
SOME STRONG LIMIT THEOREMS
FOR MARKOV CHAIN FIELDS

ON TREES

WEEENNN LIIIUUU
Department of Mathematics

Hebei University of Technology
Tianjin 300130, China

WEEEIIIGGGUUUOOO YAAANNNGGG
Faculty of Science
Jiangsu University

Zhenjiang 212013, China
E-mail: wgyang@ujs.edu.cn

In this article,we introduce the notion of the Markov chain fields on the generalized
Bethe trees or generalized Cayley trees, and some strong limit theorems on the
frequencies of states and ordered couples of states, including the Shannon–McMillan
theorem on Bethe treeTB,N and Cayley treeTC,N , are obtained+ In the proof, a new
technique in the study of the strong limit theorem in probability theory is applied+

1. INTRODUCTION

We begin with notations and definitions, which mainly follow from Spitzer@6# and
Berger and Ye@2# +

A tree is a graphG5 $T,E% which is connected and contains no circuits+ Thus,
G is a tree if and only if, given any two verticesxÞy [ T, there exists an unique path
x5 z1, z2, + + + , zm5 y from x to y with z1, + + + , zm distinct+ The distance betweenx and
y is defined to bem2 1, the number of edges in the path connectingx andy+

To index the vertices onT, we first assign a vertex as the “root” and label it$0%+
A vertex is said to be on thenth level if the path linking it to the root hasn edges+The
root $0% is also said to be on the 0th level+

Definition 1: Let T be a tree with root$0%, and let$Nn, h $ 1% be a sequence of
positive integers. T is said to be a generalized Bethe tree or a generalized Cayley
tree if each vertex on the nth level has Nn11 branches to the~n 1 1!st level.
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For example, whenN1 5 N11 $ 2 andNn 5 N~n $ 2!, T is a rooted Bethe tree
TB,N on which each vertex hasN11 neighboring vertices~TB,2 drawn in Fig+ 1!, and
whenNn 5 N $ 1~n $ 1!, T is a rooted Cayley treeTC,N on which each vertex hasN
branches to the next level+

In the following, we always assume thatT is a generalized Cayley tree and
denote byT ~n! the subgraph ofT containing the vertices from level 0~the root! to
level n+We use~n, j !~1 # j # N1, + + + ,Nn, n $ 1! to denote thej th vertex at thenth
level and denote by6B6 the number of vertices in the subgraphB+ It is easy to see that
for n $ 1,

6T ~n! 6 5 11 (
k51

n

N1, + + + ,Nk+ (1)

Let b be a positive integer, S5 $1,2, + + + ,b%,V 5 ST,v 5 v~{! [ V, wherev~{!
is a function defined onT and taking values in S, andF be the smallest Borel field
containing all cylinder sets inV+ Let X 5 $Xt , t [ T % be the coordinate stochastic
process defined on the measurable space~V,F!; that is, for anyv5v~{! [ V, define

Xt ~v! 5 v~t !, t [ T+ (2)

Let m be a probability measure on~V,F!+ Denote

XT ~n!
5 $Xt , t [ T

~n!
%, µ~XT ~n!

5 xT ~n!
! 5 µ~xT ~n!

!+

Now, we give a definition of Markov chain fields on the treeT by using the
cylinder distribution directly, which is a natural extension of the classical definition
of Markov chains~see Feller@3, p+ 372# !+

Figure 1. Bethe treeTB,2+
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Definition 2: Let P5 P~ j 6 i ! be a strictly positive stochastic matrix on S, q 5
~q~1!, + + + ,q~b!! be a strictly positive distribution on S, and µP be a measure on
~V,F!. If

µP~x0! 5 q~x0!, µP~xT ~1!
! 5 q~x0! )

j51

N1

P~x1, j 6x0!, (3)

