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MAXIMAL COMPUTABILITY STRUCTURES

ZVONKO ILJAZOVIĆ AND LUCIJA VALIDŽIĆ

Abstract. A computability structure on a metric space is a set of sequences which satisfy
certain conditions. Of a particular interest are those computability structures which contain a
dense sequence, so called separable computability structures. In this paperwe observemaximal
computability structures which are more general than separable computability structures and
we examine their properties. In particular, we examine maximal computability structures on
subspaces of Euclidean space, we give their characterization and we investigate conditions
under which a maximal computability structure on such a space is unique. We also give a
characterization of separable computability structures on a segment.

§1. Introduction. One way to impose computability notions in the con-
text of a metric space (X, d ) is to fix a dense sequence α = (αi ) in this
space with the property that the real numbers d (αi , αj) can be effectively
computed. This means that for each i, j, k ∈ N we can effectively compute
a rational number which approximates d (αi , αj) up to 2−k . We say that the
triple (X, d, α) is a computable metric space. A point x ∈ X is said to be
computable in this space if for each k ∈ N we can effectively compute j ∈ N

such that the point αj is 2−k-close to x. Similarly, a sequence (xi) in X
is said to be computable in this space if for all i, k ∈ N we can effectively
compute j ∈ N such that the point αj is 2−k-close to xi .
Furthermore, we can define the notion of a computable subset of X .
First, we fix some effective sequence (Ii) of rational open balls in (X, d, α);
a rational open ball in (X, d, α) is an open ball centered in some αj with
rational radius.We say that a closed setS in (X, d ) is computably enumerable
in (X, d, α) if the set of all i ∈ N such that Ii∩S �= ∅ is recursively enumerable
andwe say thatS is co-computably enumerable in (X, d, α) ifX \S =

⋃
i∈A Ii

for some recursively enumerable set A ⊆ N. A set S is called computable
in (X, d, α) if it is computably enumerable and co-computably enumerable
([1,2]).
All these notions depend, by definition, on the sequence α. However, it
turns out that if (X, d, α) and (X, d, �) are computable metric spaces, where
α and � are equivalent sequences, then the notions of a computable point, a
computable sequence, a (co-)computably enumerable set and a computable
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set in computable metric spaces (X, d, α) and (X, d, �) coincide. That α and
� are equivalent means that α is a computable sequence in (X, d, �) and �
is a computable sequence in (X, d, α).
If (X, d, α) is a computable metric space, let Sα denote the set of all
sequences which are computable in this space. If we have computable metric
spaces (X, d, α) and (X, d, �), it turns out that α and � are equivalent if
and only if Sα = S� . So the notions of a computable point, a computable
sequence, a (co-)computably enumerable set and a computable set can be
viewed as notions defined related to the entire set Sα and not just to α itself.
Therefore, it makes sense to observe sets of the form Sα and to take such
sets of sequences as a basis for computability concepts on a metric space
(X, d ). This leads to the notion of a computability structure on a metric
space (X, d ).
A computability structure S on (X, d ) is a set of sequences in X such that
the following holds:

(i) if (xi ), (yj) ∈ S, then the distances d (xi , yj) can be effectively
computed;

(ii) if (xi ) ∈ S and (yi ) is a sequence in X which can be computed from
(xi ), then (yi) ∈ S.

If (X, d, α) is a computable metric space, then Sα is a computability struc-
ture on (X, d ). Such computability structures on (X, d ) we call separable.
Computability structures have been studied by Pour-El and Richards in [7],
by Yasugi, Mori, and Tsujji in [6, 11] and results related to computability
structures have been studied by Melnikov in [5]. An investigation of com-
putability structures can also be found in [4]. See also [3, 9]. Usually, to get
certain results, we need the assumption that a computability structure is
separable.
In this paper we focus on maximal computability structures—
computability structures which are maximal with respect to inclusion. We
investigate this notion and the particular relationship between maximal and
separable computability structures. Although we give some observations
on maximal computability structures in general metric spaces, most of the
paper is devoted to the study of maximal computability structures on sub-
spaces of Euclidean space. Using maximal computability structures, we give
a description of separable computability structures on a line segment in R
and we use this to determine the number of such computability structures
obtaining a result which is a somewhat more precise form of Theorem 8.12
from [5].
We believe that the subject of this paper has a potential for further investi-
gations. For example, one way in that direction could be a study of maximal
computability structures on various well-known examples of metric spaces.
Here is how the paper is organized. In Section 2 we give basic notions and
facts and study computability structures in general. In Section 3we introduce
the notion of a maximal computability structure and prove certain results
related to this notion which hold in a general metric space. In Section 4
we focus on subspaces of Euclidean space. We give a characterization of
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maximal computability structures on such metric spaces, we examine the
problem of uniqueness of a maximal computability structure and we also
prove that each maximal computability structure on Rn is separable. In
Section 5 we characterize separable computability structures among maxi-
mal computability structures on a segment and we examine the cardinality
of the set of all separable computability structures on a segment.

§2. Computability structures and basic notions. A function f : Nk → Q

is said to be recursive if there exist recursive functions a, b, c : Nk+1 → N

such that

f(x) = (−1)c(x) a(x)
b(x) + 1

for each x ∈ Nk . A function f : Nk → R is said to be recursive if there exists
a recursive function F : Nk+1 → Q such that

|f(x) − F (x, i)| < 2−i

for all x ∈ Nk and i ∈ N [7, 10]. A number x ∈ R is said to be recursive if
there exists a recursive function f : N → Q such that |x − f(k)| < 2−k for
each k ∈ N [8]. A point (x1, . . . , xn) ∈ Rn is called recursive if x1, . . . , xn are
recursive numbers.
We say that a functionf : Nk → Rn is recursive if the component functions
of f are recursive (as functions Nk → R).
In the following proposition we state some basic facts about recursive
functions Nk → R.

Proposition 2.1. (i) If f, g : Nk → R are recursive functions,
then f + g, f − g, and f · g are recursive.

(ii) If f : Nk → R and F : Nk+1 → R are functions such that F is recursive
and |f (x) − F (x, i) | < 1

2i , for each x ∈ Nk and each i ∈ N, then f
is recursive.

(iii) If f : Nk → R is a recursive function such that f(x) ≥ 0 for each
x ∈ Nk , then the function Nk → R, x 	→

√
f(x) is recursive.

(iv) If f, g : Nk → R are recursive functions, then the set
{
x ∈ Nk | f (x) > g (x)

}

is recursively enumerable.

Let (X, d ) be a metric space and (xi) a sequence in X . We say that (xi) is
an effective sequence in (X, d ) if the function N2 → R,

(i, j) 	→ d (xi , xj)

is recursive. If (xi) and (yj) are sequences inX , we say that ((xi ), (yj)) is an
effective pair in (X, d ) and we write (xi ) 
 (yj) if the function N2 → R,

(i, j) 	→ d (xi , yj)

is recursive. Note that a sequence (xi ) is effective in (X, d ) if and only if
(xi ) 
 (xi ). Also note that (xi ) 
 (yj) implies (yj) 
 (xi ).
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Suppose (X, d ) is a metric space and (xi) is a sequence in X . A sequence
(yi ) in X is said to be computable with respect to (xi) in (X, d ) and we write
(yi ) � (xi ) if there exists a recursive function F : N2 → N such that

d (yi , xF (i,k)) < 2
−k

for all i, k ∈ N. A point a ∈ X is said to be computable with respect to
(xi ) in (X, d ) if there exists a recursive function f : N → N such that
d (a, xf(k)) < 2−k for each k ∈ N.
Proposition 2.2. Let (X, d ) be a metric space and let (xi), (yi), (zi ) be
sequences in X such that (zi ) � (yi ) and (yi) � (xi). Then (zi ) � (xi ).
Proof. Let F,G : N2 → N be recursive functions such that

d (zi , yF (i,k)) < 2
−k and d (yi , xG(i,k)) < 2

−k (1)

for all i, k ∈ N. Then, for all i, k ∈ N, we have d (zi , yF (i,k+1)) < 2−(k+1) and
d (yF (i,k+1), xG(F (i,k+1),k+1)) < 2−(k+1) and the triangle inequality implies

d (zi , xG(F (i,k+1),k+1)) < 2
−k.

