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Abstract

This paper presents an investigation of self-focusing of Gaussian laser beam in collisional plasma and its effect on second
harmonic generation. Due to non-uniform heating, collisional non-linearity arises, which leads to redistribution of carriers
and hence affects the plasma wave, which in turn affects the second harmonic generation. Effect of the intensity of the laser
beam/plasma density on the harmonic yield is studied in detail. We have set up the non-linear differential equations for the
beam width parameters of the main beam, plasma wave, second harmonic generation and second harmonic yield by taking
full non-linear part of the dielectric constant of collisional plasma with the help of moment theory approach. It is predicted
from the analysis that harmonic yield increases/decreases due to increase in the plasma density/intensity of the laser beam
respectively.
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1. INTRODUCTION

There has been considerable interest in the non-linear propa-
gation of intense laser beams in plasmas because of its rel-
evance to laser induced fusion and charged particle
acceleration. In laser induced fusion, the most important pro-
blem is the efficient coupling of laser energy to plasmas to
heat the latter. In coupling process, many non-linear phenom-
ena such as self-focusing, stimulated raman scattering and
stimulated brillouin scattering, and several others (Deutsch
et al., 1996; Esarey et al., 1996; Tajima & Dawson, 1979)
play a crucial role. However, self-focusing continues to be
a subject of great fascination due to its relevance to iono-
spheric radio propagation, optical harmonic generation,
X-ray lasers, and other important applications (Burnett &
Corkum, 1989; Amendt et al., 1991; Hora, 1981; Jones
et al., 1988; Liu & Kaw, 1976; Ginzburg, 1970; Shi, 2007;
Merdji et al., 2000). The self-focusing of laser beams,
having non-uniform distribution of irradiance in a plane,
normal to direction of propagation leads to non-uniform dis-
tribution of carriers along the wavefront, which further leads
to a change in dielectric constant of plasma. The collisional
non-linearity occurs because of electrons acquiring tempera-
ture higher than other species on account of net effect of

ohmic heating and energy lost by electrons due to collisions
(Sodha et al., 1974; Umstadter, 2001) with heavy particles
(atoms/molecules and ions) and by thermal conduction
(Sodha et al., 1973, 1975, 1976). These analyses consider
only one type of energy loss viz. collisions or thermal con-
duction. Generation of harmonics of electromagnetic waves
in plasmas engaged the attention of a number of researchers
due to its practical value for many applications. Harmonic
generation in intense laser plasma interaction has been
studied extensively both experimentally and theoretically
(Hafizi et al., 2000; Young et al., 1989; Engers et al.,
1991; Parashar & Pandey, 1992; Esarey et al., 1993). The
early work on harmonic generation in collisional plasmas
has been reviewed (Sodha & Kaw, 1969). This phenomenon
arises on account of the second harmonic component in the
isotropic part of the distribution function of electron vel-
ocities in a plasma caused by a high irradiance electromag-
netic wave. The presence of second harmonic term in the
current density, which is proportional to the square of the
electric vector of the fundamental wave gives rise to
second harmonic. A number of investigations on optimiz-
ation of conditions for maximum magnitude of generated
harmonics were later published. All these investigations on
generations of harmonics and combination frequencies in
collisional plasma are applicable, when the fundamental
wave is a plane wave, with uniform irradiance along the
wavefront.
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Since most of the electromagnetic beams have non-
uniform distribution of irradiance along the wavefront,
there was a need to take in account this non-uniformity in
the theory of harmonic generation. It is well known that
such beams exhibit the phenomenon of self-focusing/self-
defocusing. Since for a given power of beam, the average
of square of electric vector in the wavefront is much higher
for non-uniform irradiance distribution than that for uniform
irradiance distribution; the magnitude of the generated har-
monics is higher in the case of non-uniform irradiance.
This provides a strong motivation for the study of the
second harmonic yield by taking self-focusing in to account.
The interest in the interaction of laser beam with plasma is

