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We investigate the flow around an oscillating nearly spherical particle at low, yet
non-vanishing, Reynolds numbers (Re), and the potential resulting locomotion. We
analytically demonstrate that no net motion can arise up to order one in Re and
order one in the asphericity parameter, regardless of the particle’s shape. Therefore,
geometry-induced acoustic streaming propulsion, if any, must arise at higher order.
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1. Introduction

Solid bodies forced to oscillate in a fluid may, as a result, undergo a net motion,
provided their shape breaks an appropriate symmetry. Yet, in the absence of inertia
(i.e. when the Reynolds number Re is strictly zero), no net motion can arise from
time-reciprocal actuation due to the linearity of Stokes’ equations (Purcell 1977).
Above a critical Rec = O(1), a symmetric rigid body can achieve unidirectional
locomotion as a result of symmetry-breaking instability resulting from the nonlinear
inertial contribution to the Navier–Stokes equations (Alben & Shelley 2005). The
purpose of the present work is to analyse the emergence of self-propulsion at small
but finite Re (i.e. the effect of inertia is weak but non-negligible) for oscillating
asymmetric particles. Indeed one could expect that asymmetric flows, resulting from
asymmetric boundary conditions, will push the particle, thereby inducing non-zero
average motion (Nadal & Lauga 2014).

Artificial microswimmers have received much recent attention, thanks to their
potential application to drug delivery or water treatment (Sundararajan et al. 2008;
Tiwari, Behari & Sen 2008; Martinez-Pedrero & Tierno 2015), or their fundamental
interest in the study of active matter (see, for example Buttinoni et al. 2013;
Palacci et al. 2013; Bechinger et al. 2016). Among the many possible routes
to self-propulsion, swimming in self-generated physico-chemical gradients, i.e.
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autophoresis (Moran & Posner 2017), as well as bubble-generating (Wang & Wu
2014; Li, Rozen & Wang 2016) or magnetically actuated microswimmers (Dreyfus
et al. 2005) have received particular attention. In these examples, a front–back
asymmetry in the design of the system is necessary. Yet, symmetry-breaking and
self-propulsion can also be achieved by exploiting an instability (Bricard et al. 2013;
Michelin, Lauga & Bartolo 2013; Izri et al. 2014) or flexibility (Wiggins & Goldstein
1998).

Recently, passive rigid particles levitating in the nodal planes of an acoustic
stationary wave have been observed to self-propel in a plane orthogonal to their
direction of excitation (Wang et al. 2012). To explain such findings, Nadal & Lauga
(2014) proposed an acoustic streaming mechanism, suggesting that near-spherical
particles with asphericity parameter ε can achieve a net O(εRe) propulsion, in the
low-frequency limit. Several studies have since stood upon the results of Nadal &
Lauga to account for their observations (see, for example Ahmed et al. 2016; Soto
et al. 2016; Sabrina et al. 2018).

In contrast, we here demonstrate analytically that no net motion can arise at O(εRe)
from a time-reciprocal oscillation and that self-propulsion, if any, must arise at higher
order. In § 2, the governing equations for an oscillating particle are presented. In § 3,
we introduce the particle geometry and the Taylor expansions of the velocity fields in
Re and ε. In §§ 4 and 5, we compute the net motion of the particle at the first two
orders in Re. In § 6, we discuss our results and conclude.

2. Governing equations

We consider here a rigid and homogeneous particle of typical size R oscillating with
frequency ω and amplitude a in an incompressible and Newtonian fluid of kinematic
viscosity ν. Using R, aω and 1/ω, respectively, as reference length, velocity and time
scales, the dimensionless Navier–Stokes and continuity equations read (Zhang & Stone
1998)

λ2∂tu+ Re∇u · u=∇ · σ , ∇ · u= 0, (2.1a,b)

with σ =−pI + (∇u + ∇>u), the dimensionless stress tensor. The Reynolds number
and reduced frequency are respectively defined as Re= aωR/ν and λ2

= (R/δ)2, with
δ =
√
ν/ω the viscous penetration depth. More precisely, a translational oscillation is

imposed to the particle along the ex direction, Ũ = eitex, and the particle is free to
move along the other directions, and is thus force-free along the yz plane and torque-
free about any axis. The longitudinal and angular velocities of the particle resulting
from its imposed oscillation are U=Uyey+Uzez and Ω =Ωxex+Ωyey+Ωzez. In the
frame of reference of the laboratory, the boundary conditions read

u|S = Ũ+U+Ω × r, u|r→∞ = 0. (2.2a,b)

