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This paper considers simple step-stress accelerated life tests (SSALTs) for one-shot devices.
The one-shot device is an item that cannot be used again after the test, for instance,
munitions, rockets, and automobile air-bags. Either left-or right-censored data are col-
lected instead of actual lifetimes of the devices under test. An expectation-maximization
algorithm is developed here to find the maximum likelihood estimates of the model param-
eters based on one-shot device testing data collected from simple SSALTs. Furthermore,
the asymptotic variance of the mean lifetime under normal operating conditions is deter-
mined under the expectation-maximization framework. On the other hand, the optimal
design that minimizes the asymptotic variance of the estimate of the mean lifetime under
normal operating conditions in terms of three decision variables, including stress levels,
inspection times, and sample allocation is discussed. A procedure then is presented to
determine the decision variables when a range of stress levels and the termination time
of the test as well as normal operating conditions of the devices are given. The proper-
ties of the optimal design and the effects of errors in pre-specified planning values of the
model parameters are also investigated. Comprehensive simulation studies show that the
procedure is quite reliable for the design of simple SSALTs.

Keywords: cumulative exposure model, EM algorithm, exponential distribution, one-shot
devices, optimal design, step-stress accelerated life-tests

1. INTRODUCTION

Due to technology advances coupled with customer expectations on product quality, a signif-
icant number of failures occurred in a short period of time is rare. It results in an inevitable
challenge to efficiently collect sufficient failure time data under normal operating condi-
tions within a limited time. Therefore, accelerated life tests have become common and
popular in reliability engineering. In accelerated life tests, devices are exposed to higher-
than-normal stress levels to induce quick failures. An accelerated failure time model coupled
with an acceleration model that describes life–stress relationships are then used to extrapo-
late the collected data outside the elevated stress levels, so as to estimate the mean lifetime
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under the normal operating conditions. Escobar and Meeker [17] provided a comprehensive
literature review on accelerated life tests, which outlines some basic concepts including the
most frequently used accelerated failure time models, acceleration models, and sensitivity
analyses.

There are many types of accelerated life tests. Constant-stress accelerated life tests
wherein each device is subject to only one pre-specific stress level are frequently used. On
the other hand, step-stress accelerated life tests (SSALTs) apply stress to devices in the
way that stress levels will be changed at pre-specified times. Compared with constant-stress
accelerated life tests, SSALTs have advantages that require less samples and are more effi-
cient and less costly to collect lifetime data. Thus, SSALTs have attracted great attention
in the literature, and there are three fundamental models for the effect of increased stress
levels on the lifetime distribution of a device. These models are tampered random variable
model [16], tampered failure-rate model [14], and cumulative exposure model [27,30,31].
Nelson [30] firstly introduced the cumulative exposure model for the SSALTs. The cumula-
tive exposure model assumes that the remaining lifetime of a device depends on the current
cumulative fraction failed and current stress, regardless how the fraction is accumulated.
Moreover, surviving devices will fail according to the cumulative distribution for the cur-
rent stress but starting at the previously accumulated fraction failed. Also, only the level of
stress has an effect on life but the change in stress does not. The cumulative exposure model
is widely used in the reliability study. Miller and Nelson [27], and Alhadeed and Yang [2]
studied the optimal simple SSALT plans with the cumulative exposure model under expo-
nential and log-normal distributions, respectively. Bai, Kim, and Lee et al. [3] extended the
results of Miller and Nelson [27] to censoring schemes. Ling et al. [23] considered a load-
sharing model with the cumulative exposure model to analyze series systems with active
redundancy. Thus, it is of great interest to consider the cumulative exposure model in the
design of simple SSALTs in this paper.

Many authors have studied SSALTs. Gouno [19] analyzed data collected from SSALTs
and subsequently [20] presented optimal design of SSALTs. Zhao and Elsayed [39] analyzed
data of light intensity of light emitting diodes collected from SSALTs with four stress levels
under Weibull and log-normal distributions. Xiong Zhu, and Ji [38] considered simple step-
stress life tests subject to type II censoring under exponential distributions, wherein the
stress change time from a low-level stress to a high-level stress is random, and presented
exact confidence intervals for the model parameters. However, the literature on SSALTs for
one-shot devices is scarce.