not limited only to harmonic generation. The propagation of
intense electromagnetic waves in underdense plasmas can
also excite plasma wave. This instability is of interest in
laser inertial confinement fusion because it can generate en-
ergetic electrons that can preheat the fuel and reduce the im-
plosion efficiency. Another case where plasma wave is of
increasing interest is in laser particle acceleration. This
plasma wave interacts with the plasma particles and transfers
its energy to particles by wave particle interaction (Fibich,
1996) and hence acceleration of particles takes place. Harmo-
nic generation has been studied by number of workers
(Malka et al., 1997; Baton et al., 1993; Brandi et al., 2006;
Gupta et al., 2007; Ganeev et al., 2007; Schifano et al.,
1994; Ozaki et al., 2006, 2007, 2008; Nuzzo et al., 2000).
In most of the above mentioned works, investigations have
been carried out in the paraxial approximation due to small
divergence angles of the laser beams involved. In some
experiments, where solid state lasers are used, wide angle
beams are generated for which the paraxial approximation
is not applicable. Also, if the beam width of laser beam
used is comparable to the wavelength of the laser beam, para-
xial approximation is not valid. Paraxial theory approach
(Akhmanov et al., 1968; Sodha et al., 1974, 1976) takes in
to account only paraxial region of the beam, which in turn
leads to large error in the analysis. In this theory, non-linear
part of the dielectric constant is taylor expanded up to second
order term and higher order terms are neglected. However,
moment theory (Vlasov et al., 1971; Lam et al., 1977) is
based on the calculation of moments and does not suffer
from this defect. In moment theory approach, non-linear
part of the dielectric constant is not taylor expanded, rather
taken as a whole in calculations. (Sodha et al., 1979; Sinha
& Sodha, 1980; Singh & Walia, 2010, 2011; Singh &
Singh, 2010, 2011a, 2011b, 2011c; Walia & Singh, 2011).
Moment theory is difficult to apply wherever the propagation
of more than one wave is involved and therefore one always
prefer to apply paraxial theory, in which the mathematical
calculations become simpler as compared to moment
theory approach. To the best of our knowledge, so far no
one has used moment theory approach to study the second
harmonic generation. So, the novelty of the present work is
that we have considered the full non-linear part of the dielec-
tric constant in the present investigation.

In the present paper, second harmonic generation is
studied in detail by taking the plasma wave as a source for
generating a second harmonic in collisional plasma (t> τE,
where τE is the energy relaxation time). The non-linearity
arising through non-uniform heating leads to redistribution
of carriers, which modifies the background plasma density
profile in a direction transverse to pump beam axis and
hence generates the plasma wave at pump frequency. This
plasma wave in turn interacts with incident laser beam and
a second harmonic is generated. In Section 2, we have set
up and solved wave equation for the laser beam with the
help of moment theory approach. In Section 3, we have
derived an expression for the density perturbation associated
with the electron plasma wave. In Section 4, second harmo-
nic yield is estimated. Last, a brief discussion of the results is
presented in Section 5.

2. SOLUTION OF THE WAVE EQUATION

Consider the propagation of a laser beam of angular fre-
quency ω0 in a homogeneous plasma along z-axis. The initial
intensity distribution of beam along the wavefront at z= 0 is
given by

E0.E
⋆
0 |z=0 = E2

00 exp −r2/r20
[ ]

, (1)

where r2= x2+ y2 and r0 is initial width of the main beam,
and r is radial co-ordinate of the cylindrical coordinate
system. For collisional plasma i.e., for the case of non-
uniform heating type non-linearity, the modified electron
concentration may be written as Sodha et al., (1976)

N0e = N0 · 1+ α/2EE⋆[ ]S
2−1

. (2)

Where S is a parameter characterizing the nature of collisions.
In plasmas, various types of collisions take place; e.g.,
S=−3 corresponds to collisions between electrons and
ions, S= 2 for collisions between electrons and diatomic
molecules, and S= 0 corresponds to collisions, which are
velocity dependent and α is the non-linearity constant
given by

α = e2M

6m2ω2
0KBT0

. (3)

Here, KB is the Boltzmann constant, ω0 is the angular fre-
quency of laser beam, T0 is equilibrium temperature of
plasma, e and m are charge and mass of electron, respect-
ively, and M is mass of ion. Slowly varying electric field
E0 of the laser beam satisfies the following wave equation.

