
J. Fluid Mech. (2016), vol. 792, pp. 740–774. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.116

740

A study of surface semi-geostrophic turbulence:
freely decaying dynamics

Francesco Ragone1,2,† and Gualtiero Badin1

1Institut für Meereskunde, Universität Hamburg, Bundesstr. 53, 20146 Hamburg, Germany
2Laboratoire de Physique, École Normale Supérieure de Lyon, 46 allée d’Italie, 69007 Lyon, France

(Received 9 March 2015; revised 26 January 2016; accepted 8 February 2016;
first published online 4 March 2016)

In this study we give a characterization of semi-geostrophic turbulence by performing
freely decaying simulations for the case of constant uniform potential vorticity, a set
of equations known as the surface semi-geostrophic approximation. The equations are
formulated as conservation laws for potential temperature and potential vorticity, with
a nonlinear Monge–Ampère type inversion equation for the streamfunction, expressed
in a transformed coordinate system that follows the geostrophic flow. We perform
model studies of turbulent surface semi-geostrophic flows in a domain doubly periodic
in the horizontal and limited in the vertical by two rigid lids, allowing for variations
of potential temperature at one of the boundaries, and we compare the results with
those obtained in the corresponding surface quasi-geostrophic case. The results show
that, while the surface quasi-geostrophic dynamics is dominated by a symmetric
population of cyclones and anticyclones, the surface semi-geostrophic dynamics
features a more prominent role of fronts and filaments. The resulting distribution of
potential temperature is strongly skewed and peaked at non-zero values at and close
to the active boundary, while symmetry is restored in the interior of the domain,
where small-scale frontal structures do not penetrate. In surface semi-geostrophic
turbulence, energy spectra are less steep than in the surface quasi-geostrophic case,
with more energy concentrated at small scales for increasing Rossby number. The
energy related to frontal structures, the lateral strain rate and the vertical velocities
are largest close to the active boundary. These results show that the semi-geostrophic
model could be of interest for studying the lateral mixing of properties in geophysical
flows.

Key words: geophysical and geological flows, geostrophic turbulence, turbulence simulation

1. Introduction

Geophysical flows are characterized by a wide spectrum of spatial and temporal
scales. Given the multiscale nature of the system, different dynamical theories are
needed in order to understand the properties of processes occurring at different
subranges of this spectrum. A particular class of models that has proved very useful
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Surface semi-geostrophic turbulence 741

in theoretical and qualitative studies of geophysical fluid dynamics is that of the
balanced models, simplified versions of the primitive equations obtained by scale
analysis, filtering out the high-frequency inertial-gravity waves. Among the balanced
models, the quasi-geostrophic (QG) and semi-geostrophic (SG) approximations have
been extensively employed to study the properties of dynamics at scales larger than
the Rossby deformation radius.

The classical QG approximation is obtained by assuming that the Rossby number
is much smaller than one. The SG approximation is obtained by the less restrictive
condition that the Lagrangian time scale, that is, the time scale of change of the
momentum following the motion of a particle, is much longer than f−1, or equivalently
that the correspondingly defined Lagrangian Rossby number is much smaller than one.
The condition of small Lagrangian Rossby number is much less stringent than the
condition of small traditional Rossby number. Consequently, the SG approximation
has proved to be more realistic than the QG approximation in the representation of
large-scale geophysical flows, at the price of showing a substantially more complex
mathematical structure.

Given its simple formal structure, the QG approximation has become a standard
model for studying the qualitative properties of large-scale geophysical flows. A model
based on the QG approximation that has proved particularly useful for theoretical
studies is the surface quasi-geostrophic (SQG) model (Blumen 1978; Held et al. 1995).
SQG is realized by imposing constant potential vorticity in the interior of the domain
and allowing advection of a conserved scalar (potential temperature or buoyancy)
on a boundary. The SQG dynamics is thus effectively two-dimensional (2D), where
the structure of the flow in the interior of the domain is determined uniquely by the
values of the scalar at the boundary through a linear elliptic inversion equation. In this
model, the conserved scalar plays the role taken by vorticity in the Euler equations.
SQG is characterized by an inverse cascade of total energy at low wavenumbers and a
forward cascade of potential temperature variance at high wavenumbers. Classic SQG
is unbounded at the bottom boundary and shows a −5/3 kinetic energy spectrum
(Blumen 1978; Held et al. 1995). Finite-depth SQG is obtained by introducing a
bottom boundary with potential temperature set to zero (Tulloch & Smith 2006).
Finite-depth SQG features a critical scale, across which a transition occurs from a
QG/2D-like kinetic energy spectrum with a −3 slope at large scales to a SQG-like
kinetic energy spectrum with a −5/3 slope at small scales.

In atmospheric dynamics, the SQG approximation has been used to study the
dynamical properties of potential temperature anomalies at the tropopause (Juckes
1994; Smith & Bernard 2013), the asymmetry between cyclones and anticyclones
(Hakim, Snyder & Muraki 2002) and the shape of the tropopause spectra (Tulloch &
Smith 2009b). In ocean dynamics, the SQG approximation has been used to infer the
interior dynamics of the ocean from knowledge of sea surface temperature anomalies
(LaCasce & Mahadevan 2006; Lapeyre & Klein 2006; Wang et al. 2013; Liu et al.
2014). The results show, however, that SQG underestimates the buoyancy anomaly and
current fields at depth. Employment of exponentially decaying stratification (LaCasce
2012) retains depth buoyancy anomaly values smaller than the observations. The
projection of the SQG modes into normal modes has been studied by Lapeyre (2009)
and Smith & Vanneste (2013). The relationship between SQG and QG dynamics in a
limited number of vertical layers and the emerging geostrophic turbulence have been
studied by Tulloch & Smith (2009a) and Badin (2014).

The SG approximation was originally developed by Eliassen (1948) in a three-
dimensional (3D) formulation, and subsequently applied by Hoskins & Bretherton
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742 F. Ragone and G. Badin

(1972) in two dimensions to study frontogenesis in the atmosphere. Hoskins (1975,
1976) further developed the theory in the shallow-water approximation. The SG
approximation is obtained from the primitive equations taking the geostrophic
momentum approximation, where the ageostrophic motion is retained in the advective
velocity. The equations are naturally formulated in geostrophic coordinates, a modified
coordinate system that follows the geostrophic flow (Eliassen 1948; Fjortoft 1962). In
geostrophic coordinates, SG features a nonlinear, mixed-type Monge–Ampère partial
differential equation for a modified streamfunction of the flow.

The SG approximation has been subject to a fairly large number of studies in
the past decades. The case with potential vorticity constant in the interior has
been studied for the Eady wave by Hoskins (1976), Davies & Mueller (1988) and
Juckes (1998). The SG model has been successfully employed for the study of the
geostrophic adjustment problem (Plougonven & Zeitlin 2005). A comparison between
the behaviour of baroclinic waves in SG dynamics and primitive equations has been
made by Snyder, Skamarock & Rotunno (1991), while a comparison with observations
was presented by Blumen (1979). The linear and nonlinear stability of SG flows was
studied, amongst others, in a series of articles by Kushner (1995) and Kushner &
Shepherd (1995a,b), and in a series of articles by Ren (1998, 1999, 2000a,b, 2005).
The Hamiltonian structure of the SG equations was introduced by Salmon (1983,
1985, 1988) – see also Purser (1993), Oliver (2006, 2014) and Blender & Badin
(2015). The geometry was instead studied by Roubtsov & Roulstone (1997, 2001)
and Delhaies & Roulstone (2010) – see also McIntyre & Roulstone (2002). Nagai,
Tandon & Rudnick (2006) and Badin et al. (2009) applied the SG approximation to
study the stability of ocean fronts. See Cullen (2006) and references therein for a
complete overview on SG theory, including results on the existence of solutions of
the SG equations expressed as a mass transportation problem.

Despite the rich literature on the subject, there are no studies aimed at characterizing
the properties of SG turbulence. Moreover, the nonlinear terms of the inversion
equation have been typically neglected in the literature, with very few exceptions
(Snyder et al. 1991). As a result, the difference between QG and SG has been limited
to the presence of a coordinate transformation between physical and geostrophic
coordinates accounting for the divergent nature of the SG flow. In this paper we
want to give a characterization of SG turbulence in a simple, idealized set-up,
performing numerical simulations of a fully turbulent, freely decaying flow in the
finite-depth surface semi-geostrophic (SSG) approximation, retaining the nonlinear
form of the inversion equation. SSG is obtained by imposing onto the SG equations
the same boundary conditions as in SQG (Badin 2013). In general, SG dynamics
can better represent the formation of fronts and filaments, which in turn can generate
ageostrophic instabilities. From a quantitative point of view, the SG approximation is
not able to represent accurately instabilities at scales smaller than the Rossby radius
of deformation because of the lack of a proper vortex dynamics (Malardel, Thorpe
& Joly 1997). However, because of the representation even in a crude form of these
dynamics, SSG turbulence is expected to differ substantially from SQG turbulence.
For example, in the ocean, surface fronto- and filamentogenesis induce restratification
due to the asymmetry in the divergence field (absent in SQG) and in the structure
of upward and downward velocities associated with filaments and fronts. This has
been observed in primitive equation simulations (Lapeyre, Klein & Hua 2006; Klein
et al. 2008) and explained in the context of the SQG+1 model (Hakim et al. 2002),
a first-order correction in Rossby number to the SQG equations, which accounts for
the effects of ageostrophic advection.
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Surface semi-geostrophic turbulence 743

In this paper we investigate the properties of SSG turbulence, testing whether its
dynamics can represent at a qualitative level some of the features of the observed
ocean dynamics that are not captured by the SQG model. We show how the inclusion
of the nonlinear term of the Monge–Ampère equation induces a distinctive qualitative
difference in the statistics of potential temperature, allowing for the emergence of
filaments as a prominent part of the dynamics. The deformation of the flow induced
by the coordinate transformation, on the other hand, increases the amount of energy
at small scales, flattening the kinetic energy spectra, and induces net surface cooling.
Vertical velocities, horizontal divergence and lateral strain are generally enhanced in
amplitude and penetrate further in depth for increasing Rossby number in SSG. These
results suggest that SSG could be proposed as a theoretical laboratory to study at
a qualitative level certain aspects of submesoscale dynamics. Specifically, we aim to
answer the following questions: How do SQG and SSG turbulence differ? What is the
role of the coordinate transformation on the emerging turbulence? What is the effect
of the nonlinear term of the inversion equation for example on the cyclone–anticyclone
asymmetry and on the turbulent spectra? How do vertical velocities differ in SQG and
SSG?