Hence (zi ) � (xi). �
Proposition 2.3. Let (X, d ) be a metric space and let (xi), (yi), (αi ), (�i )
be sequences in X such that (xi) � (αi ) and (yi ) � (�i ). Suppose (αi ) 
 (�i ).
Then (xi ) 
 (yi).
Proof. Let F,G : N2 → N be recursive functions such that

d (xi , αF (i,k)) < 2
−k and d (yj , �G(j,k)) < 2

−k

for all i, j, k ∈ N. In general, if a, a′, b, b′ ∈ X , then
|d (a, b)− d (a′, b′)| ≤ d (a, a′) + d (b, b′),

which follows easily from the triangle inequality. Therefore, for all i, j, k ∈ N

we have
|d (xi , yj)− d (αF (i,k+1), �G(j,k+1))| ≤

≤ d (xi , αF (i,k+1)) + d (yj, �G(j,k+1)) < 2 · 2−(k+1) = 2−k.
It follows from Proposition 2.1(ii) that the function N2 → R, (i, j) 	→
d (xi , yj) is recursive. �
Corollary 2.4. Let (X, d ) be a metric space and (yi ), (xi ) sequences in
X such that (yi) � (xi ). Suppose (xi) is effective. Then (yi ) is effective.
An effective sequence (xi) in a metric space (X, d ) is said to be an effective
separating sequence if (xi ) is dense in (X, d ), i.e., if {xi | i ∈ N} is a dense
set in (X, d ).
If α = (αi ) is an effective separating sequence in (X, d ), then the triple
(X, d, α) is called a computable metric space. If (X, d, α) is a computable
metric space, then a point x ∈ X is said to be computable in (X, d, α) if
x is computable with respect to α and a sequence (xi) in X is said to be
computable in (X, d, α) if (xi) is computable with respect to α.

Example 2.5. Let n ∈ N\{0} and let d be the Euclideanmetric onRn. Let
(xi ) and (yj) be sequences inRn and let (x1i ), . . . , (x

n
i ) and (y

1
j ), . . . , (y

n
j ) be

the component sequences of (xi ) and (yj).
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(i) Suppose (xi ) and (yj) are recursive (as functions N → Rn). Then
(xi) 
 (yj) (in the metric space (Rn, d )). Namely, for all i, j ∈ N we
have

d (xi , yj) =
√
(x1i − y1j )2 + · · · + (xni − ynj )2,

and the claim follows from statements (i) and (iii) of Proposition 2.1.
In particular, each recursive sequence in Rn is effective in (Rn, d ).

(ii) Suppose (xi) is recursive and (yj) � (xi). Then (yj) is also recur-
sive. Namely, if F : N2 → N is a recursive function such that
d (yj, xF (j,k)) < 2−k for all j, k ∈ N, then for each l ∈ {1, . . . , n}
and all j, k ∈ N we have

|ylj − xlF (j,k)| ≤ d (yj, xF (j,k)) < 2
−k

and Proposition 2.1(ii) implies that (y1j ), . . . , (y
n
j ) are recursive

sequences.

Now, if α : N → Rn is a recursive sequence such that {αi | i ∈ N} is a
dense set in (Rn, d ), then α is an effective separating sequence in (Rn, d ) and
(Rn, d, α) is a computable metric space.

Let (X, d ) be ametric space and letS be a setwhose elements are sequences
in X , i.e., S ⊆ XN. We say that S is a computability structure on (X, d )
(see [11]) if the following properties hold:

(i) if (xi), (yj) ∈ S, then (xi ) 
 (yj);
(ii) if (xi) ∈ S and (yi) � (xi ), then (yi) ∈ S.
Note the following: if (X, d ) is a metric space and S ⊆ XN such that
property (ii) above holds, then the following holds:

(iii) if (xi) ∈ S andf : N → N is a recursive function, then (xf(i))i∈N ∈ S.
So if S is a computability structure on (X, d ), then (iii) holds.
If S is a computability structure on (X, d ), then each (xi) ∈ S is an
effective sequence in (X, d ), which follows directly from (i).

Example 2.6. (i) Let (X, d ) be a metric space and let a ∈ X . Let (xi )
be the sequence in X defined by xi = a, i ∈ N and let S = {(xi)}.
Then S is a computability structure on (X, d ).

(ii) Let d be the Euclidean metric on Rn. By Example 2.5 the set of all
recursive sequences in Rn is a computability structure on (Rn, d ).

If (X, d ) is a metric space and α a sequence in (X, d ), let Sα denote the
set of all sequences (xi) in X such that (xi) � α. Note that α ∈ Sα.
Proposition 2.7. Let (X, d ) be a metric space and α a sequence in X .
Then α is an effective sequence in (X, d ) if and only if Sα is a computability
structure on (X, d ).
Proof. If Sα is computability structure on (X, d ), then α is effective in
(X, d ) since α ∈ Sα.
Conversely, if α is effective in (X, d ), then Sα is computability structure
on (X, d ): property (i) from definition of a computability structure follows
from Proposition 2.3, and property (ii) follows from Proposition 2.2. �
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Suppose α and � are effective sequences in a metric space (X, d ). We say
that α and � are equivalent and write α ∼ � if α is computable with respect
to � and � is computable with respect to α. By Proposition 2.2 for any
sequences α and � in X we have

α � � ⇐⇒ Sα ⊆ S�
and therefore for any effective sequences α and � in (X, d ) we have

α ∼ � ⇐⇒ Sα = S� .
Lemma 2.8. Let (X, d ) be a metric space and let α = (αi ) be a sequence
in X .
(i) The sequence α is effective if and only if for each sequence (xi) inX the
following implication holds:

(xi ) � α =⇒ (xi ) 
 α. (2)

(ii) If α an effective separating sequence, then for each sequence (xi ) in X
we have

(xi ) � α ⇐⇒ (xi) 
 α.
Proof. (i) If (2) holds, then α is effective since α � α.
Conversely, suppose α is effective and (xi) � α. Then (xi) ∈ Sα, which
together with α ∈ Sα and Proposition 2.7 implies (xi) 
 α.
(ii) Suppose α is an effective separating sequence and (xi ) 
 α.
Let i, k ∈ N. Then there exists j ∈ N such that d (xi , αj) < 2−k. Since the
set Ω of all (i, k, j) ∈ N3 such that d (xi , αj) < 2−k is r.e. (by Proposition
2.1(iv)) and for all i, k ∈ N there exists j ∈ N such that (i, k, j) ∈ Ω, there
exists a recursive function F : N2 → N such that (i, k, F (i, k)) ∈ Ω for all
i, k ∈ N. Hence

d (xi , αF (i,k)) < 2
−k

for all i, k ∈ N and therefore (xi) � α. �
Proposition 2.9. Suppose (X, d ) is a metric space, S a computability
structure on (X, d ), and α a dense sequence in (X, d ) such that α ∈ S. Then
α is an effective separating sequence in (X, d ) and S = Sα.
Proof. Obviously, α is an effective separating sequence in (X, d ).
If (xi) ∈ Sα , then (xi ) � α and α ∈ S implies (xi ) ∈ S.
Conversely, let (xi ) ∈ S. Then (xi) 
 α and by Lemma 2.8 (xi) � α, i.e.,
(xi ) ∈ Sα. Hence S = Sα . �
Let (X, d ) be a metric space. We say that S is a separable computability
structure on (X, d ) if S is a computability structure on (X, d ) and there exists
α ∈ S such thatα is a dense sequence in (X, d ). Note that by Proposition 2.9
S is a separable computability structure on (X, d ) if and only if S = Sα for
some effective separating sequence α in (X, d ).