The one-shot device that performs its function only once, cannot be used for testing
again. For each device, only the condition at an inspection time can be observed in the test.
Binary data are collected and the exact failure time cannot be obtained from the test. As a
result, the lifetime of the device is either right-censored or left-censored. For instance, Fan,
Balakrishnan, and Chang [18] considered electro-explosive devices that are detonated by
inducing a current to excite inner powder. Those devices cannot be used any further after
detonation, regardless of whether the detonation is successful or not. Moreover, Morris [28]
analyzed battery data from destructive life-tests. Shaked and Singpurwalla [35] assessed
the effect of various stress levels on the probability of damage to the hull in a submarine
based on binary data. Sohn [36] studied one-shot device testing data under destructive
inspection. Newby [32] discussed the maintenance and monitoring of one-shot devices such
as fire extinguishers and munitions. The lifetimes of those tested items cannot be obtained
from the tests. Balakrishnan, Ling, and So [10] provided some popular reliability models for
analyzing one-shot device testing data collected from constant-stress accelerated life tests.
Analysis of one-shot device testing data has been recently received a great attention in
reliability engineering [4–7,11–13,24]. However, the previously published papers considered
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constant-stress accelerated life tests for one-shot devices. Many reliability studies show
that SSALTs are more efficient and less costly than constant-stress accelerated life tests to
collect lifetime information of the devices. It is therefore of great interest to study SSALTs
for one-shot devices.

Due to the presence of heavily censored data in this study, an expectation-maximization
(EM) algorithm is presented to find the maximum likelihood estimates (MLEs) of the model
parameters in this paper. The EM algorithm is a suitable and powerful technique to effec-
tively obtain the MLEs in the presence of censored data, and thus many works have been
done on the EM algorithm. McLachlan and Krishnan [26] provided an overview on all per-
tinent details. Ng, Chan, and Balakrishnan [33], Scheike and Sun [34], Kundu and Dey [21],
Nandi and Dewan [29], Chen and Lio [15], and Balakrishnan and Mitra [9] developed EM
algorithms for various types of censored data. In this paper, an EM algorithm is devel-
oped here to find the MLEs of the model parameters based on one-shot device testing data
collected from simple SSALTs. Furthermore, the asymptotic variance of the mean lifetime
under normal operating conditions is determined under the EM framework.

Optimal design of accelerated life tests has a long history. Miller and Nelson [27] dis-
cussed optimal test plans that minimize the asymptotic variance of the MLE of the mean
lifetime under normal operating conditions. Later, Bai et al. [3] studied similar optimal
simple SSALT plans. Alhadeed and Yang [1] discussed optimal simple step-stress test plans
for a specific model. Balakrishnan and Ling [8] presented constant-stress accelerated life
test plans for one-shot devices. Thus, it is of great interest to obtain simple SSALT plans
for one-shot devices, which minimize the asymptotic variance of the MLE of the mean life-
time under normal operating conditions in terms of three decision variables, namely, stress
levels, inspection times, and sample allocation. A procedure then is presented to determine
the decision variables when a range of stress levels and the termination time of the test as
well as normal operating conditions of the devices are given. The properties of the optimal
design and the effects of errors in pre-specified planning values of the model parameters are
also investigated.

The rest of this paper is organized as follows. Section 2 formulates the problem of
simple SSALTs for one-shot devices under exponential distributions. The corresponding
mean lifetime under normal operating conditions is also derived. Section 3 presents the EM
algorithm for finding the MLEs of the model parameters as well as the mean lifetime. Also,
the information matrix and the asymptotic variance of the MLEs are presented. Section
4 describes a procedure for the determination of the optimal design of simple SSALTs for
one-shot devices. Section 5 presents several numerical examples to illustrate the proposed
procedure and also the results of a sensitivity analysis to examine the robustness of the
optimal design to misspecification of planning values of the model parameters. Finally,
some concluding remarks are made in Section 6.

2. MODEL DESCRIPTION

Consider simple SSALTs wherein the stress level is changed only once from the test. Suppose
that 0 < IT1 < IT2, 0 < K1 < K, and x1 < x2, and that all K devices are exposed to the
same initial stress level x1. K1 devices are selected to be tested at a pre-specified inspection
time IT1, the number of failures n1 are recorded. Then, the stress level is increased to x2.
All the remaining K2 = K − K1 devices are to be tested at another pre-specified inspection
time IT2, and the number of failures n2 are recorded. The one-shot device testing data
thus observed can be summarized as in Table 1. Given one-shot device testing data z =
{ITi,Ki, ni, xi, i = 1, 2}.
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Table 1. One-shot device testing data under simple step-stress accel-
erated life-tests.

Stage Inspection time # of tested devices # of failures Stress level

1 IT1 K1 n1 x1

2 IT2 K2 n2 x2

Let T denote the lifetime of the device that follows exponential distributions with
corresponding cumulative hazard function, reliability function, and probability density
function as

H(t) =

{
α1t, 0 < t ≤ IT1

α1IT1 + α2(t − IT1), t > IT1

, (1)

R(t) = exp(−H(t)) =

{
exp(−α1t), 0 < t ≤ IT1

exp(−(α1IT1 + α2(t − IT1))), t > IT1

, (2)

and

f(t) = −R′(t) =

{
α1 exp(−α1t), 0 < t ≤ IT1

α2 exp(−(α1IT1 + α2(t − IT1))), t > IT1

, (3)

where α1 > 0, α2 > 0 are the rate parameters at stages 1 and 2, respectively. We further
assume that the rate parameters are related to the stress level in a log-linear form [37] as

αi = exp (a0 + a1xi) . (4)

The log-linear form includes many popular acceleration models, such as Arrhenius, inverse
power law, and Eyring models (possibly transformed stress levels), and is frequently used
in accelerated life tests.

