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Abstract. Let f be an n-dimensional holomorphic map defined in a neighborhood of the
origin such that the origin is an isolated fixed point of all of its iterates, and let NM ( f )
denote the number of periodic orbits of f of period M hidden at the origin. Gorbovickis
gives an efficient way of computing NM ( f ) for a large class of holomorphic maps.
Inspired by Gorbovickis’ work, we establish a similar method for computing NM ( f ) for a
much larger class of holomorphic germs, in particular, having arbitrary Jordan matrices as
their linear parts. Moreover, we also give another proof of the result of Gorbovickis [On
multi-dimensional Fatou bifurcation. Bull. Sci. Math. 138(3)(2014) 356–375] using our
method.
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1. Introduction and main results
Let Cn be the n-dimensional complex vector space, let U be an open subset of Cn and let
g: U → Cn be a holomorphic map. If p ∈U is an isolated zero of g, say, there exists a ball
B centered at p with B ⊂U such that p is the unique solution of the equation g(x)= 0 in
B , then we can define the zero order of g at p by

πg(p)= #(g−1(v) ∩ B)= #{x ∈ B : g(x)= v},
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where v is a regular value of g such that |v| is small enough and # denotes the cardinality.
πg(p) is a well-defined integer (see [4] or [7] for the details). If g is regarded as a
continuous map of real variables, the zero order is the (local) topological degree.

Denote by O(Cn, 0, 0) the space of all germs of holomorphic maps fixing the origin
between two neighborhoods of the origin in Cn . For g ∈O(Cn, 0, 0), we call the origin
an isolated fixed point of g if the origin is an isolated zero of g − id. When the origin is an
isolated fixed point, its fixed point index is defined by µg(0)= πg−id(0).

Now we use the fixed point index to define the local Dold index(see [2] or [9]). Let g be
a germ in O(Cn, 0, 0), let M be a positive integer and assume that the origin is an isolated
fixed point of gM . Then the Dold index of g at the origin is defined by

PM (g, 0)=
∑

s⊂P(M)

(−1)#sµgM :s (0),

where P(M) is the set of all prime factors of M , #s is the number of elements of s and
M : s = M(

∏
k∈s k)−1(if s = ∅, set M : s = M).

Here is a basic property of the Dold index.

PROPOSITION 1.1. [9] Let g be a germ in O(Cn, 0, 0) and let M be a positive integer. If
the origin is an isolated fixed point of gM , then PM (g, 0)≥ 0 and M | PM (g, 0).

Since M | PM (g, 0), NM (g)= PM (g, 0)/M is a well-defined integer and is called the
number of periodic orbits of period M hidden at the fixed point(the origin) in [9].

Remark 1. [9] PM (g, 0) can be interpreted to be the number of periodic points of period
M of g hidden at the origin: any holomorphic map f :1n

→ Cn sufficiently close to g has
exactly PM (g, 0) distinct periodic points of period M near the origin, provided that all the
fixed points of f M near the origin are simple. Thus, the number NM (g)= PM (g, 0)/M
can be taken as the number of periodic orbits of period M hidden at the origin.

In this paper, 3 denotes a Jordan matrix

3= diag(Ak1 , . . . , Akm ), (1.1)

where

Ak j =


λ j 1
λ j 1
. . .
. . .

λ j 1
λ j


k j×k j

, 1≤ j ≤ m, k1 + · · · + km = n,

λ j ( j = 1, 2, . . . , m) are the d j th primitive roots of unity and d j is equal to zero
if λ j is not a root of unity; θ denotes a map from {1, 2, . . . , n} to {1, 2, . . . , m}
such that θ( j)= q if k1 + k2 + · · · + kq−1 < j ≤ k1 + k2 + · · · + kq ; d denotes a map
from {1, 2, . . . , n} to {d1, d2, . . . , dm} such that j 7→ dθ( j); e denotes a map from
{1, 2, . . . , n} to {λ1, λ2, . . . , λm} such that j 7→ λθ( j); and f : (Cn, 0)→ (Cn, 0) is
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a germ of a holomorphic map
f (x)=3x + o(x), (1.2)

where o(x) denotes the higher-order terms.
We recall resonant polynomial normal forms. Let v1, . . . , vn be the standard

orthonormal basis in Cn . Then a monomial of degree greater than one proportional to
the monomial xk1

1 . . . xkn
n vs is said to be resonant with respect to 3 if

e(s)= (e(1))k1 · · · (e(n))kn .

A map f of the form (1.2) is said to be in resonant polynomial normal form if f (x)=
3x + F(x), where F(x) is a sum of finitely many resonant monomials with respect to 3.

The following result tells us that holomorphic germs of the form (1.2) can be reduced
to corresponding resonant polynomial normal forms in terms of the numbers of periodic
orbits hidden at the fixed point.

THEOREM 1.1. [3] For a map f of the form (1.2), there exists a map f̃ (x)=3x + o(x)
in resonant polynomial normal form such that, for every positive integer m, if the origin is
an isolated fixed point of the mth iterate f m of f , then Nm( f )=Nm( f̃ ).

Remark 2. Theorem 1.1 differs slightly from the result in [3] and can be easily proved
based on it.