Example 2.10. Let d be the Euclidean metric on Rn and let α be as in
Example 2.5. Then Sα is the set of all recursive sequences in Rn.
Indeed, if (xi) ∈ Sα , then (xi ) is a recursive sequence inRn by claim (ii) of
Example 2.5. On the other hand, if (xi) is a recursive sequence in Rn, then

https://doi.org/10.1017/bsl.2016.26 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.26


MAXIMAL COMPUTABILITY STRUCTURES 451

by claim (i) of the same example we have (xi) 
 α and Lemma 2.8 implies
(xi ) � α, i.e., (xi) ∈ Sα .
So the set of all recursive sequences in Rn is a separable computability
structure on (Rn, d ).

Suppose (X, d ) is a metric space and α an effective sequence in (X, d ).
Then

α is a dense sequence⇐⇒ Sα is a separable computability structure. (3)

Indeed, if (xi) is a dense sequence computable with respect to α, then α is
also dense.
Let (X, d ) be a metric space and S a computability structure on (X, d ).
Let a ∈ X . We say that a is a computable point in the computability structure
S if there exist (xi) ∈ S and i ∈ N such that a = xi . It is easy to see that the
following statements are equivalent:

(i) a is a computable point in S;
(ii) (a, a, a, . . . ) ∈ S;
(iii) there exist (xi ) ∈ S and a recursive function f : N → N such that

d (a, xf(k)) < 2−k for each k ∈ N.

If S is a computability structure on a metric space (X, d ), then we will
denote by S0 the set of all computable points in S.

§3. Maximal computability structures in general. Let (X, d ) be a metric
space and S a computability structure on (X, d ). We say that S is amaximal
computability structure on (X, d ) if there exists no computability structure
T on (X, d ) such that S ⊆ T and S �= T .
First we notice that each separable computability structure is maximal.
Indeed, if α is an effective separating sequence in a metric space (X, d ) and
T a computability structure on (X, d ) such that Sα ⊆ T , then α ∈ T and
by Proposition 2.9 we have T = Sα .
Separable computability structures on a metric space (X, d ) in general
need not exist. Certainly, such computability structures do not exist if (X, d )
is not a separable metric space, but even if (X, d ) is separable a separable
computability structure on (X, d ) need not exist. For example, ifX = {0, a},
where a is a nonrecursive number and d is the Euclidean metric on X , then
(X, d ) clearly does not have a separable computability structure.
On the other hand, each metric space has maximal computability
structures, moreover we have the following proposition.

Proposition 3.1. Let S be a computability structure on a metric space
(X, d ). Then there exists a maximal computability structure M on (X, d )
such that S ⊆ M.
Proof. Let Λ be the family of all computability structures T on (X, d )
such that S ⊆ T . If we partially order Λ by inclusion, it is straightforward
to check that every chain in Λ has an upper bound and therefore, by Zorn’s
lemma, there exists a maximal element M in Λ. Hence M is a maximal
computability structure on (X, d ) which contains S. �
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Even when a metric space has separable computability structures, a max-
imal computability structure need not be separable. Moreover, a maximal
computability structure which is dense need not be separable (Example 3.2).
A computability structure S on a metric space (X, d ) is said to be dense
if S0 is a dense set in (X, d ). Clearly, each separable computability structure
is dense. On the other hand, a dense computability structure need not be
separable. For example, if d is the Euclidean metric on R and S a set
of all constant sequences (q, q, q, . . . ), where q ∈ Q, then S is a dense
computability structure on (R, d ) which is not separable. Note that S is not
a maximal computability structure.

Example 3.2. Let d be the Euclidean metric on [0, 1]. Then there exists a
unique separable computability structure on ([0, 1], d ) (see [4], Example 10
or Theorem 31).
Let α : N → Q be a recursive function whose range is [0, 1] ∩ Q (such
a function certainly exists). Then α is an effective separating sequence in
([0, 1], d ). If x ∈ [0, 1] is a point computable with respect to α, then x is
clearly a recursive number. Hence Sα is the only separable computability
structure on ([0, 1], d ) and every element of S0α is a recursive number.
Let c ∈ [0, 1] be a nonrecursive number. Then {(c, c, c, . . . )} is a com-
putability structure on ([0, 1], d ) and by Proposition 3.1 there exists a maxi-
mal computability structureM on ([0, 1], d ) such that {(c, c, c, . . . )} ⊆ M.
It follows c ∈ M0. Since c /∈ S0α, we have M �= Sα , hence M is not a
separable computability structure on ([0, 1], d ).
Moreover, let T be the set of all constant sequences (x, x, x, . . . ), where
x ∈ [0, 1] is such that x − c ∈ Q. Then T is a computability structure
on ([0, 1], d ) and c ∈ T 0. LetM1 be a maximal computability structure on
([0, 1], d )which containsT .We have c ∈ M0

1 andwe conclude thatM1 is not
separable. If x ∈ [0, 1] is such that x − c ∈ Q, then x is a computable point
in M1 and therefore M1 is a dense computability structure on ([0, 1], d )
(which is maximal and not separable).
Actually, as we will see,M = M1 and both of these two computability
structures are equal to the set of all sequences (xi ) in [0, 1] such that (xi − c)
is a recursive sequence.

Let α be an effective sequence in a metric space (X, d ). In contrast to
equivalence (3), the equivalence

α is a dense sequence⇐⇒ Sα is a maximal computability structure

does not hold in general (although the implication =⇒ always holds).
For example, if c is a nonrecursive number, X = {0, c}, d the Euclidean
metric on X and α = (0, 0, 0, . . . ), then Sα = {α} and {α} is a maximal
computability structure. Hence Sα is a maximal computability structure, but
α is not dense in (X, d ).

Example 3.3. LetX be a nonempty set and let d be the discrete metric on
X . SupposeM is a maximal computability structure on (X, d ). ThenM0 =
X . Indeed, if there exists x ∈ X such that x /∈ M0, then {(x, x, x, . . . )}∪M
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is a computability structure on (X, d ) which is different fromM and which
containsM. This is impossible. HenceM0 = X .
Suppose additionally that the set X is uncountable. We have the following
conclusion:M0 is uncountable, henceM is uncountable. Furthermore,M
is a dense computability structure on (X, d ) and (X, d ) is not separable. In
contrast to this, if S is a separable computability structure on some metric
space, then that metric space is separable and S is countable, namely since
there are only countably many recursive functions N2 → N, there are only
countably many sequences which are computable with respect to a given
effective (separating) sequence α.

Let (X, d ) be ametric space and letS be a setwhose elements are sequences
in X . We say that S is an effective structure on (X, d ) if for all (xi ), (yj) ∈ S
we have (xi) 
 (yi).
Note that each computability structure on (X, d ) is an effective structure
on (X, d ). On the other hand, an effective structure need not be a com-
putability structure. For example, if α : N → Q is a recursive surjection
and d the Euclidean metric on R, then {α} is an effective structure on
(R, d ), but it is not a computability structure since (0, 0, 0, . . . ) � α and
(0, 0, 0, . . . ) /∈ {α}.
Let (X, d ) be a metric space. We say that S is amaximal effective structure
on (X, d ) if S is an effective structure on (X, d ) and there exists no effective
structure T on (X, d ) such that S ⊆ T and S �= T .
If S is a computability structure, then any subset of S is obviously an
effective structure. Conversely, each effective structure is a subset of some
computability structure. This is the contents of the following proposition.
Proposition 3.4. Let (X, d ) be a metric space and S ⊆ XN. Then
(i) S is an effective structure on (X, d ) if and only if there exists a
computability structure T on (X, d ) such that S ⊆ T ;

(ii) S is a maximal effective structure on (X, d ) if and only if S is a maximal
computability structure on (X, d ).

Proof. If S is an effective structure on (X, d ), then
⋃
α∈S Sα is a com-

putability structure on (X, d ). This follows from Proposition 2.3. Clearly
S ⊆

⋃
α∈S Sα . This proves (i).