For notational convenience, we denote θ = {a0, a1} as the model parameters to be
estimated. Furthermore, the mean lifetime under the normal operating condition x0 is given
by

μ(x0) = α−1
0 = exp (−a0 − a1x0) . (5)

3. EM ALGORITHM

The EM algorithm is a powerful technique for finding the MLEs of the model parameters
in the presence of censored data. Interested readers may refer to [9,11,26,33] for its other
applications. The EM algorithm simply proceeds by alternating between the expectation
(E-step) and the maximization step (M-step). At the E-step,

Q(θ,θ(m)) = Eθ(m) [�c(θ)|z], (6)

the expected log-likelihood of the complete data conditional on the observed data, z, and the
current estimates of the parameters, θ(m), is computed. At the M-step, updated estimates of
the parameters, θ(m+1), are computed by maximizing the expected log-likelihood function,
Q(θ,θ(m)). The updated estimates of the parameters, θ(m+1), are then used to compute
the expected log-likelihood of the complete data, Q(θ,θ(m+1)) at the E-step. This process
is repeated until convergence occurs to a desired level of accuracy. It can be seen that the
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EM algorithm involves approximating the censored data at the E-step and maximizing the
corresponding likelihood function at the M-step in each iteration.

In the EM algorithm, we first consider the log-likelihood function based on complete
data given by

�c(θ) =
2∑

i=1

Ki∑
j=1

log(f(tij ;θ)) + c

=
2∑

i=1

Ki∑
j=1

(log α1 − α1tij) I0<tij≤IT1 + (log α2 − α1IT1 − α2(tij − IT1)) Itij>IT1 + c,

(7)

where I is an indicator function and c is a constant.
In our case, the expected log-likelihood of the complete data is given by

Q(θ,θ(m)) =
2∑

i=1

n∗
i1 (log α1 − α1t

∗
1) + n∗

i2 (log α2 − α1IT1 − α2(t∗2 − IT1)) + c, (8)

where n∗
i1 and n∗

i2 are the expected numbers of failures in the ith stage at the first and second
inspection times, IT1 and IT2, respectively. It is noted that n∗

11 = n1, n
∗
12 = K1 − n1, n

∗
21 =

n2(1 − R(IT1))/(1 − R(IT2)), and n∗
22 = K2 − n2(1 − R(IT1))/(1 − R(IT2)). Moreover, t∗1

and t∗2 are unobserved and required computation at the E-step.
At the M-step, we find the next iterate of the estimate θ(m+1) by maximizing the

conditional expectation Q(θ,θ(m)), for which the first-order derivatives of Q(θ,θ(m)) with
respect to the model parameters a0 and a1 are set to zero. The solution of the system of
equations is the estimates of the model parameters. The required first-order derivatives are,
respectively,

∂Q(θ,θ(m))
∂a0

=
2∑

i=1

n∗
i1 (1 − α1t

∗
1) + n∗

i2 (1 − α1IT1 − α2(t∗2 − IT1))

= (n∗
11 + n∗

21 + n∗
12 + n∗

22) − α1M1 − α2M2, (9)

∂Q(θ,θ(m))
∂a1

=
2∑

i=1

n∗
i1 (x1 − x1α1t

∗
1) + n∗

i2 (x2 − x1α1IT1 − x2α2(t∗2 − IT1))

= ((n∗
11 + n∗

21)x1 + (n∗
12 + n∗

22)x2) − α1M1x1 − α2M2x2, (10)

where

M1 = n∗
11t

∗
1 + n∗

21t
∗
1 + n∗

12IT1 + n∗
22IT1, (11)

M2 = (n∗
12 + n∗

22)(t
∗
2 − IT1). (12)

Then, we obtain the estimates of the model parameters, a0 and a1, respectively, as follows.