In order to determine U and Ω following an approach analogous to that of Lorentz’
reciprocal theorem (Happel & Brenner 1965), the auxiliary problem of a particle of
the same instantaneous geometry in a steady Stokes flow is considered:

∇ · σ̂ = 0, ∇ · û= 0, (2.3a,b)

with boundary conditions

û|S = Û+ Ω̂ × r, û|r→∞ = 0. (2.4a,b)
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No net motion for oscillating near-spheres at low Reynolds numbers

Let us stress that the particle is rigid so that by instantaneous geometry one should
understand that the surface boundary of the auxiliary problem matches that of its real
counterpart at each time. Using (2.1) and (2.3), one obtains∫

V
[û · (∇ · σ )− u · (∇ · σ̂ )] dV = Re

∫
V

û · ∇u · u dV + λ2
∫

V
û · ∂tu dV. (2.5)

Using the divergence theorem together with the continuity equations, equation (2.5)
reduces to∫

S∞−S
(û · σ − u · σ̂ ) · n dS= Re

∫
V

û · ∇u · u dV + λ2
∫

V
û · ∂tu dV. (2.6)

Because u, û∼ 1/r and σ , σ̂ ∼ 1/r2 when r→∞ (see e.g. Happel & Brenner 1965),
the surface integral at infinity in (2.6) vanishes. The boundary conditions (2.2) and
(2.4) then yield

(Ũ+U) · F̂+Ω · L̂− Û ·F− Ω̂ · L= Re
∫

V
û · ∇u · u dV + λ2

∫
V

û · ∂tu dV, (2.7)

with F =
∫

S σ · n dS and L =
∫

S(r × σ ) · n dS (respectively F̂ and L̂), the force and
torque in the real (respectively auxiliary) problem. For the real problem, F and L
derive from Newton’s laws:

F= ρ∂tU, L= ∂t(J ·Ω), (2.8a,b)

with ρ̄ the particle-to-fluid density ratio and J the particle’s inertia tensor. For the
auxiliary problem, F̂ and L̂ are linearly related to Û and Ω̂ through the possibly
non-diagonal resistance matrix (Kim & Karrila 1991). In order to compute the particle
motion (U, Ω), we shall consider in (2.7) either (i) an auxiliary steady propulsion
(Û, 0) with Û ‖ U to determine U, or (ii) an auxiliary steady rotation (0, Ω̂) with
Ω̂ ‖ Ω to determine Ω . Note that finding the contribution at O(Ren) of the first
term on the right-hand side of (2.7) relies on the knowledge of the velocity field
u at O(Ren−1) only, hence the possibility of a recursive calculation order by order
in Re. Conversely, computing the second term will rely on peculiar symmetry and
time-average considerations to be made explicit below. Note that for a homogeneous
particle, the above formulation also applies to the motion of a particle exposed to
a uniform oscillating flow −Ũ, once inertial forces are accounted for as a modified
pressure.

3. Nearly spherical particles in low-Re flows

We consider a nearly spherical particle of volume V and centre of mass O. By
choosing R= (3V/4π)1/3 and taking O as the origin of the system of axes, one can
define the particle’s geometry through r = 1 + εf (n) with ε � 1. By construction f
satisfies ∫

S
f (n) dS= 0,

∫
S

f (n)n dS= 0. (3.1a,b)

The governing equations are first linearised with respect to Re� 1, e.g. defining u=
u0 + Reu1 + O(Re2), and each order is further expanded as a regular perturbation
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problem in ε� 1, e.g. uk = u0
k + εuεk +O(ε2) with k= 0, 1. Note that ε must remain

small compared to all other dimensionless length scales, i.e. ε � 1 (particle radius)
and ε� 1/λ (viscous boundary layer thickness). In the following sections, we shall
consider the problems at O(Rekε`), and successively look into the two leading orders
in Re.

4. Zeroth order in Re

At leading order O(Re0), equations (2.1) and (2.2) become

λ2∂tu0 =−∇p0 +∇
2u0, ∇ · u0 = 0, (4.1a,b)

u0|S = Ũ+U0 +Ω0 × r, u0|r→∞ = 0, (4.2a,b)

and (2.7) reduces to

(Ũ+U0) · F̂+Ω0 · L̂− Û ·F0 − Ω̂ · L0 = λ
2
∫

V
û · ∂tu0 dV, (4.3)

and this result is expanded as a linear perturbation in ε below.

