ“B) ∩ α, and hence ϕ(�) ∈ (ϕ“B) ∩ α, i.e.,
� ∈ B. As Equation (5) holds true for a tail end of � ∈ Eα , we haveEα ⊆∗ ϕ“B. �
We nowverify Clause (6) ofDefinition 2.4, using an argument from [1, Section 2].
Assume (6) were to fail. Recalling Clause (d) of Claim 3.1.5, there are n, m < �,
someΠnm-sentence 	 valid in a structure (�

+,∈, 〈Ai | i < �〉), and some clubD ⊆ �+
such that for every α ∈ D, α ∈ R< or else

Nα |= “	 is not valid in (α,∈, 〈Ai � α | i < �〉).”
Let (D, 〈Ai | i < �〉) be the <L-least such pair. Notice that C , ϕ, and R< are all
definable over J�++� by some formulaswith no parameters. Also,D and 〈Ai | i < �〉
are both definable over J�+n by some formulas with no parameters. But as �+ and
�+n, and hence J�++� and J�+n , are both Σ1-definable over J�+n+1 from the parameter
�+n, we get that D, 〈Ai | i < �〉, C , and ϕ, and also �, �+, �+2, . . . , �+n are all
Σ1-definable over J�+n+1 from the parameter �+n.
Let us here and in what follows use the notation from [18, p. 194] which for
X ⊆ J� writes hJ� (X ) for hJ�“(� × [X ]<�), where hJ� is the canonical Σ1 Skolem
function for J� .
We now have, setting D∗ = ϕ“D,

{D, 〈Ai | i < �〉, C, ϕ,D∗, �, �+, �+2, . . . , �+n} ⊆ hJ
�+n+1
({�+n}).

Let � be such that

� : J� ∼= hJ
�+n+1
(� ∪ {�+n}) ≺Σ1 J�+n+1 , (6)

and write α = �−1(�+) = crit(�) and � = �−1(�+n).
Of course, J� = hJ� (� ∪ {�}), so that �1(J�) = � and p1(J�) ≤∗ {�}.7 However,
if we had p1(J�) <∗ {�}, then � ∈ hJ� (�), so that �+n ∈ hJ

�+n+1
(�+n); but it

easily follows from the Condensation Lemma that hJ
�+n+1
(�+n) ⊆ J�+n . Therefore,

p1(J�) = {�}.
Obviously, �(α) = �. By {D,ϕ,D∗} ⊆ hJ

�+n+1
({�+n}), we have that

D ∩ α,ϕ ∩ (α × α), D∗ ∩ α = �−1(D,ϕ,D∗) ∈ J�,
so that α ∈ D ∩D∗, and we also get that α is a closure point of ϕ, and α = ϕ(α).
By α = ϕ(α), we have �(ϕ(α)) = �. As 〈Ai | i < �〉 ∈ hJ

�+n+1
({�+n}), Ai � α =

�−1(Ai) for every i < �. By elementarity then,

Nα = J� |= “	 is valid in (α,∈, 〈Ai � α | i < �〉)”. (7)

Claim 3.1.8. (a) There is no � < � such that hJ� (� ∪ {�}) ∩ α is cofinal in α,
so that in particular {�αi | i < �(α)} is cofinal in �;

(b) For every i < �(α), |�αi+1| = |�αi |;
(c) �(α) = �;
(d) α �∈ R<.
Proof. Write d = {(n, �x) ∈ � × [�]<� | hJ� (n, �x ∪ {�}) is defined}. We now
introduce the following notation. For � < �, let us write �(�) ≤ �+n+1 for the least

7Here,≤∗ is the canonical well-ordering of finite sets of ordinals, cf. [18, Problem 5.19 and p. 254].
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� such that if (n, �x) ∈ d ∩ (� × [�]<�), then hJ� (n, (�x, �+n)) is defined. As �+n+1 is
regular, �(�) < �+n+1.
(a)Assume that � < �were such that hJ� (�∪{�})∩α is cofinal inα.Using themap
� of Equation (6), hJ

�+n+1
(�∪{�+n})∩α is then cofinal in α. Let � = �(�) < �+n+1.

Trivially, d ∩ (� × [�]<�) ∈ hJ
�+n+1
(�), so that

� ∈ hJ
�+n+1
({d ∩ (� × [�]<�), �+n}) ⊆ hJ

�+n+1
(� ∪ {�+n}) = Im(�),

so that by using � again,

α = sup(hJ
�−1(�) (� ∪ {�}) ∩ α).

However, hJ
�−1(�) (� ∪ {�}) ∈ J� and α is regular in J� . This is a contradiction.

