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Abstract. Let f be an n-dimensional holomorphic map defined in a neighborhood of the
origin such that the origin is an isolated fixed point of all of its iterates, and let N3 (f)
denote the number of periodic orbits of f of period M hidden at the origin. Gorbovickis
gives an efficient way of computing Ny (f) for a large class of holomorphic maps.
Inspired by Gorbovickis” work, we establish a similar method for computing Ny, (f) for a
much larger class of holomorphic germs, in particular, having arbitrary Jordan matrices as
their linear parts. Moreover, we also give another proof of the result of Gorbovickis [On
multi-dimensional Fatou bifurcation. Bull. Sci. Math. 138(3)(2014) 356-375] using our
method.
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1. Introduction and main results

Let C”" be the n-dimensional complex vector space, let U be an open subset of C" and let
g: U — C" be aholomorphic map. If p € U is an isolated zero of g, say, there exists a ball
B centered at p with B C U such that p is the unique solution of the equation g(x) =0 in
B, then we can define the zero order of g at p by

7e(p) =#(g™'(v) N B) =#{x € B: g(x) = v},
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where v is a regular value of g such that |v| is small enough and # denotes the cardinality.
me(p) is a well-defined integer (see [4] or [7] for the details). If g is regarded as a
continuous map of real variables, the zero order is the (local) topological degree.

Denote by O(C", 0, 0) the space of all germs of holomorphic maps fixing the origin
between two neighborhoods of the origin in C". For g € O(C", 0, 0), we call the origin
an isolated fixed point of g if the origin is an isolated zero of g — id. When the origin is an
isolated fixed point, its fixed point index is defined by ¢ (0) = g —iq(0).

Now we use the fixed point index to define the local Dold index(see [2] or [9]). Let g be
a germ in O(C", 0, 0), let M be a positive integer and assume that the origin is an isolated
fixed point of g™ . Then the Dold index of g at the origin is defined by

Pu(g, 0= Y (=" pugm(0),

SCP(M)

where P (M) is the set of all prime factors of M, #s is the number of elements of s and
M:s =M, )~ ifs =0, set M:5s=M).
Here is a basic property of the Dold index.

PROPOSITION 1.1. [9] Let g be a germ in O(C", 0, 0) and let M be a positive integer. If
the origin is an isolated fixed point of g™, then Py (g, 0) > 0 and M | Py (g, 0).

Since M | Py (g, 0), Ny (g) = Py (g, 0)/M is a well-defined integer and is called the
number of periodic orbits of period M hidden at the fixed point(the origin) in [9].

Remark 1. [9] Pu(g, 0) can be interpreted to be the number of periodic points of period
M of g hidden at the origin: any holomorphic map f : A" — C" sufficiently close to g has
exactly Py (g, 0) distinct periodic points of period M near the origin, provided that all the
fixed points of f M near the origin are simple. Thus, the number Ny (g) = Py (g, 0)/M
can be taken as the number of periodic orbits of period M hidden at the origin.

In this paper, A denotes a Jordan matrix

A =diag(Ag,, ..., Ak,), (1.1)

where
Ajl
Ajl
Ay, = , I<j<m,ki+---+k,=n,
Ajl

Ml ks
Aj(j=1,2,...,m) are the d;th primitive roots of unity and d; is equal to zero
if A; is not a root of unity; 6 denotes a map from {1,2,...,n} to {1,2,...,m}
such that 0(j)=q if ki +ko+---+ky—1 < j <k +ky+---+ky; d denotes a map
from {1,2,...,n} to {di,da, ..., dy} such that j+> dp(;); e denotes a map from

{1,2,...,n} to {A1, A2, ..., Ay} such that ji—> Ag¢j); and f:(C",0) — (C",0) is
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a germ of a holomorphic map
fx) = Ax + o(x), (1.2)

where o(x) denotes the higher-order terms.

We recall resonant polynomial normal forms. Let vy, ..., v, be the standard
orthonormal basis in C". Then a monomial of degree greater than one proportional to
the monomial x]f‘ - x],f" vy 1s said to be resonant with respect to A if

e(s) = (e(1) 1 - - (e(n))*n.

A map f of the form (1.2) is said to be in resonant polynomial normal form if f(x) =
Ax + F(x), where F(x) is a sum of finitely many resonant monomials with respect to A.

The following result tells us that holomorphic germs of the form (1.2) can be reduced
to corresponding resonant polynomial normal forms in terms of the numbers of periodic
orbits hidden at the fixed point.