Now, if S is a maximal effective structure on (X, d ), then S =
⋃
α∈S Sα

and this means that S is a computability structure. So S is a maximal
computability structure on (X, d ).
Conversely, suppose S is a maximal computability structure and T is
an effective structure such that S ⊆ T . We have S ⊆ T ⊆

⋃
α∈T Sα

and it follows S =
⋃
α∈T Sα. So S = T . Hence S is a maximal effective

structure. �
The following proposition follows from Propositions 3.1 and 3.4(ii) (or it
can be proved directly as Proposition 3.1).
Proposition 3.5. Let S be an effective structure on a metric space (X, d ).
Then there exists amaximal effective structureM on (X, d ) such that S ⊆ M.
If f : X → Y and S ⊆ XN, let f(S) = {(f(xi )) | (xi ) ∈ S}. The proof
of the next proposition is straightforward.
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Proposition 3.6. Let (X, d ) and (Y, d ′) be metric spaces, let f : X → Y
be a surjective isometry and letS ⊆ XN. Then S is a (maximal ) computability
structure on (X, d ) if and only if f(S) is a (maximal ) computability structure
on (Y, d ′). Moreover, S is separable if and only if f(S) is separable.

§4. Maximal computability structures on Euclidean space. If (X, d ) is a
metric space, n ∈ N and a0, . . . , an ∈ X , then we will say that a0, . . . , an is
an effective finite sequence in (X, d ) if d (ai , aj) is a recursive number for all
i, j ∈ {0, . . . , n}.
Suppose a0, . . . , an is an effective finite sequence in a metric space (X, d ).
Then {(a0, a0, . . . ), . . . , (an, an, . . . )} is a computability structure on (X, d )
and by Proposition 3.1 this computability structure is contained in some
maximal computability structureM on (X, d ). Hence there exists amaximal
computability structureM on (X, d ) such that a0, . . . , an ∈ M0. However,
such a maximal computability structure M need not be unique. In this
sectionwewill focus on the casewhen (X, d ) is a subspace of Euclidean space
and we will examine conditions under which such a maximal computability
structure is unique.
If (X, d ) is a metric space and a ∈ X , let R(X,d )a denote the set of all
sequences (xi ) inX such that the function N → R, i 	→ d (xi , a) is recursive.
For simplicity of notation, for a0, . . . , an ∈ X we will write R(X,d )a0,...,an instead
of R(X,d )a0 ∩ · · · ∩ R(X,d )an .
Note that

(xi) ∈ R(X,d )a ⇐⇒ (xi) 
 (a, a, a, . . . ).
Fromprevious equivalence and Proposition 2.3we conclude the following:
if (xi ) ∈ R(X,d )a and (yi ) � (xi ), then (yi) ∈ R(X,d )a . Therefore

R(X,d )a0,...,an
is an effective structure⇐⇒ R(X,d )a0,...,an

is a computability structure.

Suppose a0, . . . , an is an effective finite sequence in a metric space (X, d ).
Then each of the constant sequences (a0, a0, . . . ), . . . , (an, an, . . . ) is an
element of R(X,d )a0,...,an . Furthermore, if S is an effective structure on (X, d ),
then

a0, . . . , an ∈ S0 =⇒ S ⊆ R(X,d )a0,...,an
. (4)

Therefore, if R(X,d )a0,...,an is an effective structure, then R(X,d )a0,...,an is a maximal
effective structure. So, by Proposition 3.4, we have the implication

R(X,d )a0,...,an
is an effective structure =⇒ R(X,d )a0,...,an

is a maximal

computability structure.

This, together with (4), gives the following claim.
Proposition 4.1. Let a0, . . . , an be an effective finite sequence in a metric
space (X, d ). Suppose that R(X,d )a0,...,an is an effective structure. Then R(X,d )a0,...,an

is a unique maximal computability structureM on (X, d ) such that a0, . . . ,
an ∈ M0.
The converse of the previous proposition does not hold in general, i.e.,
it is possible that there exists a unique maximal computability structure on
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(X, d ) in which a0, . . . , an are computable points even if R(X,d )a0,...,an is not an
effective structure. Let us observe the following example.

Example 4.2. Let d be the Euclidean metric on R and let a0 = 0. Then
any sequence in {−1, 1} is an element of R(R,d )a0 . But not any sequence in
{−1, 1} is effective.
Namely, if (xi ) is a sequence in {−1, 1} which is effective in (R, d ) and if
A = {i ∈ N | xi = 1}, then A is r.e. Indeed, if i0 ∈ A, then

A = {i ∈ N | d (xi , xi0) < 1}
and A is r.e. by Proposition 2.1(iv) (in fact A is recursive since N \ A is also
r.e.). So if we take a subset A of N which is not r.e. and we define (xi) by
xi = 1 for i ∈ A and xi = −1 for i ∈ N \ A, then (xi ) is a noneffective
sequence in (R, d ) which belongs to R(R,d )a0 .
ThusR(R,d )a0 is not an effective structure.On the other hand,wewill see later
(Theorem 4.16) that there exists a unique maximal computability structure
on (R, d ) in which a0 is a computable point.

In what follows we concentrate on maximal computability structures on
subspaces of (Rn, d ), where d is the Euclidean metric on Rn. From now
on, if X ⊆ Rn, we will write briefly metric space X instead of metric space
(X, d �X×X ).
We first examine conditions under which RXa0,...,an is an effective (and
therefore a maximal computability) structure.

4.1. Characterization of maximal computability structures. If a0, . . . ,
ak ∈ Rn, let

P = {a0 +
k∑
i=1

ti(ai − a0) | t1, . . . , tk ∈ R}.

We say that P is the plane in Rn spanned by a0, . . . , ak (we take P = {a0} if
k = 0.)

Proposition 4.3. Let X ⊆ Rn be such that d (x, y) is a recursive number
for all x, y ∈ X . Then there exists an isometry f : Rn → Rn such that each
element of f(X ) is a recursive point.
Proof. We may assume that X has at least two elements (otherwise the
claim is obvious).
Choose a0 ∈ X and let V be the vector subspace of Rn generated by
the set {x − a0 | x ∈ X}. Then there exist k ≥ 1 and a1, . . . , ak ∈ X
such that a1 − a0, . . . , ak − a0 is a basis for V . In particular, the vectors
a1 − a0, . . . , ak − a0 are linearly independent, i.e., the points a0, . . . , ak are
geometrically independent.
Let P be the plane in Rn spanned by a0, . . . , ak . Then we have X ⊆ P .
By the proof of Lemma 10 in [4] there exists an isometry f : Rn → Rn

such that f(a0), . . . , f(ak) are geometrically independent recursive points
in Rn and such that f(P) ⊆ T , where T = {(t1, . . . , tk , 0, . . . , 0) ∈
Rn | t1, . . . , tk ∈ R}.
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Let x ∈ X . The finite sequence a0, . . . , ak, x is effective and therefore
f(a0), . . . , f(ak), f(x) is an effective sequence in T . Let g : T → Rk be
the isometry defined by g(t1, . . . , tk, 0, . . . , 0) = (t1, . . . , tk). We have that
g(f(a0)), . . . , g(f(ak)) are geometrically independent recursive points in
Rk and g(f(a0)), . . . , g(f(ak)), g(f(x)) is an effective sequence in Rk . By
Proposition 8 in [4] the point g(f(x)) is recursive inRk and, by the definition
of g, the point f(x) is recursive in Rn. �
Corollary 4.4. Let a0, . . . , ak be an effective sequence in Rn. Then there
exists an isometry f : Rn → Rn such that f(a0), . . . , f(ak) are recursive
points.
Lemma 4.5. Let (xi ) be a recursive sequence in Rn.
(i) LetL : Rn → Rm be a linear map and let a1, . . . , an be linearly indepen-
dent and recursive vectors inRn such thatL(a1), . . . , L(an) are recursive
in Rm. Then (L(xi)) is also a recursive sequence in Rm.

(ii) Let f : Rn → Rm be an affine map and let a0, . . . , an ∈ Rn be geo-
metrically independent recursive points such that f(a0), . . . , f(an) are
recursive in Rm. Then (f(xi )) is a recursive sequence in Rm.