â0 =
x1 log α̂2 − x2 log α̂1

x1 − x2
, (13)

â1 =
log α̂1 − log α̂2

x1 − x2
, (14)
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where

α̂1 =
(

t∗1 + IT1

(
n∗

12 + n∗
22

n∗
11 + n∗

21

))−1

, (15)

α̂2 = (t∗2 − IT1)
−1

. (16)

At the E-step, the required conditional expectations are

t∗1 =E[Tij |0 < Tij ≤ IT1] =

∫ IT1

0
tα1 exp(−α1t) dt

1 − R(IT1)

=
1 − exp(−α1IT1) − α1IT1 exp(−α1IT1)

α1(1 − exp(−α1IT1))

=
1
α1

− IT1

(
R(IT1)

1 − R(IT1)

)
, (17)

t∗2 =E[Tij |Tij > IT1] =

∫∞
IT1

tα2 exp(−(α1IT1 + α2(t − IT1))) dt

R(IT1)

=
exp(−α1IT1) + α2IT1 exp(−α1IT1)

α2 exp(−α1IT1)

=
1
α2

+ IT1. (18)

Moreover, the choice of initial values of the model parameters is often important issue
in the EM algorithm. When K1 and K2 are sufficiently large,

p1 =
n1

K1
≈ 1 − exp(−α1IT1), (19)

p2 =
n2

K2
≈ 1 − exp(−α1IT1 − α2(IT2 − IT1)), (20)

respectively. Then, let

X1 =
[
IT1 0
IT1 IT2 − IT1

]
, X2 =

[
1 x1

1 x2

]
, A1 =

[
α1

α2

]
, A2 =

[
a0

a1

]
,

Y =
[− log(1 − p1)
− log(1 − p2)

]
.

It is observed that

X1A1 = Y (21)

X2A2 = − log(A1). (22)

Thus, the EM algorithm proceeds as follows:

Step 1: (Initial Step) compute A1 = (X ′
1X1)−1X ′

1Y ;
Step 2: (Initial Step) compute A2 = −(X ′

2X2)−1X ′
2 log(A1);

Step 3: (E Step) compute t∗1 and t∗2 by using Eqs. (17) and (18), respectively;
Step 4: (M Step) compute α̂1 and α̂2 by using Eqs. (15) and (16), respectively;
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Step 5: (M Step) compute â0 and â1 by using Eqs. (13) and (14), respectively;
Step 6: repeat Steps 3–5 until convergence occurs to a desired level of accuracy.

In reliability engineering, it is also of interest to examine the variability in the estimates.
However, there is no closed-form expression for the MLEs of the model parameters and that
we cannot develop an exact inference. We describe here the information matrix to estimate
the standard errors. When the EM algorithm is employed for finding the MLEs based on
censored data, the Missing Information Principle developed by Louis [25] is commonly used
to extract the information matrix. This method requires complete information and missing
information matrices. These matrices are given by

Icomplete = −E

[
∂2(�c(θ))

∂θ2

]
and Imissing = −E

[
∂2(log(f(tij |z,θ)))

∂θ2

]
, (23)

respectively. Using these matrices, we will then obtain the information matrix as

I(θ) = Icomplete − Imissing. (24)

Subsequently, Balakrishnan and Ling [6] found that, when failure times are all cen-
sored, the information matrix by using the missing information principle is equivalent to
the expectation of the second-derivatives of the observed log-likelihood function. In the
one-shot device testing data, the observed log-likelihood function is given by

�(θ) =
2∑

i=1

ni log(1 − R(ITi;θ)) + (Ki − ni) log(R(ITi;θ)). (25)

The second-derivative of the observed log-likelihood function is derived as follows:

∂2�(θ)
∂ap∂aq

=
2∑

i=1

(
∂2R(ITi;θ)

∂ap∂aq

)(
− ni

1 − R(ITi;θ)
+

Ki − ni

R(ITi;θ)

)

−
2∑

i=1

(
∂R(ITi;θ)

∂ap

)(
∂R(ITi;θ)

∂aq

)(
ni

(1 − R(ITi;θ))2
+

Ki − ni

(R(ITi;θ))2

)
, (26)

where

∂R(ITi;θ)
∂a0

= −di0R(ITi), (27)

∂R(ITi;θ)
∂a1

= −di1R(ITi), (28)

∂2R(ITi;θ)
∂a0∂a0

= −di0R(ITi) + d2
i0R(ITi), (29)

∂2R(ITi;θ)
∂a0∂a1

= −di1R(ITi) + di1di0R(ITi), (30)

∂2R(ITi;θ)
∂a1∂a1

= −di2R(ITi) + d2
i1R(ITi), (31)

d1m = α1IT1x
m
1 , (32)

d2m = α1IT1x
m
1 + α2(IT2 − IT1)xm

2 . (33)
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Furthermore, the information matrix is

I(θ) = −E

[
∂2�(θ)
∂θ2

]
. (34)

The asymptotic covariance matrix of the MLEs of the model parameters can then
be obtained by inverting the above information matrix. The variance of the MLEs of the
mean lifetime under normal operating conditions can also be computed by using the delta
method [6,7] that requires the asymptotic covariance matrix of the MLEs of the model
parameters and the first-order derivatives of the mean lifetime with respect to the model
parameters. These derivatives are as follows.

