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FRAÏSSÉ LIMITS OFMETRIC STRUCTURES

ITAÏ BEN YAACOV

Abstract. We develop Fraı̈ssé theory, namely the theory of Fraı̈ssé classes and Fraı̈ssé limits, in the
context of metric structures. We show that a class of finitely generated structures is Fraı̈ssé if and only
if it is the age of a separable approximately homogeneous structure, and conversely, that this structure is
necessarily the unique limit of the class, and is universal for it.
We do this in a somewhat new approach, in which “finite maps up to errors” are coded by approximate

isometries.

§1. Introduction. The notions of Fraı̈ssé classes and Fraı̈ssé limits were originally
introduced byRolandFraı̈ssé [7], as amethod to construct countable homogeneous
(discrete) structures:

(i) Every Fraı̈ssé class K has a Fraı̈ssé limit, which is unique (up to
isomorphism). The limit is countable and ultrahomogeneous (or, in more
model-theoretic terminology, quantifier-free-homogeneous).

(ii) Conversely, every countable ultrahomogeneous structure is the limit of a
Fraı̈ssé class, namely, its age.

Moreover, the limit is universal for countable K-structures, namely for countable
structures whose age is contained in K.
Similar results hold for metric structures as well. Indeed, some general theory of
this form is discussed in the PhD dissertation of Schoretsanitis [12]. Independently,
Kubiś and Solecki [9] treated the special case of the class of finite dimensional
Banach spaces, essentially showing that their Fraı̈ssé limit is theGurarij space,which
is therefore unique and universal, without ever actually uttering the phrase “Fraı̈ssé
limit” (and in a fashion which is very specific to Banach spaces). This multitude of
somewhat incompatible approaches reinforced by considerable nagging from Todor
Tsankov convinced the author of the potential usefulness of the present paper.
There is one main novelty in the present treatment, compared with earlier
treatments of back-and-forth arguments in the metric setting, in that we replace
partial maps with approximate isometries (which is just a fancy term for bi-Katětov
maps). These allow us to code in a single, hopefully natural, object, notions such as
a partial isometry betweenmetric spaces, or even a “partial isometry only knownup
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FRAÏSSÉ LIMITS OFMETRIC STRUCTURES 101

to some error term ε > 0”. On a technical level, approximate isometries are easier to
manipulate than, say, partial isometries, and can be freely composed without loss of
information. More importantly, their use simplifies arguments and dispenses with
the need for several limit constructions at several crucial points:

• In the back-and-forth argument. The reader is invited to compare the proof of
Theorem 3.19, which is hardly distinguishable from the argument for discrete
structures, with “traditional” arguments for metric structures, involving the
construction of partial isomorphisms which only extend each other up to some
error, as in the proofs of Facts 1.4 and 1.5 of [5].
• When checking that a structure is a Fraı̈ssé limit, e.g., when proving that such
exists, or when proving that the Gurarij space is the limit of finite-dimensional
Banach spaces (Theorem 4.3). Indeed, approximate isometries allow us to
define a Fraı̈ssé limit in amannerwhich is formally weaker than the “traditional
approach” definition (namely Theorem 3.20(iv)). The limit constructions
required to pass from the weaker definition to the stronger one are then entirely
subsumed in the back-and-forth argument referred to above.

Of course, some preliminary work is required in order to develop these tools.
However, once this is done, many arguments in metric model theory, not only those
present here, can be simplified significantly, so we consider this is worth the effort. In
addition, approximate isometries are essential for a generalisation of metric Fraı̈ssé
theory, to appear in a subsequent paper, in which the limit is only unique up to
arbitrarily small error (e.g., a Banach space which is almost isometrically unique).

§2. Approximate isometries. Finite partial isomorphisms between structures
play a crucial role in classical Fraı̈ssé theory. For example, homogeneity and
uniqueness of the Fraı̈ssé limit are proved using a back-and-forth argument, in
which finite partial maps serve as better and better approximations for a desired
global bijection. In the metric setting, one may expect finite partial isometries to
play a similar role, coding partial information regarding a desired global isom-
etry. However, this analogy fails, essentially on the grounds that whereas finite
maps define neighbourhoods of global bijections (in the topology of point-wise
convergence), finite isometries do not define neighbourhoods of global isometries.
In order to define an open set of isometries we need to restrict to a finite set and
allow for a small error: if g : X ��� X is a finite partial isometry and ε > 0, then{
h ∈ Iso(X ) : hx ∈ B(gx, ε) for all x ∈ dom g} is open and such sets form a basis
for the point-wise convergence topology on Iso(X ).
Another deficiency of partial isometries arises when considering compositions.

Sayf : X ��� Y and g : Y ��� Z are partial isometries, such that imgf∩dom g =
∅, and say x ∈ domf is such that fx is very close to some y ∈ domg. Then we
should like to say that gfx is very close to gy, but the composition gf is empty and
cannot code this information.
In order to remedy either problem we require a more flexible object than a partial

isometry, which can say where an element goes, more or less, without having to
say exactly where. These objects will serve us mostly as approximations of actual
isometries, whence their name. The reader may wish to compare with the treatment
of bi-Katětov functions in Uspenskij [13].
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Definition 2.1. Let X , Y , and Z denote metric spaces.

(i) We say that a function � : X → [0,∞] is Katětov if for all x, y ∈ X we have
�(x) ≤ d (x, y)+�(y) and d (x, y) ≤ �(x)+�(y). Unlike Uspenskij (and
Katětov) we allow the value∞, observing that a Katětov function is either
finite or constantly∞.

(ii) We say that � : X × Y → [0,∞] is an approximate isometry from X to Y ,
and write � : X � Y , if it is bi-Katětov, i.e., separately Katětov in each
argument. The special case� =∞ is called the empty approximate isometry.