Proof. (i) Let e1, . . . , en be the standard basis of Rn. For i ∈ {1, . . . , n}
let �i1, . . . , �

i
n ∈ R be such that

ei = �i1a1 + · · · + �inan.
Then the tuple (�i1, . . . , �

i
n) is a unique solution to n×n systemwith recursive

coefficients (since ei , a1, . . . , an are recursive). By applying Cramer’s rule, it
is easily seen that �i1, . . . , �

i
n are recursive. We have

L(ei) = �i1L(a1) + · · · + �inL(an)
implying that L(ei ) is recursive. Hence L(e1), . . . , L(en) are recursive
elements of Rm.
Let (xi ) be a recursive sequence inRn. Let (x1i ), . . . , (x

n
i ) be the component

sequences of (xi ). For each i ∈ N we have

xi = x1i e1 + · · · + xni en
and therefore

L(xi ) = x1i L(e1) + · · · + xni L(en).
So (L(xi )) is a recursive sequence in Rm.
(ii) As f is an affine map, there exist a linear operator L : Rn → Rm

and a vector c ∈ Rm such that f(x) = L(x) + c for all x ∈ Rn. We have
c = f(a0)− L(a0), so

f(x) = f(a0) + L(x − a0)
for all x ∈ Rn. Vectors a1 − a0, . . . , an − a0 are linearly independent and
recursive and for i ∈ {1, . . . , n} we have

L(ai − a0) = f(ai )− f(a0),
so L(a1 − a0), . . . , L(an − a0) are recursive in Rm. Let (xi ) be a recursive
sequence in Rn. Obviously, (xi − a0) is also a recursive sequence in Rn.
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By claim (i), (L(xi − a0)) is a recursive sequence in Rm and since f(xi ) =
f(a0) + L(xi − a0), for all i ∈ N, (f(xi )) is a recursive sequence. �

Lemma 4.6. Let a0, . . . , ak be recursive points in Rn and let P be the plane
spanned by a0, . . . , ak . If (xi ) is a sequence in P such that (xi) ∈ RR

n

a0,...,ak
,

then (xi) is a recursive sequence in Rn.

Proof. We may assume that a0, . . . , ak are geometrically independent
(otherwisewe take i0, . . . , il ∈ {0, . . . , k} so thatai0 , . . . , ail are geometrically
independent and span P).
As P is a k-plane, it is isometric to Rk . Let g : P → Rk be an isometry.
Obviously,g(a0), . . . , g(ak) is ageometrically independenteffective sequence
in Rk , so by Corollary 4.4, there exists an isometry h : Rk → Rk such that
h(g(a0)), . . . , h(g(ak)) are recursive points. We define f = h ◦g. Obviously,
f is an isometry P → Rk such that f(a0), . . . , f(ak) are recursive points.
We have (f(xi )) ∈ RR

k

f(a0),...,f(ak)
, so by Proposition 8 in [4], (f(xi )) is a

recursive sequence in Rk . The function f−1 : Rk → P is also an isometry.
Note that P − a0 is a vector subspace of Rn. If we compose f−1 by the
map P → P − a0, x 	→ x − a0, we get a surjective isometry Rk → P − a0
which is therefore an affine map (Mazur–Ulam theorem). We conclude that
f−1, as a function Rk → Rn, is affine. Clearly f−1(f(a0)), . . . , f−1(f(ak))
are recursive points in Rn and, by Lemma 4.5(ii), (xi) = (f−1(f(xi ))) is a
recursive sequence in Rn. �

Lemma 4.7. Let a0, . . . , ak+1 be an effective sequence in Rn and let P be
the plane spanned by points a0, . . . , ak . If (xi ) is a sequence in P such that
(xi ) ∈ RR

n

a0,...,ak
, then (xi) ∈ RR

n

ak+1
.

Proof. LetQ be a plane spanned by a0, . . . , ak+1. If Q is a one-point set,
then the claim is obvious. Otherwise, there exists l ∈ {1, . . . , k + 1} and
an isometry f : Q → Rl with the property that f(a0), . . . , f(ak+1) are
recursive in Rl .
Let g : Q − a0 → Q, g(x) = x + a0. As in the proof of Lemma 4.6
we conclude that f ◦ g is an (injective) affine map. It follows that f(P) is
the plane in Rl spanned by points f(a0), . . . , f(ak). We have that (f(xi ))
a sequence in f(P) such that (f(xi )) ∈ RR

k+1

f(a0),...,f(ak)
. Now Lemma 4.6

implies that (f(xi )) is a recursive sequence Rl . Therefore (f(xi )) ∈ RR
l

f(ak+1)

(claim (i) of Example 2.5) and so (xi ) ∈ RR
n

ak+1
. �

Let X ⊆ Rn and let a0, . . . , ak be a geometrically independent effective
sequence inX . We say that a0, . . . , ak is amaximal geometrically independent
effective sequence in X if there exists no ak+1 ∈ X such that a0, . . . , ak, ak+1
is a geometrically independent effective sequence.

Theorem 4.8. Let X ⊆ Rn and let a0, . . . , ak be a maximal geometrically
independent effective sequence inX . ThenRXa0,...,ak is a maximal computability
structure. Moreover, this is a unique maximal computability structure on X in
which a0, . . . , ak are computable points.
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Proof. Let f : P → Rk be an isometry such that f(a0), . . . , f(ak) are
recursive points in Rk (the existance of such an isometry can be proved as
in the proof of Lemma 4.6).
Note that by maximality of a0, . . . , ak

(xi ) ∈ RXa0,...,ak ⇒ xi ∈ P , for all i ∈ N.

Therefore, for (xi ), (yi ) ∈ RXa0,...,ak sequences (f(xi )), (f(yi )) are well
defined and clearly (f(xi )), (f(yi )) ∈ RR

k

f(a0),...,f(ak)
. It follows from

Lemma 4.6 that (f(xi )), (f(yi )) are recursive sequences in Rk . It follows
(f(xi )) 
 (f(yi )) (Example 2.5) and consequently (xi) 
 (yj). Now we
have that RXa0,...,ak is an effective structure, so the claim follows from
Proposition 4.1. �
Corollary 4.9. Let X ⊆ Rn. If a0, . . . , an ∈ X is a geometrically inde-
pendent effective sequence, then RXa0,...,an is a unique maximal computability
structure on X in which a0, . . . , an are computable points.
The following theorem gives a precise description of maximal com-
putability structures on a subspace X of Euclidean space: each maximal
computability structure on X is of the form RXa0,...,ak .
Theorem 4.10. LetX ⊆ Rn. LetM be a maximal computability structure
on X and k ∈ N the largest number with the property that there are k + 1
geometrically independent points inM0. If a0, . . . , ak ∈ M0 are geometrically
independent, then a0, . . . , ak is a maximal geometrically independent effective
sequence in X andM = RXa0,...,ak .
Proof. Obviously we have

M ⊆ RXa0,...,ak . (5)

We claim that there is no ak+1 ∈ X such that a0, . . . , ak+1 is a geometri-
cally independent effective sequence. Let us suppose that such ak+1 ∈ X
exists. If P is the plane spanned by a0, . . . , ak , then obviously M0 ⊆ P ,
so ak+1 /∈ M0. Also, if (xi) ∈ M, then (xi ) is a sequence in P and from
(5) it follows that (xi) ∈ RXa0,...,ak . By Lemma 4.7, we have (xi) ∈ RXak+1 , so
M∪{(ak+1, ak+1, . . . )} is a computability structure. This contradicts the fact
thatM is a maximal computability structure and ak+1 /∈ M0. Therefore,
such ak+1 does not exist.
Now by Theorem 4.8, RXa0,...,ak is a computability structure, so the claim
of the theorem follows from (5). �
4.2. Canonical computability structures. Suppose X ⊆ Rn and let S be
the set of all sequences (xi) in X which are recursive in Rn. Since the set
of all recursive sequences in Rn is a computability structure on Rn (even
separable, Example 2.10), we have that S is a computability structure on X .
We say that S is a canonical computability structure on X .
A canonical computability structure need not be maximal. For example,
if X does not contain any recursive point, then S = ∅ and therefore S is
not maximal (if X �= ∅). Another example is the set X defined as the line
segment in R2 with endpoints (0, 0) and (1, �), where � is a nonrecursive
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number. The only recursive point in X is (0, 0) and so S contains only the
constant sequence ((0, 0), (0, 0), . . . ). On the other hand, it is clear that there
exist points inX \{(0, 0)}whose distances from (0, 0) are recursive numbers.
So S is not a maximal computability structure on X .
Although canonical computability structures need not be maximal, each
maximal computability structure is canonical “up to isometry.” This is the
contents of the next theorem.