Let On
3 be the set of all germs that are in resonant polynomial normal form. Define

a map

τ :On
3→O(Cn, 0, 0), f (x)=3x + F(x) 7→ τ f (x)= (3− 3̃)x + F(x),

where the elements of the main diagonal of 3̃ are identical to that of3 and other elements
are set to zero. Note that the notation 3̃ will be also used in §3.

Let Wn denote the set comprising all the possible words of length n with each digit of
a word taking 0 or 1, and W ∗n =Wn\{(0 · · · 0)}. For a subset S of the set {1, 2, . . . , n},
we set W (S)= (w1 · · · wn) ∈W ∗n , where w j = 1 if and only if j ∈ S. Similarly, when
w = (w1 · · · wn) ∈Wn , denote by S(w) the set of all indices j such that w j = 1. For a
matrix 3 of the form (1.1) and a positive integer k, we set w(3)= (w1w2 · · · wn) ∈Wn

with w j = 0 if and only if d( j)= 0, and we set w(3, k)= (w1kw2k · · · wnk) ∈Wn with
w jk = 1 if and only if d( j) | k. The notation w(3, k) is also written as w(k) when there is
no ambiguity.

For w ∈W ∗n , we denote by |w| the sum |w| =
∑n

j=1 w j . If S(w)= {s1, . . . , s|w|} with
s1 < · · ·< s|w|, then the subspace of Cn spanned by the coordinates with indices from
S(w) will be denoted by C|w|. Let pw : Cn

→ C|w| be the orthogonal projection from Cn

to C|w|: i.e.,
pw(x)= (xs1 , . . . , xs|w|)

and let iw : C|w|→ Cn be the natural inclusion of C|w| into Cn : i.e.,

iw(x̃s1 , . . . , x̃s|w|)= (x1, . . . , xn),

with x j = x̃ j if j ∈ S(w) and x j = 0 otherwise. For all g ∈O(Cn, 0, 0), we set
πp(00···0)BgBi(00···0)(0)= 1.

Our main result is the following theorem.
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THEOREM 1.2. Let 3 be a matrix of the form (1.1) and let f be a germ in On
3. Then the

origin in C|w(3)| is an isolated zero of pw(3) B τ f B iw(3) if and only if the origin in Cn is
an isolated fixed point of f k for any k ≥ 1. Moreover, in this case, for any k ≥ 1,

µ f k (0)= πpw(k)Bτ f Biw(k)(0).

Remark 3. When w(3)= (00 · · · 0), by the inverse function theorem it is clear that the
origin in Cn is an isolated fixed point of f k for any k ≥ 1 and µ f k (0)= 1. So, from now
on we assume that w(3) ∈W ∗n .

One immediate consequence of Theorem 1.2 is the following corollary.

COROLLARY 1.1. Let 3 be a matrix of the form (1.1) and let f be a germ in On
3. If the

origin in C|w(3)| is an isolated zero of pw(3) B τ f B iw(3), then, for any M ≥ 1,

NM ( f )=
1
M

∑
s⊂P(M)

(−1)#sπpw(M :s)Bτ f Biw(M :s)(0). (1.3)

For the particular case in which k1 = k2 = · · · = km = 1 and d1, d2, . . . , dm are greater
than 1 and are pairwise relatively prime, Corollary 1.1 will be reduced to Corollary 1.2. We
will give a new proof of Corollary 1.2; the original proof can be found in [3]. In this case,
f (x)=3x + R(u)x for f ∈On

3, where u = (u1, . . . , un)= (x
d1
1 , . . . , xdn

n ) and R(u)=
diag{r1(u), . . . , rn(u)} with R(0)= 0. Given a word w ∈W ∗n , we define a map

Rw : C|w|→ C|w|, ũ 7→ pw(r(iw(ũ))),

where r(u)= (r1(u), . . . , rn(u)), and we define a map

P f :W ∗n → N, w = (w1 · · · wn) 7→Ndw ( f ),

where dw =
∏n

j=1 d
w j
j .

COROLLARY 1.2. Let f ∈On
3. If the origin in Cn is an isolated fixed point of f d1d2···dn ,

then, for any w ∈W ∗n , the origin in C|w| is an isolated zero of Rw and P f (w)= πRw (0).

2. Preliminaries
This section presents several lemmas on zero indices and fixed point indices. They will be
used in the proof of Theorem 1.2 in §3.

LEMMA 2.1. For g, g̃ ∈O(Cn, 0, 0), let

g(x1, x2, . . . , xn)= (g1, g2, . . . , gn)

and
g̃(x1, x2, . . . , xn)= (g1, . . . , g j−1, g̃ j , g j+1, . . . , gn).

If the origin is their isolated zero with multiplicity N and M, respectively, then the map

f : (x1, x2, . . . , xn) 7→ (g1, . . . , g j−1, g̃ j g j , g j+1, . . . , gn)

has an isolated zero of multiplicity N+M at the origin.

Remark 4. Lemma 2.1 is well known in the theory of zero indices.
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Let f, g ∈O(Cn, 0, 0). Then f and g are algebraically equivalent at the origin if there
exists a germ of a holomorphic family of linear non-degenerate maps A(x) ∈ GL(n, C)
such that f (x)= A(x)g(x).

LEMMA 2.2. [1] Let f, g ∈O(Cn, 0, 0). If f and g are algebraically equivalent at the
origin, then the origin is an isolated zero of f if and only if it is an isolated zero of g. In
this case, π f (0)= πg(0).