THEOREM 1.1. [3] For amap f of the form (1.2), there exists a map f(x) =Ax 4+ o(x)
in resonant polynomial normal form such that, for every positive integer m, if the origin is
an isolated fixed point of the mth iterate f™ of f, then Ny (f) = Nou ().

Remark 2. Theorem 1.1 differs slightly from the result in [3] and can be easily proved
based on it.

Let O be the set of all germs that are in resonant polynomial normal form. Define
a map

7: 0% — O(C",0,0), f(x):Ax+F(x)|—>‘L’f(x):(A—[\)x—i—F(x),

where the elements of the main diagonal of A are identical to that of A and other elements
are set to zero. Note that the notation A will be also used in §3.

Let W, denote the set comprising all the possible words of length n with each digit of
a word taking O or 1, and W, = W,\{(0 - - - 0)}. For a subset S of the set {1, 2, ..., n},
we set W(S) = (w; - - - w,) € W5, where w; =1 if and only if j € §. Similarly, when
w=(wy ---wy,) € W,, denote by S(w) the set of all indices j such that w; = 1. For a
matrix A of the form (1.1) and a positive integer k, we set w(A) = (wjwy - - - wy) € Wy,
with w; =0 if and only if d(j) =0, and we set w(A, k) = (wigwk - - - wak) € Wy, with
wjx = 1if and only if d(j) | k. The notation w(A, k) is also written as w (k) when there is
no ambiguity.

For w € W, we denote by |w| the sum |w| = Z?:l wj. If S(w) = {s1, ..., sjw} with
§1 < --- < Sy, then the subspace of C" spanned by the coordinates with indices from
S(w) will be denoted by C!*I. Let p,, : C* — C!*! be the orthogonal projection from C”
to CI*!: ie.,

Puw(x) = (X5, - - -5 xs‘w‘)

and let iy, : C!*! — C" be the natural inclusion of C!*! into C": i.e.,
iw(islv ceey )zs‘w|) = (xls cees xn)y

with x; =%; if j € S(w) and x; =0 otherwise. For all g€ O(C", 0,0), we set

T p00.--0) ©&% (00---0) 0)=1.
Our main result is the following theorem.
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THEOREM 1.2. Let A be a matrix of the form (1.1) and let f be a germ in O'. Then the
origin in CM\ is an isolated zero of pw(a) © Tf o iw(n) if and only if the origin in C" is
an isolated fixed point of f* for any k > 1. Moreover, in this case, for any k > 1,

/’Lfk (0) = npu)(k)OTfOiw(/f) (0)

Remark 3. When w(A) = (00 - - - 0), by the inverse function theorem it is clear that the
origin in C" is an isolated fixed point of £* for any k > 1 and #£(0) = 1. So, from now
on we assume that w(A) € W'

One immediate consequence of Theorem 1.2 is the following corollary.

COROLLARY 1.1. Let A be a matrix of the form (1.1) and let f be a germ in O';. If the
origin in "W s an isolated zero of Pw(a) © Tf o iw(n), then, for any M > 1,

1
NM(f) = M Z (- 1)#SjTPw(M:s)OTfoiw(M:S) ). (1.3)
SCP(M)
For the particular case in which k| =k, =--- =k, = 1and dy, do, . . ., dy, are greater
than 1 and are pairwise relatively prime, Corollary 1.1 will be reduced to Corollary 1.2. We
will give a new proof of Corollary 1.2; the original proof can be found in [3]. In this case,

f(x) = Ax + R@u)x for f € O, where u = (uy, ..., uy) = (x', ..., xi") and R(u) =
diag{ri(u), ..., r,(u)} with R(0) = 0. Given a word w € W, we define a map

Ry :CWl = s py(r(in (i),
where r(u) = (r1 (), . .., rn(u)), and we define a map
Pr:Wy— N, w=(wi---w,) > Naw(f),
where d" =[1}_, d;.uj.
COROLLARY 1.2. Let f € O). If the origin in C" is an isolated fixed point of fhrdr-dn

then, for any w € W, the origin in C™! s an isolated zero of Ry, and Pr(w) =mg, (0).

2. Preliminaries
This section presents several lemmas on zero indices and fixed point indices. They will be
used in the proof of Theorem 1.2 in §3.

LEMMA 2.1. Forg, g € O(C", 0, 0), let

gx1, x2, ..., xn) =(81,82, -, 8n)

and
g(xl»x27 "-’xn)z(gls -'~sgj—1v gjv gj+lv "-7gn)'

If the origin is their isolated zero with multiplicity N and M, respectively, then the map
f:(x17x21 RS ,xn)'_) (g17 LRI ] gj—lv g]g_]v g_]+11 LRI | gn)
has an isolated zero of multiplicity N+M at the origin.