∂μ(x0)
∂a0

= −α−1
0

∂μ(x0)
∂a1

= −α−1
0 x0. (35)

The variance of the MLEs of the mean lifetime under the normal operating condition is

Vµ = P ′VθP, (36)

where Vθ = I−1(θ) and P = [−α−1
0 ,−α−1

0 x0]′ is a 2 × 1 column vector.
Since â0 and â1 are the MLEs of the model parameters of a0 and a1, it follows that

θ̂ ∼ N2(θ, Vθ), where

θ =
(

a0

a1

)
and Vθ =

(
σ2

0 σ0σ1ρ
σ0σ1ρ σ2

1

)
. (37)

Then, it can be easily seen that the logarithm of the estimated mean lifetime under the
normal operating condition, log(μ̂(x0)) = â0 + â1x0, is asymptotically normal distributed.

4. OPTIMAL DESIGN OF SSALT

Furthermore, the information matrix is useful for design of SSALTs for one-shot devices.
The issue about how to choose the optimal settings of decision variables, such as (a) stress
levels, (b) inspection times, and (c) sample allocation, will be discussed in this section.

For p = 0, 1 and q = 0, 1,

−E

[
∂2�(θ)
∂ap∂aq

]
=

2∑
i=1

(
Ki

R(ITi)
+

Ki

1 − R(ITi)

)(
∂R(ITi)

∂ap

)(
∂R(ITi)

∂aq

)
, (38)

Let Ki = Kpi with p2 = 1 − p1, Ai = R(ITi)−1 + (1 − R(ITi))
−1 and Xik = ∂R(ITi)/∂ak.

−E

[
∂2�(θ)
∂ap∂aq

]
= K

[
p1A1X

2
10 + (1 − p1)A2X

2
20 p1A1X11X10 + (1 − p1)A2X21X20

p1A1X11X10 + (1 − p1)A2X21X20 p1A1X
2
11 + (1 − p1)A2X

2
21

]

= K

[
r00 + s00p1 r10 + s10p1

r10 + s10p1 r11 + s11p1

]
,

where rkk =A2X
2
2k, r10 =A2X21X20, skk = A1X

2
1k −A2X

2
2k, s10 = A1X11X10 − A2X21X20.

The asymptotic covariance matrix of the MLEs of the model parameters becomes

Vθ = I−1(θ) =
1
D

[
r11 + s11p1 −(r10 + s10p1)

−(r10 + s10p1) r00 + s00p1

]
, (39)
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where D = K((r00 + s00p1)(r11 + s11p1) − (r10 + s10p1)2). Then,

Vµ = P ′VθP =
(r11 − 2r10x0 + r00x

2
0) + (s11 − 2s10x0 + s00x

2
0)p1

Kα2
0(r00r11 − r2

10) + (r00s11 + r11s00 − 2r10s10)p1 + (s00s11 − s2
10)p

2
1

(40)

=
(r11 − 2r10x0 + r00x

2
0) + (s11 − 2s10x0 + s00x

2
0)p1

Kα2
0(r00s11 + r11s00 − 2r10s10)p1(1 − p1)

. (41)

The objective of the optimal design is to minimize the standard error of the mean
lifetime subject to sample allocation as follows:

p1 = arg min
0<p1<1

Vµ = arg min
0<p1<1

c1 + c2p1

p1(1 − p1)
= arg min

0<p1<1

c1

p1
+

c1 + c2

1 − p1
. (42)

Setting ∂Vµ/∂p1 = 0, the solution to the equation is

p1 =
(

1 +
√

c1 + c2

c1

)−1

=

(
1 +

√
A1(X11 − X10x0)2

A2(X21 − X20x0)2

)−1

. (43)

Given K, IT1, IT2, x0, x1, and x2, the numbers of devices to be tested at IT1 and IT2

can be determined, that is, K1 = Kp1 and K2 = K(1 − p1) (rounded to nearest integers).
The standard error of the mean lifetime under the design is then given by

se(μ̂) =
√

Vµ =

√
A1(X11 − X10x0)2 +

√
A2(X21 − X20x0)2√

KA1A2α0(X11X20 − X10X21)
=

C√
K

. (44)

It can be easily seen that standard error of the mean lifetime under the design is in inverse
proportional to the square root of the sample size K. Also, it is important to point out that
C is a non-linear function of x1, x2, IT1, and IT2. The non-linear function can be minimized
by using existing optimization tools, namely, fminsearch in Matlab, or optim in R. Here,
we present the following procedure to decide the stress level and the inspection time for
each of the two stages.

1. Set the range of stress level (xL, xH), the normal operating condition x0, and the
termination time T ;

2. Define xi = xL + (xH − xL)(1 − exp(−∑i
k=1 exp(uk))) and ITi = T (1 − exp

(−∑i
k=1 exp(vk))), for i = 1, 2;

3. Find (u1, u2, v1, v2) that minimize C by using an optimization tool;
4. Compute (x1, x2, IT1, IT2) with (u1, u2, v1, v2).