Theorem 4.11. Let X ⊆ Rn and let M be a maximal computability
structure on X . Then there exists an isometry f : Rn → Rn such that
{(f(xi )) | (xi ) ∈ M} is a canonical computability structure on f(X ).
Proof. By Theorem 4.10 we haveM = RXa0,...,ak for some maximal geo-
metrically independent effective sequence a0, . . . , ak in X . By Corollary 4.4
there exists an isometry f : Rn → Rn such that f(a0), . . . , f(ak) are
recursive points. It follows

{(f(xi )) | (xi) ∈ M} = Rf(X )
f(a0),...,f(ak)

. (6)

Let S be a canonical computability structure on f(X ). Then clearly S ⊆
Rf(X )
f(a0),...,f(ak)

. On the other hand, each element of Rf(X )
f(a0),...,f(ak)

is by (6)

equal to (f(xi )) for some (xi) ∈ M, i.e., (xi ) ∈ RXa0,...,ak . By maximality of
a0, . . . , ak we have that (xi) is a sequence in the plane spanned by a0, . . . , ak
and so (f(xi )) is a sequence in the plane spanned by f(a0), . . . , f(ak)
which, together with (f(xi )) ∈ Rf(X )

f(a0),...,f(ak)
and Lemma 4.6, gives that

(f(xi )) is a recursive sequence in Rn. So (f(xi )) ∈ S and this proves that
S = Rf(X )

f(a0),...,f(ak)
. From this and (6) follows the claim of the theorem. �

As we saw, a maximal computability structure on a metric space (X, d )
need not be separable, even when (X, d ) is a subspace of Euclidean space
(Example 3.2). However, the situation is different when the ambient space
is entire Euclidean space.

Theorem 4.12. Every maximal computability structure on Rn is separable.

Proof. Let M be a maximal computability structure on Rn. By
Theorem 4.11 there exists an isometry f : Rn → Rn such that f(M) is a
canonical computability structure on f(Rn). Since each isometry Rn → Rn

is surjective, f(M) is a canonical computability structure on Rn which
is separable by Example 2.10. So f(M) is separable and thus M is also
separable (Proposition 3.6). �

4.3. More about uniqueness of maximal computability structures.

Lemma 4.13. Let a0, . . . , an−1 be geometrically independent recursive
points inRn and let x ∈ Rn be such that d (a0, x), . . . , d (an−1, x) are recursive
numbers. Then x is a recursive point in Rn.

Proof. If x ∈ P , the claim follows from Lemma 4.6 and the fact that
x is a recursive point if and only if the constant sequence (x, x, x, . . . ) is
recursive.
If x /∈ P , we have
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d (x, ak)2 = 〈x − ak, x − ak〉
= ‖x‖2 − 2 〈x, ak〉+ ‖ak‖2,

(7)

for all k ∈ {0, . . . , n − 1}. If we subtract the first equation in (7) from other
n − 1 equations, we get

〈x,−2ak + 2a0〉 = d (x, ak)2 − d (x, a0)2 − ‖ak‖2 + ‖a0‖2, (8)

for all k ∈ {1, . . . , n− 1}. The number on the left in (8) is recursive, so after
dividing the equation (8) by −2, we have that

sk = 〈x, ak − a0〉 (9)

is a recursive number, for all k ∈ {1, . . . , n − 1}. Let A be the (n − 1) × n
matrix whose k-th row is the n-tuple ak − a0, i.e.,

A =

⎛
⎜⎝
a1 − a0
...

an−1 − a0

⎞
⎟⎠ .

If x = (x1, . . . , xn), from (9) we get

A

⎛
⎜⎝
x1
...
xn

⎞
⎟⎠ =

⎛
⎜⎝
s1
...
sn−1

⎞
⎟⎠ .

Since a1 − a0, . . . , an−1 − a0 are linearly independent, the rank of matrix A
is n− 1. Therefore, there exists a column in A which is a linear combination
of other columns. Let us denote by p the number of that column. Let B be
the matrix that we get from A by deleting the p-th column. We have

B

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1
...
xp−1
xp+1
...
xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎝
s1 + t1xp
...

sn−1 + tn−1xp

⎞
⎟⎠ ,

for some recursive numbers t1, . . . , tn−1. Since B is invertible, we have⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1
...
xp−1
xp+1
...
xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
= B−1

⎛
⎜⎝
s1 + t1xp
...

sn−1 + tn−1xp

⎞
⎟⎠ . (10)

As the coefficients of B are recursive, the inverse matrix B−1 also has recur-
sive coefficients. It follows from (10) that for all i ∈ {1, . . . , n}, i �= p there
are recursive numbers αi , �i such that

xi = αi + �ixp. (11)
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We have
‖x‖2 − 2 〈x, a0〉+ ‖a0‖2 = d (x, a0)2,

i.e.,
x21 + · · · + x2n + �1x1 + · · ·+ �nxn + � = 0, (12)

for some recursive numbers �1, . . . , �n, �. From (11) we get

αx2p + �xp + � = 0,

where α, �, � are recursive and (α, �, �) �= (0, 0, 0). Namely, if (α, �, �) =
(0, 0, 0), then for anyxp ∈ Rwewould have that the n-tuple (x1, . . . , xn) with
the property (11) satisfies the equation (12). This is impossible because the
equation (12) determines a sphere inRn (and (11), for xp ∈ R, determines a
line in Rn). Therefore, xp is a solution of the quadratic (or linear) equation
with recursive coefficients, so xp is a recursive number. Now from (11)
it follows that x1, . . . , xn are recursive numbers, so x is a recursive point
in Rn. �
The previous lemma does not hold uniformly, i.e., if (xi) is a sequence
in Rn such that (d (a0, xi))i∈N, . . . , (d (an−1, xi))i∈N are recursive sequences,
then (xi ) need not be recursive. Namely, with notation of Example 4.2, we
have that (d (a0, xi))i∈N is a recursive sequence, but (xi ) is not recursive in
R (since it is not effective). This also shows that Lemma 4.6 does not hold if
we remove the assumption that (xi) is a sequence in P (we have (xi) ∈ RR

a0
,

but (xi ) is not recursive).
By Theorems 4.8 and 4.10,M is a maximal computability structure on a
subspaceX ofRn if and only ifM = RXa0,...,ak , where a0, . . . , ak is a maximal
geometrically independent effective sequence in X . The question here is,
can we reduce the number of points which are needed in this description
ofM? More precisely, if a0, . . . , ak is a maximal geometrically independent
effective sequence in X and k ≥ 1, does it hold RXa0,...,ak = RXa0,...,ak−1? The
answer in negative, as the following simple example shows.

Example 4.14. Let a0 = 0, a1 = 1 and X = R. Then a0, a1 is a maximal
geometrically independent effective sequence in X , butRXa0,a1 �= RXa0 . To see
this, choose a sequence (xi ) in {−1, 1} which is nonrecursive as a function
N → R (there are uncountably many sequences in {−1, 1}, but only count-
ably many recursive functions N → R). Then (xi) ∈ RXa0 , but (xi ) /∈ RXa0,a1
(otherwise the equality xi = 1 − d (xi , a1) would imply the recursiveness
of (xi)).

On the other hand, the reduction of number of points which determine
a maximal computability structure can be viewed in the following way. If
a0, . . . , ak is a maximal geometrically independent effective sequence in X ,
then there exists a unique maximal computability structure M on X in
which a0, . . . , ak are computable points (Theorem 4.8). In this sense we
can say that a maximal geometrically independent effective sequence in X
determines a unique maximal computability structure on X . The question
is can some geometrically independent effective sequence in X which is not
maximal also determine a unique maximal computability structure on X ?
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More specifically, isM also a unique maximal computability structure in
which a0, . . . , ak−1 are computable points?