Remark 4. Lemma 2.1 is well known in the theory of zero indices.
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Let f, g € O(C", 0, 0). Then f and g are algebraically equivalent at the origin if there
exists a germ of a holomorphic family of linear non-degenerate maps A(x) € GL(n, C)
such that f(x) = A(x)g(x).

LEMMA 2.2. [1] Let f, g € O(C",0,0). If f and g are algebraically equivalent at the
origin, then the origin is an isolated zero of f if and only if it is an isolated zero of g. In
this case, 7w (0) = 74 (0).

LEMMA 2.3. [9] Let f, g € O(C", 0, 0). If the origin in C" is an isolated zero of both f
and g with multiplicity N and M, respectively, then the composition f o g has an isolated
zero with multiplicity NM at the origin.

The following lemma is from [S].

LEMMA 2.4. [5] Let m > 1 be a positive integer and let f be a germ in O(C", 0, 0). If the
origin is an isolated fixed point of f and for each eigenvalue X of Df (0) either . =1 or
A £ 1 holds, then the origin is also an isolated fixed point of f™ and p r(0) = p rm (0).

3. The proof of Theorem 1.2
This section gives the proof of Theorem 1.2. The proof of sufficiency and necessity for
Theorem 1.2 needs the following two propositions.

PROPOSITION 3.1. Let A be a matrix with the form (1.1) and let f be a germ in O';. For

any positive integer k, the origin is an isolated zero of tf if and only if the origin is an
isolated zero of Tf¥, where tf* = fk — Ak,

Proof. Firstly, we fix k and assume that all eigenvalues of A are non-zero, that is, A is
invertible. Let g=A"'f. Then g=A~"'f =AY (A +tf) =id + A~ 'tf. Lemma 2.2
says that the origin is an isolated fixed point of g if and only if it is an isolated zero of T f.
Since f is in resonant polynomial normal form, A f = f o Aand A~' f = f o A~!. Thus

g =ATK k= ATFA* + o ff) =id + A* ok,

Again by Lemma 2.2, the origin is an isolated fixed point of g* if and only if it is an
isolated zero of 7 f*.

Evidently, the origin being an isolated fixed point of g€ implies that it is also an isolated
fixed point of g. Conversely, by Lemma 2.4, the origin being an isolated fixed point of g
implies that it is an isolated fixed point of gX. Consequently, the origin is an isolated zero
of 7f if and only if it is an isolated zero of 7 f¥.

For the general case, let w’ = (wjw} - - - wy,), where w;. = 0if and only if e(j) = 0, and
let W' = (W)W} - - - wy,), where w’; =1 if and only if e(;j) = 0. Without loss of generality,
we suppose that S(w') = {1, 2, ..., |w'|}and S(@') = {|w'| + 1, ..., n}. Itis easy to see

that
Tf = (pw,OTfOl:w)—l-( 0 . )
Pw' o‘l:foll;)/ P’ o‘l:f—pﬁ/ O‘L'fOllD/

k Puw' © Tfk O Iy 0
Tft = - k. |t _ k B k.|
Diy o Tf" odyy Piy o Tf " — pa oTf oy

and
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where both pg o Tf — pgr o Tf oig and pg o Tf* — piy o Tf¥ o iz have no monomial
with all of its variable indices completely from S(w’) or S(w’). Thus, the origin
is an isolated zero of tf (rf¥) if and only if zero is an isolated zero of both
Pur o Tf odw (pur o Tf* oiyy) and pyy o tf iz (pay o Tf* o ig).

Next, we only need to prove that zero is an isolated zero of p,y o Tf o i, if and only if
zero is an isolated zero of p,y o Tf* o i, and zero is an isolated zero of pg o Tf oig if
and only if zero is an isolated zero of pg o rfk o lg.

On the one hand, since f is in resonant polynomial normal form,

foiw/:iw/opw/ofoiw/
and hence (pyy o f o iy)K = puro fXoiy. Similarly,
pir o fXoig = (par o f oig)t.

The Jacobian matrix at the origin of p,, o f oi,, is invertible according to the definition of
w’. Thus, by the previous case, zero is an isolated zero of pyy o Tf o iy = TPy o f 0 lyy
if and only if zero is an isolated zero of

Pw' © rfk Oy = TPy © fk oly =T(py o fo iw).
On the other hand, pgr o tf oigy = py o f oig and
iy o Tf* o iy = pir o f* o iz = (piy o f o i)
It is easy to check that the origin is an isolated zero of pg o f o iy if and only if it is an

isolated zero of (pgs o f oig)*. Thus, the origin is an isolated zero of pgs o Tf oig if
and only if it is an isolated zero of pgy o Tf* o ig. O

For 1 <K <n, let w(0, K) = (wok1 - - - wokn) € W", where wog; is equal to 1 if
1 < j < K and O otherwise. Let w(1, K) = (wik1 - - - wign) € W", where wyg; is equal
to0if 1 < j < K and 1 otherwise.