(b) This follows from the proof of (a). We have that

�(�αi ) ∈ hJ�+n+1 ({d ∩ (� × [�αi ]<�), �+n}),
and then

�̃ := sup(hJ� (�
α
i ∪ {�}) ∩ α) = sup(hJ

�−1(�(�αi ))
(�αi ∪ {�}) ∩ α)

∈ hJ� ({d ∩ (� × [�αi ]<�), �}).
However, by the Condensation Lemma, d ∩ (� × [�αi ]<�) ∈ hJ�+n+1 ((�

α
i )
+), so that

�̃ ∈ hJ� ((�αi )+ ∪ {�}).
But this means that there is (n, �x) ∈ � × [(�αi )+]<� such that

�̃ = hJ� (n, (�x, �)).

But �̃ /∈ hJ� (�αi ∪ {�}), which now readily gives �αi+1 < (�αi )+.
(c) By Clause (b), for every i < �(α),

otp({j < �(α) | �αj < |�αi |+}) = |�αi |+,
which together with Clause (a) gives that �(α) = �.
(d) As � is certainly a limit of limit ordinals, α /∈ R. But then Clause (c) gives
α /∈ R<. �
Altogether α ∈ D \R<, contradicting Equation (7). �

§4. Applications.
4.1. Preliminaries. For a family of functions T and a set of ordinals D, write
T � D = {f ∈ T | dom(f) ∈ D}, and succ�(D) = {� ∈ D | 0 < otp(D∩�) < �}.
Definition 4.1. We say that T is a κ-tree, whenever there exists a set Ω of
size ≤ κ, for which
• T ⊆ <κΩ;
• {dom(f) | f ∈ T} = κ;
• for every f ∈ T , we have {f � α | α < κ} ⊆ T ;
• Tα := {f ∈ T | dom(f) = α} has size < κ for all α < κ.
A κ-Aronszajn tree is a κ-tree with no cofinal branches. A κ-Kurepa tree is a
κ-tree admitting at least κ+ many cofinal branches. A �+-tree is special if it may
be covered by � many antichains. Following [3], which generalizes the case � = ℵ0
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from [7], we say that a �+-tree T is almost Souslin if for every antichain A ⊆ T , the
set {dom(z) | z ∈ A} ∩ E�+cf(�) is nonstationary.
Of course, almost Souslin and special are contradictory concepts.

In [2], [4], the parameterized principle P−(κ, �,R, �,S, �, �, E) was introduced
and studied in relation with κ-Souslin tree constructions. Here, we shall only give
the definition of the special case

(κ, �,R, �,S, �, �, E) = (κ, 2,�, κ, {S}, 2, �, (P(κ))2),

which, for simplicity, is denoted by �(S).
Definition 4.2. For any regular uncountable cardinal κ, and stationary S ⊆ κ,

�(S) asserts the existence of a sequence 〈Cα | α < κ〉 such that:
• Cα is a club subset of α for every limit ordinal α < κ;
• Cᾱ = Cα ∩ ᾱ for every ordinal α < κ and every ᾱ ∈ acc(Cα);
• for every sequence 〈Ai | i < κ〉 of cofinal subsets of κ, there exist stationarily
many α ∈ S such that sup{� < α | succ�(Cα \ �) ⊆ Ai} = α for all i < α.

Note that forS ⊆ S′ ⊆ κ, every�(S)-sequence is also a�(S′)-sequence. Clearly,
every �(κ)-sequence is in particular a �(κ)-sequence.
Definition 4.3. The principle ��(S) asserts the existence of a �(S)-sequence

〈Cα | α < sup(S)〉 with the additional property that otp(Cα) ≤ � for all α.

Note that every ��(�+)-sequence is in particular a ��-sequence.
Definition 4.4 ([3]). Suppose that T ⊆ <κΩ is a κ-tree, and S is stationary in κ.
We say that T is �(S)-respecting if there exist a subset § ⊆ S and a sequence

〈bα : T � Cα → αΩ ∪ {∅} | α < κ〉

such that:

1. 〈Cα | α < κ〉 is a �(§)-sequence;
2. Tα ⊆ Im(bα) for every α ∈ §;
3. if ᾱ ∈ acc(Cα) and x ∈ T � Cᾱ , then bᾱ(x) = bα(x) � ᾱ.
The notion of ��(S)-respecting is defined in a similar fashion.
4.2. Walks on ordinals. In this subsection, we address the trees obtained from
walks on ordinals, as introduced in [21] (see also [23]). Suppose that �C =
〈Cα | α < κ〉 is a C -sequence over some fixed regular uncountable cardinal κ.
That is, Cα is a club in α for all limit α < κ, and Cα+1 = {α} for all α < κ. Recall
few of the characteristic functions of walks on ordinals:

