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In this article we introduce the notion of the Markov chain fields on the generalized
Bethe trees or generalized Cayley treasd some strong limit theorems on the
frequencies of states and ordered couples of stagading the Shannon—McMillan
theorem on Bethe treks  and Cayley tredc n, are obtainedin the proof a new
technique in the study of the strong limit theorem in probability theory is applied

1. INTRODUCTION

We begin with notations and definitionshich mainly follow from Spitzef6] and
Berger and Yé2].

Atreeis a graplG = {T, E} which is connected and contains no circLifthus
Gisatreeifand only ifgiven any two vertices # y € T, there exists an unique path
X=2Z4,25,...,Zn=Yyfromxtoywith z,,..., z, distinct The distance betweetand
y is defined to ben — 1, the number of edges in the path connectirandy.

To index the vertices om, we first assign a vertex as the “root” and labgl}.
Avertex is said to be on theth level if the path linking it to the root hasedgesThe
root{0} is also said to be on the Oth level

DEerINITION 1: Let T be a tree with roof0}, and let{N,,h = 1} be a sequence of
positive integers. T is said to be a generalized Bethe tree or a generalized Cayley
tree if each vertex on the nth level hag,Nbranches to thén + 1)st level.
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For examplewhenN; = N+ 1= 2 andN,, = N(n= 2), Tis a rooted Bethe tree
Ts.n ONnWhich each vertex ha$+ 1 neighboring vertice€Tg , drawn in Fig 1), and
whenN,=N=1(n=1), Tis arooted Cayley tre&; y on which each vertex ha$
branches to the next level

In the following we always assume thdtis a generalized Cayley tree and
denote byT ™ the subgraph of containing the vertices from level @e rooj to
leveln. We use(n,j)(1=j = Ni,...,N,,n=1) to denote thgth vertex at thenth
level and denote byB| the number of vertices in the subgrapHt is easy to see that
forn=1,

n
IT™ =1+ > Ng,...,N (1)
k=1

Letb be a positive intege6={1,2,...,b},Q = ST, 0w = w(:) € Q, wherew(-)
is a function defined ol and taking values in,SandF be the smallest Borel field
containing all cylinder sets if. Let X = {X;,t € T} be the coordinate stochastic
process defined on the measurable spag€); thatis for anyw = w(-) € Q, define

Xi(w) = w(t), teT. (2)
Let u be a probability measure d, F). Denote
XT" = {X,teT™},  pX™" =x"") = p(x™).

Now, we give a definition of Markov chain fields on the tréeby using the
cylinder distribution directlywhich is a natural extension of the classical definition
of Markov chaingsee Fellef3, p. 372]).

level 3

level 2

level 1 (1,1) [(1,2) (1.3)
0

root

FiGure 1. Bethe tre€lg ,.
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DEFINITION 2: Let P= P(j|i) be a strictly positive stochastic matrix on &=
(q(2),...,q9(b)) be a strictly positive distribution on S, and |be a measure on

(Q,F). If
Ny
Hp(Xo) = q(Xo), HP(XT(D) =q(xo) [] P(Xyj|%o), (3
j=1
Ny n—1 Ni...Npy, N1
UP(XT(n)) = d(Xo) H P(Xy,j %) H H H P(Xme1j [ Xmi),
j=1 M=l i=1 j=Np 4(i-1+1

n=2, (4)

thenpp will be called a Markov chain field on treEdetermined by the stochastic
matrix P and the distributior.

Remark 1:  given by(3) and(4) also depends 0g. Hence Definition 2 slightly
extends the one given by SpitZ€l and Berger and YE2], whereqis taken to be the
stationary distributionr = (7 (1),...,7 (b)) determined byP.

Remark 2:1f for all n = 1,N, = 1 andx,; is denoted by, then we have by3)
and(4),

n—1

He(X™™) = Hp(Xo = Xoy -+, Xn = %) = 4(Xo) TT PXsa| Xen)-
m=1

This is the cylinder distribution of Markov chains

The tree model has drawn increasing interest from specialists in phgsits
ability, and information theoryBerger and Yd 2] have studied the existence of
entropy rate for G-invariant random fields on trelRecently Ye and Bergef7] have
also studied the ergodic property and the Shannon—-McMillan theorem for PPG-
invariant fields on treesdowever their main work is restricted to Bethe trég, or
Cayley tre€lc ,, and the convergence of the results is only the convergence in prob-
ability. Benjamini and Perekl] have introduced the notions of the tree-indexed
Markov chains and the tree-indexed random walk and have studied the recurrence
and ray-recurrence for them

In Section 3 we first prove a strong limit theorem on the frequencies of the
ordered couples of states for the Markov chain fields on the generalized Cayley trees
(or generalized Bethe tree$rom which some strong limit theoremiscluding the
Shannon—McMillan theorem withs convergencgfor the Markov chain fields on
the Cayley tred¢ y or Bethe tre€lg \ follow.