µP~xT ~n!
! 5 q~x0! )

j51

N1

P~x1, j 6x0! )
m51

n21

)
i51

N1 + + +Nm

)
j5Nm11~i21!11

Nm11 i

P~xm11, j 6xm, i !,

n $ 2, (4)

thenµP will be called a Markov chain field on treeT determined by the stochastic
matrix P and the distributionq+

Remark 1: µP given by~3! and~4! also depends onq+ Hence, Definition 2 slightly
extends the one given by Spitzer@6# and Berger and Ye@2# ,whereq is taken to be the
stationary distributionp 5 ~p~1!, + + + ,p~b!! determined byP+

Remark 2: If for all n $ 1,Nn 5 1 andxn,1 is denoted byxn, then we have by~3!
and~4!,

µP~xT ~n!
! 5 µP~X0 5 x0, + + + ,Xn 5 xn! 5 q~x0! )

m51

n21

P~xm116xm!+

This is the cylinder distribution of Markov chains+

The tree model has drawn increasing interest from specialists in physics, prob-
ability, and information theory+ Berger and Ye@2# have studied the existence of
entropy rate for G-invariant random fields on trees+Recently,Ye and Berger@7# have
also studied the ergodic property and the Shannon–McMillan theorem for PPG-
invariant fields on trees+ However, their main work is restricted to Bethe treeTB,2 or
Cayley treeTC,2, and the convergence of the results is only the convergence in prob-
ability+ Benjamini and Peres@1# have introduced the notions of the tree-indexed
Markov chains and the tree-indexed random walk and have studied the recurrence
and ray-recurrence for them+

In Section 3, we first prove a strong limit theorem on the frequencies of the
ordered couples of states for the Markov chain fields on the generalized Cayley trees
~or generalized Bethe trees!, from which some strong limit theorems, including the
Shannon–McMillan theorem with a+s+ convergence, for the Markov chain fields on
the Cayley treeTC,N or Bethe treeTB,N follow+

In the proof, a new technique in the study of a+s+ convergence proposed in our
previous works~see Liu and Yang@4,5# ! is applied+
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2. SOME LEMMAS

Lemma 1: Let µ1 and µ2 be two probability measures on the measurable space
~V,F!, and let$tn, n $ 1% be a sequence of positive random variables such that

lim inf
n

tn

6T ~n! 6
. 0, µ1 2 a+s+ (5)

Then,

lim sup
n

1

tn

lnSµ2~XT ~n!
!

µ1~XT ~n!
!D # 0, µ1 2 a+s+ (6)

Proof: Let Zn 5 µ2~XT ~n!
!0µ1~XT ~n!

!+ It is easy to see thatEµ1
~Zn! # 1, whereEµ1

denotes the expectation underµ1+ Hence, for all « . 0, we have by the Markov’s
inequality,

(
n51

`

µ1~6T ~n! 621 ln Zn $ «! # (
n51

`

exp~26T ~n! 6«! , `+ (7)

Since« . 0 is arbitrary, by the Borel–Cantelli lemma, it follows from ~7! that

lim sup
n

1

6T ~n! 6
ln

µ2~XT ~n!
!

µ1~XT ~n!
!

# 0, µ1 2 a+s+ (8)

Obviously, ~5! and~8! imply ~6!+ n

Let k, l [ S,Sn~k,v! be the number ofk in XT ~n!
5 $Xt , t [ T ~n! % , andSn~k, l,v!

be the number of couple~k, l ! in the couples of random variables

$~X0,X1, j !, 1 # j # Nj , ~Xm, i ,Xm11, j !, 1 # m# n 21,

1 # i # N1{{{ Nm, Nm11~ i 2 1! 1 1 # j # Nm11 i, n $ 2%;

that is,

Sn~k,v! 5 Ik~X0! 1 (
m51

n

(
j51

N1, + + + ,Nm

Ik~Xm, j !; (9)