LEMMA 2.3. [9] Let f , g ∈O(Cn, 0, 0). If the origin in Cn is an isolated zero of both f
and g with multiplicity N and M, respectively, then the composition f B g has an isolated
zero with multiplicity NM at the origin.

The following lemma is from [5].

LEMMA 2.4. [5] Let m > 1 be a positive integer and let f be a germ in O(Cn, 0, 0). If the
origin is an isolated fixed point of f and for each eigenvalue λ of D f (0) either λ= 1 or
λm
6= 1 holds, then the origin is also an isolated fixed point of f m and µ f (0)= µ f m (0).

3. The proof of Theorem 1.2
This section gives the proof of Theorem 1.2. The proof of sufficiency and necessity for
Theorem 1.2 needs the following two propositions.

PROPOSITION 3.1. Let 3 be a matrix with the form (1.1) and let f be a germ in On
3. For

any positive integer k, the origin is an isolated zero of τ f if and only if the origin is an
isolated zero of τ f k , where τ f k

= f k
− 3̃k .

Proof. Firstly, we fix k and assume that all eigenvalues of 3 are non-zero, that is, 3̃ is
invertible. Let g = 3̃−1 f. Then g = 3̃−1 f = 3̃−1(3̃+ τ f )= id+ 3̃−1τ f. Lemma 2.2
says that the origin is an isolated fixed point of g if and only if it is an isolated zero of τ f .
Since f is in resonant polynomial normal form, 3̃ f = f B 3̃ and 3̃−1 f = f B 3̃−1. Thus

gk
= 3̃−k f k

= 3̃−k(3̃k
+ τ f k)= id+ 3̃−kτ f k .

Again by Lemma 2.2, the origin is an isolated fixed point of gk if and only if it is an
isolated zero of τ f k .

Evidently, the origin being an isolated fixed point of gk implies that it is also an isolated
fixed point of g. Conversely, by Lemma 2.4, the origin being an isolated fixed point of g
implies that it is an isolated fixed point of gk . Consequently, the origin is an isolated zero
of τ f if and only if it is an isolated zero of τ f k .

For the general case, letw′ = (w′1w
′

2 · · · w
′
n), wherew′j = 0 if and only if e( j)= 0, and

let w̃′ = (w̃′1w̃
′

2 · · · w̃
′
n), where w̃′j = 1 if and only if e( j)= 0. Without loss of generality,

we suppose that S(w′)= {1, 2, . . . , |w′|} and S(w̃′)= {|w′| + 1, . . . , n}. It is easy to see
that

τ f =
(

pw′ B τ f B iw′
pw̃′ B τ f B iw̃′

)
+

(
0

pw̃′ B τ f − pw̃′ B τ f B iw̃′

)
and

τ f k
=

(
pw′ B τ f k

B iw′
pw̃′ B τ f k

B iw̃′

)
+

(
0

pw̃′ B τ f k
− pw̃′ B τ f k

B iw̃′

)
,
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where both pw̃′ B τ f − pw̃′ B τ f B iw̃′ and pw̃′ B τ f k
− pw̃′ B τ f k

B iw̃′ have no monomial
with all of its variable indices completely from S(w̃′) or S(w′). Thus, the origin
is an isolated zero of τ f (τ f k) if and only if zero is an isolated zero of both
pw′ B τ f B iw′ (pw′ B τ f k

B iw′ ) and pw̃′ B τ f B iw̃′ (pw̃′ B τ f k
B iw̃′ ).

Next, we only need to prove that zero is an isolated zero of pw′ B τ f B iw′ if and only if
zero is an isolated zero of pw′ B τ f k

B iw′ and zero is an isolated zero of pw̃′ B τ f B iw̃′ if
and only if zero is an isolated zero of pw̃′ B τ f k

B iw̃′ .
On the one hand, since f is in resonant polynomial normal form,

f B iw′ = iw′ B pw′ B f B iw′

and hence (pw′ B f B iw′)k = pw′ B f k
B iw′ . Similarly,

pw̃′ B f k
B iw̃′ = (pw̃′ B f B iw̃′)k .

The Jacobian matrix at the origin of pw′ B f B iw′ is invertible according to the definition of
w′. Thus, by the previous case, zero is an isolated zero of pw′ B τ f B iw′ = τpw′ B f B iw′
if and only if zero is an isolated zero of

pw′ B τ f k
B iw′ = τpw′ B f k

B iw′ = τ(pw′ B f B iw′)k .

On the other hand, pw̃′ B τ f B iw̃′ = pw̃′ B f B iw̃′ and

pw̃′ B τ f k
B iw̃′ = pw̃′ B f k

B iw̃′ = (pw̃′ B f B iw̃′)k .

It is easy to check that the origin is an isolated zero of pw̃′ B f B iw̃′ if and only if it is an
isolated zero of (pw̃′ B f B iw̃′)k . Thus, the origin is an isolated zero of pw̃′ B τ f B iw̃′ if
and only if it is an isolated zero of pw̃′ B τ f k

B iw̃′ . �

For 1≤ K < n, let w(0, K )= (w0K 1 · · · w0K n) ∈W n , where w0K j is equal to 1 if
1≤ j ≤ K and 0 otherwise. Let w(1, K )= (w1K 1 · · · w1K n) ∈W n , where w1K j is equal
to 0 if 1≤ j ≤ K and 1 otherwise.