∇2E0 −∇(∇.E0)+ ω2
0

c2
εE0 = 0. (4)

In the Wentzel-Kramers-Brillouin approximation, the second
term∇ (∇.E0) of Eq. (4) can be neglected, which is justified
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when c2

ω2
0
| 1ε∇2 ln ε| ≪ 1,

∇2E0 + ω2
0

c2
εE0 = 0, (5)

and

ε = ε0 +Φ(AA⋆). (6)

Where ε0 and Φ (AA∗) are linear and non-linear parts of the
dielectric constant, respectively.

ε0 = 1− ω2
p

ω2
0

, (7)

and

Φ(AA⋆) = ω2
p

ω2
0

1− N0e

N0

[ ]
. (8)

Where ωp =
�����������
4πN0e2/m

√
is the electron plasma frequency.

Further, taking E0 as

E0 = A(r, z) exp [ι{ω0t − k0z}], (9)

where A(r, z) is a complex function of its argument. The
behavior of the complex amplitude A(r, z) is governed by
the following parabolic equation obtained from the wave
Eq. (5) by assuming variations in the z direction being
slower than those in the radial direction,

−2ιk0
∂A
∂z

+∇2
⊥A+ ω2

0Φ(AA
⋆)A

c2
= 0. (10)

This equation is also known as the quasi-optic equation.
Now, Eq. (10) can be written as

ι
∂A
∂z

= 1
2k0

∇2
⊥A+ χ(AA⋆)A, (11)

where χ(AA⋆) = k0
2ε0

(ε− ε0) and ε = ε0 + Φ(|AA⋆|), where
εo = 1− ω2

p

ω2
0
and Φ(|AA⋆|) are the linear and non-linear parts

of the dielectric constant, respectively. Also, k0 = ω0
c

���
ε0

√
and

ωp are propagation constant and plasma frequency, respect-
ively. Now from the definition of the second order moment,
the mean square radius of the beam is given by

<a2> = ∫∫(x
2 + y2)AA⋆dxdy

I0
. (12)

From here one can obtain the following equation:

d2 < a2>
dz2

= 4I2
I0

− 4
I0
∫∫Q(|A|2)dxdy, (13)

where I0 and I2 are the invariants of Eq. (11) (Vlasov

et al., 1971)

I0 = ∫∫|A|2dxdy, (14)

I2 = ∫∫ 1

2k20
(|∇⊥|A|2 − F)dxdy, (15)

with (Lam et al., 1977)

F(|A|2) = 1
k0
∫χ(|A|2)d(|A|2), (16)

and

Q(|A|2) = |A|2χ(|A|2)
k0

− 2F(|A|2)
[ ]

. (17)

For z> 0, we assume an energy conserving gaussian
ansatz for the laser intensity (Akhmanov et al., 1968;
Sodha et al., 1974, 1976)

AA⋆ = E2
00

f 20
exp − r2

r20 f
2
0

{ }
. (18)

From Eqs. (12), (14), and (18) it can be shown that

I0 = πr20E
2
00, (19)

<a2> = r20 f
2
0 . (20)

Where f0 is dimensionless beam width parameter and r0 is
beam width at z= 0. Now, from Eqs. (13)–(20) we get

d2f0
dξ2

+ 1
f0

df0
dξ

( )2

= 2k20
πE2

00f0
[I2 − ∫∫Q(|E0|2)dxdy]. (21)

Where ξ= (z/k0r0
2) is the dimensionless propagation

distance. Eq. (21) is a basic equation for studying the self-
focusing of a gaussian laser beam in a non-linear, non-
absorptive medium. Now, by making use of Eqs. (2),
(8), (15)–(18), and (21) we get

d2f0
dξ2

+ 1
f0

df

dξ

( )2

= 1

f 30
− 2f0

3αE2
00

ωpr0
c

( )2

× 1+ αE2
00

f 20

[ ]−3
2

−1− log
1+ αE2

00

f 20

[ ]1
2−1

1+ αE2
00

f 20

[ ]1
2+1

⎛
⎜⎝

⎞
⎟⎠

⎡
⎢⎣

+2
1

1+ αE2
00

f 20

[ ]1
2

− 1

⎛
⎜⎝

⎞
⎟⎠
⎤
⎥⎦. (22)

Initial conditions of plane wavefront are df0
dξ = 0 and f0= 1

at ξ= 0. Eq. (22) describes the change in the beam width
parameter of a gaussian beam on account of the

Self-focusing of laser beam in collisional plasma 409

https://doi.org/10.1017/S0263034611000504 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034611000504


competition between diffraction divergence and nonlinear
focusing terms as the beam propagates in the collisional
plasma.