Furthermore, (A1, A2,X11,X10,X21,X20) can be obtained from (x1, x2, IT1, IT2). Conse-
quently, given the standard error of the mean lifetime, the minimum required sample size
can be determined as follows:

K ≥
(

C

se(μ̂)

)2

. (45)

Finally, (K1,K2) can be determined from (K,A1, A2,X11,X10,X21,X20). It is noting that
Step 2 guarantees that 0 ≤ xL ≤ x1 < x2 ≤ xH and 0 < IT1 < IT2 ≤ T. Also, C is a non-
linear function of x1, x2, IT1, and IT2 in Eq. (44), u1, u2, v1, and v2 in Step 2 are all identical
as long as xL, xH, and T are the same, regardless of se(μ̂). It leads to the fact that x1, x2, IT1,
and IT2 are also all identical.
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5. NUMERICAL EXAMPLES

Fan et al. [18] and Balakrishnan and Ling [4] considered exponential distributions to ana-
lyze data of electro-explosive devices collected from constant-stress accelerated life tests.
Here we present the optimal design of simple SSALTs for the electro-explosive devices.
In this problem, the simple SSALTs are run to estimate the mean lifetime of the devices
under the normal operating condition, x0 = 25◦C. The planning values (a∗

0, a
∗
1) are set to

be (−5.3185, 0.0473) with μ(x0) = 62.552.
In this section, several examples are presented in Tables 2 and 3 to demonstrate the

optimal designs of simple SSALTs for one-shot devices with different settings. Moreover, a
simulation study under each of the optimal designs is carried out based on 10,000 experi-
ments to determine the corresponding mean x̄µ̂ and standard deviation sµ̂ of the MLE of
the mean lifetime under the normal operating condition, so as to compare the experimental
and theoretical results.

It is observed that the standard deviations of the MLE of the mean lifetime are close
to the theoretical standard errors for the settings considered. In addition, due to the fact
that the MLE of the mean lifetime follows log-normal distribution with

E[μ̂(x0)] = E[exp(−â0 − â1x0)] = exp
(
−a0 − a1x0 +

σ2
0 + σ2

1x2
0 + 2ρσ0σ1x0

2

)
, (46)

the mean of the MLE of the mean lifetime are slightly overestimated. Moreover, when the
standard error is fixed, increasing the highest stress level xH significantly reduces sample
sizes. The numerical examples show that when the highest stress level xH is set to be
sufficiently high, increasing the number of failures by prolonging experimental time T does
not provide more information for the mean lifetime estimation. In other words, prolonging
experimental time T may not be the most effective design to collect data. It is also realized
that simple SSALTs with equally spaced inspection times generally would not efficiently
collect lifetime data. The results also suggest the optimal design wherein more devices are

Table 2. Optimal design of step-stress accelerated life tests for electro-explosive
devices with planning values (a∗

0, a
∗
1) = (−5.3185, 0.0473) under different settings,

along with the corresponding mean x̄µ̂ and standard deviation sµ̂ of the MLE of
the mean lifetime μ(25) = 62.552.

Setting SSALT plan Simulated results

xL xH T se(μ̂) x1 x2 IT1 IT2 K1 K2 x̄µ̂ sµ̂

35 55 15 10 35 55 7.78 15.00 797 204 63.43 10.267
35 55 30 10 35 55 14.97 30.00 459 132 63.39 10.252
35 55 60 10 35 55 27.99 60.00 311 123 63.85 10.510
35 80 15 10 35 80 11.15 15.00 307 45 63.46 10.359
35 80 30 10 35 80 22.38 30.00 186 36 63.99 10.401
35 80 60 10 35 80 38.30 49.44 151 43 63.62 9.939

35 55 15 15 35 55 7.78 15.00 354 91 64.79 15.927
35 55 30 15 35 55 14.97 30.00 204 59 64.77 16.140
35 55 60 15 35 55 27.99 60.00 138 55 65.96 16.188
35 80 15 15 35 80 11.15 15.00 137 20 65.38 16.736
35 80 30 15 35 80 22.38 30.00 83 16 65.15 16.225
35 80 60 15 35 80 38.30 49.44 67 19 62.62 14.372
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Table 3. Optimal design of step-stress accelerated life tests for electro-explosive
devices with planning values (a∗

0, a
∗
1) = (−5.3185, 0.0473) under different settings, along

with the corresponding mean x̄µ̂ and standard deviation sµ̂ of the MLE of the mean
lifetime μ(25) = 62.552.