(iii) Given any � : X × Y → [0,∞] and ϕ : Y × Z → [0,∞] we define a
composition ϕ� : X ×Z → [0,∞] and a pseudoinverse�∗ : Y ×X → [0,∞]
by

ϕ�(x, z) = inf
y∈Y
�(x, y) + ϕ(y, z), �∗(y, x) = �(x, y).

An approximate isometry � : X � Y is meant to provide partial information
regarding some isometry, possibly between larger spaces. We shall understand �
as saying that x must be sent within �(x, y) of y, so an isometry f is considered
to satisfy the constraints prescribed by � if �(x, y) ≥ d (fx, y) for all x, y, i.e., if
f = �f ≤ � in the sense of Theorem 2.4. Accordingly, anotherϕ : X � Y imposes
stronger constraints if and only if � ≥ ϕ. The rest of our terminology (coarsening,
refinement, etc.) should be understand in the context of this interpretation.

Remark 2.2. Let � : X × Y → [0,∞) be given, let Z = X � Y , and define
dZ extending dX and dY by d (x, y) = d (y, x) = �(x, y). Then � is bi-Katětov
(i.e., an approximate isometry) if and only if d is a pseudodistance onZ. The reader
is advised that, while this interpretation is close to Katětov’s original use for such
functions, it is quite distant fromour intended use, andmay therefore bemisleading.

Lemma 2.3.

(i) The composition and pseudoinverse of approximate isometries are again
approximate isometries.

(ii) Composition is associative, and pseudoinversion acts as an involution:�∗∗ = �,
(ϕ�)∗ = �∗ϕ∗.

Proof. Let ϕ : X � Y and � : Y � Z. Then for each x ∈ X and y ∈ Y , the
function z 	→ ϕ(x, y) + �(y, z) is Lipschitz with constant 1, and therefore so is
z 	→ �ϕ(x, z) = infy ϕ(x, y) + �(y, z) for any fixed x. Similarly, for any x ∈ X ,
y, y′ ∈ Y , and z, z′ ∈ Z we have
ϕ(x, y) + �(y, z) + ϕ(x, y′) +�(y′, z′) ≥ d (y, y′) + �(y, z) + �(y′, z′)

≥ �(�′, z) + �(y′, z) ≥ d (z, z′),
whence �ϕ(x, z)+��(x, z′) ≥ d (z, z′). Therefore�ϕ is an approximate isometry,
and it is clear thatϕ∗ is one as well. The second item is even easier and is left to the
reader. 

The first exampleswe give of approximate isometries are simply partial isometries,
viewed as instances of the former (modulo some obvious identifications: a partial
isometry and its restriction to a dense subset of its domain carry the same
information, and indeed induce the same approximate isometry).
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Definition 2.4. Let X and Y denote metric spaces.

(i) To a partial isometry f : X ��� Y we associate an approximate isometry
�f(x, y) = infz∈domf d (x, z) + d (fz, y). We shall mostly ignore the
distinction between f and �f , denoting the latter by f as well.

(ii) Let i : X ⊆ X ′, j : Y ⊆ Y ′ isometric embeddings, and let � : X � Y . Then
j�i∗ : X ′ � Y ′ is called the trivial extension of � to X ′ � Y ′. When there
is no risk of ambiguity, we shall identify an approximate isometry with its
trivial extension to any pair of larger spaces.

Lemma 2.5.

(i) If f is a partial isometry, then the corresponding �f is an approximate
isometry.

(ii) The approximate isometry ∞ = �∅ is destructive for composition, and idX ,
identified with �idX = dX , is neutral.

(iii) (Pseudo)inversion is compatible with the identification of partial isometries
with approximateones. Similarly for composition�g�f = �gf when dom g ⊇
imgf or dom g ⊆ imgf, and for the natural notion of trivial extension of a
partial map to larger sets.

Proof. Left to the reader. 

This indeed solves both problems described in the beginning of the section. If

g : X ��� X is a finite partial isometry and ε > 0 then the approximate isometry
g + ε codes “g up to error ε”, and

{
h ∈ Iso(X ) : hx ∈ B(gx, ε) for all x ∈ dom g}

is just Iso(X )∩Apx<g+ε(X ) in the sense of Theorem 2.6. Similarly, in the situation
of composition of partial isometries, if x ∈ domf and y ∈ dom g then �g�f
prescribes that x be sent no more than (�g�f)(x, gy) = d (fx, y) from gy, which
is exactly the information we wanted to keep.

Definition 2.6. Let X , Y , and Z denote metric spaces.

(i) The space of all approximate isometries from X to Y will be denoted
Apx(X,Y ), and equipped with the topology induced from [0,∞]X×Y .When
X = Y we let Apx(X ) = Apx(X,X ).

(ii) For�,ϕ ∈ Apx(X,Y )we say thatϕ ≤ � is the comparisonholds point-wise,
i.e., ϕ(x, y) ≤ �(x, y) for all (x, y) ∈ X × Y . We then also say that �
coarsensϕ, or thatϕ refines�.We defineApx≤�(X,Y ) =

{
ϕ ∈ Apx(X,Y ) :

ϕ ≤ � }
.

(iii) We define Apx<�(X,Y ) as the interior of Apx≤�(X,Y ) in Apx(X,Y ). If
ϕ ∈ Apx<�(X,Y ) we write ϕ < � and say that� strictly coarsens ϕ, or that
ϕ strictly refines �.

(iv) For A ⊆ Apx(X,Y ) we define its closure under coarsening A↑ = {� ∈
Apx(X,Y ) : ∃ϕ ∈ A, � ≥ ϕ}. We observe thatA↑ = (A↑)↑.

Notice that∞ <∞. This is in fact desired.
Lemma 2.7.

(i) The space Apx(X,Y ) is compact, and the interpretation of actual isometries
as approximate isometries yields a topological embedding Iso(X ) ⊆ Apx(X ).
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(ii) If ϕα ∈ Apx(X,Y ) is a net then lim supϕα , calculated coordinate-wise in
[0,∞]X×Y , belongs to Apx(X,Y ) as well.