Example 4.15. Let a0 = (0, 0) and a1 = (1, 0). Choose a point b on the
unit circle {(x, y) ∈ R2 | x2 + y2 = 1} such that d (b, a1) is a nonrecur-
sive number. Let X = {a0, a1, b}. Then a0, a1 is a maximal geometrically
independent effective sequence in X and therefore RXa0,a1 is a maximal com-
putability structure on X , but this is not the only maximal computability
structure on X in which a0 is a computable point. Namely, a0, b is also a
maximal geometrically independent effective sequence inX and soRXa0,b is a
maximal computability structure on X which is clearly different fromRXa0,a1 .
However, the statement that a0, . . . , ak−1 determine a unique computabil-
ity structure onX will hold if we assume that the geometrically independent
sequence a0, . . . , ak is maximal in X , not just as an effective sequence. This
is the contents of the following theorem, but first we need the following
definition.
If X ⊆ Rn, X �= ∅, we define the number dimX (the dimension of X ) as
the largest number k ∈ N such that there exists a geometrically independent
finite sequence a0, . . . , ak in X . So if k = dimX , then X is contained in
some k-plane in Rn, but it is not contained in any (k − 1)-plane.
Theorem 4.16. Let X ⊆ Rn, k = dimX , and suppose k ≥ 1. Let
a0, . . . , ak−1 be a geometrically independent effective sequence inX . Then there
exists a unique maximal computability structure on X in which a0, . . . , ak−1
are computable points.
Proof. If a0, . . . , ak−1 is a maximal geometrically independent effective
sequence in X , then the claim follows from Theorem 4.8.
Otherwise, there exists ak ∈ X such that a0, . . . , ak is a geometrically
independent effective sequence in X and since k = dimX by Theorem 4.8
we have thatRXa0,...,ak is a maximal computability structure on X . We have to
prove that this is the only maximal computability structure on X in which
a0, . . . , ak−1 are computable points.
Suppose M is a maximal computability structure on X such that
a0, . . . , ak−1 ∈ M0. Then clearly

M ⊆ RXa0,...,ak−1 . (13)

Let Q be the plane spanned by points a0, . . . , ak−1. We claim that there
exists b ∈ M0 such that b /∈ Q. Suppose the opposite, i.e.,M0 ⊆ Q. Let
(xi ) ∈ M. Then (xi ) is a sequence inQ andby (13)we have (xi ) ∈ RXa0,...,ak−1 .
Now Lemma 4.7 implies that (xi ) ∈ RXak . Hence (xi) ∈ RXa0,...,ak and this
proves that M ⊆ RXa0,...,ak . Since M is maximal, we have M = RXa0,...,ak
implying that ak ∈ M0 which is impossible since ak /∈ Q.
Hence there exists b ∈ M0 such that b /∈ Q. Let P be the plane spanned
by points a0, . . . , ak . Since k = dimX , we have X ⊆ P .
Let f : P → Rk be an isometry such that f(a0), . . . , f(ak) are recursive
points inRk . Since b ∈ M0, we have by (13) thata0, . . . , ak−1, b is an effective
sequence in X . Moreover, this sequence is geometrically independent since
b /∈ Q.

https://doi.org/10.1017/bsl.2016.26 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.26


MAXIMAL COMPUTABILITY STRUCTURES 463

It follows that f(a0), . . . , f(ak−1), f(b) is a geometrically independent
effective sequence in Rk (its geometrical independence follows from the fact
that f−1 : Rk → Rn is an affine map). By Lemma 4.13 we have that f(b) is
a recursive point in Rk .
Let (xi) ∈ M. It follows from (13) and b ∈ M0 that (xi ) ∈ RXa0,...,ak−1,b .
Now we have (f(xi )) ∈ RR

k

f(a0),...,f(ak−1),f(b)
and Lemma 4.6 implies that

(f(xi )) is a recursive sequence in Rk . This and the fact that f(ak) is a
recursive point give (f(xi )) 
 (f(ak), f(ak), f(ak), . . . ). So we have (xi) 

(ak, ak, ak, . . . ), i.e., (xi) ∈ RXak , which together with (13) gives (xi) ∈
RXa0,...,ak .
We conclude that M ⊆ RXa0,...,ak . The maximality of M implies M =

RXa0,...,ak and this proves the claim of the theorem. �

§5. Characterization of separable computability structures on a segment.
If X ⊆ Rn is such that dimX ≥ 1 and k = dimX , then by Theorem
4.16 for any geometrically independent effective sequence a1, . . . , ak in X
there exists a unique maximal computability structure Ma1,...,ak on X in
which these points are computable. The general question here is this: under
what conditions on X and the points a1, . . . , ak the computability structure
Ma1,...,ak is separable?
In particular, if X ⊆ R and a ∈ X , then there exists a unique maximal
computability structureMa on X in which a is computable. In this section,
we will observe the case when X is a segment and we will give necessary and
sufficient conditions thatMa is a separable. First, let us recall some facts
about left and right recursive numbers.
A real number x is said to be left recursive if there exists a recursive
sequence of rational numbers (qi) such that sup Im q = x.
It is easily seen that if F : Nk → Q is a recursive function and x =
sup ImF , then x is a left recursive number.

Proposition 5.1. If f : Nk → R is a recursive function and a = sup Imf,
then a is left recursive.
Proof. Let F : Nk+1 → Q be a recursive function such that

|f(x) − F (x, i)| < 2−i , (14)

for all x ∈ Nk , i ∈ N. Let G : Nk → Q be the function defined by

G(x, i) = F (x, i) − 2−i ,
x ∈ Nk , i ∈ N. Inequality (14) gives us

G(x, i) < f(x),

for all x ∈ Nk, i ∈ N, and therefore sup ImG ≤ sup Imf. On the other
hand, from (14) we also get

f(x) < F (x, i) + 2−i = G(x, i) + 2 · 2−i ,
for all x ∈ Nk, i ∈ N. Hence, sup Imf ≤ sup ImG , so sup Imf =
sup ImG . As G is recursive Nk → Q, a = ImG is left recursive. �
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Similarly, we say that a real number x is right recursive if there exists a
recursive sequence of rational numbers (ri) such that inf Im r = x. We also
have a similar proposition.
Proposition 5.2. If f : Nk → R is a recursive function and a = inf Imf,
then a is right recursive.
Proposition 5.3. If x ≥ 0 is left recursive, then there exists a recursive
sequence of rational numbers (ri) such that Im r = [0, x] and 0 ∈ Im r.
Proof. Bydefinition, there exists a recursive sequence of rational numbers
(qi ) such that sup Im q = x. The set

S = {i ∈ N | qi ≥ 0}
is recursive, so the sequence (si ) defined by

si = qi · �S(i), i ∈ N

is a recursive sequence of rational numbers such that si ≥ 0, for all i ∈ N

and sup Im s = x. Let (ti ) be a recursive sequence of rational numbers such
that Im t = Q∩ [0, 1] and let �1, �2 : N → N be recursive functions such that
N2 = {(�1(x), �2(x)) | x ∈ N}. We define

ri = s�1(i) · t�2(i),
i ∈ N. Now it is easily seen that (ri) is the desired sequence. �
Before a characterization of separable computability structures on a seg-
ment, we give a characterization of maximal computability structures on
X ⊆ R.
Proposition 5.4. Let X ⊆ R and a ∈ X . Let S be the set of all sequences
(xi ) in X such that (xi − a) is a recursive sequence. Then S is a maximal
computability structure on X (and clearly a ∈ S0).
Proof. Let Y = {x − a | x ∈ X}. The function f : X → Y , f(x) =
x − a, is a surjective isometry. So it suffices to prove that f(S) is a maximal
computability structure on Y .
By the definition of S we have that f(S) is the set of all sequences
in Y which are recursive. If 0 is the only recursive point in Y , then
f(S) = {(0, 0, 0, . . . )} and f(S) is a maximal computability structure on
Y . Otherwise, there exists b ∈ Y \ {0} such that b is a recursive number.
Each recursive sequence in Y belongs to RY0,b . Conversely, each element of
RY0,b is a recursive sequence in R by Lemma 4.6. Hence f(S) = RY0,b , so
f(S) is a maximal computability structure on Y (Theorem 4.8). �
Theorem 5.5. Let � > 0. For a ∈ [0, �] letMa be the unique maximal
computability structure on [0, �] such that a ∈ M0