4.1. Perfect sphere – O(Re0ε0)

While it is quite clear that no net motion can arise at O(ε0Re0) (i.e. unsteady Stokes
flow around a spherical particle), we briefly rederive this result to provide the reader
with the general methodology. At leading order O(ε0), equation (4.3) becomes

(Ũ+U0
0) · F̂

0
+Ω0

0 · L̂
0
− Û ·F0

0 − Ω̂ · L0
0 = λ

2
∫

V0

û0
· ∂tu0

0 dV, (4.4)

where V0 denotes the volume of fluid outside the reference unit sphere. First, recalling
Û ‖U0

0 provides Û · Ũ= 0. Second, the velocity field û0 (respectively u0
0) is linear with

respect to Û (respectively Ũ), and axisymmetric about the axis holding the vector Û
(respectively Ũ) and passing through the centre of mass of the particle. As a result,
using the expression of û0 and u0

0 (appendix A) shows that the RHS of (4.4) does
not include any contribution from the forcing Ũ. There is therefore no net motion at
this order, i.e. U0

0= 0. A similar reasoning shows that Ω0
0 = 0 as well. This last result

imposes the rotation velocity of the particle to be at least first order (either in ε or
Re). The forcing and induced rotation act therefore on two separate time scales. As
a consequence, at leading order, the geometry of the particle, f , can be considered
constant over the O(1) period of the forcing (fast time scale).

4.2. Near-sphere correction – O(Re0ε1)

At O(ε1), equation (4.3) becomes

Uε
0 · F̂

0
+Ωε

0 · L̂
0
+ Ũ · F̂

ε

− Û ·Fε
0 − Ω̂ · Lε0

= λ2
∫

V0

(ûε · ∂tu0
0 + û0

· ∂tuε0) dV − λ2
∫

S0

f û0
· ∂tu0

0 dS, (4.5)
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No net motion for oscillating near-spheres at low Reynolds numbers

where the surface integral is the O(ε) contribution from the difference of the volume
integrals on V and V0 (e.g. Zhang & Stone 1998). The analysis of Zhang & Stone
(1998) shows that the rotation of a torque-free homogeneous near-sphere resulting
from an O(1) imposed translation is O(ε2) and thus Ωε

0 = 0. Consequently the torque
Lε0 linked to Ωε

0 through Newton’s law (2.8) vanishes as well. Using (2.4) and (3.1),
the last term in (4.5) vanishes exactly:∫

S0

f û0
· ∂tu0

0 dS= ( ˙̃U× Ω̂) ·

∫
S0

f n dS= 0. (4.6)

Since we are interested in the net motion of the particle, we take the time-average
over the fast time scale (forcing period) of (4.5). The 〈RHS〉t can be shown to
vanish because uε0 and u0

0 are periodic in time, and the integration domains are
time-independent. Therefore

〈Uε
0〉t · F̂

0
− Û · 〈Fε

0〉t = 0. (4.7)

Equation (4.7) is linear with no net contribution of the forcing Ũ: no net motion can
occur at O(Re0ε1), 〈Uε

0〉t = 0.

5. First order in Re

At O(Re1), equations (2.1) and (2.2) become

λ2∂tu1 +∇u0 · u0 =−∇p1 +∇
2u1, ∇ · u1 = 0, (5.1a,b)

u1|S =U1 +Ω1 × r, u1|r→∞ = 0, (5.2a,b)

and (2.7) reduces to

U1 · F̂+Ω1 · L̂− Û ·F1 − Ω̂ · L1 =

∫
V

û · ∇u0 · u0 dV + λ2
∫

V
û · ∂tu1 dV. (5.3)

Note that here, in addition to the unsteady forcing, the nonlinear convective term acts
as a source term in (5.3). Because it is quadratic in velocity, one might expect that
its average in time is non-zero, which could in turn yield net particle motion.

5.1. Perfect sphere – O(Re1ε0)

At leading order O(ε0) (5.3) becomes

U0
1 · F̂

0
+Ω0

1 · L̂
0
− Û ·F0

1 − Ω̂ · L0
1 =

∫
V0

û0
· ∇u0

0 · u
0
0 dV + λ2

∫
V0

û0
· ∂tu0

1 dV. (5.4)

The symmetry properties of û0 and u0
0 (appendix A) impose that the first term on the

RHS of (5.4) vanishes. The second term on the RHS vanishes as well because it is
the integral of the scalar product between two axisymmetric fields about orthogonal
principal directions. Therefore (5.4) becomes