(iii) Composition is upper semicontinuous, in the sense that the set
{
(�,ϕ) : ϕ� ∈

A} ⊆ Apx(X,Y ) × Apx(Y,Z) is closed whenever A = A↑ ⊆ Apx(X,Z).
Equivalently, (lim sup�α)(lim supϕα) ≥ lim sup(�αϕα).

Proof. The space Apx(X,Y ) is closed in [0,∞]X×Y and therefore compact. A
subbasic open set Ux,y,ε = {g : d (gx, y) < ε} ⊆ Iso(X ) agrees with {ϕ : ϕ(x, y) <
ε} ∩ Iso(X ) under Iso(X ) ⊆ Apx(X ). Conversely, if V = {ϕ : r < ϕ(x, y) < s} ⊆
Apx(X ) and f ∈ Iso(X ) ∩ V then we may assume that r + ε < d (fx, y) < s − ε
in which case f ∈ Ux,fx,ε ⊆ V . This proves the first item. That lim supϕα is
also an approximate isometry, and that (lim sup�α)(lim supϕα) ≥ lim sup(�αϕα),
follow easily from the definitions. The latter, together with A = A↑, implies that{
(�,ϕ) : ϕ� ∈ A} is closed. 

Lemma 2.8. Let X , Y and Z be metric spaces.
(i) Let � ∈ U ⊆ Apx(X,Y ), with U a neighbourhood of �. Then there exists
ϕ ∈ U such that � < ϕ. In particular, if � < ϕ in Apx(X,Y ) and V � � is
open then there exists � ∈ Apx(X,Y ) ∩ V such that � < � < ϕ.

(ii) Let ϕ,� ∈ Apx(X,Y ). Then ϕ > � if and only if there are finite X0 ⊆ X ,
Y0 ⊆ Y and ε > 0 such that ϕ ≥ ��X0×Y0 + ε. Moreover, in this case there
exists � ∈ Apx(X0, Y0) which only takes rational values (on X0 × Y0) such
that � < � < ϕ.

(iii) Let ϕ > � ∈ Apx(X,Y ) and ϕ′ > �′ in Apx(Y,Z). Then ϕ′ϕ > �′�.
Proof. For the first item,wemay assume that there are finite setsX0 ⊆ X ,Y0 ⊆ Y
and some ε > 0 such that ϕ ∈ U if and only if |ϕ(x, y)−�(x, y)| < 2ε onX0×Y0.
Let�0 = ��X0×Y0 ∈ Apx(X0, Y0), and let ϕ = �0+ε ∈ Apx(X0, Y0) ⊆ Apx(X,Y ).
Let

V = {ϕ : ϕ(x, y) < �(x, y) + ε on X0 × Y0}.
Then � ∈ V ⊆ Apx≤ϕ(X,Y ), so � < ϕ.
The rest is easy. 


§3. Metric Fraı̈ssé limits via approximate maps. Let us start by fixing a few basic
definitions.

Definition 3.1. Let L be denote a collection of symbols, each being either a
predicate symbol or a function symbol and each having an associated natural number
called its arity. An L-structure A consists of a complete metric space A, together
with,

• For each n-ary predicate symbol R, a continuous interpretation RA : An →
R. It will be convenient to consider the distance as a (distinguished) binary
predicate symbol.
• For each n-ary function symbol f, a continuous interpretation fA : An → A.
A zero-ary function is also called a constant.

If A is a structure and A0 ⊆ A, then the smallest substructure of A containing
A0 is denoted 〈A0〉, the substructure generated by A0. Its underlying set is just the
metric closure of A0 under the interpretations of function symbols.
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An embedding of L-structures ϕ : A → B is a map which commutes with the
interpretation of the language: RB(ϕā) = RA(ā) and fB(ϕā) = ϕfA(ā) (in
particular, dB(ϕa,ϕb) = dA(a, b), so an embedding is always isometric). A partial
isomorphism ϕ : A ��� B is a map ϕ : A0 → B where A0 ⊆ A and ϕ extends
(necessarily uniquely) to an embedding 〈A0〉 → B.

Remark 3.2. The definition given here is more relaxed than definitions given in
more general treatments of continuous logic, such as [2,6] for the bounded case and
[3] for the general (unbounded) case, in that we only require plain continuity (rather
than uniform), and no kind of boundedness. Indeed, let us consider the following
properties of a map f : X → Y between metric spaces, which imply one another
from top to bottom:

(i) The map f is uniformly continuous.
(ii) The map f sends Cauchy sequences to Cauchy sequences (equivalently, f
admits a continuous extension to the completions, f̂ : X̂ → Ŷ ). Let us call
this Cauchy continuity.

(iii) The map f is continuous.

IfX is complete then the last twoproperties coincide, ifX is totally bounded then the
first two coincide, and if X is compact then all three do. Thus Cauchy continuity is
intimately connected with completeness. Similarly, uniform continuity is intimately
related with compactness: on the one hand, compactness implies uniform continuity
(assuming plain continuity), while on the other hand, uniform continuity of the
language is a crucial ingredient in the proof of compactness for first order continuous
logic (similarly, in unbounded logic, compactness below every bound corresponds
to uniform continuity on bounded sets).
In light of this, and since compactness will not intervene in any way in our

treatment, plain continuity on complete spaces will suffice. In situations involving
incomplete spaces we shall require Cauchy continuity.

Definition 3.3. We say that a separable structureM is approximately ultraho-
mogeneous if every finite partial isomorphism ϕ : M ��� M is arbitrarily close to
the restriction of an automorphism ofM: for every ε > 0 there exists f ∈ Aut(M)
such that d (ϕa,fa) < ε for all a ∈ domϕ. Equivalently, if Aut(M)↑ ⊆ Apx(M )
contains every (finite) partial isomorphism ϕ : M ���M.

Definition 3.4. The age of an L-structure A, denoted Age(A), is the class of
finitely generated structures which embed in A.