The paper is structured as follows. In § 2 we summarize the basics of SG theory and
we derive the SSG model in non-dimensional coordinates, following Hoskins (1975),
Hoskins & West (1979) and Badin (2013). In § 3 we show how we solve the inversion
equation present in SSG. In § 4 we describe the details of the numerical model that
is used to perform simulations of SSG turbulence. We perform a sensitivity analysis,
varying the Rossby number, comparing the resulting turbulence with that obtained with
the SQG model. We analyse fields both at the active boundary and in the interior of
the domain, showing how the characteristic properties of SSG vary with depth. In § 5
we present our conclusions and final discussions.

2. Semi-geostrophic approximation
2.1. General equations

We start from the SG equations in the f -plane in Boussinesq form. For a complete
analysis of the properties of this system of equations and a general overview on SG
theory, the reader can refer to Cullen (2006). Introducing the velocity field (u, v, w),
the streamfunction (rescaled pressure) φ, the potential temperature anomaly θ and
background θ0, and the gravitational acceleration g, the SG equations in dimensional
form are

Dug

Dt
− fv + ∂φ

∂x
= 0, (2.1a)

Dvg

Dt
+ fu+ ∂φ

∂y
= 0, (2.1b)

g
θ

θ0
− ∂φ
∂z
= 0, (2.1c)

Dθ
Dt
= 0, (2.1d)

∂u
∂x
+ ∂v
∂y
+ ∂w
∂z
= 0, (2.1e)
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744 F. Ragone and G. Badin

where
D
Dt
= ∂

∂t
+ u

∂

∂x
+ v ∂

∂y
, (2.2)

and the geostrophic velocity field (ug, vg) is defined by the streamfunction as

ug =−1
f
∂φ

∂y
, (2.3a)

vg =+1
f
∂φ

∂x
. (2.3b)

The model conserves the potential temperature θ and the SG potential vorticity

Qsg = g
f θ0

ζsg · ∇θ, (2.4)

where ζsg is the SG absolute vorticity

ζsg=
(
−∂vg

∂z
,
∂ug

∂z
, f + ∂vg

∂x
− ∂ug

∂y

)
+
[

1
f

Jyz(ug, vg),
1
f

Jzx(ug, vg),
1
f

Jxy(ug, vg)

]
, (2.5)

with Jab the Jacobian operator with respect to the variables a and b. The definition
of SG vorticity differs from the QG case for the presence of the nonlinear terms in
(2.5). The model conserves also the energy integral over the entire domain,

Esg =
∫

V

[
1
2
(u2

g + v2
g)−

g
θ0

zθ
]

dV, (2.6)

where the horizontal kinetic energy involves only the geostrophic velocities and is
identical to the QG case.

The basic difference between QG and SG is that the materially conserved quantities
in QG are advected by the geostrophic velocity field (ug, vg), while in SG they are
advected by the full (geostrophic and ageostrophic) horizontal velocity field (u, v).
However, u and v are implicit in the SG equations; therefore (2.1) as it is cannot
be written as a system of conservation equations with an inversion equation for
the streamfunction. Hoskins & Bretherton (1972) and Hoskins (1975), inspired by
previous works by Eliassen (1948) and Fjortoft (1962), have shown that, introducing
the geostrophic coordinates

X = x+ f−1vg, (2.7a)

Y = y− f−1ug, (2.7b)

Z = z, (2.7c)

the horizontal advection operator expressed in the new coordinates includes explicitly
only the geostrophic velocities,

D
Dt
= ∂

∂t
+ u

∂

∂x
+ v ∂

∂y
= ∂

∂t
+ ug

∂

∂X
+ vg

∂

∂Y
. (2.8)

The Bernoulli function
Φ = φ + 1

2(u
2
g + v2

g) (2.9)
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then acts as a streamfunction in the new coordinate system,(
∂Φ

∂X
,
∂Φ

∂Y
,
∂Φ

∂Z

)
=
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
=
(

fvg,−fug, g
θ

θ0

)
. (2.10)

Equations (2.7) and (2.9) define a Legendre or contact transformation, and their
mathematical properties have been studied by Blumen (1981) and Purser (1993,
1999). In the geostrophic space (X, Y, Z) the dynamics can be expressed in terms of
conservation equations for the potential temperature θ and the potential vorticity Qsg,
plus the inversion equation for the Bernoulli function,

1
Qsg

∂2Φ

∂Z2
+ 1

f 2

(
∂2Φ

∂X2
+ ∂

2Φ

∂Y2

)
− 1

f 4

[
∂2Φ

∂X2

∂2Φ

∂Y2
−
(
∂2Φ

∂X∂Y

)2
]
= 1. (2.11)

The SG problem in this form can in principle be approached as the QG problem, with
two crucial differences: (1) the inversion equation for the streamfunction is a nonlinear
Monge–Ampère type equation instead of a linear elliptic equation; and (2) the model
is formulated in geostrophic coordinates, which include implicitly the advection by the
geostrophic velocity field.

2.2. Boundary conditions and finite-depth surface semi-geostrophic equations
The finite-depth SSG approximation is obtained by defining the domain and the
boundary conditions as for finite-depth SQG, and setting constant potential vorticity
in the interior of the domain (Badin 2013). The final equations are consistent with,
for example, Hoskins & West (1979) and Snyder et al. (1991), with a few differences.
We have chosen the finite-depth version of SSG rather than the version defined on
a semi-infinite domain because in the former case the solution procedure is much
easier to treat numerically, as discussed in the following. We consider a domain
doubly periodic in the horizontal directions and bounded in the vertical by two
horizontal surfaces at Z = 0 and Z = H. At the boundaries we impose the rigid lid
condition w= 0. Setting constant stratification and potential vorticity Qsg uniform in
the interior of the domain, the time-dependent problem occurs only at the boundaries
as horizontal advection of θ . Fixing θ = 0 at Z = H (Tulloch & Smith 2006), the
state of the system is determined by the evolution of the 2D dynamics of θ at Z= 0,
which provides the boundary condition to (2.11) to determine the full 3D structure
of the flow. As in SQG, in SSG the surface potential temperature plays the same
role taken by vorticity in the Euler equations, as the active tracer advected by the
dynamics (Held et al. 1995). Note that here we have chosen the active boundary at
the bottom of the domain, consistent with the formalism of the SQG+1 model of
Hakim et al. (2002) (which is defined in a semi-infinite domain, as classic SQG) and
the finite-depth SQG model of Tulloch & Smith (2006). This choice is appropriate for
atmospheric applications. If one wants to consider an oceanic application, the active
boundary has to be taken at the top of the domain, which results in an inversion of
the vertical coordinates. From the structure of the equations, it can be immediately
seen that our results hold also in this case, simply changing the sign of the potential
temperature.

Note that, in order to compare the results of SSG and SQG turbulence, as well
as with the results from SQG+1 turbulence that are present in the literature, we have
adopted here the formulation of SG in geostrophic and height coordinates. Although
this is the most commonly used form of the equations, the natural formulation of SG
in terms of potential vorticity advection and inversion is, instead, in geostrophic and
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746 F. Ragone and G. Badin

isentropic coordinates. The proofs that SG is well posed construct a mapping from
geostrophic and isentropic coordinates to physical space, but cannot require that the
boundary of the region where Qsg is constant in geostrophic and isentropic space maps
to the physical boundary (Cullen 2006). As a result, the boundary conditions (2.13)
could result in an overdetermined problem and there is the possibility that the results
are affected by a lack of well-posedness in the problem. Future work will have to
clarify these issues.

In order to formulate the model in non-dimensional form, we define as typical
vertical length scale the depth of the domain H. The typical horizontal length scale
in geostrophic space is taken as the Rossby deformation radius L= LR=NH/f , where
N is the Brunt–Väisälä frequency, here taken as constant. Note that, introducing the
length scale in geostrophic space, L represents the typical distance between lines of
absolute momentum (Craig 1993). Denoting the horizontal velocity scale as U, we
introduce the geostrophic space Rossby number ε = U/Lf � 1, and we consider a
time scale T= 1/εf larger than the inertial time scale. Setting Qsg=N2> 0 and with a
suitable rescaling of streamfunction and potential temperature (Hoskins & West 1979),
the inversion equation in non-dimensional form can be written as

∂2Φ

∂X2
+ ∂

2Φ

∂Y2
+ ∂

2Φ

∂Z2
− ε

[
∂2Φ

∂X2

∂2Φ

∂Y2
−
(
∂2Φ

∂X∂Y

)2
]
= 0, (2.12)

with boundary conditions

∂Φ

∂Z

∣∣∣∣
Z=0

= θ, (2.13a)

∂Φ

∂Z

∣∣∣∣
Z=1

= 0. (2.13b)

Note that the rescaling transforms (2.13) into a homogeneous equation. The time
evolution at Z = 0 is given by

Dθ
Dt
=
(
∂

∂t
+ ug

∂

∂X
+ vg

∂

∂Y

)
θ = 0, (2.14)

with geostrophic velocities

ug =−∂Φ
∂Y
, (2.15a)

vg =+∂Φ
∂X
. (2.15b)

The non-dimensional geostrophic coordinates and the Bernoulli function are connected
to the non-dimensional physical coordinates and to the streamfunction by

X = x+ εvg, (2.16a)

Y = y− εug, (2.16b)

Z = z, (2.16c)

Φ = φ + ε
2
(u2

g + v2
g). (2.16d)
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Equations (2.12)–(2.14) are the same as in Hoskins & West (1979), with two
differences: (1) we keep the full nonlinear form of equation (2.12) instead of
neglecting the nonlinear terms; and (2) we take homogenous boundary conditions
at the bottom as in the finite-depth SQG model (Tulloch & Smith 2006).