Sn~k, l,v! 5 (
j51

N1

Ik~X0! Il ~X1, j ! 1 (
m51

n21

(
i51

N1, + + + ,Nm

(
j5Nm11~i21!11

Nm11 i

Ik~Xm, i ! Il ~Xm11, j !, (10)

where

Ik~x! 5 H1, x 5 k

0, x Þ k
x, k [ S+
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Let

sn~k,v! 5 (
j51

b

Sn~k, j,v!+ (11)

It is easy to see that

(
k51

b

Sn~k,v! 5 6T ~n! 6, (12)

(
i51

b

Sn~ i, k,v! 5 Sn~k,v! 2 Ik~X0!, (13)

sn~k,v! 5 N1 Ik~X0! 1 (
m51

n21

(
j51

N1, + + + ,Nm

Nm11 Ik~Xm, j !, (14)

(
k51

b

sn~k,v! 5 6T ~n! 62 1+ (15)

In the following, we always assume thatµP is the Markov chain field on treeT
determined by the stochastic matrixP 5 ~P~ j 6 i !! and the distributionq+

Lemma 2: For all k [ S, we have

lim inf
n

Sn~k,v!

6T ~n! 6
. 0, µP 2 a+s+ (16)

Proof: Let 0 , l , 1 be a constant, andQ 5 ~Q~ j 6 i !!, i, j [ S, be another sto-
chastic matrix, where for alli [ S,

Q~k6 i ! 5 l, Q~ j 6 i ! 5
~12 l!P~ j 6 i !

12 P~k6 i !
, j Þ k+ (17)

Denote byµQ the Markov chain field on the treeT determined byQ and distribution
q+ Then,

µQ~xT ~n!
! 5 q~x0! )

j51

N1

Q~x1, j 6x0! )
m51

n21

)
i51

N1, + + + ,Nm

)
j5Nm11~i21!11

Nm11 i

Q~xm11, j 6xm, i !,

n $ 2+ (18)

Let

ak 5 min$P~k6 i !, i [ S%, bk 5 max$P~k6 i !, i [ S%+ (19)
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By ~4!, ~11!, ~15!, and~17!–~19!, we have

µQ~XT ~n!
!

µP~XT ~n!
!

5 )
i51

b

)
j51

b FQ~ j 6 i !

P~ j 6 i ! G
Sn~i, j,v!

5 )
i51

b F l

P~k6 i !G
Sn~i, k,v!F 12 l

12 P~k6 i !G
sn~i,v!2Sn~i, k,v!

$ )
i51

b F l

bk
GSn~i, k,v!F 12 l

12 ak
Gsn~i,v!2Sn~i, k,v!

5 S l

bk
DSn~k,v!2Ik~X0!S 12 l

12 ak
D6T ~n! 6212Sn~k,v!1Ik~X0!

+ (20)

Hence, by using Lemma 1, it follows from ~20! that there existsA~l! [
F, µP~A~l!! 5 1, such that

lim sup
n

1

6T ~n! 6
Sn~k,v! lnSl~12 ak!

bk~12 l!D # lnS ~12 ak!

~12 l! D, v [ A~l!+ (21)

Takingl [ ~0,ak! and noting that

0 ,
l~12 ak!

bk~12 l!
, 1, 0 ,

12 ak

12 l
, 1,

we have by~21!,

lim inf
n

1

6T ~n! 6
Sn~k,v! $ FlnS12 ak

12 l DGFlnSl~12 ak!

bk~12 l!DG21

. 0,

v [ A~l!+ (22)

Hence, ~16! holds+ n

Lemma 3: If there exist positive integers N*, N , and d such that N* # Nn # N*

when n$ d, then

lim inf
n

sn~k,v!

6T ~n! 6
$

N*
N*

lim inf
n

S Sn~k,v!

6T ~n! 6 D . 0, µP 2 a+s+ , (23)

lim inf
n

Sn~k,v!

6T ~n! 6
$

N*
N*

lim inf
n

sn~k,v!

6T ~n! 6
, (24)

lim sup
n

sn~k,v!

6T ~n! 6
#

N*

N*
lim sup

n

Sn~k,v!