PROPOSITION 3.2. Let g be a germ in O(C", 0, 0) and K be a positive integer such that
1 < K < n. Ifthe Jacobian matrix of py0,k) © & © lw(0,k) at the origin in CX is invertible
and py(0,x) © & °iwa,k) =0, then the origin in C" is an isolated zero of g if and only
if the origin in C"X s an isolated zero of Pw(1,K) © & ©lw(1,k). In this case, my(0) =

T pu(1,K)°8% w1, K) 0).

Proof. For sufficiently small xg.ii, xg42,..., Xy, we define a map Gy, .x, €
O(CX,0,0) with Gyg,,..x, (X1, - .\ XK) = Puwo,k) © §(X1, X2, ..., Xp). It is clear
that Go,...0 = Pw(,k) © & ©iw@,k)- By the inverse function theorem and Rouché’s
theorem (see [9, Theorem 2.3]), there exists a neighborhood U,_x of 0 in C"X and

a neighborhood Vi of 0 in CX such that, for any (Xx+1, - -+»%n) € Un—k, Gxgy,....x,
is a diffeomorphism on Vi. Since py,k) © & © iw(1,k) =0, Gig,,,....x, (0) = 0 for any
(XK+15 - - - » Xn) € Uy—_k and, consequently,

¢ HOIN Vg x Up—g C{(x1, ..., x) EVk X Up_g :x1=---=xx=0}. (3.1)

Relation (3.1) indicates that the origin in C” is an isolated zero of g if and only if the origin
in C"=X is an isolated zero of Pw(1,K) © & © lw(l,K)-
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If the origin is an isolated zero of py, (1, k) © & © iw(1, k), then there exists a neighborhood
Vu—x C U,_g of the origin in C"~X such that

(Pw(1.) © & 0 fw(1.k)) {0} N Vi g = {0}

and
g0} N Vi x Vg = {0}

Let a = (ak+1, ak+2, - .., an) € C" X bea regular value of py,(1,k) © & © iw(1,k) such
that its norm |a| is sufficiently small. The set (pw(1.x)© & © iw1.k)) " {a} N Va_k

includes a finite number of points by, ..., b, ke k) O ie.,
w(l, w(l,

(Pu(1,k) © 8 © tw1,£) " Ha} N Vaek = (b1, bay o))
Leta=(,...,0,ag+1, ..., a,) €C". Then, similarly to the process of obtaining (3.1),
we can easily have

g Ma}y N Vi x Vik = {iwa.x)(b1), . . ., w.K)Bry o egein ) O
Then, according to the conditions of the proposition and the definition of a, it is easy to
check that a is a regular value of g. Thus 7g(0) = 7p, | «ogoin k) (0)- O

Proof of Theorem 1.2. We first give the proof of the sufficiency. Assume that the origin
in C" is an isolated fixed point of f* for any k > 1. We need to show that the origin in
ClwMl s an isolated zero of py(a) © Tf o iw(a). Letko = de 20 dj. We firstly prove that

T(Pwa) © f 0 iwna) = puay o (FX —id) 0 iya).- (3.2)

To see this, since f is in resonant polynomial normal form, we have

J o twa) =twa) © Pw(a) © f ©lwa)s
and hence
(Pwa) © £ 2 iwa) = puay © £ 0 iua)- (3.3)
Apply the map 7 to both sides of equation (3.3) and we get

T(Pwn) © f 0 iwa)® = T(Pun) © F 0 iwn)) = pwa) o (F —id) o iy(a),

and thus (3.2) holds.
Next, we will show that the origin in Clw®I js an isolated zero of
T (Pway o fo iw(A))kO. By (3.2), we only need to prove that it is an isolated zero of
Pwy © (ff0 —id) o iya). Since the origin in C" is an isolated fixed point of f* for any
k > 1, it is, particularly, an isolated zero of fko —id. Let S(w(A)) ={j1, ., Jlww)}
t

and x' = (x;l, R lew(A)‘) € C"WMI with the norm |x/| being small enough. Then

Puay © (ff0 —id) o iy a)(x") = 0 means that
(F1 = id) (fua) K)) = (f* = id)(0, ..., 0, %%, 0, ..., 0, Xjgi0n), 0s -, 0) =0,

Consequently, the origin in C*™! is an isolated zero of Pw(A) © (fk0 —id) o Lw(A)-
The final step is to show that the origin in C®! is an isolated zero of
Pw(a) © Tf oiy(a). According to the definition of 7, we have

Puw(n) © Tf olya) = TPw(a) © f © lw(a)-
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Therefore, we only need to prove that the origin is an isolated zero of Tpy,a) © f o iy(a).
This is proved in Proposition 3.1.