Finite-depth SQG features a transition scale corresponding to a critical wavenumber
kt = f /NH (Tulloch & Smith 2006), such that the kinetic energy spectrum follows a
k−3 law for k� kt and a k−5/3 law for k� kt. When the length scale H is taken as
the whole depth of the domain (as in our case), the transition scale corresponds to
the Rossby radius of deformation, that is, the horizontal unit length. In this case the
finite-depth SQG spectrum is expected to follow essentially a k−5/3 law, since the k−3

regime is not represented in the power-law regime of the spectrum (the power-law
scaling emerges for scales smaller than the length scale of the vortices dominating
the dynamics, that is, the Rossby radius of deformation). In the current work we set
the system in these conditions, as we are interested in the dynamics emerging in the
frontal regime. It must be noted that, when dealing with finite-depth SSG, we do not
know in general what will be the effect on the transition scale due to (1) the presence
of the nonlinear term and (2) the coordinate transformation. We may explore this point
in future studies.

The invertibility of the coordinate transformation requires the Jacobian of (2.16)
to be positive. Following Hoskins (1975), the Jacobian of (2.16) is equal to the
vertical component of the absolute SG vorticity (2.5). In non-dimensional geostrophic
coordinates one obtains that

J−1 = 1− ε
(
∂2Φ

∂X2
+ ∂

2Φ

∂Y2

)
+ ε2

[
∂2Φ

∂X2

∂2Φ

∂Y2
−
(
∂2Φ

∂X∂Y

)2
]
. (2.17)

When the invertibility condition breaks down, the model produces singular solutions.
From a physical point of view, the invertibility condition limits the values of the
relative SG vorticity to be smaller than f , thus filtering out inertial instabilities.

In general, if Qsg changes sign within the domain, (2.11) is a mixed type
non-homogeneous partial differential equation (Tricomi 1923) of Monge–Ampère
type (elliptic for Qsg > 0, hyperbolic for Qsg < 0). For example, in the ocean the
potential vorticity can assume positive and negative values, e.g. due to the action of
down-front winds which act to destroy potential vorticity (Thomas 2005; D’Asaro
et al. 2011). However, for Qsg < 0 the assumptions behind the SG equations break
down; therefore, given the qualitative, theoretical nature of our study, we limit our
analysis to the case Qsg > 0.

The SSG inversion equation (2.12) with Qsg > 0 is elliptic and homogeneous, and
substantially easier to treat than the more general form (2.11). However, solving (2.12)
is still much less straightforward than solving the Laplace equation arising in SQG
(Held et al. 1995; Tulloch & Smith 2006). Although other methods of solution of
the SG equations have been developed in the past (see Cullen 2006, and references
therein), in the vast majority of studies present in the literature numerical solutions
of the SG equations have been obtained by approximating equations (2.12)–(2.14).
With one notable exception (Snyder et al. 1991), when treating the 3D problem, the
nonlinear terms of (2.11) and (2.12) have always been neglected, advocating the fact
that they were small compared to the linear terms (Hoskins 1975, 1976; Hoskins &
West 1979). Alternatively, the dynamics has been limited to a 2D vertical plane, thus
automatically eliminating the nonlinearity (Hoskins & Bretherton 1972; Badin 2013).
In both cases, the difference between QG and SG dynamics was therefore limited to
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the use of geostrophic coordinates in the latter; see e.g. the early comment in Hoskins
(1975) about SG theory providing merely a distortion of the QG solutions, its utility
being thus essentially limited to justify the use of the formally and practically much
simpler QG theory outside its strict range of applicability. However, Snyder et al.
(1991) showed that including the nonlinear terms of (2.12) does have a substantial
effect on the development of cyclones. It is therefore arguable that these terms could
play a non-negligible role in determining the properties of SSG turbulence.

3. Solution procedure
In SQG, the inversion equation can be solved analytically, providing an explicit

formula for the streamfunction as a function of the surface potential temperature in
Fourier space (Held et al. 1995; Tulloch & Smith 2006). On the contrary, (2.12)
has to be solved numerically. Here, adapting it to our specific problem, we employ
an iterative Poisson solver similar to the one introduced by Benamou, Froese &
Oberman (2010) for the 2D elliptic Monge–Ampère equation. This is essentially the
same method already successfully used in a 3D case by Snyder et al. (1991), but
with a different way of solving the Poisson problem at each iteration. Let us define
the operator D as

DΦ = ∂
2Φ

∂X2

∂2Φ

∂Y2
−
(
∂2Φ

∂X∂Y

)2

. (3.1)

Note that DΦ is the Jacobian of the velocity gradient matrix, and it corresponds to
the Okubo–Weiss parameter (Okubo 1970; Weiss 1991) up to a multiplicative constant.
Positive values of −εDΦ in (2.12) correspond thus to vorticity-dominated regions,
while negative values of −εDΦ correspond to strain-dominated regions. From this
point of view, the term −εDΦ can be seen, in geostrophic coordinates, as a forcing
term, acting differently for different flow regimes.

Let us also define the operator Tε as

TεΦ = ε∆−1DΦ, (3.2)

where ∆ represents the 3D Laplacian and Tε incorporates the boundary conditions
(2.13). The solution of (2.12) can be obtained by iteration of the application of the
operator Tε ,

Φ = lim
n→+∞

Φ(n) = lim
n→+∞

Tn
εΦ

(0). (3.3)

In terms of a regular perturbation expansion, (3.3) corresponds to

Φ(n) =
n∑

j=0

ε jΦj. (3.4)

Each step of the iteration requires solving a Poisson problem for Φ(n),

1Φ(n) = εDΦ(n−1), (3.5)

and inhomogeneous Neumann boundary conditions as in (2.13). As starting point
of the iteration, it is natural to consider Φ(0) such that 1Φ(0) = 0. Taking Fourier
transforms in the horizontal directions, each step of the iteration becomes for each
horizontal wavenumber k an Helmholtz problem on the interval [0, 1],

∂2Φ̂(n)

∂Z2
− k2Φ̂(n) = εD̂Φ(n−1), (3.6)
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where D̂ is defined such that D̂Φ is equal to the Fourier transform of DΦ, k = |k|
and the inhomogeneous Neumann boundary conditions are

∂Φ̂(n)

∂Z

∣∣∣∣∣
Z=0

= θ̂ , (3.7a)

∂Φ̂(n)

∂Z

∣∣∣∣∣
Z=1

= 0. (3.7b)

Snyder et al. (1991) solved (3.6) via finite differences and numerical inversion of the
resulting linear system. However, (3.6) with (3.7) has the formal solution

Φ̂(n)(k, Z)= θ̂ (k, 0)Gk(Z, 0)+ ε
∫ 1

0
Gk(Z, Z′)D̂Φ(n−1)(k, Z′) dZ′, (3.8)

where Gk(Z, Z′) is the Green’s function of (3.6) (see e.g. Tulloch & Smith 2006),

Gk(Z, Z′)=


−1

k
cosh(kZ) cosh(k(Z′ − 1))

sinh(k)
, Z < Z′,

−1
k

cosh(k(Z − 1)) cosh(kZ′)
sinh(k)

, Z > Z′.

(3.9)

Equation (3.6) can therefore be solved directly by computing (3.8). In this way,
each step of the iterative procedure requires for each wavenumber k the numerical
evaluation of the integral in the second term of (3.8). Note that this is greatly
facilitated by the fact that we have chosen a domain limited in the vertical. The case
with a semi-infinite domain would be much more complicated to solve numerically.

The Green’s function depends only on the geometry of the system; therefore it can
be computed exactly for each value of k and Z at the beginning of the integration.
Our tests have shown that solving (3.6) with (3.8) is computationally much more
convenient than the approach of Snyder et al. (1991). Moreover, since the source term
of (3.6) scales with ε, the output of the iteration appears as a series in increasing
powers of ε, whose first terms can be computed explicitly using (3.8). The zeroth-
order solution Φ̂(0) is the starting point of the iteration and is given only by the
boundary term

Φ̂(0) =− θ̂ (k, 0)
k

cosh(k(Z − 1))
sinh(k)

≡ Φ̂0. (3.10)

Note that this is the finite-depth SQG and SSG solution of Tulloch & Smith (2006)
and Badin (2013). After one application of Tε we have the first-order correct solution

Φ̂(1) =− θ̂ (k, 0)
k

cosh(k(Z − 1))
sinh(k)

+ ε
∫ 1

0
Gk(Z, Z′)D̂Φ(0)(k, Z′) dZ′ ≡ Φ̂0 + εΦ̂1. (3.11)

Further applications of Tε will add terms of order O(ε2) and higher, with a more
involved formal structure. However, if we consider small ε we can stop at first order
with a reasonable degree of accuracy. In the simulations performed in this work, we
have used small values of ε, so that we can take Φ̂(1) as the solution of the problem.
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Our tests have shown that the method converges relatively fast for any value of ε
(maximum 10–15 iterations), and that for the values of ε used in the paper considering
second-order correct solutions does not change the results.