Definition 4.5 ([21], [23]). Define Tr : [κ]2 → �κ, �2 : [κ]2 → �, �1 : [κ]2 → κ
and �0 : [κ]2 → <�κ as follows.
For all α < � < κ, let

• Tr(α, �)(n) :=

⎧⎪⎨
⎪⎩
�, n = 0;
min(CTr(α,�)(n−1) \ α), n > 0, & Tr(α, �)(n − 1) > α;
α, otherwise;

• �2(α, �) := min{n < � | Tr(α, �)(n) = α};
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• �1(α, �) := max(�0(α, �)), where
• �0(α, �) := 〈otp(CTr(α,�)(i) ∩ α) | i < �2(α, �)〉.

Definition 4.6 ([15]). Define ϕ2 : [κ]2 → 2 by stipulating ϕ2(α, �) = 1 iff
α ∈ acc(CTr(α,�)(�2(α,�)−1)).

Definition 4.7 ([21], [23]). For all � < κ, let �0� : � → <��, �1� : � → � and
�2� : � → � denote the fiber maps α �→ �0(α, �), α �→ �1(α, �) and α �→ �2(α, �),
respectively. Then, put

• T (�0) := {�0� � � | � ≤ � < κ};
• T (�1) := {�1� � � | � ≤ � < κ};
• T (�2) := {�2� � � | � ≤ � < κ}.

It is easy to see that if |{Cα ∩ � | α < κ}| < κ for all � < κ, then T (�0),T (�1)
and T (�2) are κ-trees.
Fact 4.8 ([21], [23]). Suppose that T (�0) is derived from walks along a

��-sequence,8 then T (�0) is a special �+-Aronszajn tree.
Fact 4.9 ([21], [23]). Suppose that � is a regular cardinal, and T (�1) is derived
from walks along a C -sequence 〈Cα | α < �+〉 for which otp(Cα) ≤ � for all α < �+.
Then:

1. T (�1) ⊆ <�+�;
2. for every z ∈ T (�1) and i < �, the set z−1{i} has size < �;
3. for every � < � < �+, the set {� ≤ � | �1�(�) �= �1�(�)} has size < �.
Theorem 4.10. If �C is a �(S)-sequence, then the corresponding trees

T (�0),T (�1),T (�2) are �(S)-respecting, as witnessed by the very same �C .
Proof. Suppose that �C = 〈Cα | α < κ〉 is a �(S)-sequence. Fix bijections

 : κ ↔ 2× κ and � : κ ↔ <�{Cα ∩ � | α, � < κ}. By the coherence of �C , we have
|{Cα ∩ � | α < κ}| < κ for all � < κ, and hence, the set

E := {� < κ | 
[�] = 2× � & <�{Cα ∩ � | α < κ, sup(Cα ∩ �) < �} = �[�]}

is a club in κ. Fix a surjection ϕ : κ → κ such that the preimage of any singleton is
cofinal in κ. Put

§ := {α ∈ S ∩ E | α ⊆ ϕ[Cα ]}.
Claim 4.10.1. �C is a �(§)-sequence.
Proof. Given a sequence 〈Ai | i < κ〉 of cofinal subsets of κ, write:

A′
i :=

{
Aj, if 
(i) = (0, j);
ϕ−1{j}, if 
(i) = (1, j).

As �C is a �(S)-sequence, the following set is stationary:

R := {α ∈ S ∩E | ∀i < α sup{� ∈ Cα | succ�(Cα \ �) ⊆ A′
i} = α}.

Let α ∈ R be arbitrary.

8This means that the C -sequence that was used to define �0 in Definition 4.5 is a ��-sequence,
〈Cα | α < �+〉.
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� By 
[α] ⊇ {0} × α, we have sup{� ∈ Cα | succ�(Cα \ �) ⊆ Ai} = α for all
i < α.
� By 
[α] ⊇ {1} × α, we have sup{� ∈ Cα | succ�(Cα \ �) ⊆ ϕ−1{i}} = α for
all i < α. In particular, α ∈ §. �
For all ε < κ and nonzero limit � < κ, let ��ε denote �(ε)�C� . Then define
Σ�ε : � → <�κ, as follows. Given α < � , put