In the proof a new technique in the study ofsaconvergence proposed in our
previous workgsee Liu and Yan{4,5]) is applied
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2. SOME LEMMAS

LemmA 1: Let iy and b be two probability measures on the measurable space
(Q,F), and let{r,,n = 1} be a sequence of positive random variables such that

Tn

Iimninf W >0, My —as. (5)
Then,
_ 1 ((XT)
lim supT— In W =0, My — as. (6)
n n 1

ProOF: LetZ, = p(XT")/y(XT"). Itis easy to see thd, (Z,) = 1, whereE,,
denotes the expectation under. Hence for all ¢ > 0, we have by the Markov’s
inequality

> (T nZ, =) = > exp(—|T™e) < oo (7)
n=1 n=1
Sincee > 0 is arbitrary by the Borel-Cantelli lemmat follows from (7) that

i 1 Ha(XT™)
ImSu n o
ST M L xT™)

= 07 My —as. (8)

Obviously (5) and(8) imply (6). [ ]

Letk, | € S S(k w) be the number dfin XT" = {X,,t € T™}, andS,(k, |, )
be the number of couplg, 1) in the couples of random variables

{(Xo, X15), 1=j=N, (Xni,Xni1j), 1=m=n-1
1=i=N;--Np, Npp(i—1)+1=j=Nyni,n=2}

that is
Sk w) = 1(Xo) + 21 21 le(Xmj)s ()]
m= j=
Ny n—1 Np..... Ny N1
Si(kl,w) = Zlk(XO)II(XLj)+ > (X i) 1 (Xms1),  (10)
j=1 m=1 i=1 j=Np,.(-D+1
where

1, x=k .
| = eSS
(x) 0, x#k %
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Let
b
an(kw) = 3 Sk, 0). (12)
j=1
It is easy to see that
b
213"““’) =|T™|, (12)
b
;&(i,Kw) = Si(k ) = 1(Xo), (13)
ook = Nyl(X) + S S Noah(Xom) (14)
m=1 j=1
b
S onlkw) = [T -1 (15)

k=1

In the following, we always assume thgt is the Markov chain field on tre@
determined by the stochastic matRx= (P(j|i)) and the distributiom.

LEMMA 2: Forallk € S, we have

. Si(kw)
liminf
n |T™]

>0, Mp — as. (16)

ProoF: Let 0 < A < 1 be a constanandQ = (Q(jli)), i,j € S be another sto-
chastic matrixwhere for alli € §

o Lo @=0P() :
Q(kli) = A, Q(”I)_T(kh)’ j#k 17)
Denote by the Markov chain field on the tréedetermined byQ and distribution
g. Then
Ny n—1 Ngp,..., N, Nppq
“Q(XT(H)) = q(Xo) H Q(Xq,j|%o) H Q(Xm1, 1 Xmi)s
j=1 m=1 =1 =Ny (i—-1+1
n=2  (18)
Let
a, = min{P(k|i),i € S}, b, = max{P(k|i),i € S}. (29)
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By (4), (11), (15), and(17)—(19), we have
Ho(X™™) P D[Q(HD]%“J@
P—P(XT(H) iz1j=1L P(jli)

A Sa(i, k@) 1— A on(i, )= Sy(i, k@)
(kll)} [1—P(k|i)}

rqu,k,w{ 1— A Tna,w)sq(i,k,w)

I

i=1

p
A
b

\%
u :|g

K 1-a

A \Sko)—1k(Xe) /1 — ) \IT™I-1-Sy(k @) +1x(Xo)
== . 20

Hence by using Lemma lit follows from (20) that there existsA(A) €
F, up(A(A)) = 1, such that

Al—a) _ (1-a)
S.(k,w)In <m)_|n<—(l_/\) >, w € AN). (21)

lim sup |T<”>|

Taking A € (0, a,) and noting that

A(l—a 1-a
O<u<1, 0< «
b.(1—A) 1-2

<1,
we have by(21),
liminf —— S\(k w) = { <1_—ak>] {m(M)}l >0,
n |T<>| 1-2 b (1 - A)
w EAN). (22
Hence (16) holds u