In most works on SG approximation, the analysis of the properties of the solutions
was limited to the geostrophic space, and the transformation back to physical space
performed only for visualization purposes, with the aid of graphical methods. In order
to perform a quantitative analysis also in physical space, Hoskins (1975) proposed a
simple method for performing the inverse coordinate transformation. Schär & Davies
(1990) developed a more complex (and rigorous) iterative algorithm, which for small
values of ε reduces to the method proposed by Hoskins (1975) (which corresponds to
the first step of the iterative algorithm of Schär & Davies (1990)). In this work we
consider small values of ε; thus we have used the simpler method of Hoskins (1975),
consistently with limiting the iteration of the solution procedure of the Monge–Ampère
equation to first order. For more details on the iteration of the iterative procedure
to find the solution of the Monge–Ampère equation and on the transformation of
coordinates, see appendices A and B respectively.

4. Surface semi-geostrophic turbulence
4.1. Model description

The numerical integration of the SSG model is performed in geostrophic space and it
involves two steps. First, starting from an initial condition in geostrophic coordinates
(X, Y, Z) satisfying (2.12), the potential temperature θ at Z = 0 is advected with
velocities given by the streamfunction Φ at Z = 0. Then, the streamfunction Φ is
computed in the whole domain solving (2.12) with the new potential temperature
field as boundary condition at Z = 0. The solution of (2.12) is given by (3.11) at
first order in ε. This gives a new streamfunction field at Z = 0 that is used to advect
the potential temperature, and so on. The potential temperature in the whole domain
can be reconstructed at each time step by differentiating the vertical profile of the
streamfunction, but since the values of θ in the interior are not involved in the
dynamics, this is done only in post-processing. All the fields are then transformed in
physical space in post-processing.

The advection of potential temperature at Z= 0 is performed with the semi-spectral
method employed by Constantin et al. (2012) to study the formation of singular
solutions in the SQG equations. Taking advantage of the periodic boundary conditions
in the horizontal directions, the potential temperature field at Z = 0 and time t is
approximated as

θ(X, t)=
N/2−1∑

kX ,kY=−N/2

θ̂ (k, t)eik·X, (4.1)

where X = (X, Y) at Z = 0, k = (kX, kY) and N is the number of grid points in
the horizontal directions. Time evolution is then performed by integrating with a
fourth-order Runge–Kutta scheme the prognostic equation for the Fourier transform
of the potential temperature θ̂ (k, t) at Z= 0. The Jacobian is computed in geostrophic
space, after a fast Fourier transform, using the Arakawa discretization (Arakawa
1966), which guarantees conservation of the energy and enstrophy invariants. In order
to remove numerical instabilities, it is common practice to introduce a dissipation
operator, typically in the form of a hyperdiffusion. Following Constantin et al. (2012),
we employ instead an exponential filter introduced by Hou & Li (2007), multiplying
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each Fourier mode θ̂ (k, t) by ρ(2kX/N)ρ(2kY/N), where ρ(x)= exp [−αxm]. We take
α=36 and m=19, as in Constantin et al. (2012). This high-order exponential spectral
filter has been developed by Hou & Li (2007) specifically for the discretization
of systems of equations developing singular or nearly singular solutions (as the
semi-geostrophic equations). With this choice of the parameters, the application of
the filter keeps the two-thirds lower-wavenumber modes unchanged and suppresses
the one-third higher-wavenumber modes. Note that this filter is a less sharp version
of the classical Orszag 2/3 method, where the coefficients of the highest one third
of the wavenumbers are simply put equal to zero. Hou & Li (2007) showed that the
use of this high-order exponential filter captures up to 15 % more effective Fourier
modes than the 2/3 Orszag method, producing more accurate approximations of the
solutions. We have performed experiments with different choices of the parameters of
the filter, in particular using α= 512 and m= 24, such that the filter was sharper and
thus more effective in removing small-scale features, without observing differences in
the results.

The streamfunction is computed by solving the nonlinear Monge–Ampère equation
with the method described in the previous section. We limit our investigation to
small Rossby numbers, so that we consider only the first term of the expansion
resulting from the iterative procedure. The solution of the problem is computed at
each time step by numerically computing (3.11). While in SQG the streamfunction
can be computed from the potential temperature at the top boundary through a simple
inversion in Fourier space, effectively reducing the problem to two dimensions, in
SSG the presence of the nonlinear term in the Monge–Ampère equation requires
taking explicitly into account the full 3D structure of the streamfunction and
including a discretization of the vertical coordinate. However, like in SQG, also
in SSG the vertical integration is made from a diagnostic equation and does not
need time integration at each vertical layer. We have performed simulations on a
512× 512 horizontal square grid and 20 vertical levels. As one can see from (3.11),
high-wavenumber modes decay faster with depth, so that high vertical resolution is
needed only close to the surface. The vertical levels are exponentially spaced, with
the layer depths varying from 1Z = 0.004 to 1Z = 0.18 from the top to the bottom.

The initial condition is defined as a random field of surface θ in geostrophic space,
as common practice in the literature on the SG approximation. The random field of
surface θ is defined as in Hakim et al. (2002), such that the corresponding zeroth-
order surface streamfunction follows

Φ̂0(k, 0)∝ km/4−1

(k+ k0)m/2
, (4.2)

with m = 25 and k0 = 14. A random phase is given to each mode, in order to
have a random initial condition with a prescribed kinetic energy spectrum. After
several tests aimed at avoiding cases with too many points at which the invertibility
condition was violated, we have selected the cases with surface kinetic energy
normalized at KEsg = 5. Note that here as well as in the following we consider the
kinetic energy associated with the geostrophic velocity field (ug, vg), as this is the
quantity that enters in the conserved energy integral (2.6). The time step is taken
as dt = 0.005, and the simulations are performed up to T = 100, corresponding to
approximately 300 eddy turnover times, computed according to Kerr (1990). We
performed a sensitivity analysis on the Rossby number, performing simulations for
ε = (0.02, 0.05, 0.1, 0.15, 0.2). The range of values of ε is in agreement with the
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range chosen by Snyder et al. (1991), who consider a maximum value ε = 0.3. We
compare the results also with runs of the standard finite-depth SQG.

Note that our experiments do not include forcing and large-scale dissipation. Among
other works that have performed freely decaying simulations with SQG and SQG-like
models, Hakim et al. (2002) limited the analysis at long times, while Capet et al.
(2008a) limited the analysis at early times during which nonlinear interactions are
rather strong. Both note that for long times the system shows kinetic energy spectra
much steeper than those predicted by the theory. For shorter times the spectra of Capet
et al. (2008a) are closer to the theoretical prediction. However, Capet et al. (2008a)
study the transfer of surface kinetic energy in SQG flows, and their analysis focuses
on a stage of the evolution that is far from approximating a stationary state of the
SQG equations (they have almost no vortices formed yet). We have therefore chosen
the approach of Hakim et al. (2002). We have restricted our analysis to the last 10
time units (corresponding to approximately 30 eddy turnover times), where we have
tested that the statistics of the system does not change with time in a significant
way. In this regime, energy is reduced to approximately 30 % of its value at time
zero, but further decays by less then 5 % within the time window where the analysis
is performed. Still, our freely decaying flow does not reach a real stationary state,
and we expect to observe SQG kinetic energy spectra deviating from the theoretical
prediction, as in Hakim et al. (2002).

Transformation from geostrophic to Cartesian coordinates is performed in post-
processing, checking if the integration produces singularities (Schär & Davies 1990).
We have checked that in the full turbulent state the invertibility condition is violated
in the worst cases in a few per cent of the total points of the domain only, in the
upper layers of the model and for the largest values of the Rossby number. The local
formation of singularities is unavoidable in numerical simulations of the SG equations,
and the problem occurs also when employing different methods of solution that do
not involve the coordinate transformation (see Cullen 2006, and references therein).
However, in the numerical model these singularities are systematically eliminated by
the spectral filter, so that they are not problematic from the stability point of view.
We have performed a large number of tests varying the total kinetic energy of the
initial condition (see above), and selected those simulations for which the points at
which the invertibility condition was not satisfied in the fully turbulent phase of the
flow remained few and isolated. Note that the problem of violation of the invertibility
condition at the initial condition could be avoided by formulating the model in
isentropic coordinates. In this way, defining Z = gθ/θ0, SSG would be determined
by imposing the condition that Qsg is constant on a region periodic in (X, Y) with
Z0(X, Y, t) < Z < Z1, where Z1 is constant. The evolution equation would then apply
as an equation for Z0 rather than for θ (although with different boundary conditions).
In this case one could use any random field Z0 as initial condition without violating
the invertibility condition, thus avoiding the initial dissipation. However, one should
note that local violations of the invertibility condition and dissipation would anyway
emerge during the evolution of the flow due to numerical effects. Further, this would
not allow for comparison of the results of this study with classical studies of SQG
turbulence.