PROPOSITION 3.2. Let g be a germ in O(Cn, 0, 0) and K be a positive integer such that
1≤ K < n. If the Jacobian matrix of pw(0,K ) B g B iw(0,K ) at the origin in CK is invertible
and pw(0,K ) B g B iw(1,K ) ≡ 0, then the origin in Cn is an isolated zero of g if and only
if the origin in Cn−K is an isolated zero of pw(1,K ) B g B iw(1,K ). In this case, πg(0)=
πpw(1,K )BgBiw(1,K )(0).

Proof. For sufficiently small xK+1, xK+2, . . . , xn , we define a map GxK+1,...,xn ∈

O(CK , 0, 0) with GxK+1,...,xn (x1, . . . , xK )= pw(0,K ) B g(x1, x2, . . . , xn). It is clear
that G0,...,0 = pw(0,K ) B g B iw(0,K ). By the inverse function theorem and Rouché’s
theorem (see [9, Theorem 2.3]), there exists a neighborhood Un−K of 0 in Cn−K and
a neighborhood VK of 0 in CK such that, for any (xK+1, . . . , xn) ∈Un−K , GxK+1,...,xn

is a diffeomorphism on VK . Since pw(0,K ) B g B iw(1,K ) ≡ 0, GxK+1,...,xn (0)= 0 for any
(xK+1, . . . , xn) ∈Un−K and, consequently,

g−1
{0} ∩ VK ×Un−K ⊂ {(x1, . . . , xn) ∈ VK ×Un−K : x1 = · · · = xK = 0}. (3.1)

Relation (3.1) indicates that the origin in Cn is an isolated zero of g if and only if the origin
in Cn−K is an isolated zero of pw(1,K ) B g B iw(1,K ).
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If the origin is an isolated zero of pw(1,K ) B g B iw(1,K ), then there exists a neighborhood
Vn−K ⊂Un−K of the origin in Cn−K such that

(pw(1,K ) B g B iw(1,K ))−1
{0} ∩ Vn−K = {0}

and
g−1
{0} ∩ VK × Vn−K = {0}.

Let a = (aK+1, aK+2, . . . , an) ∈ Cn−K be a regular value of pw(1,K ) B g B iw(1,K ) such
that its norm |a| is sufficiently small. The set (pw(1,K ) B g B iw(1,K ))−1

{a} ∩ Vn−K

includes a finite number of points b1, . . . , bπpw(1,K )BgBiw(1,K ) (0)
: i.e.,

(pw(1,K ) B g B iw(1,K ))−1
{a} ∩ Vn−K = {b1, . . . , bπpw(1,K )BgBiw(1,K ) (0)

}.

Let ã = (0, . . . , 0, aK+1, . . . , an) ∈ Cn . Then, similarly to the process of obtaining (3.1),
we can easily have

g−1
{ã} ∩ VK × Vn−K = {iw(1,K )(b1), . . . , iw(1,K )(bπpw(1,K )BgBiw(1,K ) (0)

)}.

Then, according to the conditions of the proposition and the definition of a, it is easy to
check that ã is a regular value of g. Thus πg(0)= πpw(1,K )BgBiw(1,K )(0). �

Proof of Theorem 1.2. We first give the proof of the sufficiency. Assume that the origin
in Cn is an isolated fixed point of f k for any k ≥ 1. We need to show that the origin in
C|w(3)| is an isolated zero of pw(3) B τ f B iw(3). Let k0 =

∏
d j 6=0 d j . We firstly prove that

τ(pw(3) B f B iw(3))k0 = pw(3) B ( f k0 − id) B iw(3). (3.2)

To see this, since f is in resonant polynomial normal form, we have

f B iw(3) = iw(3) B pw(3) B f B iw(3),

and hence
(pw(3) B f B iw(3))k0 = pw(3) B f k0 B iw(3). (3.3)

Apply the map τ to both sides of equation (3.3) and we get

τ(pw(3) B f B iw(3))k0 = τ(pw(3) B f k0 B iw(3))= pw(3) B ( f k0 − id) B iw(3),

and thus (3.2) holds.
Next, we will show that the origin in C|w(3)| is an isolated zero of

τ
(

pw(3) B f B iw(3)
)k0 . By (3.2), we only need to prove that it is an isolated zero of

pw(3) B ( f k0 − id) B iw(3). Since the origin in Cn is an isolated fixed point of f k for any
k ≥ 1, it is, particularly, an isolated zero of f k0 − id. Let S(w(3))= { j1, . . . , j|w(3)|}
and xt

= (x t
j1
, . . . , x t

j|w(3)|
) ∈ C|w(3)| with the norm |xt

| being small enough. Then

pw(3) B ( f k0 − id) B iw(3)(xt )= 0 means that

( f k0 − id)(iw(3)(xt ))= ( f k0 − id)(0, . . . , 0, x t
j1 , 0, . . . , 0, x jS(w(3)) , 0, . . . , 0)= 0.

Consequently, the origin in C|w(3)| is an isolated zero of pw(3) B ( f k0 − id) B iw(3).
The final step is to show that the origin in C|w(3)| is an isolated zero of

pw(3) B τ f B iw(3). According to the definition of τ , we have

pw(3) B τ f B iw(3) = τpw(3) B f B iw(3).
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Therefore, we only need to prove that the origin is an isolated zero of τpw(3) B f B iw(3).
This is proved in Proposition 3.1.