• j′ = min{j ∈ dom(��ε ) | ��ε (j) \ α �= ∅};
• α+ = min(��ε (j′) \ α), and
• Σ�ε (α) = 〈otp(��ε (j) ∩ α) | j ≤ j′〉�〈otp(CTr(α,α+)(i+1) ∩ α) | i + 1 <
�2(α,α+)〉.
Let m : <�κ → κ denote a map that satisfies � �→ max(�) for all nonempty
sequence�. Let � : <�κ → � denote themap that satisfies� �→ |�| for all sequence�.
Denote Ω0 := <�κ, Ω1 := κ and Ω2 := �. For all i < 3, define

−→
bi = 〈b�i : T (�i ) �

C� → �Ωi | � < κ〉 by stipulating:

b�0 (x) = Σ
�
ϕ(dom(x)),

b�1 (x) = m ◦ Σ�
ϕ(dom(x)),

b�2 (x) = � ◦ Σ
�
ϕ(dom(x)).

Claim 4.10.2. Suppose i < 3, �̄ ∈ acc(C�) and x ∈ T (�i) � C�̄ . Then b
�̄
i (x) =

b�i (x) � �̄ .
Proof. By �̄ ∈ acc(C�), we have C�̄ = C� ∩ �̄ , and it suffices to show that
Σ�̄ε = Σ

�
ε � �̄ for all ε < κ. But the latter is straight-forward to verify. �

Claim 4.10.3. T (�i)� ⊆ Im(b�i ) for every i < 3 and � ∈ §.
Proof. We concentrate on the case i = 0. Let � ∈ § and z ∈ T (�0)� be arbitrary.
Pick � ∈ [�, κ) such that z = �0� � � . Let n = �2(�, �) − ϕ2(�, �). Define � : n →
P(�), by stipulating �(j) := CTr(�,�)(j) ∩ � . By � ∈ § ⊆ E and the definition of n,
there exists some ε < � such that �(ε) = �. By � ∈ §, there exists some � ∈ C�
such that ϕ(�) = ε. Let x = z � �. By z ∈ T (�0)� , we have x ∈ T (�0)� , let alone
x ∈ T (�0) � C� .
We have ϕ(dom(x)) = ε, and so, to show that b�0 (x) = z, it suffices to prove that
Σ�ε = z. First, we make the following observation.
� If ϕ2(�, �) = 0, then

��ε = �(ε)�C� = ��C�
= 〈CTr(�,�)(j) ∩ � | j < �2(�, �)〉�C�
= 〈CTr(�,�)(j) ∩ � | j ≤ n〉.

� If ϕ2(�, �) = 1, then � ∈ acc(CTr(�,�)(�2(�,�)−1)), and hence C� =
CTr(�,�)(�2(�,�)−1) ∩ � . Consequently

��ε = �(ε)�C� = ��C�
= 〈CTr(�,�)(j) ∩ � | j < �2(�, �) − 1〉�C�
= 〈CTr(�,�)(j) ∩ � | j < �2(�, �) − 1〉�(CTr(�,�)(�2(�,�)−1) ∩ �)
= 〈CTr(�,�)(j) ∩ � | j ≤ n〉.
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Now, let α < � be arbitrary. By z = �0� � � and definition of �0� , we have
z(α) = 〈otp(CTr(α,�)(j) ∩ α) | j < �2(α, �)〉.

Let j′ = min{j ∈ dom(��ε ) | ��ε (j) \ α �= ∅}. Then, for all j < j′, we have
(CTr(�,�)(j) ∩ �) \ α = ∅, and hence min(CTr(�,�)(j) \ α) = min(CTr(�,�)(j) \ �).
As Tr(α, �)(0) = � = Tr(�, �)(0), it follows that

Tr(α, �) � j′ + 1 = Tr(�, �) � j′ + 1,
and hence

z(α) � j′ + 1 = Σ�ε � j′ + 1.
Let α+ := Tr(α, �)(j′). By definition

z(α) = (z(α) � j′ + 1)�〈otp(CTr(α,α+)(i+1) ∩ α) | i + 1 < �2(α,α+)〉.

By Tr(�, �)(j′) = Tr(α, �)(j′) = α+, we have min(��ε (j′) \α) = α+. Altogether,
z(α) = Σ�ε (α). �

So for each i < 3, § and −→bi witness that T (�i) is �(S)-respecting. �
Theorem 4.11. Suppose that ♦ ∗

� holds for a given regular uncountable cardinal
�. Then there exists a ��(E�

+

� )-sequence 〈Dα |α < �+〉 satisfying the following.
For every stationary S ⊆ E�+� , there are � ∈ S and � ∈ nacc(D�) ∩ S such that
D� ∩ � � D� .
Proof. Let 〈(Cα,Xα,fα) | α < �+〉 witness ♦ ∗

� . Fix a surjection � : �→ � with
the property that for all j < �, the set {i < � | �“(i, i + �) = {j}} has size �. We
may assume that Cα+1 = ∅ for all α < κ. Denote Λ = {α < �+ | otp(Cα) = �}.
Clearly, Λ = E�

+

� . Write κ = �
+.