6T ~n! 6
, (25)

lim sup
n

Sn~k,v!

6T ~n! 6
#

N*

N*
lim sup

n

sn~k,v!

6T ~n! 6
+ (26)
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Proof: It is easy to see that there exist finite numbersa andb and finite random
variablesa~v! andb~v! such that

a 1 N* 6T ~n21! 6 # 6T ~n! 6# b 1 N* 6T ~n21! 6, (27)

a~v! 1 N*Sn21~k,v! # sn~k,v! # N*Sn21~k,v! 1 b~v!+ (28)

Hence,

sn~k,v!

6T ~n! 6
$

a~v! 1 N*Sn21~k,v!

b 1 N* 6T ~n21! 6
+

This together with Lemma 2 implies~23! evidently+ In a similar way, we can verify
~24!–~26! by using inequalities~27! and~28!+ n

Lemma 4: Let0, p, 1and$cn, n$1% be a sequence of nonnegative real numbers.
If there exists a sequence of real numbers$ak, k $ 1% such that0 , ak , p,ak r p,
and

lim sup
n

Sak

p
DcnS12 ak

12 p
D12cn

# 1, (29)

then

lim inf
n

cn $ p; (30)

if there exists a sequence of real numbers$bk, k $ 1% such that p, bk , 1,bk r p,
and

lim sup
n

Sbk

p
DcnS12 bk

12 p
D12cn

# 1,

then

lim sup
n

cn # p+

Proof: By ~29!,

lim inf
n

cn lnS ak~12 p!

p~12 ak!D # lnS 12 p

12 ak
D+

Hence,

lim inf
n

cn $ FlnS 12 p

12 ak
DGFlnS ak~12 p!

p~12 ak!DG21

(31)
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since

0 ,
ak~12 p!

p~12 ak!
, 1, 0 ,

12 p

12 ak

, 1+

It is easy to see that

lim
k
FlnS 12 p

12 ak
DGFlnS ak~12 p!

p~12 ak!DG21

5 p+ (32)

Inequality~30! follows from ~31! and~32! directly+ In a similar way, we can verify
the second part of the lemma+ n

3. MAIN RESULTS

Theorem 1: If there exist positive integers N*, N*, and d such that N* # Nn # N*

when n$ d, then for all k, l[ S,

lim
n

Sn~k, l,v!

sn~k,v!
5 P~l 6k!, µP 2 a+s+ (33)

Proof: Let 0, l , 1 be a constant andD5 ~D~ j 6 i !!, i, j [ S, be another stochastic
matrix, where

D~l 6k! 5 l, D~ j 6k! 5
~12 l!P~ j 6k!

12 P~l 6k!
, j Þ l,

D~ j 6 i ! 5 P~ j 6 i !, i Þ k, j [ S+

Denote byµD the Markov chain field on treeT determined byD and the distribution
q+ Then,

µD~XT ~n!
!

µP~XT ~n!
!

5 )
i51

b

)
j51

b F D~ j 6 i !

P~ j 6 i ! G
Sn~i, j,v!

5 )
j51

b F D~ j 6k!

P~ j 6k!
GSn~k, j,v!

5 F l

P~l 6k!
GSn~k, l,v!F 12 l

12 P~l 6k!
Gsn~k,v!2Sn~k, l,v!

+ (34)

By ~23! and Lemma 1, there existA~k, l,l! [ F andµP~A~k, l,l!! 5 1, such that

lim sup
n

F µD~XT ~n!
!

µP~XT ~n!
! G10sn~k,v!