Metric Fraı̈ssé theory deals with (ages of) approximately ultrahomogeneous
separable structures. One could, of course, say that a structureM is (precisely, rather
than approximately) ultrahomogeneous if every isomorphism of finitely generated
substructures extends to an isomorphism, but this would make us lose important
examples (e.g., the Gurarij space), and in any case it does not seem that a Fraı̈ssé
theory can be developed for this stronger notion. It follows that, whereas classi-
cal Fraı̈ssé theory deals with finite partial isomorphism (and their extensions to
automorphisms), metric Fraı̈ssé theory must deal with finite partial isomorphisms
“up to some error”, which is by no means a new phenomenon in metric model
theory.
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The standard approach so far in similar situations, say when carrying out back-
and-forth arguments (see for example [5, Facts 1.4 and 1.5]), involves constructing
a sequence of finite partial isomorphismsfn such that eachfn+1 only extendsfn up
to some allowable error εn, keeping

∑
εn small. This involves a considerable amount

of bookkeeping, limit constructions, and other complications. Replacing “partial
isometries up to error” with approximate isometries, as suggested in Section 2, we
manage to avoid these complications, and the metric Fraı̈ssé theory follows quite
effortlessly, in almost perfect analogy with its discrete counterpart.

Definition 3.5. Let K be a class of finitely generated structures.
(i) By a K-structure we mean an L-structure A such that Age(A) ⊆ K.
(ii) We say that K has the HP (Hereditary Property) if every member of K is a
K-structure.

(iii) Assume that K has HP. We say that K has the NAP (Near Amalgamation
Property) if for every A,B ∈ K, finite partial isomorphism f : A ��� B and
ε > 0 there are C ∈ K and embeddings g : A → C, h : B → C such that
d (ga, hfa) ≤ ε for alla ∈ domf, or equivalently, such that (as approximate
isometries) f + ε ≥ h∗g.

Notice that an age always has HP, and ifM is approximately ultrahomogeneous
then Age(M) has NAP as well.

Definition 3.6. Let K be a class of finitely generated structures with HP, and let
A and B be K-structures. We define Apxn,K(A,B) by induction: Apx1,K(A,B) is
the set of all finite partial isomorphisms f : A ���B, and
Apxn+1,K(A,B) =

{
ϕ� : � ∈ Apxn(A,C) and ϕ ∈ Apx1(C,B) for some C ∈ K

}
,

where composition is in the sense of approximate isometries. Notice that if we
allowed C to be an arbitraryK-structure we would obtain the same definition, since
we can always replace C with 〈img g ∪ domf〉. Finally, following Theorem 2.6,
define

ApxK(A,B) =
⋃
n

Apxn,K(A,B)↑.

Members of ApxK(A,B) are called (K-intrinsic) approximate isomorphisms. When
K is clear from the context we usually drop it.
For � ∈ Apx(A,B), we define Apx<�(A,B) = Apx(A,B) ∩ Apx<�(A,B). We
say that � is a strictly approximate isomorphism if Apx<�(A,B) �= ∅, and let
Stx(A,B) denote the collection of such �.

Intuitively, approximate isomorphisms are to partial isomorphisms (between
members of K) as approximate isometries are to partial isometries, so in par-
ticular every member of Apx1(A,B) should then be considered an approximate
isomorphism. The reason for taking iterates is that Apx1 may “miss” some infor-
mation: for example, it may happen that A,B ∈ K are “close”, as witnessed by
some embeddings A → C and B → C with close images even though they have no
nontrivial common substructure (so Apx1 sees nothing). We therefore need at least
Apx2, and we shall see below that, in fact, the two-iterate suffices. We also require
Apx(A,B) to be compact and closed under coarsening (as is Apx(A,B)), whence
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the definition. Strictly approximate isomorphisms are analogous to finite partial
isomorphisms in the classical setting, in that they do not fix too much informa-
tion, leaving an open set of possibilities (clearly, Apx<�(A,B) contains the relative
interior of Apx≤�(A,B) in Apx(A,B), and one can check that in fact, the two
agree).

Lemma 3.7. Let K be a class of finitely generated structures with HP. Let A andB
be K-structures. Then

(i) Apx(A,B) = Stx(A,B).
(ii) Every partial isomorphism between A and B belongs to Apx(A,B) (see
Theorem 3.13 for a converse of this).

(iii) The composition of any two (strictly) approximate isomorphisms between
K-structures is one as well.

(iv) If � ∈ Stx(A,B) then Apx<�n (A,B) �= ∅ for some n.

Proof. First, let ϕ ∈ Apx(A,B). For finite A0 ⊆ A and B0 ⊆ B and for ε > 0
we have ϕ�A0×B0 + ε > ϕ by Theorem 2.8(ii), so ϕ�A0×B0 + ε ∈ Stx(A,B). It
follows that ϕ ∈ Stx(A,B), and the converse inclusion is clear. Similarly, every
finite partial isomorphism is an approximate isomorphism. Taking limits, every
partial isomorphism is an approximate isomorphism.
The third item, for approximate isomorphisms, follows directly from the defini-

tions and for strictly approximate isomorphisms using Theorem 2.8(iii). The last
item follows from the definitions. 


Lemma 3.8. Let K be a class of finitely generated structures with HP and NAP.
Then
(i) For any A,B ∈ K, ϕ ∈ Apxn(A,B) and ε > 0 there exist C ∈ K and
embeddings f : A→ C, g : B→ C such that g∗f ≤ ϕ + ε.

(ii) For any A,B ∈ K and ϕ ∈ Stx(A,B) there exist C ∈ K and embeddings
f : A → C, g : B → C such that g∗f < ϕ. Moreover, there are finite sets
A0 ⊆ A and B0 ⊆ B such that (g�B0 )∗(f�A0 ) < ϕ.

(iii) Let A ∈ K, let B be a K-structure, and let ϕ ∈ Stx(A,B). Then there exists
an extension A ⊆ C ∈ K and a finite partial isomorphism f : C ��� B such
that f < ϕ.