For all α < κ, let 
α : otp(Cα) → Cα denote the monotone enumeration of
Cα . We now define a sequence of functions

−→� = 〈�α : otp(Cα) → α | α < κ〉 by
recursion over α < κ. For this, suppose α < κ, and−→� � α has already been defined.
The definition of �α : otp(Cα)→ α is obtained by recursion over i < otp(Cα). For
this, suppose i < otp(Cα) and �α � i has already been defined. Let
• X iα = {� ∈ fα(
α(�(i))) | 
α(i) < � ≤ 
α(i + 1), �(i) ≤ i}, and
• Y iα = {� ∈ X iα | �α � (i + 1) = �� � (i + 1)}.
Then, let

�α(i) =

⎧⎪⎨
⎪⎩
min(Y i

′
α ), if i = i

′ + 1, Y i
′
α �= ∅;

min(X i
′
α ), if i = i

′ + 1, Y i
′
α = ∅, X i′α �= ∅;


α(i), otherwise.

Put Dα = Im(�α).

Claim 4.11.1. Dα is a club in α, otp(Dα) = otp(Cα), acc(Dα) = acc(Cα) and if
ᾱ ∈ acc(Dα), then Dᾱ = Dα ∩ ᾱ.
Proof. For all i < otp(Cα), we have

(a) 
α(i) < �α(i + 1) ≤ 
α(i + 1);
(b) �α(i) = 
α(i) for all limit i < otp(Cα), including i = 0.

So otp(Dα∩�) ≤ otp(Cα∩�)+1 for all � < α, and acc(Dα) = acc(Cα). Towards
a contradiction, suppose that ᾱ ∈ acc(Dα), whileDα ∩ ᾱ �= Dᾱ . Let i < otp(Cᾱ) be
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the least such that �α(i) �= �ᾱ(i). By ᾱ ∈ acc(Dα) = acc(Cα), we haveCᾱ = Cα∩ᾱ,

ᾱ ⊆ 
α . So by Clause (b), i must be a successor ordinals, say i = i ′ + 1. We have

X i
′
ᾱ = {� ∈ fᾱ(
ᾱ(�(i ′))) | 
ᾱ(i ′) < � ≤ 
ᾱ(i + 1), �(i ′) ≤ i ′}
= {� ∈ fα(
α(�(i ′))) ∩ ᾱ | 
α(i ′) < � ≤ 
α(i + 1), �(i ′) ≤ i} = X i

′
α .

By minimality of i , we then also have Y i
′
ᾱ = Y

i′
α . But then �α(i) = �ᾱ(i). This is a

contradiction. �
So �D := 〈Dα | α < κ〉 is a��-sequence.Next,weprove that �D is a��(§)-sequence
for every stationary § ⊆ Λ.
Claim 4.11.2. For every stationary § ⊆ Λ, and every sequence 〈A� | � < κ〉 of
cofinal subsets of κ, there exist stationarily many α ∈ § such that for every � < α, we
have

sup{� ∈ Dα | succ�(Dα \ �) ⊆ A�} = α.
Proof. Let § and 〈A� | � < κ〉 be as in the hypothesis. By Clause (5) of Definition
2.2, for every � < κ, fix a club E� ⊆ acc+(A�) such thatA� ∩α ∈ Nα for all α ∈ E� .
Let C := Δ�<κE� . By Clause (5) of Definition 2.2, let us fix α ∈ § such that
Cα ⊆∗ C .
Let ε, � < α be arbitrary. We shall find � ∈ Dα \ ε such that

succ�(Dα \ �) ⊆ A�.

Without loss of generality, ε is also large enough so that Cα \ ε ⊆ C .
By � ∈ α ∈ C , we have α ∈ E� , and hence A� ∩ α ∈ Xα . Since α ∈ § ⊆ Λ,
we appeal to Clause (3) of Definition 2.2 to obtain some j < otp(Cα) such that
fα(
α(j)) = A� ∩α. Fix a large enough i < otp(Cα) such that�“(i, i +�) = {j},
and 
α(i) > max{ε, �, 
α(j)}. Write � := min(Dα \ 
α(i) + 1). Then � > ε and
succ�(Dα \ �) = �α“(i, i + �).
Let i ′ ∈ [i, i + �) be arbitrary. We shall show that �α(i ′ + 1) ∈ A� . We have

X i
′
α = {� ∈ fα(
α(�(i ′))) | 
α(i ′) < � ≤ 
α(i ′ + 1), �(i ′) ≤ i ′}
= {� ∈ fα(
α(j)) | 
α(i ′) < � ≤ 
α(i ′ + 1)}
= {� ∈ A� ∩ α | 
α(i ′) < � ≤ 
α(i ′ + 1)}.