# 1, v [ A~k, l,l!+ (35)

Takeai [ ~0,P~l 6k!! andbi [ ~P~l 6k!,1!, i 51,2, + + + , such thatai r P~l0k!,bi r

P~l0k!~i r`!+ LetA*~k, l !5ùi51
` A~k, l,ai !+ Then, by ~34! and~35!,we have for all

i $ 1,
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lim sup
n

F ai

P~l 6k!
GSn~k, l,v!0sn~k,v!F 12 ai

12 P~l 6k!
G12Sn~k, l,v!0sn~k,v!

# 1,

v [ A*~k, l !+ (36)

By Lemma 4, it follows from ~36! that

lim inf
n

Sn~k, l,v!

sn~k,v!
$ P~l 6k!, v [ A*~k, l !+ (37)

Let A*~k, l ! 5 ùi51
` A~k, l,bi !+ In a similar way, it can be shown that

lim sup
n

Sn~k, l,v!

sn~k,v!
# P~l 6k!, v [ A*~k, l !+ (38)

The theorem follows becauseµP~A*~k, l ! ù µP~A*~k, l !! 5 1+ n

Corollary 1: Under the conditions of Theorem 1, we have

lim inf
n

Sn~k, l,v!

Sn21~k,v!
$ N*P~l 6k!, µP 2 a+s+ ,

lim sup
n

Sn~k, l,v!

Sn21~k,v!
# N*P~l 6k!, µP 2 a+s+

In particular, if T is a Bethe tree TB,N or a Cayley tree TC,N, then

lim
n

Sn~k, l,v!

Sn21~k,v!
5 NP~l 6k!, µP 2 a+s+ (39)

Proof: The corollary follows from Theorem 1 and~28! directly+ n

Theorem 2: If T is a Bethe tree TB,N or a Cayley tree TC,N, then for all k[ S,

lim
n

Sn~k,v!

6T ~n! 6
5 p~k!, µP 2 a+s+ , (40)

lim
n

sn~k,v!

6T ~n! 6
5 p~k!, µP 2 a+s+ , (41)

wherep 5 ~p~1!, + + + ,p~b!! is the stationary distribution determined by P.

Proof: Let

H~i, j ! 5 Hv : lim
n

Sn~i, j,v!

Sn21~i,v!
5 NP~ j 6 i !J ,

H 5 ù
i, j51

b

H~i, j !+
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By ~39!, µP~H ! 5 1+ Let v [ H+ Then,

Sn~ j, k,v! 2 Sn21~ j,v!P~k6 j ! 5 an~ j, k,v!Sn21~ j,v!,

wherean~ j, k,v! r 0~n r `!+ Adding theb equalities forj 5 1,2, + + + ,b and using
~13!, we have

Sn~k,v! 2 (
j51

b

NSn21~ j,v!P~k6 j ! 5 (
j51

b

an~ j, k,v!Sn21~ j,v! 1 Ik~X0!+ (42)

It follows from ~42! and~12! that

lim
n
F Sn~k,v!

6T ~n! 6
2

1

6T ~n21! 6 (j51

b

Sn21~ j,v!P~k6 j !G 5 0, v [ H+ (43)

Multiplying thekth equality of~43! by P~i 6k!~k51,2, + + + ,b!, adding them together,
and using~43! once again, we obtain

lim
n
H 1

6T ~n! 6 (k51

b

Sn~k,v!P~i 6k! 2
Sn11~i,v!

6T ~n11! 6

1 F Sn11~i,v!

6T ~n11! 6
2

1

6T ~n21! 6 (k51

b

(
j51

b

Sn21~ j,v!P~k6 j !P~i 6k!GJ
5 lim

n
F Sn11~i,v!

6T ~n11! 6
2

1

6T ~n21! 6 (j51

b

Sn21~ j,v!P~2! ~i 6 j !G5 0, v [ H,

whereP~h!~i 6 j ! ~h is a positive integer! is thehth-order transition probability deter-
mined by stochastic matrix~P~ j 6 i !!+ By induction, we have

lim
n
H 1

6T ~n1h! 6
Sn1h~i,v! 2

1

6T ~n21! 6 (j51

b

Sn21~ j,v!P~h11! ~i 6 j !J 5 0, v [ H+

(44)