(iv) In particular, if � ∈ Stx(A,B) then Apx<�2 (A,B) �= ∅ and Apx(A,B) =
Apx2(A,B)↑.

Proof. We prove the first item by induction on n, with the case n = 1 being
the definition of NAP. For the case n + 1 let C0 ∈ K, �0 ∈ Apx1(A,C0) and �n ∈
Apx1(C0,B) be such that ϕ = �1�0. By NAP and the induction hypothesis there
are C1,C2 ∈ K and embeddings as in the diagram below such that f∗

2f1 ≤ �0 + ε
and g∗2 g1 ≤ �1 + ε. Let X = img�0 ⊆ C0, a finite set, and we let h0 : C1 ��� C2 be
the finite partial isomorphism sending f2X 	→ g1X , i.e., h0 = (g1f∗

2 )�f2X×g1X =
g1 idX f∗

2 . Applying NAP once more we complete the diagram with
h∗2 h1 ≤ h0 + ε.
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A

C0

B

C1

C2

C

�0

���
�
�
�
�

�1

�� ��
��
��
��
��
��

f1 ����
���

���
��

f2
������������

g1 ����
���

���
��

g2
������������

h0

���
�
�
�
�

h1 ����
���

���
��

h2
������������

Now,

ϕ + 3ε = �1 idX �0 + 3ε ≥ g∗2 g1 idX f∗
2f1 + ε = g

∗
2 h0f1 + ε ≥ g∗2 h∗2 h1f1.

Letting f = h1f1 and g = h2g2 we obtain ϕ + 3ε ≥ g∗f, which is enough.
For the second and third items, by Theorem 3.7(iv) there exists� ∈ Apx<ϕn (A,B)
and we may assume that � + ε < ϕ for some ε > 0. We know there exists finite
sets A0 ⊆ A and B0 ⊆ B such that � = ��A0×B0 , so letting B1 = 〈B0〉 ∈ K
we have � ∈ Apx<ϕn (A,B1), whence, by the first item, C ∈ K and embeddings
f : A → C and g : B1 → C such that g∗f ≤ � + ε < ϕ, and moreover even
(g�B0 )∗(f�A0 ) ≤ ��A0×B0 + ε = � + ε < ϕ. Now, in the second item we may
assume that B1 = B and conclude. In the third, we may assume that f is an
inclusion, and then (g�B0 )−1 is the desired finite partial isomorphism.
The last item follows from the second. 

Convention 3.9. We equip products of metric spaces with the supremum
distance, so for two n-tuples ā and b̄ we have d (ā, b̄) = maxi d (ai , bi).

Definition 3.10. Let K be a class of finitely generated L-structures. For n ≥ 0,
we let Kn denote the class of all pairs (ā,A), where A ∈ K and ā ∈ An generates A.
By an abuse of notation, we shall refer to (ā,A) ∈ Kn by ā alone, and denote the
generated structure A by 〈ā〉.
By Apx(ā,B) we shall mean those members Apx(〈ā〉,B) which extend trivially
from an approximate isometry ā � B, and similarly for Stx(ā,B), Apx(ā, b̄), and
so on. Under HP and NAP, these still compose correctly as per Theorem 3.8.

Definition 3.11. Let K be a class of finitely generated structures with NAP. We
equip Kn with a pseudodistance dK defined by
dK(ā, b̄) = inf

�∈StxK(ā,b̄)
d (�) = inf

�∈ApxK(ā,b̄)
d (�), where d (�) = max

i
�(ai , bi).

Equivalently, d (ā, b̄) is the infimum of all possible d (ā, b̄) under embeddings
of 〈ā〉 and 〈b̄〉 into some C ∈ K. The triangle inequality is a consequence of
Theorem 3.8.

Definition 3.12. AFraı̈ssé class (ofL-structures) is a classKof finitely generated
L-structures having the following properties:
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• HP.
• JEP (Joint Embedding Property): Every two members of K embed in a third
one.
• NAP.
• PP (Polish Property): The pseudometric dK is separable and complete on Kn
for each n.
• CP (Continuity Property): Every symbol is continuous on K. For an n-ary
predicate symbol P, this means that the map Kn → R, ā 	→ P〈ā〉(ā), is
continuous. For an n-ary function symbol P, this means that for each m,
the map Kn+m → Kn+m+1, (ā, b̄) 	→

(
ā, b̄, f〈ā,b̄〉(ā)

)
, is continuous.

We say that K is an incomplete Fraı̈ssé class if instead of PP & CP we have:
• WPP (Weak Polish Property): The pseudometric dK is separable on Kn for
each n.
• CCP (Cauchy Continuity Property): Every symbol is Cauchy continuous on K
(as per Theorem 3.2).

Remark 3.13. We observe that:

(i) CP implies that the kernel of dK on Kn is exactly the isomorphism
relation: dK(ā, b̄) = 0 if and only if exists a (necessarily unique) isomor-
phism ϕ : 〈ā〉 → 〈b̄〉 sending ā 	→ b̄. It follows that a partial isometry
between K-structures is an approximate isomorphism if and if it is a partial
isomorphism.

(ii) Togetherwith PP this implies that aK-structure generated by a set of cardinal
κ has density character at most κ + ℵ0 (even if the language contains more
than κ symbols). In particular, every member of K is separable.

(iii) Every Fraı̈ssé class is in particular an incomplete Fraı̈ssé class, and con-
versely, every incomplete Fraı̈ssé class K admits a unique completion K̂,
consisting of all limits of Cauchy sequences in K (that is, in Kn, as n varies),
which is a Fraı̈ssé class.

(iv) JEP is equivalent to saying that the empty approximate isometry is always a
(strictly) approximate isomorphism.ModuloNAP, JEP is further equivalent
to there being a unique∅-generated (empty, if there are no constant symbols)
structure in K.