By 
α(i ′ + 1) > max{ε, �}, we have 
α(i ′ + 1) ∈ E� ⊆ acc+(A�), and hence
X i

′
α �= ∅. Consequently, �α(i ′ + 1) ∈ X i

′
α ⊆ A� , as sought. �

Claim 4.11.3. For every stationary S ⊆ Λ, there are � ∈ S and � ∈ nacc(D�)∩ S
such thatD� ∩ � � D� .
Proof. Fix a surjection ϕ : κ → {Dα ∩� | α, � < κ}. Note that by Claim 4.11.1,
the following set is a club

D := {� < κ | {Dα ∩ � | α, � < κ, sup(Dα ∩ �) < �} = ϕ[�]}.

Let S be an arbitrary stationary subset of Λ. Define a function g : κ× κ → κ by
letting for every α < κ:

g(α, �) :=

{
sup{� ∈ S | ϕ(α) � D�}+ 1, if sup{� ∈ S | ϕ(α) � D�} < κ;
min{� ∈ S | � > �, ϕ(α) � D�}, otherwise.
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Let E := {� < κ | g[� × �] ⊆ �}. Now, fix � ∈ S ∩ E and ε < � satisfying the
following:
• C� \ ε ⊆ D ∩ E;
• S ∩ � ∈ X� .
Since � ∈ Λ and S ∩ � ∈ X� , let us fix some j < otp(C�) such that f�(
�(j)) =
S ∩ �. Fix a large enough i < otp(C�) such that �(i) = j, and 
�(i) >
max{ε, 
α(j)}.
By 
�(i +1) ∈ D, let us fix some α < 
�(i + 1) such that ϕ(α) = D� ∩ 
�(i +1).
By α ∈ � ∈ E, we have g[{α} × �] ⊆ �. As ϕ(α) � D� and � ∈ S, we thus
infer that g(α, �) > � for all � < κ. In particular, by 
�(i + 1) ∈ E, we have

�(i) < g(α, 
�(i)) < 
�(i + 1). Recalling that

X i� = {� ∈ S ∩ � | 
�(i) < � ≤ 
�(i + 1)},
and

Y i� = {� ∈ X i� | �� � (i + 1) = �� � (i + 1)} = {� ∈ X i� | ϕ(α) � D�},
we see that g(α, 
�(i)) witnesses that Y i� is nonempty. Write � := ��(i + 1). Then
� ∈ Y i� ∩ nacc(D�) ∩ S, and hence D� ∩ � � D� . �

�
We now address the trees T (�0) and T (�1). Note that the latter is a projection of
the former.9

Corollary4.12. Suppose that♦ ∗
� holds for a given uncountable cardinal � = �

<�.
Then there exists a ��(E�

+

� )-sequence which is respected by the corresponding trees
T (�0) and T (�1). Moreover:
1. T (�0) is a special �+-Aronszajn tree;
2. T (�1) is an almost Souslin, �+-Aronszajn tree;
3. T (�1) can be made special by means of a cofinality-preserving forcing.
Proof. Let �D = 〈Dα | α < �+〉 be given by Theorem 4.11. In particular, �D
is a ��(E�

+

� )-sequence. Let T (�0) and T (�1) denote the trees derived from walks
along �D. By Theorem 4.10, T (�0) and T (�1) are ��(E�

+

� )-respecting as witnessed
by our �D.
(1) Since �D is in particular a ��-sequence, we get from Fact 4.8 that T (�0) is
special.
(2) It is easy to see that T (�1) is a �+-tree. By Clause (2) of Fact 4.9, T (�1) is
moreover Aronszajn. To see that T (�1) is almost Souslin, suppose that A ⊆ T (�1),
and that S = {dom(z) | z ∈ A} ∩ E�+� is stationary. For all � ∈ S, fix z� ∈ A such
that dom(z�) = �. We now run the arguments from [10]. For all � ∈ S, put

y� = z� � {� < � | z�(�) �= �1�(�)}.
By �<� = � and Fact 4.9, we may find a stationary subset S′ ⊆ S such that

{y� | � ∈ S′} is a singleton. It follows that {z� | � ∈ S′} is an antichain iff
{�1� | � ∈ S′} is an antichain. So, let us show that the latter is not an antichain. By
the choice of �D, let us fix � ∈ S′ and � ∈ nacc(D�) ∩ S′ such thatD� ∩ � � D� . Let