Now we prove the necessity and µ f k (0)= πpw(k)Bτ f Biw(k)(0) for any k ≥ 1. We fix a
k ≥ 1 and assume that the origin in C|w(3)| is an isolated zero of pw(3) B τ f B iw(3). It is
clear that S(w(k))⊂ S(w(3)), and then

pw(k) B τ f B iw(k) = pw(k) B iw(3) B (pw(3) B τ f B iw(3)) B pw(3) B iw(k). (3.4)

This implies that the origin in C|w(k)| is an isolated zero of pw(k) B τ f B iw(k). Indeed, let
xt

k ∈ C
|w(k)| with the norm |xt

k | being small enough such that pw(k) B τ f B iw(k)(xt
k)= 0.

Then, by (3.4),

pw(k) B iw(3) B (pw(3) B τ f B iw(3)) B pw(3) B iw(k)(xt
k)= 0.

Since f is in resonant polynomial normal form, it follows from the above formula that

(pw(3) B τ f B iw(3)) B pw(3) B iw(k)(xt
k)= 0,

that is,
(pw(3) B τ f B iw(3))(pw(3) B iw(k)(xt

k))= 0.

Since the origin in C|w(3)| is an isolated zero of pw(3) B τ f B iw(3), we see that
pw(3) B iw(k)(xt

k)= 0 and thus xt
k = 0. Consequently, the origin in C|w(k)| is an isolated

zero of pw(k) B τ f B iw(k).
Let 3̃w(k) = pw(k) B 3̃ B iw(k). Since d( j) 6= 0 for any j ∈ S(w(k)), 3̃w(k) is invertible.

Let
gw(k) = 3̃−1

w(k) B pw(k) B f B iw(k).

We will show that the origin is an isolated fixed point of gw(k). According to the definition
of τ ,

gw(k) = 3̃−1
w(k) B pw(k) B f B iw(k) = id+ 3̃−1

w(k) B pw(k) B τ f B iw(k).

By Lemma 2.2, the origin is an isolated fixed point of gw(k) and

µgw(k)(0)= πpw(k)Bτ f Biw(k)(0). (3.5)

Lemma 2.4 further tells us that the origin is an isolated fixed point of gk
w(k) and

µgw(k)(0)= µgk
w(k)
(0). (3.6)

Since f is in resonant polynomial normal form,

3̃−1
w(k) B pw(k) B f B iw(k) = pw(k) B f B iw(k) B 3̃−1

w(k)

and
f B iw(k) = iw(k) B pw(k) B f B iw(k).

Then
gk
w(k) = 3̃

−k
w(k) B pw(k) B f k

B iw(k) = pw(k) B f k
B iw(k). (3.7)

Therefore we conclude from (3.7) that the origin is an isolated fixed point of
pw(k) B f k

B iw(k).
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Now, we are ready to prove that, for any k ≥ 1, the origin is an isolated fixed point
of f k and µ f k (0)= πpw(k)Bτ f Biw(k)(0). For this purpose, we firstly observe that (3.5),
(3.6) and (3.7) together give πpw(k)Bτ f Biw(k)(0)= µpw(k)B f kBiw(k)(0): i.e., πpw(k)Bτ f Biw(k)(0)=
πpw(k)B( f k−id)Biw(k)(0). Then, without loss of generality, we assume that w(k)= w(1, K )
with 1≤ K < n. It is clear that pw(0,K ) B ( f k

− id) B iw(1,K ) ≡ 0. By Proposition 3.2,
we only need to show that the Jacobian matrix of pw(0,K ) B ( f k

− id) B iw(0,K ) at the
origin is invertible to complete the proof. To see this, the definitions of w(1, K ) and
w(k) say that there exists a positive integer 1≤ j0 < m such that k1 + · · · + k j0 = K
and λk

j − 1 6= 0 for j = 1, 2, . . . , j0, respectively. Thus, the determinant of the Jacobian

matrix of pw(0,K ) B ( f k
− id) B iw(0,K ) at the origin is equal to

∏ j= j0
j=1 (λ

k
j − 1)k j 6= 0 and

therefore the Jacobin matrix is invertible. �

4. The proof of Corollary 1.2
Recall that

f (x)=3x + R(u)x, (4.1)

where u = (u1, . . . , un)= (x
d1
1 , . . . , xdn

n ) and R(u)= diag{r1(u), . . . , rn(u)} with
R(0)= 0.

For any w ∈W ∗n , since the origin in Cn is an isolated fixed point of f d1d2···dn , it is an
isolated zero of τ f d1d2···dn . Therefore it is also an isolated zero of τ f by Proposition 3.1.
Together with (4.1), we have that the origin in C|w| is an isolated zero of pw B R(u) B iw =
Rw(pw B u B iw), and thus it is also an isolated zero of Rw.