Setting SSALT plan Simulated results

xL xH T se(μ̂) x1 x2 IT1 IT2 K1 K2 x̄µ̂ sµ̂

45 55 15 10 45 55 5.12 15.00 3922 1681 63.20 10.194
45 55 30 10 45 55 9.46 30.00 2364 1197 63.39 10.129
45 55 60 10 45 55 13.90 48.62 1876 1239 63.74 10.356
45 80 15 10 45 80 9.05 15.00 497 145 63.69 10.433
45 80 30 10 45 80 18.44 29.34 347 158 64.29 10.534
45 80 60 10 45 80 18.44 29.34 347 158 64.04 10.561

45 55 15 15 45 55 5.12 15.00 1743 748 64.56 15.744
45 55 30 15 45 55 9.46 30.00 1051 532 64.61 15.908
45 55 60 15 45 55 13.90 48.62 834 551 64.66 15.983
45 80 15 15 45 80 9.05 15.00 221 65 65.02 16.168
45 80 30 15 45 80 18.44 29.34 155 70 65.91 16.271
45 80 60 15 45 80 18.44 29.34 155 70 65.72 16.242

to be tested at the first inspection time with lower stress level and less devices are to be
tested at the second inspection time with higher stress level. Moreover, more devices are
required to be tested in the simple SSALTs to maintain se(μ̂) when the lowest stress level
xL is increased from 35 to 45.

The effect of misspecification of the planning values on the design needs to be stud-
ied to evaluate its robustness feature. Because the planning values (a∗

0, a
∗
1) are likely to

depart from the true model parameters (a0, a1), we assume here that the planning val-
ues have small and moderate errors of the form (a∗

0, a
∗
1) = (a0(1 + ε1), a1(1 + ε2)), where

εi = {−0.05,−0.02, 0.00, 0.02, 0.05}, thus allowing for under-specification as well as over-
specification from the true values of the model parameters. Suppose that (xL, xH, T, se(μ̂))
are set to be (35, 55, 30, 15). Tables 4 and 5 present the sensitivity analysis of the choice
of planning values to the design of simple SSALTs, along with the corresponding mean x̄µ̂

Table 4. Sensitivity analysis of the choice of planning values (a∗
0, a

∗
1) with small errors

to the design of simple step-stress accelerated life tests, along with the corresponding
mean x̄µ̂ and standard deviation sµ̂ of the MLE of the mean lifetime μ(25).

ε1 ε2 a∗0 a∗1 μ(25) x1 x2 IT1 IT2 K1 K2 x̄µ̂ sµ̂

0.00 0.00 −5.3185 0.0473 62.55 35 55 14.97 30.00 204 59 64.77 16.140
0.00 +0.02 −5.3185 0.0482 61.09 35 55 15.01 30.00 189 55 64.90 16.907
0.00 −0.02 −5.3185 0.0464 64.04 35 55 14.92 30.00 220 63 64.59 15.492

+0.02 0.00 −5.4249 0.0473 69.57 35 55 15.08 30.00 273 76 64.30 13.604
+0.02 +0.02 −5.4249 0.0482 67.94 35 55 15.13 30.00 252 71 64.21 14.359
+0.02 −0.02 −5.4249 0.0464 71.23 35 55 15.03 30.00 295 82 64.23 12.938
−0.02 0.00 −5.2121 0.0473 56.24 35 55 14.84 30.00 154 45 65.42 18.865
−0.02 +0.02 −5.2121 0.0482 54.92 35 55 14.88 30.00 142 43 65.47 19.450
−0.02 −0.02 −5.2121 0.0464 57.58 35 55 14.79 30.00 166 48 65.35 18.213
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Table 5. Sensitivity analysis of the choice of planning values (a∗
0, a

∗
1) with moderate

errors to the design of simple step-stress accelerated life tests, along with the corresponding
mean x̄µ̂ and standard deviation sµ̂ of the MLE of the mean lifetime μ(25).

ε1 ε2 a∗0 a∗1 μ(25) x1 x2 IT1 IT2 K1 K2 x̄µ̂ sµ̂

0.00 0.00 −5.3185 0.0473 62.55 35 55 14.97 30.00 204 59 64.77 16.140
0.00 +0.05 −5.3185 0.0497 58.96 35 55 15.08 30.00 168 50 65.15 17.570
0.00 −0.05 −5.3185 0.0449 66.36 35 55 14.85 30.00 248 70 64.60 14.589