U0
1 · F̂

0
+Ω0

1 · L̂
0
− Û ·F0

1 − Ω̂ · L0
1 = 0, (5.5)

implying that, very much like for O(Re0ε0), U0
1 = 0 and Ω0

1 = 0.
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5.2. Near-sphere correction – O(Re1ε1)

At O(ε1), and using (2.8) together with (5.5), (5.3) becomes

Uε
1 · F̂

0
+Ωε

1 · L̂
0
− Û ·Fε

1 − Ω̂ · Lε1 =−
∫

S0

f û0
· ∇u0

0 · u
0
0 dS

+

∫
V0

(ûε · ∇u0
0 · u

0
0 + û0

· [∇u0
0 · u

ε
0 +∇uε0 · u

0
0]) dV

+ λ2
∫

V0

(û0
· ∂tuε1 + ûε · ∂tu0

1) dV − λ2
∫

S0

f û0
· ∂tu0

1 dS. (5.6)

Taking the average in time of (5.6) over the forcing period, and using that uε1 and u0
1

are periodic and that Fε
1 and Lε1 are temporal derivatives of periodic functions (2.8),

one finally obtains

6π〈Uε
1〉t · Û+ 8π〈Ωε

1 〉t · Ω̂ =−v
ε
1, with (5.7)

vε1 =

〈∫
V0

(ûε · ∇u0
0 · u

0
0 + û0

· [∇u0
0 · u

ε
0 +∇uε0 · u

0
0]) dV −

∫
S0

f û0
· ∇u0

0 · u
0
0 dS
〉

t

(5.8)

where we have used F̂
0
=−6πÛ and L̂

0
=−8πΩ̂ . Integrating by parts, and using the

expressions of û0 and u0
0 (appendix A), one obtains

vε1 =

∫
V0

(ûε ·G1(r)− 〈uε0 ·G2(r)〉t) dV, (5.9)

with the vector fields G1 and G2 defined as G1=〈∇u0
0 · u0

0〉t and G2=[∇û0
+(∇û0

)T]·u0
0,

whose expressions are provided in appendix A.
Using domain perturbation, the velocity field uε0 (respectively ûε) is solution of (4.1)

(respectively (2.3)) with the following boundary conditions on the unit sphere (see
appendix B):

uε0|r=1 =−f (n)∂ru0
0|r=1 +Uε

0 +Ωε
0 × r, (5.10a)

ûε|r=1 =−f (n)∂rû
0
|r=1. (5.10b)

A first simplification comes from recalling that Ωε
0 = 0. A second one arises from

the fact that the Stokes problem with the uniform boundary condition Uε
0 on the

unit sphere does not contribute to particle motion, as demonstrated in § 5.1. As a
consequence, only the first contribution to uε0|r=1 in (5.10a) provides a net contribution
to vε1 .

For clarity, we now distinguish the cases of pure translation and pure rotation.

5.2.1. Translation
Setting Ω̂ = 0, equation (5.9) simplifies after some algebraic calculations using the

definitions of G1, G2, ûε and uε0 (appendices A and B):

vε1 =K(λ)[ f nnn]n
... exexÛ, (5.11)

where [•]n denotes the average over the unit sphere: [•]n =
∫

S0
•(n) dS, and

... denotes the three-fold tensorial contraction. Quite remarkably, equation (5.11)
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No net motion for oscillating near-spheres at low Reynolds numbers

provides the expression of the net translational velocity as a product of a function
of λ and a functional of f . The tensorial contraction, together with the angular
symmetry properties of the inertial forcing, ensure that only a limited set of the
spherical harmonic components of the shape function f can contribute to a net
motion. Further algebraic calculations show that K(λ) conveniently reduces to
K(λ)=

∫
∞

r=1 (dJλ(r)/dr) dr with

Jλ(r) = −
1
4

Re
[

27(1− r2)

16λ4
0r8

(−3|Λ0|
2
+ 2Λ0(3+ 3λ0r− λ2

0r2)eλ0(1−r)

− (3+ 3λ0r+ (λ0r)2)(1+ λ0r− λ2
0r2)e2Re[λ0](1−r))

]
, (5.12)

where an overbar denotes the complex conjugate, Re[z] is the real part operator of z
and Λ0 = 1+ λ0 + λ

2
0/3 with λ0 = λe−iπ/4. Therefore, using Jλ(∞)= Jλ(1)= 0, one

finds the central result of the present communication:

〈Uε
1〉t = 0. (5.13)

No translational net motion can arise at first order (both in Re and non-sphericity
ε) from geometric asymmetry. This result stems from the fact that the near-field
(r = O(1)) and far-field (r � 1) contributions to the inertial forcing compensate
exactly.