Now we prove the necessity and iy« (0) = 7p, ot foi, g (0) for any k > 1. We fix a
k > 1 and assume that the origin in C¥®! is an isolated zero of py(a) © Tf o iw(a). Itis
clear that S(w(k)) C S(w(A)), and then

Puwk) © Tf o lwk) = Pwk) ©iwn) © (Pwa) © Tf 0 lwa)) © Pwa) © lwk)- (3.4)

This implies that the origin in C'*®! is an isolated zero of py,) © Tf © iy). Indeed, let
xi € C"®I with the norm |x! | being small enough such that p, ) © Tf © iy (x}) = 0.
Then, by (3.4),

Pu) © iw(a) © (Pwa) © Tf © iw(a)) © Pu(a) © iw) (X}) = 0.

Since f is in resonant polynomial normal form, it follows from the above formula that

(Pwa) © Tf ©iw(a)) © Pu(a) © iwek) (X) =0,

that is,
(Pwa) © Tf © twa) (Pua) © iw (X)) = 0.

Since the origin in C"®™! is an isolated zero of pya) o Tf oiw(a), We see that
Puw(A) © lw(k) (xf{) =0 and thus xf{ =0. Consequently, the origin in C"®! is an isolated
zero of py) © Tf 0 iyk)-

Let Ay = Pw(k) © A o lywr). Since d(j) # 0 for any j € S(w(k)), Ay is invertible.
Let

ud = Ay © P © f 0 iww-
We will show that the origin is an isolated fixed point of g, ). According to the definition
of 7,
Suwk) = 1~\;(lk) © Pwk) © f olww =1id + A;(lk) ° Pwk) © Tf o lwk)-

By Lemma 2.2, the origin is an isolated fixed point of g ) and

'u“gw(k) (0) = ﬂpw(k)offoiw(k) (O) (35)
Lemma 2.4 further tells us that the origin is an isolated fixed point of gﬁ) () and
Heuiy O =g (0). (3.6)

Since f is in resonant polynomial normal form,
Ay © Puty © f @ twity = Puty © f @ twiky © Ay
and
Jotwi = lw © Putk © f © lwk-

Then

Zuty = Dty © Pt © X 0 iwny = Pu o f* 0 tugo- (3.7)
Therefore we conclude from (3.7) that the origin is an isolated fixed point of
Puk) © fXoiww.
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Now, we are ready to prove that, for any k > 1, the origin is an isolated fixed point
of f¥ and W gk (0) = TTp,, 4o foin (0).  For this purpose, we firstly observe that (3.5),
(3.6) and (3.7) together give T it 0T f i) ) = K posiyo feoiuey 0):i.e., T (0T f Stwih) 0) =
T oo (o —id)oinygey (0). Then, without loss of generality, we assume that w(k) = w(l, K)
with 1 < K <n. It is clear that py o k) o (fk —id) o iy(1,x) =0. By Proposition 3.2,
we only need to show that the Jacobian matrix of py,k) o (f k_id)o iw(,k) at the
origin is invertible to complete the proof. To see this, the definitions of w(1, K) and

w(k) say that there exists a positive integer 1 < jo <m such that ky +---+kj, =K

and A]; —1#0for j=1,2,..., jo, respectively. Thus, the determinant of the Jacobian
matrix of py0.x) o (f¥ —id) o iy(0.k) at the origin is equal to H;i{o ()J;. — ki £0 and
therefore the Jacobin matrix is invertible. 0O

4. The proof of Corollary 1.2
Recall that
f(x)=Ax+ R(u)x, 4.1)

where u = (uy, ..., u,) =", ..., x¥) and R(u)=diag{ri(u), ..., r,(u)} with
R(0) =0.

For any w € W7, since the origin in C" is an isolated fixed point of f didydn it ig an
isolated zero of 7 %192 Therefore it is also an isolated zero of 7f by Proposition 3.1.
Together with (4.1), we have that the origin in Clis an isolated zero of Pw o R(u)oiy =
Ry (pw o u oiy), and thus it is also an isolated zero of R,,.