Next, let S(w)= {s1, s2, . . . , s|w|} with s1 < s2 < · · ·< s|w|, M = ds1ds2 . . . ds|w| and
we will prove that

πRw(pwBuBiw)(0)=
∑

s⊂{ds1 ,ds2 ,...,ds|w| }

(−1)#sµ f M :s (0). (4.2)

Let q(m1, m2, . . . , m|w|)= (q
(m1)
1 , q(m2)

2 , . . . , q
(m|w|)
|w| ), where m j ∈ {1, 2}, q(1)j = xs j ,

and q(2)j = rs j (u B iw) for j = 1, 2, . . . , |w|. Since the origin in Cn is an isolated zero
of τ f , the origin in C|w| is an isolated zero of q(m1, m2, . . . , m|w|) for
m1, m2, . . . , m|w| ∈ {1, 2}, and by Lemma 2.1,

πpwBτ f Biw (0)=
∑
{πq(m1,m2,...,m|w|)(0) : ∀ j ∈ {1, 2, . . . , |w|}, m j ∈ {1, 2}}

and
πRw(pwBuBiw)(0)= πq(2,2,...,2)(0).

In what follows, we will use q(m1, m2, . . . , m|w|) to define a probability space to
expand πRw(pwBuBiw)(0) to complete the proof of (4.2).

Let A∅ = {q(m1, m2, . . . , m|w|) : ∀ j ∈ {1, 2, . . . , |w|}, m j ∈ {1, 2}}, and, for 1≤
i1 < i2 < · · ·< it ≤ |w|, let A{i1,i2,...,it } be a set consisting of q(m1, m2, . . . , m|w|) ∈ A∅
with

m j =

{
1, j ∈ {i1, i2, . . . , it },

1 or 2 otherwise.
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Let the sample space be �= A∅ and let the σ -algebra be the family F of all subsets of
�. For A ∈ F , we define

P(A)=

∑
{πq(m1,m2,...,m|w|)(0) : q(m1, m2, . . . , m|w|) ∈ A}∑
{πq(m1,m2,...,m|w|)(0) : q(m1, m2, . . . , m|w|) ∈ A∅}

.

It is easy to check that the triple (�, F , P) is a probability space on �, P(A∅)= 1 and
that

P(A{1} ∩ A{2} ∩ · · · ∩ A{|w|})=
πRw(pwBuBiw)(0)
πpwBτ f Biw (0)

. (4.3)

By Proposition 3.2, we have, for 1≤ i1 < i2 < · · ·< it ≤ |w|,

P(A{i1,i2,...,it })=
πpW {s1,s2,...,s|w|}\{si1

,si2
,...,sit }

Bτ f BiW {s1,s2,...,s|w|}\{si1
,si2

,...,sit }
(0)

πpwBτ f Biw (0)
. (4.4)

By the addition property of probability measures (see [6]),

P(A{1} ∪ A{2} ∪ · · · ∪ A{|w|})

=

|w|∑
j=1

P(A{ j})+ · · · + (−1)t−1
∑

1≤i1<i2<···<it≤|w|

P(A{i1} ∩ A{i2} ∩ · · · ∩ A{it })

+ · · · + (−1)|w|−1 P(A{1} ∩ A{2} ∩ · · · ∩ A{|w|})

=

|w|∑
j=1

P(A{ j})+ · · · + (−1)t−1
∑

1≤i1<i2<···<it≤|w|

P(A{i1,i2,...,it })

+ · · · + (−1)|w|−1 P(A{1,2,...,|w|}). (4.5)

Substituting each term on the right-hand side of (4.5) with (4.4) gives

P(A{1} ∪ A{2} ∪ · · · ∪ A{|w|})

=

|w|∑
j=1

πpW {s1,s2,...,s|w|}\{s j }Bτ f BiW {s1,s2,...,s|w|}\{s j }
(0)

πpwBτ f Biw (0)

−

∑
1≤i1<i2≤|w|

πpW {s1,s2,...,s|w|}\{si1
,si2
}Bτ f BiW {s1,s2,...,s|w|}\{si1

,si2
}
(0)

πpwBτ f Biw (0)

+ · · · + (−1)t−1
∑

1≤i1<i2<···<it≤|w|

πpW {s1,s2,...,s|w|}\{si1
,si2

,...,sit }
Bτ f BiW {s1,s2,...,s|w|}\{si1

,si2
,...,sit }

(0)

πpwBτ f Biw (0)

+ · · · + (−1)|w|−1πpW∅Bτ f BiW∅(0)
πpwBτ f Biw (0)

. (4.6)
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Equations (4.3) and (4.6) and the equality P(A{1} ∩ A{2} ∩ · · · ∩ A{|w|})= 1− P(A{1} ∪
A{2} ∪ · · · ∪ A{|w|}) together give

πRw(pwBuBiw)(0)
πpwBτ f Biw (0)

= 1−
|w|∑
j=1

πpW {s1,s2,...,s|w|}\{s j }Bτ f BiW {s1,s2,...,s|w|}\{s j }
(0)

πpwBτ f Biw (0)

+

∑
1≤i1<i2≤|w|

πpW {s1,s2,...,s|w|}\{si1
,si2
}Bτ f BiW {s1,s2,...,s|w|}\{si1

,si2
}
(0)

πpwBτ f Biw (0)

+ · · · + (−1)t
∑

1≤i1<i2<···<it≤|w|

πpW {s1,s2,...,s|w|}\{si1
,si2

,...,sit }
Bτ f BiW {s1,s2,...,s|w|}\{si1

,si2
,...,sit }

(0)

πpwBτ f Biw (0)

+ · · · + (−1)|w|
πpW∅Bτ f BiW∅(0)
πpwBτ f Biw (0)

. (4.7)