5.2.2. Rotation
Considering now Û= 0, the same method provides

vε1 =L(λ)[ f nn]n : ex(ex × Ω̂), (5.14)

with

L(λ) =
1

256
Im
{

1
Λ0
[−48(λ0(λ0(λ0(λ0 + 6)+ 18)+ 30)+ 24)|λ0|

2F(2Re(λ0))

+ 3i(λ0(λ0(λ0(λ0 + 9)+ 27)+ 42)+ 30)λ2
0Λ̄0F(λ0)

+ 3i(λ0(λ0(λ0(λ0 + 3)+ 33)+ 78)+ 66)λ2
0Λ0F(iλ0)

+ (1− i)λ7
0 + (3− 7i)λ6

0 − (5+ 35i)λ5
0 − (6+ 108i)λ4

0 − (60+ 210i)λ3
0

− (264+ 306i)λ2
0 − (348+ 360i)λ0 − 132i]

}
, (5.15)

with F(z)= [Chi(z)− Shi(z)]ez where Chi/Shi are the hyperbolic cosine/sine integral
functions respectively (Abramowitz & Stegun 1965). We note from (5.8) and (5.14)
that (i) no rotation is obtained along the direction of oscillation (i.e. 〈Ωε

1 〉t · Ũ = 0)
and that (ii) the particle dynamics is an overdamped rotation towards an equilibrium
position. The oscillation direction Ũ is aligned with a principal direction of the
symmetric and traceless second-order tensor [ f nn]n with positive or negative
eigenvalue depending on the sign of L. Further, the function 〈L〉t changes sign
for λc ≈ 3.6, resulting in a shift in the equilibrium orientation between λ < λc and
λ > λc. This transition confirms fundamental differences in the streaming flow and
associated forcing between small and large frequencies, as already observed by
Collis, Chakraborty & Sader (2017) when studying numerically the propulsion of an
oscillating asymmetric dumbbell.
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6. Conclusion

In this work, we analysed the translation and rotation resulting from the oscillation
of a homogeneous near-sphere up to O(εRe), showing analytically that no net
translation occurs regardless of the oscillation frequency and despite the geometric
asymmetry of the particle. This result, which contradicts the conclusions of Nadal &
Lauga (2014), stems from the exact cancellation of the streaming flow forcing in the
immediate vicinity of the particle and far away from it, making it difficult to capture
numerically, as any discretisation introduces necessarily a truncation error. We also
show that a transient rotation can stir back the particle towards one of its equilibrium
positions.

Notwithstanding, our results do not contradict the numerical observations of Collis
et al. (2017) for which a weak front–back asymmetry of a dumbbell was sufficient to
produce a net motion at that order: in that case, the elongated shape of the particle
combined with the small asymmetry of the two spheres leads to an O(1) periodic
rotation of the system, which is at the heart of the self-propulsion, when coupled to
the oscillating translation – in contrast, such rotation is absent at O(εRe) in the case
of a near-sphere. All together, developing net motion around an asymmetric particle
appears to require an O(ε) rotation/translation coupling, as obtained for instance using
density inhomogeneities.
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Appendix A. Unsteady Stokes flow past a spherical particle

A.1. Oscillating flow

The complex velocity field around a sphere oscillating at velocity Ũ reads (Kim &
Karrila 1991) u0

0 = AŨ+ B(Ũ · n)n where

A(r, λ)=
3

2λ2
0r3
[−Λ0 + (1+ λ0r+ λ2

0r2)eλ0(1−r)
], (A 1)

B(r, λ)=
3

2λ2
0r3
[3Λ0 − (3+ 3λ0r+ λ2

0r2)eλ0(1−r)
], (A 2)

and where λ0 = λe−iπ/4 and Λ0 = 1+ λ0 + λ
2
0/3. Recalling that

∇u0
0 = A′Ũn+ B′(Ũ · n)nn+

B
r
(I − nn)(Ũ · n)+

B
r

n(I − nn) · Ũ, (A 3)

one may compute G1 = 〈∇u0
0 · u0

0〉t, that is,

G1 =
1
2

Re[(A+ B)[A′In+ B′nnn] +
AB
r
[n(I − nn)+ (I − nn)n]] : exex. (A 4)
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No net motion for oscillating near-spheres at low Reynolds numbers