+0.05 0.00 −5.5844 0.0473 81.60 35 55 15.24 30.00 424 115 63.32 10.833
+0.05 +0.05 −5.5844 0.0497 76.92 35 55 15.37 30.00 347 96 64.08 12.028
+0.05 −0.05 −5.5844 0.0449 86.57 35 55 15.11 30.00 518 139 63.47 9.734
−0.05 0.00 −5.0526 0.0473 47.94 35 55 14.62 30.00 101 31 67.30 24.182
−0.05 +0.05 −5.0526 0.0497 45.19 35 55 14.74 30.00 84 28 68.35 27.069
−0.05 −0.05 −5.0526 0.0449 50.86 35 55 14.52 30.00 121 37 66.74 22.105

and standard deviation sµ̂ of the MLE of the mean lifetime under the normal operating
condition, x0 = 25◦C. It is realized that, within small (±2%) and moderate (±5%) errors
of (a0, a1), the designs of simple SSALTs are quite robust, only when the estimated mean
lifetime is close to the true mean lifetime. In general, the stress levels and the termina-
tion time are constant and the change times to increase the stress level from x1 to x2 are
similar among the designs. But, the required sample sizes highly depend on the estimated
mean lifetime. For example, when ε1 increases by 5%, the estimated mean lifetime is much
larger than the actual mean lifetime. As a result, the required sample size increases and
thus the standard deviation of the MLE of the mean lifetime becomes smaller. However,
the numerical results show that the means of the MLE of the mean lifetime are similar.

6. CONCLUDING REMARKS

In this paper, simple SSALTs for one-shot devices were studied. An EM algorithm was
developed to find the MLEs of the model parameters as well as the mean lifetime under
normal operating conditions. Furthermore, the information matrix was obtained and used
for the design of simple SSALTs. The procedure to choose decision variables including the
stress levels, the inspection times, and sample allocation was discussed. The optimal design
is effectively collecting one-shot device testing data in the sense that the asymptotic variance
of the MLE of the mean lifetime is minimized. In addition, the asymptotic variance can be
used to construct the confidence interval. Interested readers may refer to [6,7].

Comprehensive simulation studies show that the procedure is quite reliable for design of
simple SSALTs, as the theoretical and simulated standard deviations of the mean lifetime
are similar. There are several observations from the simulation studies. (1) When the stan-
dard error is fixed, increasing the highest stress level xH significantly reduces sample sizes.
(2) When the highest stress level xH is set to be sufficiently high, prolonging experimental
time T may not be the most effective design to collect data. (3) Simple SSALTs with equally
spaced inspection times is generally not the most effective design. (4) To effectively collect
data, more devices are to be tested at the first inspection time with lower stress level and
less devices are to be tested at the second inspection time with higher stress level.

A sensitivity analysis was also carried out to determine the effect of misspecification of
planning values to the design. It is realized that the design is quite robust within small and
moderate errors of the true parameters. The required sample size highly depends on the
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estimated mean lifetime. When the estimated mean lifetime is larger than the actual mean
lifetime, the required sample size increases. In practice, it means that the cost to run the
tests would slightly increase. From this observation, it is of great interest to design simple
SSALTs with consideration of budgets for further investigations.

The mean lifetime under normal operating conditions is considered in this study, because
of its advantage that explicit forms of sample allocation (K1,K2) exist. The determination
of sample allocation enables us to select appropriate change time and stress level as well as
the termination time at ease. In practice, especially for high-reliability products, we are also
interested in a certain percentile of the lifetime, say, 0.1 or even 0.01, rather than the mean
lifetime. Theoretically, it is possible to minimize the standard error of a certain percentile at
normal operating conditions. But, explicit forms of sample allocation may not exist, which
lead to a less efficient procedure for test planning.

Moreover, the proposed procedure can be modified for design of multi-SSALTs. The
key to the optimal design is the determination of sample allocation. In the simple SSALTs
with only two stress level, the sample allocation, (K1,K2), can be explicitly determined. In
the multi-SSALTs with m stress levels, finding sample allocation, Ki, i = 1, 2, . . . ,m, with∑m

i=1 Ki = K, becomes challenging.
The simulation results show that x1 = xL and x2 = xH in all cases. It is of great interest

to justify whether x1 = xL and x2 = xH are always obtained in the optimal design. The
problem can be simplified further by determining only the inspection times, if the asymptotic
variance of the MLE of the mean lifetime is minimized when x1 = xL and x2 = xH. However,
Eq. (44) is a non-linear function of x1, x2, IT1 and IT2. The theoretical justification for
x1 = xL and x2 = xH is not obvious, a further study will be carried out for this problem.

Besides, it is of great practical interest for design of SSALTs for one-shot devices under
broader and more flexible lifetime distributions, namely gamma and Weibull distributions.
These two lifetime distributions contain the exponential distribution as a special case and
are more frequently used in the real world to describe the lifetime for device. From our
experience, the probability density functions of these two popular lifetime distributions
are more complicated than that of the exponential distribution. The formulation of the
design becomes more challenging. However, this present work could provide a good insight
for the further investigations. On the other hand, model mis-specification error might be
a considerably critical issue in both theoretical and practical point of view. Model mis-
specification analysis [22] would also be helpful for reliability engineering. Work on these
flexible distributions is currently under progress and I hope to report these findings in a
future paper.
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