Multiplying πpwBτ f Biw (0) on both sides of (4.7) gives

πRw(pwBuBiw)(0)

= πpwBτ f Biw (0)−
|w|∑
j=1

πpW {s1,s2,...,s|w|}\{s j }Bτ f BiW {s1,s2,...,s|w|}\{s j }
(0)

+

∑
1≤i1<i2≤|w|

πpW {s1,s2,...,s|w|}\{si1
,si2
}Bτ f BiW {s1,s2,...,s|w|}\{si1

,si2
}
(0)

+ · · · + (−1)t
∑

1≤i1<i2<···<it≤|w|

πpW {s1,s2,...,s|w|}\{si1
,si2

,...,sit }
Bτ f BiW {s1,s2,...,s|w|}\{si1

,si2
,...,sit }

(0)

+ · · · + (−1)|w|πpW∅Bτ f BiW∅(0).

This completes the proof of (4.2) with Theorem 1.2.
With (4.2) and Lemma 2.3, for the purpose of completing Corollary 1.2, we only need

to show that
PM ( f, 0)=

∑
s⊂{ds1 ,ds2 ,...,ds|w| }

(−1)#sµ f M :s (0). (4.8)

Let ds j = q
α j1
s j 1 · · · q

α j t j
s j t j

, where qs j t is a prime number and α j t is a positive integer
for t = 1, . . . , t j , t j ≥ 1 and j = 1, 2, . . . , |w|. If t1 = t2 = · · · = t|w| = 1, (4.8) holds
immediately by Lemma 2.4. If there exists j ∈ {1, 2, . . . , |w|} such that t j > 1, from the
definition of local Dold indices it can be verified that

PM ( f, 0)= P M

q
α j t j
s j t j

( f
q
α j t j
s j t j , 0)− P M

q
α j t j
s j t j

( f
q
α j t j
−1

s j t j , 0).
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Since M

q
α j t j
s j t j

is not a period of the linear part of f
q
α j t j
−1

s j t j at the origin, we have, by

[3, Theorem 1.4],

P M

q
α j t j
s j t j

( f
q
α j t j
−1

s j t j , 0)= 0,

and thus

PM ( f, 0)= P M

q
α j t j
s j t j

( f
q
α j t j
s j t j , 0).

Repeating the above process ends with

P M

q
α j t j
s j t j

( f
q
α j t j
s j t j , 0)= P M

q
α j t j
s j t j

q
α j (t j−1)
s j (t j−1)

( f
q
α j t j
s j t j

q
α j (t j−1)
s j (t j−1) , 0)

= · · · = P
q
α11
s11 ···q

α|w|1
s|w|1

( f

M

q
α11
s11 ···q

α|w|1
s|w|1 , 0).

Thus

PM ( f, 0)= P
q
α11
s11 ···q

α|w|1
s|w|1

( f

M

q
α11
s11 ···q

α|w|1
s|w|1 , 0)=

∑
s⊂{qs11,...,qs|w|1}

(−1)#sµ f M :s (0).

The second equality follows from the definition of local Dold indices. By Lemma 2.4, we
also have ∑

s⊂{qs11,...,qs|w|1}

(−1)#sµ f M :s (0)=
∑

s⊂{ds1 ,ds2 ,...,ds|w| }

(−1)#sµ f M :s (0),

and thus
PM ( f, 0)=

∑
s⊂{ds1 ,ds2 ,...,ds|w| }

(−1)#sµ f M :s (0).

This completes the proof of Corollary 1.2.

5. Applications of Theorem 1.2
Let f be of the form (1.2) and assume that zero is an isolated fixed point of all iterates
of f . We consider the sequence of numbers N1( f ),N2( f ), . . ..

Zhang [8] proved that the linear part of f determines some natural restrictions to the
sequence. Specifically, when m > 1, Nm( f ) > 0 if and only if the map x 7→3x has
a periodic orbit of minimal period m, and when m = 1, N1( f ) > 1 if and only if the
map x 7→3x has a fixed point other than zero. Assume that the n × n matrix 3 is
diagonalizable and that all its eigenvalues are roots of unity of pairwise relatively prime
degrees greater than one. Then, when n ≤ 2, Gorbovickis [3] proved that any non-negative
integer sequence subject only to the restrictions in [8] can be realized on the sequence
of the numbers of periodic orbits hidden at the fixed point zero of the germ of some
holomorphic map with linear part 3. But for the case in which n ≥ 3, this does not hold

https://doi.org/10.1017/etds.2019.60 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.60


590 J. Qiao, H. Qu and G. Zhang

unless more restrictions are applied to the non-negative integer sequences. We will give
two examples for n ≥ 3 in which a 3 can be found such that this holds subject only to the
restrictions in [8], without the necessity of making the assumption on 3.

Example 5.1. The first example is a resonant polynomial normal form

f (x)=

λ1x1 + xr1d1+1
1 − x1xr3r1d3

3 + x1xr13d3
3 + xd

2
λ2x2 + x2(x

r2d1
1 − xr3d3

3 x (r2−1)d1
1 + xr23d3

3 )

λ3x3 + x3(x
d1
1 − xr3d3

3 )

 ,
where λ1, λ2, λ3 are roots of unity with degrees d1, d2, d3 > 1 such that d1 | d2, (d3, d2)=

1, d = d2/d1 and λ1 = λ
d
2 .