a . ThenMa is a separable
computability structure if and only if a and � − a are left recursive numbers.
Proof. IfMa is a separable computability structure, then there exists an
effective separating sequence α in [0, �] such thatMa = Sα . Let α′ be the
sequence in [−a, � − a] defined by α′

i = αi − a, i ∈ N. By Proposition 5.4
α′ is a recursive sequence. From

� − a = sup Imα′,

a = sup Im(−α′)
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and Proposition 5.1 it follows that � − a and a are left recursive
numbers.
Let us assume now that a and � − a are left recursive numbers. By
Proposition 5.3, there exist recursive sequences of rational numbers (ri)
and (qi ) such that

Im q = [0, a], 0 ∈ Im q,
Im r = [0, � − a].

Let α′ be the sequence of rational numbers defined by

α′(2i) = ri ,

α′(2i + 1) = −qi ,
i ∈ N. Then α′ is a recursive sequence of rational numbers and obviously
Imα′ = [−a, � − a], 0 ∈ Imα′. Let α be the sequence defined by

αi = α′
i + a,

i ∈ N. Then α is an effective sequence and Imα = [0, �], so α is an effective
separating sequence in [0, �] and a ∈ Imα. Hence a ∈ S0α. Since Sα is a
maximal computability structure and a ∈ S0α , it must be Sα =Ma , soMa

is separable. �
If c, d ∈ R, c < d , and a ∈ [c, d ], then the function [c, d ] → [0, d − c],
x 	→ x−c is a surjective isometry and this, together with Theorem 5.5, gives
the following conclusion.
Corollary 5.6. Let c, d ∈ R, c < d . For a ∈ [c, d ] letMa be the unique
maximal computability structure on [c, d ] such that a ∈ M0

a . ThenMa is
separable if and only if a − c and d − a are left recursive numbers.
Suppose a ∈ R and let (xi) and (yi) be recursive sequences of rational
numbers such that a = sup Imx = inf Im y. Then for each k ∈ N there exist
i, j ∈ N such that |xi − yj | < 2−k and since the latter condition is decidable
(recursive), there exist recursive functions ϕ1, ϕ2 : N → N such that for each
k ∈ N we have |xϕ1(k) − yϕ2(k)| < 2−k which implies |a − xϕ1(k)| < 2−k .
Hence each real number which is both left and right recursive is recursive.
On the other hand, it is easy to conclude that each recursive number is left
and right recursive. Furthermore, it is obvious that the sumof two left (right)
recursive numbers is a left (right) recursive number. Note also the following:
if a is left (right) recursive and r is a nonnegative rational number, then −a
is right (left) recursive and r · a is left (right) recursive.
Let (X, d ) be a metric space. There are two general questions:
(1) What is the number of separable computability structures on (X, d )?
(2) What is the number of nonisometric separable computability struc-
tures on (X, d )?

Two computability structures S and T on (X, d ) are said to be isometric if
there exists a surjective isometry f : X → X such that T = f(S).
Let � be a positive real number. In [5] the author asks the question (2) in
the case of the metric space [0, �] and he gives an answer in Theorem 8.12: if
� is recursive, then every two separable computable structures on [0, �] are
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isometric, and if � is left recursive but not recursive, then there are infinitely
many nonisometric separable computability structures on [0, �] (see also
Fact 8.8. in [5]).
We will now see how these results in a somewhat more general form can
be obtained from Theorem 5.5. Let us first notice that there are only two
isometries [0, �] → [0, �]. Therefore, there are infinitely many separable
computability structures on [0, �] if and only if there are infinitely many
nonisometric separable computability structures on [0, �]. The same holds
if we replace “infinitely” by “countably.”

Corollary 5.7. Let � be a positive real number.

1. If � is recursive, then there exists a unique separable computability
structure on [0, �].

2. If � is left recursive, but not recursive, then there exist infinitely many, but
only countably, separable computability structure on [0, �].

3. If � is not left recursive, then there exists no separable computability
structure on [0, �].

Proof. For a ∈ [0, �] let Ma be the unique maximal computability
structure on [0, �] in which a is a computable point. If a, b ∈ [0, �], then
Ma =Mb if and only if b − a is a recursive number. Indeed, ifMa =Mb,
then a and b are computable points in the same computability structure and
therefore their Euclidian distance is a recursive number. Conversely, if b− a
is a recursive number, then b is a computable point inMa (by Proposition
5.4) and so we haveMa =Mb.

1. Suppose � is recursive. By Theorem 5.5M0 is a separable computability
structure on [0, �]. Suppose S is some other separable computability
structure on [0, �]. Then S is also a maximal computability structure
on [0, �] and we have S = Ma for some a ∈ [0, �]. By Theorem
5.5 the numbers a and � − a are left recursive. Since −� is recursive
and −a = (� − a) + (−�), we have that −a is left recursive. This,
together with the fact that a is left recursive, gives that a is recursive.
It followsMa =M0, i.e., S =M0. HenceM0 is a unique separable
computability structure on [0, �].

2. Suppose � is left recursive and not recursive. Each separable com-
putability structure on [0, �] equalsMa for some a ∈ [0, �] which is
a left recursive number (Theorem 5.5). Since there are only countably
many left recursive numbers, we have that there are only countably
many separable computability structures on [0, �]. On the other hand,
there exist infinitely many such computability structures. Namely, for
each rational number r ∈ [0, 1] we have that r� and � − r� = (1 − r)�
are left recursive numbers and by Theorem 5.5Mr� is a separable com-
putability structure on [0, �]. The mapping r 	→ Mr� is injective: if
r, s ∈ Q ∩ [0, 1] are such thatMr� = Ms� , then the number s� − r�
is recursive and this is possible only if r = s (for r �= s we have
� = 1

s−r (s� − r�) and the recursiveness of s� − r� would imply the
recursiveness of �).
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3. Suppose there exists a separable computability structure on [0, �]. Then
this computability structure must be of the formMa , where a ∈ [0, �]
is such that a and � − a are left recursive. But � is the sum of these two
numbers and it follows that � is left recursive. �

Let us note (related to the claim 2 of Corollary 5.7) that there are metric
spaces onwhich there exist uncountablymany separable computability struc-
tures. For example, any Euclidean space Rn is such a space. First notice that
the set of all computable points in some separable computability structure
S is countable (since S is countable). Now each point of Rn is a computable
point in some maximal (and thus separable) computability structure on Rn

and therefore the set of all separable computability structures on Rn cannot
be countable.

§6. Conclusion. In this paper we have studied maximal computability
structures on ametric space.Although they canbe viewedas a generalization
of separable computability structures, they are much less convenient and
practical to deal with than separable computability structures. We gave
certain general observations regarding maximal computability structures
and then we concentrated on subspaces of Euclidean space and properties
of maximal computability structures on these spaces. We gave a precise
description of such computability structures and we investigated conditions
under which a maximal computability structure is unique.
The following question naturally arises: among all maximal computability
structures on a metric space, which are separable?We proved that in the case
of the entire Euclidean space, each maximal computability structure is sepa-
rable. Furthermore, in the case of a segment in R we gave a characterization
of separable computability structures andapplied that result todetermine the
cardinality of the set of all separable computability structures on a segment.
The latter question shows a possible direction of further investigations.
For a given subspace X of Euclidean space (for example a ball or a cube in
Euclidean space), how can we characterize separable computability struc-
tures on X among maximal computability structures? Of course, instead
of Euclidean space we can observe some other metric spaces which usually
occur in analysis and topology.
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