4.2. Surface statistics
Figure 1 shows snapshots of surface θ at T = 100 for (a) SQG, (b) SQG under
coordinate transformation with ε = 0.2 (corresponding to an SSG simulation as
traditionally proposed in the literature where only the coordinate transformation is
considered), (c) SSG for ε = 0.2 in geostrophic coordinates (where only the effect

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

11
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.116


Surface semi-geostrophic turbulence 753

–0.2

–0.1

00

0

0.1

0.2(a) (b)

(c) (d)

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

0.2

0

0 0

0

0 0

FIGURE 1. (Colour online) Snapshots at T = 100 of θ at z= 0 for SQG (a), SQG under
coordinate transformation with ε= 0.2 (b), SSG for ε= 0.2 in geostrophic coordinates (c)
and SSG for ε = 0.2 in physical coordinates (d).

of the inclusion of the nonlinearity of the inversion equation is visible) and (d) SSG
for ε = 0.2 in physical coordinates (the full SSG case). While the range of variability
is one order of magnitude larger, the scale of θ is limited to the range [−0.2, 0.2],
in order to highlight structures with lower intensity rather than the vortices. Note
that θ is the active conserved scalar in SQG and SSG, so that it takes the role
normally taken by vorticity. At Z = 0, SQG (a) produces mostly localized coherent
structures with filaments formed by secondary instabilities in between. In comparison,
SSG turbulence (d) is a mixture of local structures, represented by the coherent
vortices, and nonlocal structures, represented by fronts and filaments dominating the
dynamics. The filaments are not produced by secondary instabilities but rather by
the organization in features with skewed potential temperature, induced by the joint
action of the nonlinear term and the transformation of coordinates. Cyclones (region
with positive θ anomaly) are smaller than anticyclones and isolated. The appearance
of an asymmetry in the distribution and size of cyclonic and anticyclonic regions is
an expected result of the coordinate transformation. As can be seen by comparing
the SQG snapshot (a) and the SQG snapshot under coordinate transformation (b),
the effect of the coordinate transformation is that positive relative vorticity (potential
temperature) is increased in magnitude and the areas where it occurs are compressed,
while negative relative vorticity (potential temperature) is decreased in magnitude
and the areas where it occurs are expanded (Hoskins 1975). On the other hand, the
different vortex dynamics induced by the nonlinear term is clear on comparing the
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FIGURE 2. (Colour online) (a) PDFs of surface θ for SQG (blue line) and SSG for
different values of Rossby number in physical coordinates (red lines). In the inset we
show as a function of the Rossby number the mean and median of the distributions. The
SQG case corresponds to the origin. (b) Surface kinetic energy spectra for SQG (blue
line) and SSG for different values of Rossby number in physical coordinates (red lines).

SQG snapshot (a) and the SSG snapshot in geostrophic coordinates (c), which show
how the nonlinear terms act to enhance the negative values of θ , corresponding to
the strain-dominated regions of the flow.

Figure 2(a) shows the probability density functions (PDFs) of surface θ for SQG
(blue line) and SSG for different values of Rossby number in physical coordinates (red
lines). While SQG produces a non-Gaussian but zero-centred PDF, SSG produces
instead skewed PDFs that are centred around non-zero negative values. Since the
isolated coherent structures control the tails of the distribution, it is the filaments that
are responsible for this asymmetry in the bulk of the distribution. The increase in
magnitude of the mean and median of the PDFs with ε shows an almost linear trend
(in the inset), as a signature of a continuous shift towards negative values of the
potential temperature anomaly as ε increases. This effect has been observed also in
Hakim et al. (2002), and it is linked to a net cooling of the surface. The net cooling
is due to the increase in surface kinetic energy that accompanies the forward cascade
of buoyancy variance, which implies a decrease in available potential energy, which
lowers the centre of gravity of the fluid. In an oceanic case, where the temperature
anomaly has the opposite sign, this effect is associated with the restratification effect
associated with filamento- and frontogenesis.

Figure 2(b) shows the surface horizontal kinetic energy spectra for SQG (blue line)
and SSG for different values of Rossby number and physical coordinates (red lines).
In general the spectra at level Z have been computed taking the radial average of the
kinetic energy spectral density field,

K (k, Z)= 1
4π

∫ 2π

0
k2|φ̂(k, Z)|2 dω. (4.3)

Andrews & Hoskins (1978) predicted a semi-geostrophic k−8/3 power law for both
the kinetic and available potential energy of a one-dimensional (1D) front reaching
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an infinite value for vorticity. Following the behaviour of the front past the singularity,
Boyd (1992) corrected the value to k−2. Both these values refer, however, to the case
of an isolated 1D front.

Finite-depth SQG spectra are supposed, in the chosen set-up, to follow a k−5/3 law,
as the transition between k−3 and k−5/3 occurs at k≈ 6, so that the regime k−3 is not
represented. However, our SQG spectra are steeper than k−5/3, due to the fact that our
free decaying flows do not reach a real steady state, as the energy dissipation at small
scales by the spectral filter is not compensated by injection of energy by an external
forcing. Without a forcing, the flow does not stabilize in a scale-invariant stationary
state, but tends to develop coherent structures that prevent the spectra from attaining
the theoretical slope. The same effect is observed and discussed in Hakim et al. (2002)
and Capet et al. (2008a), who have performed similar freely decaying simulations
of the SQG and SQG+1 models. SSG spectra are less steep and tend to k−5/3 as ε
increases, in agreement with the emerging role of filaments, which implies that more
energy is stored at smaller scales for larger values of ε. SSG spectra show also the
presence of ‘bumps’, which might be an indication of the enhanced energy present
in coherent structures associated with the fact that in SSG regions with positive and
negative potential temperatures are not symmetric.

4.2.1. Role of the nonlinear term and of the transformation of coordinates
SSG differs from SQG because of (1) the presence of the nonlinear term in (2.12)

and (2) the application of the coordinate transformation. We shall try to disentangle
the role of these two elements by estimating their individual impact on PDFs and
spectra. In figure 3(a,b) we show the PDFs of surface θ (a) and the kinetic energy
spectra (b) for SQG (blue lines) and SSG in geostrophic coordinates for different
values of the Rossby number (black lines). In this way we retain only the effects due
to the presence of the nonlinear term in (2.12). Horizontally averaging the surface
temperature equation we have

dθ
dt
=−θ∇ · u. (4.4)

For horizontally non-divergent dynamics, the right-hand side must vanish and the
mean of the potential temperature must be zero. Since the SSG dynamics in
geostrophic coordinates is non-divergent (as it is determined by the streamfunction Φ),
the presence of the nonlinearity in the inversion equation cannot be responsible for
the net cooling. Remarkably, however, the PDFs of θ in geostrophic coordinates
maintain the shift of the peak to negative values. This does not contradict what has
already been said: the inset of figure 3(a) shows that it is only the median of the
distributions that departs from zero for increasing values of ε, while the mean surface
temperature is indeed zero for any value of ε, as the shift of the centre of the PDFs
is compensated by their increasing skewness.

As discussed in § 3, the presence of the nonlinear term can be thought to act as a
forcing, enhancing the values of negative potential temperature in the strain-dominated
regions between the coherent structures, resulting thus in a shift of the median of
the PDF. This effect is seen also in figure 1, which shows that, in the absence of
the transformation of coordinates, the effect of the nonlinear term is to enhance the
regions of negative potential temperature in the stirring-dominated regions, resulting
in the effective disappearance of the region of zero potential temperature in between
coherent structures which is instead visible in the simulations without the inclusion
of the nonlinearity in the inversion equation. The kinetic energy spectra, however, are
not affected by the presence of the nonlinear term, as they show in SSG, for all the
values of the Rossby number, the same slope as in SQG.
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FIGURE 3. (Colour online) (a) PDFs of surface θ for SQG (blue line) and SSG in
geostrophic coordinates (i.e. without the transformation of coordinates) for different values
of Rossby number (black lines), with mean and median in the inset. (b) Surface kinetic
energy spectra for SQG (blue line) and SSG in geostrophic coordinates (i.e. without
the transformation of coordinates) for different values of Rossby number (black lines).
(c) PDFs of surface θ for SQG (blue line) and SQG under the application of the
inverse coordinate transformation (i.e. without the nonlinear term) for different values
of the Rossby number (magenta lines), with mean and median in the inset. (d) Surface
kinetic energy spectra for SQG (blue line) and SQG under the application of the inverse
coordinate transformation (i.e. without the nonlinear term) for different values of the
Rossby number (magenta lines).

In figure 3(c,d) we show the PDFs of surface θ (c) as well as the kinetic energy
spectra (d) for SQG (blue lines) and SQG under the application of the inverse
coordinate transformation for different values of the Rossby number (magenta lines).
These data represent the SSG dynamics when the nonlinear term is neglected, as is
usually done in the literature on the SG approximation. In this way, the difference
between SQG and SSG is limited to the deformation of the flow induced by the
coordinate transformation. We can see that in this case the PDFs of θ remain peaked
at zero, but are characterized by a mean that is different from zero (slight deviations
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from zero of the median are one order of magnitude smaller than the value of
the mean for the same Rossby number, and are probably due to numerical effects).
This is due to the fact that the coordinate transformation makes the flow divergent,
and is therefore responsible for a different deformation of cyclonic and anticyclonic
structures and areas. The coordinate transformation is thus the determining factor
responsible for the net cooling through the horizontal divergence of the velocity
field. Additionally, the kinetic energy spectra in figure 3(c) are flatter than for SQG,
exactly as in figure 2, as more energy is stored at small scales due to the stretching
of cyclonic areas which creates frontal structures characterized by strong horizontal
gradients.

Remarkably, the effects of the nonlinearity and of the coordinate transformation are
thus essentially separable. In particular, the nonlinear term appears not to be negligible
at all, as it is the only term responsible for the fact that the PDFs of the active
conserved scalar are peaked at non-zero values. Both SQG and the linearized version
of SSG commonly studied in the past fail to capture this distinctive qualitative feature.
On the other hand, the net cooling and the change in the slope of the kinetic energy
spectra are due solely to the coordinate transformation.

4.3. Comparison with the SQG+1 model

The SSG model presents several similarities with the SQG+1 model of Hakim et al.
(2002), although the two models are rather different mathematically. It is therefore of
interest to compare the results of the two models. The similarities come from the fact
that both models can be seen as extensions of the SQG model, taking into account the
effect of ageostrophic advection at first order in the Rossby number. The way in which
the ageostrophic advection is introduced is, however, very different in the two models.
In particular, the SSG model involves a coordinate transformation that introduces a
deformation dependent on the vorticity field, which has the effect of favouring the
formation of frontal structures. Further, while both SSG and SQG+1 are second-order
accurate approximations to the Euler equations, SQG+1 requires ε ∼ Fr, where Fr is
the Froude number, while SSG requires ε ∼ Fr2. As a consequence of this, SQG+1

employs a linearization of the static stability profile about a reference value, while
SSG does not. It would thus be expected for SSG to perform better than SQG+1

at describing the effect of static stability variations, but to be deficient in describing
vortex instabilities.