Definition 3.14. We say that an approximate isometry � : X � Y is r-total for
some r > 0 if �∗� ≤ idX +2r, or equivalently, if for all x ∈ X and s > r there is
y ∈ Y such that �(x, y) < s . If ��∗ ≤ idY +2r then we say that � is r-surjective
and if it is both then it is r-bijective.

Definition 3.15. Let K be a Fraı̈ssé class. By a limit of K we mean a separable
K-structureM, satisfying that for everyK-structureA, finiteA0 ⊆ A,� ∈ Stx(A,M)
and ε > 0 there exists ϕ ∈ Stx<�(A,M) which is ε-total on A0.

Lemma 3.16. Let K be a Fraı̈ssé class,M a separable K-structure. For each n let
Kn,0 ⊆ Kn be dK-dense, and let M0 = {ai}i∈N ⊆ M be dense. We shall use the
notation a<m for the tuple (ai)i<m.
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Then in order forM to be a limit of K, is enough that for every n,m ∈ N, ε > 0,
b̄ ∈ Kn,0 and� : b̄× a<m → Q, if � ∈ Stx(b̄,M) (so in particular,� : b̄ � a<m is an
approximate isometry) then there exist ϕ ∈ Apx≤�(b̄,M) which is ε-total on b̄.
Proof. Let B be a K-structure, B0 ⊆ B finite, � ∈ Stx(B,M) and ε > 0. There
exist a finite tuple b̄ ∈ Bn and�0 ∈ Stx(b̄,M) such that�0 < �, andwemay assume
that b̄ containsB0. Let 0 < � ≤ ε/3 be small enough that�0 +3� < �. Let c̄ ∈ Kn,0
with dK(c̄ , b̄) < �, and let � ∈ Stx(c̄, b̄) witness this, namely satisfy d (�) < � as
per Theorem 3.11. Then �0� ∈ Stx(c̄,M), so there exists �1 ∈ Apx<�0�(〈c̄〉,M).
Replacing�1 with its restriction to c̄×M0 we still have�1 < �0�. ByTheorem2.8(ii)
there exist some m and �′ : c̄ × a<m → Q such that �1 < �′ < �0�, i.e., �′ ∈
Stx<�0�(c̄,M). By assumption there exists ϕ′ ∈ Apx≤�′

(c̄,M) which is �-total
on c̄, and we may further assume that ϕ′ ∈ Apx≤�0�(c̄ , a<k) for some k. Thus
ϕ′�∗ < �′�∗ + � ≤ �0��∗ + � ≤ �0 + 3� < �, so �′�∗ + � ∈ Stx<�(B,M) and
�′�∗ + � is moreover ε-total on b̄, as desired. 

Lemma 3.17. Every Fraı̈ssé class K admits a limit.
Proof. We construct an increasing chain of An ∈ K, starting with A0 being the
unique ∅-generated structure in K, letting in,m : An → Am denote the inclusion
maps. For each n we fix a countable dK-dense subset of Kn, call it Kn,0, and a
countable dense subset An,0 ⊆ An , such that An,0 ⊆ An+1,0.
By Theorem 3.8(ii) we can construct the chain An so that for each b̄ ∈ Kn,0, finite
subset B ⊆ Am,0 and � : b̄ × B → Q, if � ∈ Stx(b̄,Am) then there exists k > m
and an embedding h : 〈b̄〉 → Ak+1 such that i∗k,k+1h < �, and in particular h < �.
By PP and CP, the chain A0 ⊆ A1 ⊆ · · · admits a unique limit in the category of
K-structures, which we denote byM = ⋃

An, in whichM0 =
⋃
An,0 ⊆M is dense.

By Theorem 3.16,M is a limit. 

In fact, we can do better. For ā ∈ Kn let [ā] denote the equivalence class ā/ ker dK,
and let Kn = Kn/ kerdK denote the quotient space, equipped with the quotient
metric (which is separable and complete, by PP). For each n we have a natural map
Kn+1 → Kn, sending [a0, . . . , an] 	→ [a0, . . . , an−1], giving rise to an inverse system
with a limit K	 = lim←−Kn, equipped with the topology induced from

∏
n Kn. A

member ofK	 will be denoted by 
, represented by a compatible sequence (
n)n∈N.
Considering limits of increasing chains as in the proof of Theorem 3.17, we see that
for every 
 ∈ K	 there exists a K-structureM
 along with a generating sequence
ā
 = (a
i )i∈N ⊆ M
 , such that 
n = [a
<n] for all n, and this pair (M
, ā
) is
determined by 
 up to a unique isomorphism. Conversely, any pair of a separable
K-structureM and a generating N-sequence is of this form.
Theorem 3.18. Let K be a Fraı̈ssé class, and let K	 be as above. Let Ξ be the set
of 
 ∈ K	 for whichM
 is a limit of K and every tail of the sequence (a
i ) is dense in
M
 . Then K	 is a Polish space and Ξ ⊆ K	 is a dense G� .
Proof. That K	 is a Polish space is clear.
LetKn,0 ⊆ Kn be countable dense as earlier, and let b̄ ∈ Kn,0, ε > 0 (say rational)
and � : b̄ × m → Q>0. Define Xb̄,ε,� ⊆ K	 to consist of all 
 such that one of the
following holds:

• either there is no ϕ ∈ Stx(b̄,M
) such that ϕ(bi , a


j ) < �(bi , j) for all i < n,

j < m (let us call such a ϕ good),
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FRAÏSSÉ LIMITS OFMETRIC STRUCTURES 111

• or there exists a good ϕ such that, moreover, for each i < n there is k ≥ m
with ϕ(bi , a



k ) < ε.