Lemma 3: If there exist positive integers,.NN, and d such that N= N, = N*
when n= d, then

iminf (]T(lf)“() = Nl Iim'nf( S|’”T(Iff‘|’)> e — as., (23)
im inf qu(|(<;)|) Nl fiminf UT(T’)“") (24)
im sup U|”T“f;)|) = ::JI Iimnsup%, (25)
Iimfupsq_r(%;)a')) = E—: Iimfup%k;;r). (26)
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Proor: It is easy to see that there exist finite numbarm@ndb and finite random
variablesa(w) andB(w) such that

a+ N [T D[ = T <b+N* T, @7)
a(w) + N, §-1(k w) = oy(kw) = N*S§,_1(K 0) + B(w). (28)
Hence

a-n(kaw) - 0[(0)) + N*S171(ka (‘))
TO] = p+ N [TO D)

This together with Lemma 2 implig23) evidently In a similar waywe can verify
(24)—(26) by using inequalitie$27) and(28). u

LemmMma 4: LetO < p < land{c,, n=1} be a sequence of nonnegative real numbers.
If there exists a sequence of real numbigrg k = 1} such thal0 < o < p, @ — p,

and
) ay Ch/1— ay 1-c,
limsup| — —_— =1, (29)
n p 1-p
then
liminf ¢, = p; (30)
if there exists a sequence of real numbigsg, k = 1} such that p< 8, < 1, Bk — P,
and
1-
lim sup<'8k> ( Bk) =1
then

limsupc, =
1- 1-
liminf cnln(u> = In(—p>.
n p(1— ay) 1— oy

oo - 1-p a1-p\]*
Ilmnlnf Ch = {In ( 1o akﬂ [In <—p(1 ") >] (31)
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since

1- 1-
0<u<1, 0< P

p(1— ay) 1—ay

It is easy to see that

. 1-p a(l-p\|*
I||;n {In(l_akﬂ {In<p(l—ak)>] =p. (32)

Inequality (30) follows from (31) and(32) directly. In a similar waywe can verify
the second part of the lemma u

3. MAIN RESULTS

TureoreMm 1: If there exist positive integers,NN*, and d such that N= N, = N*
when n= d, then for all k, € S,

I,
im L9 oy L as (33)
n U-n(k,w)

Proor: LetO< A <1beaconstantard= (D(jli)),i,j € S be another stochastic

matrix, where

(1-MP(jlk)
1-P(k) ’

D(jli) =P(jli), i#k j€ES

Denote by the Markov chain field on tre€ determined by and the distribution

g. Then
po(XT") _ BB [ D(jli) ]St
> T(") HH
Hp(X i=1j=1 P(J||)

D(k) =4, D(jlk = j#1,

b D(jlk) |Skie
- 1[5
i=1L P(j[k)
A ]skLe 1— A  Jonko)—Skle)
=| = — : 4
[Pmk)] [1_p<||k)] (34
By (23) and Lemma 1there existA(k,1,A) € F andpup(A(k, 1, 1)) =1, such that
o [ (X [
Ilmqu[m =1 w € Akl A). (35)

Takea; € (0,P(I1k)) andg; € (P(l|k),1),i =1,2,..., such thaty, — P(I/k), B; —
P(I/k) (i — ). LetA,.(k,1) = N7, A(k |, a;). Then by (34) and(35), we have for alll
i=1,
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limsup =1,

n

@ |Sklo/okol 1—q [1Skle/oke
wiw) i)
weAKID). (36)

By Lemma 4 it follows from (36) that

fiminf 0o @) Pk, weAKl). (37)

n ok o)
Let A*(k, 1) = N2, Ak I, B;). In a similar way it can be shown that

. Sk |, )
Ilmnsupm

The theorem follows becausg (A.(k,1) N up(A*(k, 1)) = 1. u

=P(k), €A Kl). (38)

CoroLLARY 1: Under the conditions of Theorem 1, we have

kI,
limin % =N.P([K), pp—as,

 sklLw)
mSuP s "k a)

In particular, if T is a Bethe treeg[y or a Cayley tree { , then

Sk o) -
"T m = NP(l|k), Up — a.s. (39)

Proor: The corollary follows from Theorem 1 an@8) directly. |

= N*P(l k), Mp — as.

THEOREM 2: If T is a Bethe tree g or a Cayley tree { \, then for all ke S,

. Si(kw)
I|rnn T = 7(k), Up — as., (40)
. on(kw)
Ian T = 7 (k), Mp — as., (42)

wherew = (7 (),...,7 (b)) is the stationary distribution determined by P.