9Indeed, letm be somemap satisfying � �→ max(�) for every nonempty sequence of ordinals, �. Then
T (�1) is the image of T (�0) under the map t �→ m ◦ t.
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α < � be arbitrary, and we shall show that �1�(α) = �1�(α). Write � = sup(D� ∩�).
Clearly, � ∈ D� ∩D� and D� ∩ � = D� ∩ � .
� If α < � , then there exists some � ′ ∈ (D� ∩D� ∩ (� + 1)) for which �0�(α) =
max{otp(D� ∩ α), �0�(� ′)} and �0�(α) = max{otp(D� ∩ α), �0�(� ′)}. Since
otp(D� ∩ α) = otp(D� ∩ � ∩ α) = otp(D� ∩ � ∩ α) = otp(D� ∩ α), we infer
that �1�(α) = �1�(α).
� If � ≤ α < �, then min(C� \ α) = �. Consequently �1�(α) = max{otp(C� ∩
α), �1�(α)}. By definition, we have �1�(α) ≥ otp(C� ∩α). As C� � C� ∩ �, we have
otp(C� ∩ α) ≥ otp(C� ∩ � ∩ α) = otp(C� ∩ α), and hence �1�(α) = �1�(α).
(3) Let P denote the collection of all partial specializing functions of size < �.
That is, p ∈ P iff it is a function with dom(p) ∈ [T (�1)]<�, Im(p) ⊆ �, such that
p(y) �= p(z) for all y � z in dom(p). Clearly, P is (< �)-closed. It remains to verify
that P has the �+-cc.
Towards a contradiction, suppose that P admits an antichain of size �+. Then by
�<� = � and a standard Δ-system argument, one could find some cardinal � < �
and a family F ⊆ [T (�1)]� consisting of �+ many pairwise disjoint sets with the
property that for every two distinct a, b ∈ F , there exist x ∈ a and y ∈ b such that
x and y are comparable. For all a ∈ F , let {a(i) | i < �} be some enumeration
of a. For every � ∈ E�+� , pick a� ∈ F such that min{dom(x) | x ∈ a} > �,
and define f� : � → �� by stipulating f�(i) = a(i) � �. Then, for all �, � ∈ E�+�
there exist i, j < � such that f�(i) and f�(j) are compatible. For all � ∈ E�

+

� , let
D� := {� < � | ∃i < �[f�(i)(�) �= �1�(�)]}. By Clause (3) of Fact 4.9, |D� | < �. By
�<� = �, we may find a stationary set S ⊆ E�+� for which

{(〈f�(i) � D�) | i < �〉, (�1� � D�)) | � ∈ S}

is a singleton. Consequently, {�1� | � ∈ S} forms a chain in T (�1), contradicting
the fact that T (�1) is Aronszajn. �
If one is willing to give away the respecting feature of the preceding, then it is
possible to relax ♦ ∗

� to just ♦∗(�+):

Corollary 4.13. Suppose that♦∗(�+) holds for a given infinite cardinal � = �<�.
Then there exists a C -sequence for which the corresponding trees T (�0) and T (�1)
satisfy Clauses (1)–(3) of Corollary 4.12.

Notice that the same ideas of this section provides a proof to the following, which
unlike Corollary 4.12, also apply to the case of � singular:

Corollary 4.14. If ♦ � holds for a given uncountable cardinal �, then there exists
a ��(E�

+

cf(�))-sequence which is respected by the corresponding trees T (�0) and T (�1).
Moreover:

1. T (�0) is a special �+-Aronszajn tree;
2. T (�1) is a nonspecial �+-Aronszajn tree.

4.3. Kurepa.

Theorem 4.15. Suppose that � is an uncountable cardinal, and 〈(Cα,Nα,fα) |
α < �+〉 is a ♦ +

� -sequence. Denote Λ = {α < �+ | otp(Cα) = �}.
Then, there exist a��(Λ)-sequence �D = 〈Dα | α < �+〉 andT ⊆ <�+2 such that:
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• for every stationary S ⊆ Λ, there are � ∈ S and � ∈ nacc(D�) ∩ S such that
D� ∩ � � D� ;

• T is a ��(Λ)-respecting �+-Kurepa tree, as witnessed by �D.
Proof. Let 〈(Cα,Nα,fα) | α < �+〉 witness ♦ +

� . Use 〈(Cα,fα) | α < �+〉 to
construct the sequence �D = 〈Dα | α < �+〉 exactly as in the proof of Theorem 4.11.
Then:

1. otp(Dα) = otp(Cα) and acc(Dα) = acc(Cα) for all α < �+;
2. �D is a ��(§)-sequence for every stationary § ⊆ Λ;
3. for every stationary S ⊆ Λ, there are � ∈ S and � ∈ nacc(D�) ∩ S such that
D� ∩ � � D� .