It is easy to check using Theorem 3.16 that Ξ is the intersection of all such Xb̄,ε,�,
of which there are countably many, so all we need to show is that each Xb̄,ε,� is a
dense G� set.
The first possibility defines a closed set and the second an open one, so Xb̄,ε,� is

indeed a G� set. For density, let U ⊆ K	 be open and 
 ∈ U . If there is no good
ϕ ∈ Stx(b̄,M
) then 
 ∈ Xb̄,ε,� ∩ U and we are done. Otherwise, let us fix a good
ϕ, and let ϕ0 ∈ Stx(b̄, a
<m) be the restriction of ϕ to b̄ × a
<m. We may assume that
U is the inverse image in K	 of an open set V ⊆ K� , with � ≥ m and 
� ∈ V .
By Theorem 3.8(ii) there exists an extension 〈a
<� 〉 ⊆ C ∈ K and an embedding
ϕ0 > h : 〈b̄〉 → C, and wemay assume that C = 〈c̄〉where c̄ = a
<� , hb̄, so c̄ ∈ K�+n.
Let � ∈ K	 be any such that ��+n = [c̄]. Then � ∈ U ∩ Xb̄,ε,�, as desired. 

Theorem 3.19. Let K be a Fraı̈ssé class,M andN separableK-structures, and let

� ∈ Stx(M,N).
(i) IfN is a limit of K then � strictly coarsens an embedding 
 : M→ N.
(ii) If both M and N are limits of K then � strictly coarsens an isomorphism

 : M ∼= N.

In particular (with � =∞), the limit of K is unique up to isomorphism.
Proof. We only prove the second assertion, the first being similar and easier. Let

{an} and {bn} enumerate dense subsets ofM and N, respectively. We construct a
decreasing sequence of 
n ∈ Stx(M,N), starting with 
0 = �. For even n we choose

n+1 ∈ Stx<
n (M,N) which is 2−n-total on a<n . For odd n we similarly choose

n+1 ∈ Stx<
n (M,N), which is 2−n-surjective on b<n (i.e., 
∗n+1 ∈ Stx<


∗
n (N,M)

which is 2−n-total on b<n). Then 
 = lim 
n is the desired isomorphism. 

The unique limit of K will be denoted by limK. It can also be characterised in

terms of actual maps.

Corollary 3.20. Let K be a Fraı̈ssé class andM a separable K-structure. Then
the following are equivalent:
(i) The structureM is a limit of K.
(ii) Theorem 3.19(i) holds: for every separableK-structureB and� ∈ Stx(B,M),
there is an embedding f : B→M, f < �.

(iii) For a separable K-structure B, finite tuple ā ∈ B, embedding h : 〈ā〉 → M
and ε > 0, there is an embedding f : B → M such that d (fā, hā) < ε.
(Equivalently, we can take h to be a finite partial isomorphism and ā to
enumerate dom h.)

(iv) Same, whereB is finitely generated (i.e., B ∈ K).
Proof. (i) =⇒ (ii). By Theorem 3.19(i).
(ii) =⇒ (iii) =⇒ (iv). Clear.
(iv) =⇒ (i). Let B ∈ K and � ∈ Stx(B,M). By Theorem 3.8(iii), possibly
increasing B we may assume there is a finite partial isomorphism h : B ��� M
such that h < �, and so h + ε < � for some ε > 0. By hypothesis we obtain
f : B→M such that d (fa, ha) < ε for a ∈ dom h, or f < h + ε. In particular, f
is total and f < �. ThusM is a limit. 
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Theorem 3.21. LetK be a class of finitely generated structures. Then the following
are equivalent:

(i) The class K is a Fraı̈ssé class.
(ii) The class K is the age of a separable approximately ultrahomogeneous
structureM.

Moreover, such a structure M is necessarily a limit of K, and thus unique up to
isomorphism and universal for separableK-structures.
Proof. The second item clearly implies the first, as well as the moreover
part. Conversely, if K is a Fraı̈ssé class then by Theorem 3.17 it has a limit
M. By Theorem 3.19(i) we have Age(M) = K, and homogeneity follows from
Theorem 3.19(ii). 

Remark 3.22. Let K be a Fraı̈ssé class, and let 
 : [0,∞]→ [0, 1] be any increas-
ing subadditive map which is continuous and injective near zero. For example, plain
truncation x 	→ x ∧ 1 will do, or if one wants a homeomorphism, one may take
x 	→ 1− e−x or x 	→ x

x+1 . The important point is that for any distance function d ,

d is a bounded distance function, uniformly equivalent to d .
We define a new language LK, consisting of one n-ary predicate symbol P[ā]
for each equivalence class [ā] in Kn (or in a dense subset thereof). Then every
K-structure A gives rise to an LK-structure A′, with the same underlying set, where

dA
′
= 
dA, PA

[ā](b̄) = 
d
K(ā, b̄).

Let K′ =
⋃

A∈KAge(A
′). Since L′ is purely relational, all members of K′ are

necessarily finite, while members of K are merely finitely generated, and in general
K′ �= {A′ : A ∈ K}. However, for each nwedo have canonical identification between
Kn and K′

n, with d
K′
= 
dK. Then one checks that K′ is a Fraı̈ssé class, and that a

K-structureM is a limit of K if and only ifM′ is a limit of K′.
We conclude that up to a change of language, any Fraı̈ssé class or approxi-
mately ultrahomogeneous structure can be assumed to be in a 1-Lipschitz, [0, 1]-
valued relational continuous language, and that our more relaxed definitions (see
Theorem 3.2), while convenient for some concrete examples, do not in truth add
any more generality.
Another curious property of this construction is that (limK)′ = limK′ is always
an atomic model of its continuous first order theory (since all distances to types are
definable), and therefore a prime model.

Notice that in Theorem 3.22 all isolated types are isolated by quantifier-free
formulae, but nonisolated types need not be determined by their quantifier-free
restriction, so the theory need not eliminate quantifiers.