A.2. Steady translation

The particular case of a steady translating sphere (λ = 0) at velocity Û is given by
û0
= ÂÛ+ B̂(Û · n)n, where

Â(r)=
3
4r
+

1
4r3
, B̂(r)=

3
4

(
1
r
−

1
r3

)
. (A 5a,b)

One may compute G2 =∇û0
0 · u0

0 + u0
0 · ∇û0

0, that is,

G2 = Â′AnI : ÛŨ+ Â′(A+ B)In : ŨÛ+ (Â′B+ 2B̂′(A+ B))nnn : ŨÛ

+
B̂A
r
[n(I − nn) : ŨÛ+ 2(I − nn)n : ÛŨ] +

B̂(A+ B)
r

(I − nn)n : ŨÛ. (A 6)

A.3. Steady rotation

The velocity field around a steady rotating sphere reads û0
= Ω̂ × n/r2. Computing

∇û0
· u0

0 =
1
r3
[Ω̂ × u0

0 − 3(u0
0 · n)(Ω̂ × n)], (A 7)

u0
0 · ∇û0

=
1
r3
[u0

0 × Ω̂ − 3u0
0 · (Ω̂ × n)n], (A 8)

one obtains the expression of G2 =∇û0
0 · u0

0 + u0
0 · ∇û0

0 as

G2 =−
3A
r3
(Ũ× Ω̂) · nn−

3(A+ B)
r3

(Ũ · n)(Ω̂ × n). (A 9)

Appendix B. Unsteady Stokes flow past a nearly spherical particle

Here we compute the velocity field solution of the unsteady Stokes problem around
a nearly spherical particle:

λ2∂tuε0 =−∇pε0 +∇
2uε0, ∇ · u

ε
0 = 0, (B 1a,b)

uε0|r=1 =−f (n)∂ru0
0|r=1, u0|r→∞ = 0. (B 2a,b)

In Fourier space the boundary condition on the surface of the particle (B 2) takes the
form (Zhang & Stone 1998)

uε0|r=1 =
3f (n)

2
(1+ λ0)(I − nn) · Ũ. (B 3)

Following Sani (1963), we perform a reconstruction of the velocity field from its
radial component and associated vorticity:

uε0 = uε0,rn+ r2
∞∑

n=1

1
n(n+ 1)

[∇s(∇
2ur,n)− n×∇sχr,n], (B 4)

where ∇s =∇− n∂r and where ur,n denotes the nth mode in the spherical harmonics
basis of the radial component of uε0. The latter satisfies in time-Fourier space the
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equation ∇2(iλ2
+ ∇

2)(ruε0,r) = 0. The function χr,n is the nth mode of the radial
component of ∇× uε0, satisfying (∇2

+ iλ2)(rχ εr )= 0. Defining p and q through

p=−
2∇s · uε0|r=1

3(1+ λ0)
, q=

2n · ∇s × uε0|r=1

3(1+ λ0)
, (B 5a,b)

one finally obtains

uε0 =
1
r

∞∑
n=1

n∑
m=−n

Unpm
n Ym

n n+
∞∑

n=1

n∑
m=−n

r2Vnpm
n

n(n+ 1)
∇Ym

n −

∞∑
n=1

n∑
m=−n

rXnqm
n

n(n+ 1)
n×∇Ym

n ,

(B 6)

where pm
n and qm

n denote respectively the modes of p and q in the spherical harmonics
basis (Ym

n ), and Un, Vn and Xn follow:

Un(r, λ)=
3
2
(1+ λ0)

h(1)n (λ0r)−
h(1)n (λ0)

rn+1

(2n+ 1)h(1)n (λ0)− λ0h(1)n+1(λ0)
, (B 7)

Vn(r, λ)=
Un(r, λ)

r2
+
∂rUn(r, λ)

r
, (B 8)

Xn(r, λ)=
3
2
(1+ λ0)

h(1)n (λ0r)
h(1)n (λ0)

, (B 9)

with hn the spherical Hankel function of the first kind and order n (Abramowitz &
Stegun 1965). In (B 5), the functions p and q defined on the surface of the unit sphere
are directly related to the shape function f through (B 2). Using (3.1), they further
satisfy

[p]n = [q]n = 0, [qn]n = 0, (B 10a,b)

[∇pn]n = [n∇p]n = [pnn]n =−2[ f nnn]n · Ũ. (B 11)

Note that these results can be transposed to obtain ûε taking λ= 0 for the translation
problem. And a similar approach can be used in the rotating case.
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