Let § = {α < �+ | fα is surjective}. Then, § is a stationary subset of Λ. Denote
κ = �+, and

• B = {b ∈ κ2 | ∀α < κ[(b � α) ∈ Nα]},
• T = {b � α | b ∈ B, α < κ}.
Then T ⊆ <κ2 is downward closed, and |Tα | ≤ |Nα | ≤ � < κ for all α < κ. For
all α < κ, since Nα is rud-closed and α ∈ Nα , we know that the constant function
from α to {0} belongs to T , and so {dom(f) | f ∈ T} = κ.
We have shown that T is a κ-tree. Let us show it is Kurepa.

Claim 4.15.1. T has at least κ+ many cofinal branches.

Proof. For all α < κ, since α ∈ Nα and the latter is rud-closed, a subset of α is
Nα iff its characteristic function is inNα . Thus, it suffices to show that the following
set has size > κ:

A := {A ⊆ κ | ∀α < κ[(A ∩ α) ∈ Nα ]}.
Suppose not. Then we can find an enumeration (possibly with repetitions) {A� |
� < κ} of A. Consider the club Z = Δ�<κ acc+(A� ). That is,

Z = {� < κ | ∀� < �(sup(A� ∩ �) = �)}.

Pick a clubD ⊆ κ such that for everyα ∈ D, we have {D∩α,Z∩α} ⊆ P(α)∩Nα .
Then E := Z ∩D is a club. Let {�� | � < κ} be the increasing enumeration of E.
For all � < κ, we have � ≤ �� < ��+1 and ��+1 ∈ Z, and hence sup(A� ∩ ��+1) =
��+1 > �� = sup(E ∩ ��+1). Consequently, A� �= E for all � < κ, and there must
exist some α < κ such that E ∩ α �∈ Nα . Fix such an α, and let α′ := sup(E ∩ α).
As (E ∩ α) \ α′ is a finite subset of α, it is an element of Nα . Since Nα is closed
under unions, the set E ∩ α′ must be outside of Nα . In particular, it is nonempty,
and α′ ∈ acc(E) ⊆ D. But then, {D ∩ α′, Z ∩ α′} ⊆ Nα′ ⊆ Nα and since Nα is
closed under intersections, we get that E ∩ α′ = (D ∩ α′) ∩ (Z ∩ α′) is in Nα . This
is a contradiction. �
Next, we show thatT is respecting �D, by defining 〈bα : T � Dα → α2 | α < κ〉, as
follows. Given α < κ, let �α : Dα ↔ Cα denote the order-preserving bijection, and
let gα : Dα → α2 be such that for all � ∈ Dα , gα(�) is the characteristic function of
fα(�α(�)).
Now, for all x ∈ T � Dα , let

bα(x) = gα(dom(x)).
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Suppose that ᾱ ∈ acc(Dα). Then ᾱ ∈ acc(Cα) and �ᾱ ⊆ �α , so that for all
� ∈ Dᾱ , fᾱ(�ᾱ(�)) = fα(�α(�)) ∩ ᾱ and gᾱ(�) = gα(�) � ᾱ. Consequently,
bᾱ(x) = bα(x) � ᾱ for all x ∈ T � Dᾱ .
Finally, letα ∈ §, andwe shall show thatTα ⊆ Im(bα).Lety ∈ Tα bearbitrary.By
definition of T , we have y ∈ Nα . Since Nα is rud-closed, the set {� < α | y(�) = 1}
is in Nα , and so by α ∈ §, there exists some � ∈ Cα such that fα(�) = {� < α |
y(�) = 1}. Let � ′ = �−1

α (�). Then gα(�
′) = y. Now, put x := y � � ′. Then

x ∈ T � Dα , and by definition of bα , we have bα(x) = y, as sought. �
Corollary 4.16. Suppose that ♦ †

� holds for a given uncountable cardinal �. Then
there exists a��(E�

+

cf(�))-respecting �
+-Kurepa tree that has no �+-Aronszajn subtrees.

Proof. The construction of all involved objects is identical to that of the proof
of Theorem 4.15, but this time we consult with a ♦ †

�-sequence rather than ♦ +
� .

Consequently, the reflection argument of [5, Theorem 2] shows that the �+-Kurepa
tree will contain no �+-Aronszajn subtrees. �
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