§4. Examples of metric Fraı̈ssé classes.
4.1. Standard examples. LetKM be the class of finitemetric spaces;KM,1 the class
of finite metric spaces of diameter at most one; KH the class of finite dimensional
Hilbert spaces; andKP the class of finite probability algebra, each in the appropriate
language. We leave it to the reader to check that these are all Fraı̈ssé classes. We
claim that the Urysohn space, the Urysohn sphere, �2, and the (probability algebra
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of the) Lebesgue space ([0, 1], �), are, respectively, limits of these classes. In fact, in
each of these cases, the limits satisfy a strong version of Theorem 3.20(iv):

For each extension A ⊆ B of members of K, every embedding A → M extends to an
embeddingB → M.

4.2. An incomplete example. Fix 1 ≤ p < ∞, and let K be the class of (real)
atomic Lp lattices with finitely many (see [11] for a formal definition and [1] for a
model-theoretic treatment).
Then K is not a Fraı̈ssé class, since it is incomplete (this is in contrast with the

class of finite probability algebras, which are all atomic, and do form a complete
class). Indeed, working inside E = Lp[0, 1], let f(x) = 1 and g(x) = x. Then on
the one hand, E = 〈f, g〉 is nonatomic, while on the other hand, approximating
g by step functions, the pair (f, g) can be arbitrarily well approximated by pairs
which do generate an atomic lattice.
The classK is an incomplete Fraı̈ssé class, though, and its completion is the class

of all separable Lp lattices, whose limit is the unique separable atomless Lp lattice.
This is somewhat uninteresting, since the limit already belongs to K.
Alternatively, one could add structure to atomic Lp lattices making embeddings

preserve atoms. With this added structure, the class of Lp lattices over finitely
many atoms is a Fraı̈ssé class, with limit the unique atomic Lp with ℵ0 atoms. The
automorphism group of the latter is S∞, the permutation group of N, so in a sense
this fails to produce something truly new.

4.3. The Gurarij space. We recall that

Definition 4.1. A Gurarij space is a separable Banach space G having the prop-
erty that for any ε > 0, finite dimensional Banach space E ⊆ F , and isometric
embedding � : E → G, there is a linear embedding ϕ : F → G extending � such
that in addition, for all x ∈ F , (1− ε)‖x‖ < ‖ϕx‖ < (1 + ε)‖x‖.
Gurarij [8] proved the existence and almost isometric uniqueness of such spaces,

while actual (i.e., isometric) uniqueness ofGwas shown by Lusky [10]. This unique-
ness was more recently reproved by Kubiś and Solecki [9], in what essentially
amounts to showing that it was the Fraı̈ssé limit of the class of all finite dimen-
sional Banach spaces, an observation we now have the tools to state and prove
formally. From here on, K = KB is the class of finite dimensional Banach space.
Then this is a Fraı̈ssé class. In particular, it is separable since a separable universal
Banach space exists.
Let us also recall the following fact, hitherto unpublished, due to Henson:

Fact 4.2 (See also [4]). Let ā, b̄ ∈ Kn. Then
dK(ā, b̄) = sup∑ |si |=1

∣∣∣∥∥∑ siai
∥∥− ∥∥∑ sibi

∥∥∣∣∣ . (1)

Proof. The inequality ≥ is clear. For ≤, let r denote the right hand side of (1).
Let E = 〈ā〉 ⊕ 〈b̄〉 in the category of vector spaces over R, and for x ∈ 〈ā〉, y ∈ 〈b̄〉
define:

‖x − y‖′ = inf
s̄

∥∥∥x −∑
siai

∥∥∥〈ā〉 +
∥∥∥y −∑

sibi

∥∥∥〈b̄〉 + r∑ |si |.
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This is clearly a seminorm on E, and ‖ai − bi‖′ ≤ r. For x ∈ 〈ā〉 we have ‖x‖′ ≤
‖x‖〈ā〉, while on the other hand, for any s̄ we have by choice of r:

‖x‖〈ā〉 ≤
∥∥∥x −∑

siai

∥∥∥〈ā〉 +
∥∥∥∑ siai

∥∥∥〈ā〉

≤
∥∥∥x −∑

siai

∥∥∥〈ā〉 +
∥∥∥∑ sibi

∥∥∥〈b̄〉 + r∑ |si |.

It follows that ‖x‖′ = ‖x‖〈ā〉, and similarly for y ∈ 〈b̄〉, whence the desired
amalgam. 

Theorem 4.3. A Banach space G is a Gurarij space if and only if it is the Fraı̈ssé
limit of the class of all finite dimensional Banach space. In particular, the Gurarij space
exists, is unique, and is universal for separable Banach spaces.

Proof. Assumefirst thatG = limK. LetE ⊆ F be twofinite dimensionalBanach
spaces,with bases ā ⊆ b̄, respectively, and let� : E → G be an isometric embedding.
By Theorem 3.20 there exists an isometric ϕ′ : F → G with d (ā, ϕā) = � arbitrarily
small. Define ϕ : F → G as � on ā and ϕ′ on b̄ � ā. Taking � sufficiently small,
ϕ is injective, and both ‖ϕ‖ and ‖ϕ−1‖ (with ϕ restricted to its image) arbitrarily
close to one, so G is Gurarij.
Conversely, assume that G is Gurarij, and let F = 〈b̄〉 ∈ K, � ∈ Stx(b̄, G)
and ε > 0 be given. By Theorem 3.8(iii), possibly extending F and decreasing ε
we may assume that there are a finite tuple c̄ ∈ Fm and an isometric embedding
�′ : 〈c̄〉 → G such that� ≥ �′�c̄+ε. By assumption there exists a linear ϕ : F → G
extending�′, with ‖ϕ‖, ‖ϕ−1‖ arbitrarily close to one. By Theorem 4.2 we can then
have dK

(
b̄c̄, ϕ(b̄c̄)

)
< ε. Then there exists ϕ′ ∈ Apx(b̄c̄, ϕ(b̄c̄)) ⊆ Apx(F,G) with

ϕ′(bi , ϕbi) < ε, ϕ′(cj, �′cj) < ε. This ϕ′ is ε-total on b̄ and� ≥ �′�c̄+ε > ϕ′�c̄ ≥
ϕ′, so G is a limit. 
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