Next, let S(w) = {s1, 52, ..., Sjw} With 51 <sp < -+ <8y, M =d,d, .. -dww\ and
we will prove that

an(PwouOiw)(O) = Z (_1)#Sl’LfM15 (O) (42)
sC{dSlstzv“'st‘w‘}
w 1
Let g(my, ma, ..., my) = (qul), q§m2), e, q‘(:;ll' I)), where m; € {1, 2}, q](. ) =Xs;,
and qj(.z) =ry;(uoiy) for j=1,2,..., |w|. Since the origin in C" is an isolated zero
of tf, the origin in C%! is an isolated zero of ¢q(mpi, ma, ..., my)) for
mi, my, ..., My €{1, 2}, and by Lemma 2.1,
T potfoin () = Y (Tgmpmy.mpu(©) : ¥j € (1,2, ... |wl}, mj € {1, 2}
and
T[Rw(Pwouoiw)(O) = nq(2,2 ,,,,, 2) (0)

In what follows, we will use g(m, mo, ..., m)y) to define a probability space to
expand TR, (p,,ouciy,) (0) to complete the proof of (4.2).

Let Ag={q(mi,ma, ..., my):Vje{l,2,...,|wl|},m; €{l,2}}, and, for 1<
i1 <ip<---<ip <|wl|, let Ay, j,,.. i) be aset consisting of g(my, ma, ..., my)) € Ay
with

m: = ]s je{il’i27~'~7il}3
/ lor2 otherwise.
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Let the sample space be 2 = Ay and let the o -algebra be the family F of all subsets of
Q. For A € F, we define

Z {nq(ml,mz ..... m‘m|)(0) : Q(ml, ma, ..., m\w\) S A}
Z {nq(ml,mz ..... m|w|)(0) iq(my,ma, ..., mlwl) € Ag} ’

P(A) =

It is easy to check that the triple (€2, F, P) is a probability space on 2, P(Ag) =1 and

that
TCRy, (pwouoiy) (0)

(4.3)
T[pwotfoiw (0)

PAmy N Ay NN Aquyy) =
By Proposition 3.2, we have, for 1 <ij <ip <--- <i; <|w],

T[PW{S] ,sz,.“.s‘w‘}\(s,-l iy s+ Sig )OTfOiW(sl ,sz,...,s‘|w|)\{sil i Sig }

T pyot foiy (O)

P (A ig,.if) = 4.4)

By the addition property of probability measures (see [6]),
P(Am VAR U UAqu))

[w]

=D PAG+- -+ (D! > P(Afiy) N Ay O -+ 0 Agiyy)

j=1 1<iy<ip<--<iy<|w|
+o+ DA N A NN Ay

[w]

=Y PAGD+-+ (D! Y. PApb.i)
j=1 1<iy<ip<--<iy<|w|
o EDMTIP A ) (4.5)
Substituting each term on the right-hand side of (4.5) with (4.4) gives

P(AyUAppU---UAqu))

[w] .
Tpwis, 528 S OTS OIW (s 535y s ) (0)
T puyot foin, (0)

i=1
Z nPW(sl 520 S| N\USi | 25iy }OffOiW(sl 552 seeesS | 83 8iy ) (O)
jTPwOTfoiw (0)

I<ij<iz<|w|

—1 T[PW{S|,32,“,.5‘“)‘}\(3',-1,5'[-2 ..... sl-t)OTfOiW{sl,sz,...,s|w|)\(sl-l,siz,.“,sir)(0)
e Y :
T pyot foiy ( )

1<ij<ipg<--<i;<|w|
1 Tpwyotfoiwg (0)

. (4.6)
TCpyyot foiy 0)

+oe o (=DM

https://doi.org/10.1017/etds.2019.60 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2019.60

588 J. Qiao, H. Qu and G. Zhang

Equations (4.3) and (4.6) and the equality P(A;y N Ay N---NAgyp) =1—P(Am U
ApyU- -+ U Aqy)) together give

TRy (pwouoiy) (0)
T pyot foiy 0)

|w]
—1_ Z TEPW 51530810 Nl 10T CTW 51 5. 3\11}|)\(5j}(0)

=1 ﬂpworfoiw 0)

T PWis).5.wesSi) INGS7, iy YO TS W s 5.8y P\ 51 ) (0)
> ©
1<iy<ir<w] T pwotfoi
Z nPW(xl v‘2v~-‘5|w|)\(“i1 SigeesSiy )OTfOiW(sl ,sz,...,s‘w‘)\{sil ,xiz....,xit] (0)