Proor: Let
o sGe)
H(i,j) = {w.lan S o) NP(] |)},
b
H= () HG,j).

ij=1
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By (39), up(H) = 1. Letw € H. Then

Si(i, kw) = S 1(],@)P(K[]) = an(], k0)S-1(], w),
wherea,( j, k,w) — 0(n — o0). Adding theb equalities fofj = 1,2,...,b and using
(13), we have

b

Sik w) — E NS 1(j, @)P(klj) = X an(j k@) S-a(j, @) + 1(Xo).  (42)

i=1

It follows from (42) and(12) that

S.(k, w) 1 b ) .
Im[ T T(n_1>|j_zlShl(J,a))P(kj):| =0, wEH. (43)

Multiplying the kth equality of(43) by P(i|k) (k= 1,2,...,b), adding them togethgr
and using43) once againwe obtain

i 1 Sn+l(iaw)
IIT{|T(n) E S1(k,w)P(l\k) |T(n+1)|

+1 -’w 1
{Sn (o) EESn 1, w)P(k|J)P(I|k)]}

T T T &

T S’]+l(i’w) 1 . @ (il _
- “ |: |T(n+1)| |T(n,1)| JZ-S’\fl(Jaw)P (I‘J) - 0’ wE H’

whereP™(i|j) (his a positive integeris thehth-order transition probability deter-
mined by stochastic matri¢P( j|i)). By induction we have

. 1 . 1
"T{T“‘*")I Sronlhe) = ) 2 ES“ 1(1"")P(h”)('|l)} =0, wEH.

(44)
Let
ap(i) = min{P™ D (i[j),j € S}, Bn(i) =max{P"(ilj),] € S}
By (44) and(12), we have
1
Iimnsupw Siinli,w) = Bp(i), o € H, (45)
Iimninf ﬁ Sin(i,w) = ay(i), w € H, (46)
Since lim,P™(i|j) == (i),
IiLn ap(i) = Iirm Br(i)=m(i). 47)
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Equation(40) follows from (45)—(47), and (41) follows from (40) and (23)— (26)
directly.

CoOROLLARY 2: Under the conditions of Theorem 2, we have

Si(k, I, @)

Iim W = 7T(k)P(| |k), Up —as., (48)
l,
im S;(E’( “)’) ~P(k), pp—as (49)
Proor: Equation(48) follows from (33) and(41), and(49) follows from (48) and
(40). [ |

THEOREM 3: Let T be a Bethe treegly or a Cayley tree § , and f(x,y) be a
function defined on 5 Set

n—1 Ng....., Ny N1
Yn(w) E f(XO’Xl]) + 2 Z 2 f(xm,i’xm+1,j)~ (50)
i=1  j=Np(-D+1
Then,
Y b b
im |T((:j) g le-(k)P(Hk)f(k,I), Lp — as. (51)

Proor: By (50) and(10), we have

b b
Yo(w) = 2 2 > (kD L(Xo) [ (Xq,))

n—1 Ng,..., Nm Ny i b b
+ > EEf(k,l)lk<xm)h(xm+1,j)
m=1 i=1 j=Np1(i—-1D)+1k=11=1
b b
=> E f(k 1Sk 1, o). (52)
k=11=1
The theorem follows fron52) and(48) directly. u

Let w be a probability measure dfi, F) and let

filw) = — Inp(X™").

T
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f,(w) is called the entropy density on subgraph with respect tqu. If p= pp, then
by (4) we have

Ny

1
fn((,()) |T(n)| [In q(XO) + E ln P(X1]|XO)

n—1 Ng,..., Ny N1
+ 2 2 In P(Xm+1,j|xm,i) . (53)
m=1 i=1 j=Ny(i—-D+1

The convergence ¢f(w) to a constant in a senéke; convergencgconvergence
in probability or as. convergenckis called the Shannon—-McMillan theorem or the
asymptotic equipartition propertAEP) in formation theoryBy using Theorem 3
we can easily obtain the Shannon—-McMillan theorem for Markov chain fields on the
Bethe tre€lg  and the Cayley tre&; y with as. convergence

THEOREM 4: Let U be a Markov chain field on Bethe treg  or the Cayley tree
Te.n, and f(w) be defined by (53). Then,

b b
lim f(w) = =, > 7 (K)P(|k)InP(Ik), Mp — a.s. (54)

n k=11=1
Proor: Letting f(x,y) = —InP(y|x) in Theorem 3the proof follows from(51)
directly. [ |

Remark: As we have mentioned in Section Ye and Berger have studied the
Shannon—McMillan theorem for PPG-invariant random field on trbesthe con-
vergence in their results is only the convergence in probabilitgy conjectured
that these results also hold witlsaconvergenceSince the Markov chain field is a
particular case of the PPG-invariant random figldseorem 4 partly solved the
conjecture of Ye and Berger
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