The PDFs of θ of SSG and SQG+1 at the surface present the same kind of
asymmetry. In both cases, the PDFs are peaked at moderately negative values, with
both the median and the mean taking negative values. This net cooling is due to the
restratification effect. In SSG it is possible to disentangle the effects of the nonlinear
term and of the coordinate transformation, showing that the net cooling is induced
solely by the coordinate transformation, and thus the advection by the ageostrophic
flow, while the shift of the peak of the distribution is due to the nonlinear term. It
is not therefore possible to connect SQG+1 to only one of these two aspects of SSG.
On the other hand, SSG and SQG+1 strongly differ in the kinetic energy spectra.
In SSG the coordinate transformation leads to more energy being stored at small
scales, with a consequent flattening of the SSG spectra with respect to the SQG
case. On the contrary, the SQG+1 has exactly the same slope as the SQG spectra.
Both models similarly affect the population number and morphology of the cyclones
and/or anticyclones. Hakim et al. (2002) performed a detailed analysis of the vortex
statistics and structure, making use of algorithms for vortex census and estimation of
the vortex radius. It would therefore be of great interest to perform a similar analysis
also on the SSG dynamics in a future work.
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4.4. Interior statistics
The analysis of the interior statistics is of particular interest, as one of the reasons
for the appeal of SQG-like models is the possibility to infer properties of the ocean
at depth from observations of surface fields (LaCasce & Mahadevan 2006; Lapeyre
& Klein 2006; Wang et al. 2013; Liu et al. 2014). Although rigorously SSG cannot
be applied to represent quantitatively processes occurring at scales smaller than
the Rossby radius of deformation, the ability to reproduce the formation of frontal
structures and filaments goes in the right direction to represent submesoscale dynamics
that are not captured by the SQG approximation. Indeed, SSG in a 2D vertical plane
has proved to be successful in correcting the underestimation of buoyancy anomalies
at depth that characterize the SQG interior profiles (Badin 2013), even if the effects
observed by Badin (2013) are due to ε→ 1, while this study is restricted to small
values of ε. Moreover, the SG approximation allows for O(1) variations of static
stability, which are physically important in determining the properties in the interior
of the ocean from the surface mixed layer.

Figure 4 shows vertical profiles of the median (a), mean (b), standard deviation (c)
and skewness (d) of θ . The black lines refer to geostrophic coordinates, while the
red lines refer to physical coordinates. The results show that the asymmetry of the
PDFs strongly weakens at depth. The effect of the coordinate transformation, visible
in the differences between the red and black lines, disappears at depth earlier than
the effect of the nonlinearity of the Monge–Ampère equation, visible in the difference
between the black and blue lines. From (3.11), small scales (i.e. large k) decay faster
with depth at leading order. Therefore, fronts and filaments tend to disappear at depth,
restoring the symmetry of the distributions. This is in agreement with the physical
interpretation on the role of enhanced ageostrophic, small-scale frontal structures in
determining the differences between SSG and SQG.

Figure 5 shows the PDFs of θ (a,c) and the kinetic energy spectra (b,d) at
Z= 0.1 (a,b) and Z= 0.8 (c,d) for SQG (blue lines) and SSG in physical coordinates
for different values of the Rossby number (red lines). In the interior of the domain,
but still close to the surface (Z = 0.1), SSG produces PDFs of θ that are highly
skewed and again peaked at negative values, while at depth (Z = 0.8) the PDFs
appear with zero mean and are nearly symmetric even for high Rossby number.

From (3.11) the kinetic energy spectra in the interior K (k, Z) are linked at zeroth
order to the kinetic energy spectrum at the surface K (k, 0) by a multiplicative factor
rapidly decaying for large Z and large k (Callies & Ferrari 2013),

K (k, Z)=K (k, 0)
(

cosh(k(Z − 1))
cosh(k)

)2

. (4.5)

Superimposed on the spectra of figure 5 is the SQG-like zeroth-order expected
behaviour following (4.5), and assuming a −5/3 spectral slope at the surface. The
results for SSG at Z = 0.1 show higher energies at smaller scales as the Rossby
number increases, with a slope approaching the −5/3 spectral slope at the surface,
corrected with depth. At Z = 0.8, the SQG and SSG spectra converge for all values
of the Rossby number. Figure 5 thus further confirms that the deviation of SSG from
SQG disappears with depth.

In classic SQG, kinetic energy and density variance spectra K (k, Z) and T (k, Z)
are identical (Blumen 1978; Held et al. 1995). In finite-depth SQG (Tulloch & Smith
2006), K (k, Z) and T (k, Z) are equal at small scales, with a transition occurring
at scales larger than a critical wavenumber from a classical SQG-like to a QG/2D-
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FIGURE 4. (Colour online) Vertical profiles of moments of θ distributions for SQG
(blue lines) and SSG for different values of the Rossby number in geostrophic (black
lines) and physical (red lines) coordinates: median (a), mean (b), standard deviation (c),
skewness (d).

like behaviour. In our case, as discussed above, only the −5/3 regime is properly
represented. In finite-depth SSG, things differ due to the presence of the nonlinear
term and of the coordinate transformation. From (3.11) we have

K (k, Z) = k2[|Φ̂0|2 + ε(Φ̂0Φ̂
∗
1 + Φ̂∗0 Φ̂1)+ ε2|Φ̂1|2]

= K0(k, Z)+ εK01(k, Z)+ ε2K1(k, Z). (4.6)

Additional contributions to the SQG-like energy spectrum K0 appear due to the
presence of the order-ε part of the SSG solution in (3.11). We have verified that the
spectra of the different components of (4.6) all follow the same slope in physical
coordinates (not shown), so that the change of the slope with ε is not due to a
flatter slope of the part of the spectrum due to the deviations from the SQG-like
solution. Figure 6(a) shows the vertical profile of the fraction of kinetic energy
connected to the additional terms εK01 + ε2K1 for different values of the Rossby
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FIGURE 5. (Colour online) (a,c) PDFs of θ for SQG (blue lines) and SSG in physical
coordinates (red lines) for different values of Rossby number at Z=0.1 (a) and Z=0.8 (c).
(b,d) Energy spectra for SQG (blue lines) and SSG in physical coordinates (red lines)
for different values of Rossby number at Z = 0.1 (b) and Z = 0.8 (d). The solid black
line shows the expected behaviour of SQG spectra at the corresponding depth assuming
a −5/3 slope of the spectrum at the surface.

number in geostrophic (black lines) and physical (red lines) coordinates. Again, the
relative importance of the SSG first-order correction term weakens at depth, and
the contribution of the coordinate transformation is negligible for Z > 0.2. The
maximum of the effect, however, is reached not at the surface but at an intermediate
depth between Z = 0 and Z = 0.1. Figure 6(b) shows how the fraction of kinetic
energy connected to the additional terms εK01 + ε2K1 increases with ε for Z = 0.1
(solid lines) and Z = 0.8 (dashed lines), in geostrophic (black) and physical (red)
coordinates. At Z = 0.1 the increase with ε is clearly nonlinear; however, the values
always remain of the order of ε, thus confirming the robustness of our partition of
the solution for small ε into a zeroth-order part and a first-order correction term.
At Z = 0.8 the increase is instead much slower, due to the minor importance of
ageostrophic processes at depth, and the coordinate transformation does not introduce
any contribution.
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FIGURE 6. (Colour online) (a) Vertical profile of fraction of horizontal kinetic energy
due to the first-order correction to the SQG-like solution, in geostrophic (black lines) and
physical (red lines) coordinates. The blue line corresponds to the SQG case. (b) Fraction
of horizontal kinetic energy due to the first-order correction to the SQG-like solution as a
function of ε for different values of Z, in geostrophic (black lines) and physical (red lines)
coordinates. Note that at Z = 0.8 the black and red lines are identical, as the coordinate
transformation has almost no effect.

This has some interesting implications regarding the computation of the flow in the
interior of the oceanic mixed layer from knowledge of the surface data, one of the
applications of SQG. Let us suppose that we observe a current and buoyancy field at
the surface. We can deduce an estimate of the currents and buoyancy in the interior
of the domain by using the SQG inversion. This is known to lead to underestimating
the reconstructed fields. If we use instead the SSG inversion ((3.11) at first order), the
estimate of the streamfunction consists of the zeroth-order term, which is the same as
if we had used the SQG inversion, plus an additional contribution. Figure 6 shows
that this additional contribution leads to a positive correction to the kinetic energy
of the estimated current field corresponding to the reconstructed streamfunction. The
additional kinetic energy predicted by the SSG inversion is up to 20–30 % in the
upper layers and decays with depth; therefore it is connected with filaments and other
small-scale structures not captured by SQG. This could qualitatively explain why the
SQG inversion underestimates the fields at depth when applied to observations at the
surface.

4.5. The φ–θ relationship
It is interesting to see the relation between the potential temperature and the
different components of the streamfunction. Figure 7 shows the 2D PDFs of
potential temperature and streamfunction for SQG (a,c) and SSG with ε = 0.2 in
physical coordinates (b,d), at the surface (a,b) and at Z = 0.8 (c,d). The contours
are in logarithmic scale. The asymmetry at the surface and the different properties
highlighted above are easily visible also in these plots. The PDFs of SQG are
symmetric in both θ and φ, while in SSG the cyclonic tails, characterized by large
positive values of θ associated with large negative values of φ, are longer than the
anticyclonic tails, characterized by large negative values of θ associated with large
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FIGURE 7. Two-dimensional PDFs of θ and φ for SQG (a,c) and SSG with ε = 0.2
(b,d), at surface (a,b) and at Z = 0.8 (c,d) in physical coordinates. The contours are in
logarithmic scale.

positive values of φ. Still, negative values of θ dominate in the mean, due to the
strong asymmetries of the distributions. An additional feature visible in figure 7 is the
clear signature of coherent structures (vortices) in the PDFs at the surface, showing
up as ‘fingers’ in the tails of the distributions, as coherent structures are characterized
by a functional relation between streamfunction and advected scalar θ = θ(φ). While
in SQG cyclonic and anticyclonic coherent structures have the same properties, in
SSG a clear asymmetry emerges, due to the different deformations of strong cyclonic
and anticyclonic areas induced by the coordinate transformation that changes the
morphology of the corresponding coherent structures.