-+ (=1
npwotfoiw (O)

1<ij<ip<---<i;<|w|

RS ( 1)|w| T[pWVlorfOlWﬂ (0)

4.7
TCpy ot foiy (O)
Multiplying 7,0z foi,, (0) on both sides of (4.7) gives
TCRy, (puwouoiy) 0)
[wl
- T[puorj oly (0) Z an {81252 -8 ]| P\{s OTfOlW{vl 52 S[ 1\ (0)
j=1
+ Z T[[’W[sl.sz,...,s‘w‘)\(xil ,s,-z)offOiW(sl,xz 8w \[sl1 clz)( )
1<ij<iz<|w|
t .
+ (_l) Z nPW(xl,x2,...,s|w|)\(si] ,Siz,...,xi[)OffOIW(xl,xz,m.x‘w‘)\{sil v’riz-“'v’ri;}(o)

1<ij<ip<---<i;<|w|

RS (—1)|w|npwﬂorfoiwﬂ(0)-

This completes the proof of (4.2) with Theorem 1.2.
With (4.2) and Lemma 2.3, for the purpose of completing Corollary 1.2, we only need
to show that
Pu(fO = > (D" (0). (4.8)

SC{dsl sdsz ----- ds‘w‘}

Let d; =q§tjjl1 . -qjjj,tj, where ¢s;; is a prime number and o, is a positive integer
forr=1,...,t;,t;>1land j=1,2,...,|w|l. fy=H="-- =1y =1, (4.8) holds
immediately by Lemma 2.4. If there exists j € {1, 2, ..., |w|} such that 7; > 1, from the
definition of local Dold indices it can be verified that

th ozj,jfl
Pu(f,0) =P (f"i5,0) = P_u_(f"i 0.
LITH
q*JJ qxjj’./!
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aﬂ_fl

Since % is not a period of the linear part of quj’j at the origin, we have, by
s 15
A
[3, Theorem 1.4],
ozj,jfl
g .t
Py (S, 0)=0,
D‘jti

st
5jtj

and thus o,
Jtj
Pu(f,00=P u_ (f41,0).
(Ijtj

o .s?
ity

Repeating the above process ends with

jt Gty @j;=1)

o ] :
P u_ (qu,tj ,0)=P y (quj[j 45;05-1) 0)
D[jt_

;@D

st st qu-(lj—l)
qall___qalwll
= =Py apn (fC1 wl0).
qsll mqs‘wll
Thus
qalll "'qa‘w‘ll #s
Py(f.0)=P oy ewn (f 1000 00 = Y (=1 g (0).
sl s‘w‘l

SC{QSIIs"'qu‘mII}

The second equality follows from the definition of local Dold indices. By Lemma 2.4, we

also have
> EDPup = Y EDF s 0),
SC{Qsll,-u»LIs‘w‘l} ‘YC{d‘l’dSZ"“’dS\w}
and thus
Pu(f,0) = > D (0).

SCldyy sy sy )

This completes the proof of Corollary 1.2.

5. Applications of Theorem 1.2
Let f be of the form (1.2) and assume that zero is an isolated fixed point of all iterates
of f. We consider the sequence of numbers N1 (f), Na(f), .. ..

Zhang [8] proved that the linear part of f determines some natural restrictions to the
sequence. Specifically, when m > 1, M, (f) > 0 if and only if the map x — Ax has
a periodic orbit of minimal period m, and when m =1, NVj(f) > 1 if and only if the
map x — Ax has a fixed point other than zero. Assume that the n x n matrix A is
diagonalizable and that all its eigenvalues are roots of unity of pairwise relatively prime
degrees greater than one. Then, when n < 2, Gorbovickis [3] proved that any non-negative
integer sequence subject only to the restrictions in [8] can be realized on the sequence
of the numbers of periodic orbits hidden at the fixed point zero of the germ of some
holomorphic map with linear part A. But for the case in which n > 3, this does not hold
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unless more restrictions are applied to the non-negative integer sequences. We will give

two examples for n > 3 in which a A can be found such that this holds subject only to the
restrictions in [8], without the necessity of making the assumption on A.