3. PLASMAWAVE GENERATION

We consider the interaction of a weak plasma wave and a
Gaussian laser beam in a collisional plasma. Due to non-
uniformity in heating, the background electron density gets
modified, which further leads to change the amplitude of
the plasma wave, which depends on the background electron
density. Following the standard procedure, the equation gov-
erning the electron plasma wave generation can be written as,

∂2N
∂t2

− v2th∇
2N + 2Γe

∂N
∂t

− e

m
∇ · [NE]

= ∇ · N

2
∇(V · V∗)− V

∂N
∂t

[ ]
. (23)

Where 2Γe is landau damping factor, vth is the electron ther-
mal speed, E is the sum of electric vectors of electromagnetic
wave and self-consistent field, V is the sum of drift velocity
of electron in electromagnetic field and self-consistent
field, m is mass of electron. The density component varying
at pump wave frequency (N1) can be written as

− ω2
0N1 + v2th∇

2N1 + 2ιΓeω0N1 + ω2
p

N0e

N0

[ ]
N1

≅
e

m
(N0e∇ · E0 + E0 ·∇N0e). (24)

Where N0 is the equilibrium electron density, ω2
p = 4πN0e2

m is
the electron plasma frequency, V0 is the oscillation velocity
of the electron in the pump wave field, and ω0 is the pump
wave frequency.It is obvious from the source term of Eq.
(24) that one component of N1 varies as E0 and that the
second component is the solution of homogeneous Eq.
(24). Therefore, N1 can be written as

N1 = N10(r, z) exp (−ikz)+ N20(r, z) exp (−ik0z). (25)

Where N10 (r, z) and N20 (r, z) are the complex functions of
their arguments and satisfy the following equations.

− ω2
0N10 − v2th∇

2
⊥N10 + 2ikv2th

∂N10

∂z
+ k2v2thN10

+ 2ιΓeω0N10 + ω2
p

N0e

N0

[ ]
N10 = 0, (26)

and

− ω2
0N20 − v2th∇

2N20 + 2ιΓeω0N20 + ω2
p

N0e

N0

[ ]
N20

≅ −N0eeE00

mf0
exp

−r2

2r20 f
2
0

[ ]
y

r20 f
2
0

[ ]
I3, (27)

where

I3 = 1−
5αE2

00 exp − r2

r20 f
2
0

( )

2f 20 1+
αE2

00 exp − r2

r2
0
f2
0

( )
2f 20

⎛
⎝

⎞
⎠

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Now, Eq. (26) can be written as,

∂N10

∂z
= − i

2k
∇2

⊥N10 − iP1N10 − ω0ΓeN10

kv2th
, (28)

Where, P1 = ω2
p

2kv2th
1− N0e

N0

[ ]
.

Now, from the definition of second order moment

<a2> = 1
I0
∫∫(x2 + y2)N10N

∗
10dxdy, (29)

where I0 is zeroth order moment and can be written as

I0 = ∫∫N10N
∗
10dxdy. (30)

Now, solution of Eq. (28) is of the form,

N2
10 =

B2

f 2
exp − r2

a20f
2

( )
exp (− kiz). (31)

Now, from Eqs. (29), (30), and (31), it can be shown that

I0 = πB2a20, (32)

and

<a2> = a20f
2 exp (− 2kiz). (33)

Now, with the help of Eqs. (29) and (33), one can get

d2f

dξ2
+ 1

f

df

dξ

( )2

= 1
4f 3

− 1
4

ωpr0
vth

( )21
f

1− f 20
f 2

I4 − f 40
f 4

I5

( )
, (34)

where

I4 =∫
tβ1

1+ αE2
00 t

f 20

[ ]5/2 dt

I5 =∫ log (t)tβ1 1− 1

1+ αE2
00t

f 20

[ ]5/2
⎡
⎢⎣

⎤
⎥⎦dt

β1= α1− 1 where α1 = r0f0
a0f

( )2
.
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Now, Solution of Eq. (27) gives the second harmonic
source equation as

N20 = −N0eeE00

mf0
exp

−r2

2r20 f
2
0

[ ]
y

r20 f
2
0

[ ]
I3

1

ω2
0 − k20v

2
th − ω2

p
N0e
N0

[ ] . (35)

4. SECOND HARMONIC POWER

Generated plasma wave can interact with the incident laser
beam to produce second harmonic. The electric vector of
the second harmonic (A2) satisfy the following equation.