Figure 8 shows for the case ε= 0.2 the relation between θ and the two components
of the SSG solution for the streamfunction φ0 (a,b) and φ1 (c,d). At the surface (a,c),
while φ0 behaves basically like φ, φ1 has a very clear functional form. The values
of φ1 are almost always negative, and larger in magnitude for positive θ . To better
understand the role of φ1 in correcting the SQG-like solution, figure 8(e, f ) shows the
2D PDFs of φ0 and φ1 at the surface (e) and at Z = 0.8 ( f ). We can see that at
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FIGURE 8. (a,b) Two-dimensional PDFs of θ and φ0 for SSG with ε= 0.2, at surface (a)
and at Z = 0.8 (b) in physical coordinates. (c,d) Two-dimensional PDFs of θ and φ1 for
SSG with ε = 0.2, at surface (c) and at Z = 0.8 (d) in physical coordinates. (e, f ) Two-
dimensional PDFs of φ0 and φ1 for SSG with ε = 0.2, at surface (e) and at Z = 0.8 ( f )
in physical coordinates. The contours are in logarithmic scale.
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the surface the effect of φ1 is to strongly enhance regions of negative φ0 and weakly
damp regions of positive φ0. It is then clear how this additional term systematically
modifies the streamfunction, and therefore the velocity field, resulting in the observed
asymmetric distributions of θ and φ. Consistently with what is seen previously, at
Z = 0.8 (b,d, f ) the correction term φ1 is totally negligible with respect to φ0, as it
is associated with small-scale structures that do not penetrate at depth, and SQG-like
symmetry is restored.

4.6. Vertical velocity, ageostrophic divergence and lateral strain rate
Following Hoskins & Draghici (1977), the diagnostic equation for the vertical velocity
in non-dimensional variables can be written as

∂2w∗

∂X2
+ ∂

2w∗

∂Y2
+ ∂

2w∗

∂Z2
=−2ε∇ · Q, (4.7)

with boundary conditions w∗= 0 at Z = 0 and Z = 1, where w= Jw∗, and the forcing
vector Q in non-dimensional form is

Q= (Q1, Q2)=
(
∂ug

∂X
∂θ

∂X
+ ∂vg

∂X
∂θ

∂Y
,
∂ug

∂Y
∂θ

∂X
+ ∂vg

∂Y
∂θ

∂Y

)
. (4.8)

The SG equation for the vertical velocity in geostrophic coordinates is formally
identical to the equation one derives in physical coordinates in the QG case, with
two differences: the use of geostrophic coordinates; and the fact that the equation is
formulated for a vertical velocity w∗ rescaled by J. Note also that in the derivation
of (4.7), J is approximated neglecting the nonlinear terms (Hoskins & Draghici
1977; Hoskins, Draghici & Davies 1978). Equation (4.7) is not therefore entirely
compatible with the full form of the SSG equations that we are here investigating.
In order to be consistent with the derivation of equation (4.7), we have computed
w using the approximated version of J, although there is no substantial qualitative
difference between the results that we would have obtained using the full form of
J. For further studies of semi-geostrophic vertical velocities, the reader should see,
for example, Hoskins et al. (1978), Hoskins & West (1979), Pinot, Tintoré & Wang
(1996), Pedder & Thorpe (1999), Thorpe & Pedder (1999) and Viudez & Dritschel
(2004).

Figure 9 shows snapshots at time T = 100 of the vertical velocity w at Z = 0.015
for SQG (a) and SSG with ε = 0.2 (b) in physical coordinates. Comparing figure 9
with figure 1, we can see that, while in SQG vertical velocity is larger inside the
vortices with a typical quadrupole structure, in SSG the largest values are obtained
most often on the edges of the vortices and of the frontal structures, as captured in
primitive equation simulations and that can be significant for the transfer of nutrients
to the surface euphotic layer (Levy, Klein & Treguier 2001; Mahadevan & Tandon
2006). This is due to the fact that w is given by the product of w∗ and J, and the
latter is largest exactly on the edges of vortices and of frontal structures.

Vertical velocity decays in magnitude rather fast with depth. Figure 10(a) shows the
vertical profile of the average of the absolute value of w for SSG for different values
of the Rossby number in physical coordinates. We can see that for increasing Rossby
number the vertical velocity becomes larger close to the surface, and penetrates deeper
at depth. The largest values of w in the upper layers are dominated by large values of
J (not shown), so that stirring-dominated regions become of great relevance for what
concerns the vertical velocity. In comparison, vertical velocities in SQG (not shown)
show larger values in the interior, due to the larger features that are present in SQG
and due to the fact that the vertical decay is proportional to the wavenumber.
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FIGURE 9. (Colour online) Snapshot at time T = 100 of vertical velocity at Z= 0.015 for
SQG (a) and SSG in physical coordinates (b), with ε = 0.2.
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FIGURE 10. (Colour online) (a) Vertical profile of average absolute value of vertical
velocity w for SSG for different values of ε in physical coordinates. (b) Vertical profile
of average absolute value of horizontal divergence δ for SSG for different values of ε in
physical coordinates. Note the different vertical scale of the two plots.

The largest values of vertical velocities found in the interior as ε increases is
in agreement with the analytical results found by Badin (2013). This effect would
be even more enhanced if, following Badin (2013), the potential vorticity would be
expressed as a function of the Rossby number. Further, as stated in § 4.3, the increase
of the vertical velocities with ε in the interior might be limited by the use of height
coordinates, as the solutions are forced to be confined close to the boundary. Further
work is required to understand this behaviour of SSG.

Once the vertical profile of w has been computed, one can easily reconstruct the
horizontal divergence. The flow divergence is an important signal for frontogenetic
dynamics, as frontogenesis is associated with a divergent flow of warm and cold
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FIGURE 11. (Colour online) (a,b) PDFs of ageostrophic horizontal divergence at
Z = 0.015 (a) and at Z = 0.8 (b), for SQG (blue lines) and SSG for different values
of ε in physical coordinates (red lines). (c,d) PDFs of lateral strain rate at Z = 0.015 (c)
and at Z = 0.8 (d), for SQG (blue lines) and SSG for different values of ε in physical
coordinates (red lines).

water/air rising or sinking at the front through the secondary ageostrophic circulation.
As the geostrophic velocity field is divergence-free, the horizontal divergence is
purely ageostrophic. From the continuity equation, one can compute the horizontal
divergence δ in physical coordinates as

δ = ∂uag

∂x
+ ∂vag

∂y
=−∂w

∂z
, (4.9)

where uag = u− ug and vag = v − vg are the ageostrophic components of the velocity
field. Figure 10(b) shows the vertical profile of the absolute value of δ for SSG for
different values of the Rossby number in physical coordinates. Values of the horizontal
divergence substantially different from zero are found only very close to the surface,
so that the vertical scale is limited between Z = 0 and Z = 0.2. The magnitude of
δ increases for increasing Rossby number, similarly to w. Figure 11(a,b) shows the
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PDFs of δ at Z= 0.015 (a) and Z= 0.8 (b) for SSG for different values of the Rossby
number in physical coordinates. We can see that close to the surface (Z = 0.015) the
PDFs become flatter for increasing Rossby numbers, with larger values in the far tails
of the distributions. At depth (Z = 0.8) the same behaviour occurs, but, given the
extremely small values of δ below Z = 0.2, it is of relatively low interest.

Submesoscale filaments are also characterized by large values of the lateral strain
rate. For simplicity, we compute the lateral strain rate α on geostrophic velocity field
only as (Shcherbina et al. 2013)

α =
[(

∂ug

∂x
− ∂vg

∂y

)2

+
(
∂vg

∂x
+ ∂ug

∂y

)2
]1/2

. (4.10)

Figure 11(c,d) shows the PDFs of α at Z = 0.015 (c) and Z = 0.8 (d) for SQG (blue
lines) and SSG for different values of the Rossby number in physical coordinates (red
lines). As expected, close to the surface (Z = 0.015) the lateral strain rate in SSG
takes larger values than in SQG, increasing as ε increases, with PDFs characterized by
longer tails and less concentrated around small values of α. This is again a signature
of the enhanced role of filaments in the dynamics. The lateral strain rate at depth
(Z = 0.8) shows instead the opposite behaviour, with smaller values of α at Z = 0.8
for SSG for increasing Rossby number. Values of α at Z = 0.8 are, however, smaller
by one order of magnitude than close to the surface, as small-scale structures
characterized by large values of the lateral strain rate disappear at depth. In general,
it is close to the surface, where small-scale ageostrophic structures are active, that
we expect to see a strong impact on the mixing of tracers.

5. Conclusions
In this study, we have performed numerical simulations of freely decaying turbulent

flows of the SSG model in the small-ε regime, and we have compared the results
with SQG simulations. Strong asymmetries emerge in the SSG statistics for increasing
Rossby numbers at and close to the active boundary. This asymmetry is caused by
the enhanced role of ageostrophic processes due to the inclusion of ageostrophic
advection in the SG equations, confirming previous results on emerging vorticity
asymmetries in geophysical fluid dynamics (Hakim et al. 2002; Roullet & Klein
2010), where here the role of vorticity is taken by potential temperature as the active
conserved scalar of the dynamics. Phenomenologically this appears as SSG dynamics
characterized by smaller cyclones and larger anticyclones, and by a predominant
role of non-local structures like elongated fronts and filaments with respect to the
vortex-dominated SQG phenomenology.