Now we compute the numbers of periodic orbits of every positive period hidden at the
origin. Since

τ f (x)=

xr1d1+1
1 − x1xr3r1d3

3 + x1xr13d3
3 + xd

2
x2(x

r2d1
1 − xr3d3

3 x (r2−1)d1
1 + xr23d3

3 )

x3(x
d1
1 − xr3d3

3 )

 ,
we have

µ f d1 (0)= πp(100)Bτ f Bi(100)(0)= r1d1 + 1,

µ f d2 (0)= πp(110)Bτ f Bi(110)(0)= r2d2 + r1d1 + 1,

µ f d3 (0)= πp(001)Bτ f Bi(001)(0)= r3d3 + 1,

µ f d1d3 (0)= πp(101)Bτ f Bi(101)(0)= r13d1d3 + r3d3 + r1d1 + 1,

µ f d2d3 (0)= πp(111)Bτ f Bi(111)(0)= r23d2d3 + r13d1d3 + r3d3 + r1d1 + 1,

µ f k (0)= πp(000)Bτ f Bi(000)(0)= 1,

where k - d2d3. Only the process of computing µ f d2d3 (0) is given here. We divide τ f into
three parts τ f1, τ f2 and τ f3, as follows.

τ f1(x)=

xr1d1+1
1 − x1xr3r1d3

3 + x1xr13d3
3 + xd

2
x2(x

r2d1
1 − xr3d3

3 x (r2−1)d1
1 + xr23d3

3 )

x3

 ,

τ f2(x)=

xr1d1+1
1 − x1xr3r1d3

3 + x1xr13d3
3 + xd

2
x2

xd1
1 − xr3d3

3


and

τ f3(x)=


xr1d1+1

1 − x1xr3r1d3
3 + x1xr13d3

3 + xd
2

xr2d1
1 − xr3d3

3 x (r2−1)d1
1 + xr23d3

3
xd1

1 − xr3d3
3

 .
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It is easy to see that πτ f1(0)= πp(110)Bτ f Bi(110)(0)= r2d2 + r1d1 + 1 and πτ f2(0)=
πp(101)Bτ f Bi(101)(0)− πp(100)Bτ f Bi(100)(0)= r13d1d3 + r3d3.

By Lemma 2.2,
xr1d1+1

1 − x1xr3r1d3
3 + x1xr13d3

3 + xd
2

xr2d1
1 − xr3d3

3 x (r2−1)d1
1 + xr23d3

3
xd1

1 − xr3d3
3

 and

xr1d1+1
1 − x1xr3r1d3

3 + x1xr13d3
3 + xd

2
xr23d3

3
xd1

1 − xr3d3
3


have the same multiplicity at the origin. Similarly, By Lemmas 2.1 and 2.2,xr1d1+1

1 − x1xr3r1d3
3 + x1xr13d3

3 + xd
2

xr23d3
3

xd1
1 − xr3d3

3

 and

 xd
2

xr23d3
3
xd1

1


have the same multiplicity at the origin. This means that πτ f3(0)= r23d3d1d = r23d3d2,
so

µ f d2d3 (0)= πτ f (0)= πτ f1(0)+ πτ f2(0)+ πτ f3(0)

= r23d2d3 + r13d1d3 + r3d3 + r1d1 + 1.

To complete the counting, we introduce the following lemma given in [8].

LEMMA 5.1. [8] Let f ∈O(Cn, 0, 0) and let

M f = {m ∈ N : the linear part of f at 0 at has a periodic point of period m}.

Then the following hold.
(1) For each m ∈ N \M f such that the origin is an isolated fixed point of f m ,

Nm( f )= 0.

(2) For each positive integer M such that the origin is an isolated fixed point of f M ,

µ f M (0)=
∑

m∈M f ,m|M

mNm( f ).

Since M f = {1, d1, d2, d3, d1d3, d2d3}, by Lemma 5.1,

N1( f )= µ f (0)= 1, Nd1( f )=
µ f d1 (0)− 1

d1
= r1,

Nd2( f )=
µ f d2 (0)− 1

d2
= r2, Nd3( f )=

µ f d3 (0)− 1

d3
= r3,

Nd1d3( f )=
µ f d1d3 (0)− d1Nd1( f )− d3Nd3( f )− 1

d1d3
= r13,

Nd2d3( f )=
µ f d2d3 (0)− d1d3Nd1d3( f )− d2Nd2( f )− d3Nd3( f )− 1

d2d3
= r23

and Nk( f )= 0 for k - d2d3.
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Example 5.2. The other example is a resonant polynomial normal form

f (x)=



λ1x1 + xr1d1+1
1 + xd2/d1

2

λ2x2 + xr2d1
1 x2 + xd3/d2

3

λ3x3 + xr3d1
1 x3 + xd4/d3

4
· · ·

λn−1xn−1 + xrn−1d1
1 xn−1 + xdn/dn−1

n

λn xn + xrnd1
1 xn


,

where λ1, λ2, . . . , λn are roots of unity with degrees d1, d2, . . . , dn > 1 such that d1 |6=

d2 |6= · · · |6= dn and λ j = λ
d j+1/d j
j+1 for j = 1, 2, . . . , n − 1.

As in Example 5.1, we have N1( f )= 1 and Nd j ( f )= r j for j = 1, 2, . . . , n, and
Nk( f )= 0 for k - dn .
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