∇2A2 + ω2
2

c2
ε2(ω2)A2 =

ω2
p

c2
N1

N0
A0, (36)

where ω2= 2 ω0 and ε2 (ω2) is the effective dielectric con-
stant of plasma at the second harmonic frequency and is
given by

ε2(ω2) = ε2f (ω2)+Φ2(A · A∗), (37)

where Φ2 (A · A∗) is non-linear part of the dielectric constant
and is given by

Φ2(A · A∗) = ω2
p

ω2
2

1− N0e

N0

[ ]
. (38)

Now, the solution of Eq. (36) can be written as

A2 = A20(r, z) exp (−ik2z)+ A21(r, z) exp (−2ik0z), (39)

where A20 and A21 are the complex functions of their argue-
ments and satisfy following equations

2ik2
∂A20

∂z
= ∇2

⊥A20 +Φ2A20, (40)

and

∇2
⊥A21 − 4ik0

∂A21

∂z
− 4k20A21 + (ε2(ω2))A21 =

ω2
pN1

c2N0
A0. (41)

Now, from the definition of second order moment,

<a2> = 1
I0

∫∫ (x2 + y2)A20A
∗
20dxdy, (42)

where I0 is zeroth order moment and can be written as

I0 =∫∫ A20A
∗
20dxdy. (43)

Now, solution of Eq. (40) is of the form,

A2
20 =

B′2

f 22
exp − r2

b20f
2
2

( )
. (44)

Now, from Eqs. (42), (43), and (44), it can be shown that

I0 = πB′2b20, (45)

and

<a2> = a20f
2
2 . (46)

Now, with the help of Eqs. (42) and (46), one can get

d2f2
dξ2

+ 1
f2

df2
dξ

( )2

= k22
k20

[
1

f 32
− (

ωpr0
c

)2
1
f2

1− f 20
f 22
I6 − f 40

f 4
I7

( )]
,

(47)

where

I6 = ∫ tβ2

1+ αE2
00t

f 20

[ ]5/2dt

I7 = ∫log(t)tβ2 1− 1

1+αE2
00t
f 20

[ ]5/2

⎡
⎢⎣

⎤
⎥⎦dt

β2= α2− 1 where α2 = r0f0
b0f2

( )2
.

Now, solution of equation (41) can be written as,

A21 =
ω2
p

c2
N20

N0

E00

f0
exp

−r2

2r20 f
2
0

[ ]
1

k22 − 4k20 +Φ2(A · A∗)
[ ] . (48)

Now, the constants B
′
and b0 are obtained from the boundary

condition that second harmonic wave is zero at z= 0.

B′ = −ω2
p

c2
N20

N0

E00

k22 − 4k20 +Φ2(A · A∗)

[ ]
, (49)

and b0= r0, respectively.

Now, the second harmonic yield can be written as

P2

P0
= 2

ω4
PN

2
0e(z = 0)e2E2

00

c4N2
0 m

2f 20 r
2
0

I23 I8I9I10, (50)

where

I8 = 1

k22 − 4k20 + Φ2(A · A∗)
( )2 , (51)

I9 = 1

ω2
0 − k2v2th − ω2

p(1+ (
αE2

00exp(−1.0)
2f 20

)
−5
2 )

( )2 , (52)
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and

I10 = f 42
2(f 20 + f 22 )

2 +
1

8f 20
− cos(k2 − 2k0)z · 2f0f2

(3f 22 + f 20 )

[ ]
. (53)

5. DISCUSSION

Eq. (22) governs the behavior of dimensionless beam width
parameter f0 of a beam as a function of dimensionless dis-
tance of propagation ξ (=zc/ω0r0

2). This equation has been
solved numerically for the following set of parameters;
ω0= 1.778 × 1014 rads−1, r0= 30 μm, αE00

2 = 1.27, 1.37,
ω2
p/ω

2
0 = 0.17, 0.20.