Let

ah~i ! 5 min$P~h11! ~i 6 j !, j [ S%, bh~i ! 5 max$P~h11! ~i 6 j !, j [ S%+

By ~44! and~12!, we have

lim sup
n

1

6T ~n1h! 6
Sn1h~i,v! # bh~i !, v [ H, (45)

lim inf
n

1

6T ~n1h! 6
Sn1h~i,v! $ ah~i !, v [ H, (46)

Since limh P~h11!~i 6 j ! 5 p~i !,

lim
h

ah~i ! 5 lim
h

bh~i ! 5 p~i !+ (47)
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Equation~40! follows from ~45!–~47!, and ~41! follows from ~40! and ~23!–~26!
directly+ n

Corollary 2: Under the conditions of Theorem 2, we have

lim
n

Sn~k, l,v!

6T ~n! 6
5 p~k!P~l 6k!, µP 2 a+s+ , (48)

lim
n

Sn~k, l,v!

Sn~k,v!
5 P~l 6k!, µP 2 a+s+ (49)

Proof: Equation~48! follows from ~33! and~41!, and~49! follows from ~48! and
~40!+ n

Theorem 3: Let T be a Bethe tree TB,N or a Cayley tree TC,N, and f~x, y! be a
function defined on S2. Set

Yn~v! 5 (
j51

N1

f ~X0,X1, j ! 1 (
m51

n21

(
i51

N1, + + + ,Nm

(
j5Nm11~i21!11

Nm11 i

f ~Xm, i ,Xm11, j !+ (50)

Then,

lim
n

Yn~v!

6T ~n! 6
5 (

k51

b

(
l51

b

p~k!P~l 6k! f ~k, l !, µP 2 a+s+ (51)

Proof: By ~50! and~10!, we have

Yn~v! 5 (
j51

N1

(
k51

b

(
l51

b

f ~k, l ! Ik~X0! Il ~X1, j !

1 (
m51

n21

(
i51

N1, + + + ,Nm

(
j5Nm11~i21!11

Nm11 i

(
k51

b

(
l51

b

f ~k, l ! Ik~Xm, i ! Il ~Xm11, j !

5 (
k51

b

(
l51

b

f ~k, l !Sn~k, l,v!+ (52)

The theorem follows from~52! and~48! directly+ n

Let m be a probability measure on~V,F! and let

fn~v! 5 2
1

6T ~n! 6
ln µ~XT ~n!

!+
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fn~v! is called the entropy density on subgraphT ~n! with respect tom+ If µ5µP, then
by ~4! we have

fn~v! 5 2
1

6T ~n! 6 Fln q~X0! 1 (
j51

N1

ln P~X1, j 6X0!

1 (
m51

n21

(
i51

N1, + + + ,Nm

(
j5Nm11~i21!11

Nm11 i

ln P~Xm11, j 6Xm, i !G+ (53)

The convergence offn~v! to a constant in a sense~L1 convergence, convergence
in probability, or a+s+ convergence! is called the Shannon–McMillan theorem or the
asymptotic equipartition property~AEP! in formation theory+ By using Theorem 3,
we can easily obtain the Shannon–McMillan theorem for Markov chain fields on the
Bethe treeTB,N and the Cayley treeTC,N with a+s+ convergence+

Theorem 4: Let µP be a Markov chain field on Bethe tree TB,N or the Cayley tree
TC,N, and fn~v! be defined by (53). Then,

lim
n

fn~v! 5 2(
k51

b

(
l51

b

p~k!P~l 6k! ln P~l 6k!, µP 2 a+s+ (54)

Proof: Letting f ~x, y! 5 2ln P~ y6x! in Theorem 3, the proof follows from~51!
directly+ n

Remark: As we have mentioned in Section 1, Ye and Berger have studied the
Shannon–McMillan theorem for PPG-invariant random field on trees, but the con-
vergence in their results is only the convergence in probability+ They conjectured
that these results also hold with a+s+ convergence+ Since the Markov chain field is a
particular case of the PPG-invariant random fields, Theorem 4 partly solved the
conjecture of Ye and Berger+
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