Example 5.1. The first example is a resonant polynomial normal form

Arxg + xfl’ld]+1 _ xlx;3rld3 +xlxg13d3 +x§l
rad r3dy _(rp—1)d ra3d
@) =1 rx +x2(x12 1 —x33 3x1(2 )di +x323 51,

A3x3 + X3 ()cf1 — x§3d3)

where A1, A2, A3 are roots of unity with degrees d1, d», d3 > 1 suchthatd; | d», (d3, d») =
1,d =d>/d; and A = 24.
Now we compute the numbers of periodic orbits of every positive period hidden at the

origin. Since

1 d d
x{1d1+ —)CIX?H 3 +x1xg|3 3 +x§l

Tf(x) = xz(xlrzdl _ x§3d3xl(r2—1)d1 + x;23d3) ,
d r3d
x3(xyt — x57P)

we have

W pay (0) = 010y 01 foiron) (0) = r1d1 + 1,
1 4z (0) = T p 19y 0t foiqe) (0) = rada +ridy + 1,
1 g3 (0) = T poon ot foiqoor (0) = r3d3 + 1,
1 payas (0) = T pop ot foigor, (0) = ri3dids + rads + ridy + 1,
1 pazds (0) = 70y, ot foiquyy (0) = raadads + rizdids + rads + ridi + 1,
W £k(0) = T p g0y 07 foionoy (0) = 1,

where k 1 dad3. Only the process of computing i3 (0) is given here. We divide tf into
three parts tf1, tf2 and 7 f3, as follows.

xIlle _ x1x§3r1d3 +x]xglsd3 + xg
d d —1)d d
Tfi(x) = )cz()c;2 ! —x? 3x§r2 ) —i—)cg23 51,
X3
x;1d1+1 _ x]x;ﬂld} + X1X§l3d3 +Xg
Tfo(x) = X2
di ryds
Xp — X3
and di+1 d d
xlrl 1+ _xlxgsrl 3 +x1x;13 3 +x§1
Tf3(x) = xi’Zdl _ x§3d3x§r2_l)d1 +x§23d3
di r3ds
X=X
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It is easy to see that mwrf (0) =7y g 0tfoigi0)(0) =r2da +ridi +1 and 77, (0) =
T pionyotfoicion 0) — T p(100y°oTf i (100) (0) =r13d1d3 + r3ds.

By Lemma 2.2,
ridi+1 r3rids ri3ds d di+1 d d
Xy — X1X3 +x1x3 +x2 x{] 1 _xlxgm 3 +X1Xgl3 3 +x§1
d d —d d ra3ds
x{z 1 _xg3 3x{r2 )d| +x;23 3 and dx3 .
d: 1 _ 7343
xijl _ X§3 3 x| X

have the same multiplicity at the origin. Similarly, By Lemmas 2.1 and 2.2,

di+1 d. d:
xi’l 1+ —ch;m 3 —I—xlxg” 3 +x5[ xg’
x§23d3 and x§23d3
dy r3ds dy
X — X3 X

have the same multiplicity at the origin. This means that 7., (0) = rp3dszdid = r23d3da,
SO

1 pard3 (0) = 7075 (0) = 70 £ (0) + 72, (0) + 7121, (0)
=rydyds +rizdids +r3ds +rid; + 1.
To complete the counting, we introduce the following lemma given in [8].
LEMMA 5.1. [8] Let f € O(C", 0, 0) and let
M ={m € N :the linear part of f at 0 at has a periodic point of period m}.

Then the following hold.
(1) Foreachm € N \ My such that the origin is an isolated fixed point of ",

(2)  For each positive integer M such that the origin is an isolated fixed point of fM,

ppn @@= mNu(f).

meM y,m|M

Since ./\/lf = {1, dy, d», d3, d1d3, drd3}, by Lemma 5.1,

W pay (0) — 1
N =@ =1, Nyon="11D"0
@~ 1 i (0) — 1
Ny =" N =
2 3
0) — diNy, (f) — dsNgy () — 1
N () = 222200 Z(;) A=l
143
L (0) — dids N, — BN (f) — dsNy, (f) — 1
Nd2d3(f)=Mfd2d‘() 193 d1d3(f)dzd32 dZ(f) 3 d3(f) .

and N (f) = 0 for k t dpds.
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Example 5.2. The other example is a resonant polynomial normal form
Arx] 4 x]r|d1+l + x;’z/dl

d dy/d.
A2x2+x;2 'y +x33/ y)

d dy/d
Flx) = A3X3 —i—x;3 Tx3 +x44/ 3

rp—1d dp/dy—
An—1Xn—1 +x1n 1 1xnfl +xnn/ "

d
AnXn + x7" " xp

where A1, A2, ..., A, are roots of unity with degrees dy, d2, . . ., d, > 1 such that d; |+
dy s ledyand iy =29 Y for j=1,2,... 0 — L.

As in Example 5.1, we have N1(f)=1 and Ndj(f) =rjfor j=1,2,...,n, and
N (f) =0forktd,.
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