The first term on the right-hand side of Eq. (22) represents
diffraction phenomenon of the laser beam. The second term
which arises due to collisional non-linearity represents the
non linear refraction. The relative magnitude of these terms
determines the focusing/defocusing behavior of the beam.
Figure 1 describes the variation of beam width parameter
f0 of a beam with normalized distance of propagation ξ =
zc/ω0r20 for different values of intensity parameter αE2

00 =
1.27, 1.37 at a fixed value ofplasma density,
ω2
p/ω

2
0 = 0.20. It is observed from Figure 1 that extent of

self-focusing of the beam decreases with increase in inten-
sity. This is due to the fact that the non-linear refractive
term is very sensitive to the intensity of the laser beam. So,
with the increase in the intensity of the laser beam, diffractive
term relatively becomes stronger but not enough to over-
power the non-linear refractive term, as a result beam remains
in a self-focusing mode. So, one can infer that as the intensity
of the laser beam is increased, there is decrease in the non-
linear term, which leads to decrease in self-focusing.
Figure 2 describes the variation of beam width parameter

f0 of a beam with normalized distance of propagation ξ for

different values of plasma density ω2
p/ω

2
0 = 0.17, 0.20 and

at a fixed value of intensity parameter αE00
2 = 1.27. It is ob-

served that with increase in plasma density extent of self-
focusing of the beam increases. This is due to the fact that
the refractive term dominates the diffractive term as we in-
crease the value of plasma density.
Figure 3 depicts the variation of second harmonic yield

P2/P0 with the normalized distance of propagation ξ for
different values of intensity parameter αE00

2 = 1.27, 1.37
and at ω2

p/ω
2
0 = 0.20. It is observed that second harmonic

yield decreases with increase in intensity. This is due to the
reason that with increase in intensity, the self-focusing of
the laser beam decreases, which results in decrease in non-
uniform heating of the carriers in the focal region and
hence decreases the amplitude of plasma wave generation
and ultimately the second harmonic yield.

Fig. 1. Variation of beam width parameter f0 against the normalized distance
of propagation ξ(=zc/ω0r0

2) for plasma density ω2
p/ω

2
0 = 0.20 and for inten-

sity αE00
2 = 1.27, 1.37.

Fig. 2. Variation of beam width parameter f0 against the normalized distance
of propagation ξ for intensity αE00

2 = 1.27 and for plasma density
ω2
p/ω

2
0 = 0.17, 0.20.

Fig. 3. Variation of second harmonic yield P2/P0 against the normalized
distance of propagation ξ for plasma density ω2

p/ω
2
0 = 0.20 and for intensity

αE00
2 = 1.27, 1.37.
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Figure 4 depicts the variation of second harmonic yield
P2/P0 with the normalized distance of propagation ξ for
different values of plasma density ω2

p/ω
2
0 = 0.17, 0.20 and

at fixed value of intensity parameter αE00
2 = 1.27. It is ob-

served from Figure 4 that second harmonic yield increases
with increase in plasma density. This is due to the reason
that with increase in plasma density, the self-focusing of
the laser beam increases which results in increase in non-
uniform heating of the carriers in the focal region, which in
turn leads to increase the amplitude of plasma wave gener-
ation and hence the second harmonic yield.

6. CONCLUSION

In the present work, moment theory has been developed to
study the second harmonic generation of laser beam, when
Collisional non-linearity is operative. Following important
observations are made from present analysis.
(1) The effect of increase of laser beam intensity/plasma

density is to increase/decrease the self-focusing length.
(2) Self-focusing of the laser beam becomes stronger with

increase in the plasma density and becomes weaker with in-
crease in laser beam intensity.
(3) There is an increase in the second harmonic yield with

increase in the plasma density and also with decrease in laser
beam intensity. Thus laser power and plasma density par-
ameters are crucial to harmonic generation.
Results of the present analysis are useful in understanding

the physics of high power laser driven fusion in which
second harmonic generation play important role.
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