Kinetic energy spectra at and close to the active boundary are less steep in SSG
than in SQG, with more energy stored at high wavenumbers for increasing Rossby
number. We have verified that the effects due to the two aspects on which SSG differs
from SQG are, in this range of Rossby numbers, almost separable. The nonlinearity of
the inversion equation determines the shift in the peak of the statistics, as the signature
of the emerging role of filaments as the predominant structures of the dynamics. On
the other hand, the coordinate transformation deforms the flow in such a way that
small-scale structures are allowed to play a more important role in the dynamics,
resulting in flatter energy spectra. Both affect, in different ways, the symmetry of the
distribution of potential temperature.

Deviations from the SQG behaviour tend to disappear in the interior of the domain,
where SQG-like statistics and spectra are recovered, as small-scale structures decay
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faster with depth. The signature of the geostrophic processes on the dynamics is
mostly visible at an intermediate level between Z= 0 and Z= 0.1, where the fraction
of horizontal kinetic energy associated with the O(ε) part of the solution of the
inversion equation attains its maximum value.

Vertical velocities have been found to be larger and to penetrate more at depth
in SSG for increasing Rossby numbers. The horizontal divergence follows the same
behaviour, although in general values substantially different from zero are found
only close to the active boundary. Larger values of the strain rate are found in SSG
than in SQG at the layers close to the active boundary. Overall, the emerging of
ageostrophic filaments as dominant features in the SSG dynamics in this part of
the domain determines enhanced vertical velocities, horizontal divergence and lateral
strain rate.

SSG presents similarities and differences with the SQG+1 model of Hakim et al.
(2002), similarly proposed in order to include at first order in Rossby number the
ageostrophic advection. In both models the PDFs of potential temperature are strongly
skewed and peaked at non-zero negative values, confirming that the relation between
the inclusion of ageostrophic advection and the development of asymmetric statistics
is physically robust, as it does not depend on the specific way in which ageostrophic
advection is formally introduced in the model. Both models show a distinctive net
cooling at the active boundary. In a oceanic application, with the domain inverted in
the vertical, this would be a net warming of the ocean surface. Physically this is well
understood as the restratification effect induced by the asymmetry in the divergence
field associated with fronts and filaments created by the ageostrophic advection, and
it has been observed and studied also in primitive equation simulations (Lapeyre et al.
2006; Klein et al. 2008). The change of the slope of the kinetic energy spectra, on
the other hand, is a unique feature of SSG, and it is directly linked to the deformation
of the flow induced by the coordinate transformation.

Besides being a new form of geophysical turbulence, the interest in the SSG model
is that it shows many features that are compatible with a qualitative description of
submesoscale processes in the oceanic mixed layer. Observations (Shcherbina et al.
2013, 2015) and high-resolution numerical simulations (Capet et al. 2008b,c,d; Klein
et al. 2008) show the important presence of dynamics at scales smaller than the
mesoscale in the ocean. Submesoscale processes are characterized by spatial scales
O(102–104 m), and by local Rossby and Richardson numbers that can be O(1).
These dynamics take often the shape of fronts and filaments, with enhanced vertical
vorticity, strain rate and vertical velocities (Mahadevan & Tandon 2006), and are thus
important in determining the properties of the dynamics of the oceanic mixed layer
and can be important also for the transformation of water masses (Badin, Williams
& Sharples 2010; Thomas & Joyce 2010; Badin et al. 2013).

While studies of barotropic instabilities show that SG underestimates the growth
rate of instabilities at scales smaller than the deformation radius (Malardel et al.
1997), SSG produces dynamical structures like fronts and filaments that can develop
ageostrophic instabilities. SSG could thus be used as an idealized laboratory to
study some aspects of submesoscale turbulence in the ocean. In particular, qualitative
comparison between the results presented in this paper and the data from observations
(Shcherbina et al. 2013, 2015) and high-resolution numerical simulations (Roullet &
Klein 2010) show the same kind of asymmetry at the surface, and the same restoring
of SQG-like symmetry with depth. Qualitative comparison of the distribution of
the ageostrophic horizontal divergence and the lateral strain rate with the results
from observations (Shcherbina et al. 2013) shows also striking qualitative agreement.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

11
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.116


Surface semi-geostrophic turbulence 769

Note that Shcherbina et al. (2013) report a value of the Lagrangian Rossby number
∼0.3. The observations by Shcherbina et al. (2015) were instead conducted in a weak
strain region, where values are expected to be even lower. We stress in any case that
the comparison is meant purely at a qualitative level, and a quantitative comparison
with data or primitive equation simulations is left for future studies.

As a first direct follow-up of this work, it would be of great interest to study the
dispersion of a passive tracer in SSG dynamics, in order to study at a qualitative
level the effects of instabilities at frontal scales in the lateral mixing of passive tracers
at submesoscale, and how the interaction of horizontal stirring at frontal scales and
the vertical mixing affects the total mixing at different depths (Badin, Tandon &
Mahadevan 2011). Comparison with results obtained with the SQG and 2D Euler
equations will be facilitated by the formal similarity between SSG and SQG. In this
regard, a more abstract application of great interest could be to study the development
of singular solutions in SSG (see e.g. Cullen & Purser 1984; Purser & Cullen 1987;
Cullen, Norbury & Purser 1991; Cullen 2006), building upon earlier works based on
the SQG approximation (Constantin, Majda & Tabak 1994; Constantin et al. 2012).
Finally, for further comparison with submesoscale ocean observations, it would be
interesting to compare the results of SSG with a full 3D SG model.
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Appendix A. Iterative solution of the Monge–Ampère equation
We test the convergence of the iterative method described in § 3 to find solutions

of the Monge–Ampère inversion equation. We take as boundary condition a vortex
defined by a surface potential temperature

θ = α exp[−r(X2 + Y2)], (A 1)

where r=4 and α is chosen in order to normalize the total surface kinetic energy. The
boundary condition is shown in figure 12(a). In order to quantify the convergence of
the iterative procedure, we define a distance between successive iterations Φ(n) as

dn
Φ =

√
1

4π2

∫ 2π

0

∫ 2π

0
(Φ(n) −Φ(n−1))2 dx dy. (A 2)

Figure 12(b) shows the evolution of dn
Φ for different values of ε. We can see that

convergence is obtained rather fast for any value of ε. For structures characterized
by very strong local gradients, unless very small values of ε are considered, the
convergence may fail for large values of n due to the accumulation of numerical
errors. In this work we limit ourselves to the first iteration of the method, consistently
with the choice of small ε and with Hoskins (1975).

Appendix B. Coordinate transformation
In most works on the SG approximation, the analysis was limited to geostrophic

space, and the transformation back to physical space was performed only for
visualization purposes, with the aid of graphical methods. Hoskins (1975) proposed
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FIGURE 12. (Colour online) (a) Boundary condition of surface θ for the test of the
iterative solution procedure. (b) Distance dn

Φ between successive iterations Φ(n) of the
solution as a function of step n, for different values of ε.

a simple method to perform the coordinate transformation that is accurate only for
small values of ε. Schär & Davies (1990) developed an iterative algorithm for the
inverse coordinate transformation that can be applied for any value of ε, and whose
first step corresponds to the method of Hoskins (1975). We briefly summarize here
the general iterative method.

We want to know how the fields defined on a regular grid in geostrophic coordinates
(X∗, Y∗) transform to a regular grid in physical coordinates (x∗, y∗). In order to do so,
we need to find the geostrophic coordinates (X(x∗, y∗), Y(x∗, y∗)) that correspond to
the nodes of the regular grid in physical coordinates. We then interpolate the fields
defined on the regular geostrophic grid (X∗, Y∗) of the model to the irregular grid
(X(x∗, y∗), Y(x∗, y∗)). In this way we find, correspondingly, the values of the fields
defined on the regular physical grid (x∗, y∗). Following Schär & Davies (1990), we
consider the following iteration:

Xn+1 = x∗ + ε ∂Φ
∂X

∣∣∣∣
(Xn,Yn)

,

Yn+1 = y∗ + ε ∂Φ
∂Y

∣∣∣∣
(Xn,Yn)

,

 (B 1)

with (X0, Y0)= (X∗, Y∗). Using (2.10) one can see that, given a node (x∗, y∗), a fixed
point of the iteration satisfies (2.16), thus realizing the coordinate transformation.
Invertibility requires the Jacobian of the coordinate transformation to be positive
(2.17). This implies that the inverse transformation is single-valued and that (B 1) has
one single fixed point. Moreover, (B 1) has to be contractive in a neighbourhood of
the single fixed point (Schär & Davies 1990).

Note that, since the domain is doubly periodic in the horizontal, no deformation of
the horizontal boundaries has to be taken into account in passing from one coordinate
system to the other. Periodicity at the boundaries is ensured by attaching to the sides
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of the domain identical copies of the field and performing the interpolation on the
extended system. We have used a linear interpolation method, after testing in a few
representative cases that using higher-order methods (cubic, spline) did not change the
results.

In our experiments acceptable convergence was obtained in a few iterations. For
large n the map tends to oscillate between two slightly different states, probably due
to local violations of the invertibility condition that are unavoidable in a turbulent
simulation. Pedder & Thorpe (1999) introduced a modification to the algorithm to
enforce the stable convergence of the map. However, for large n the fields tend to
accumulate noise at small scales, due to the multiple applications of the interpolation
procedure. Consistently with limiting the iteration of the solution procedure of
the Monge–Ampère equation to first order, we have limited the inverse coordinate
transformation to the first iteration, thus in practice using the simpler method of
Hoskins (1975).
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