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MAXIMAL COMPUTABILITY STRUCTURES

ZVONKO ILJAZOVIC AND LUCIJA VALIDZIC

Abstract. A computability structure on a metric space is a set of sequences which satisfy
certain conditions. Of a particular interest are those computability structures which contain a
dense sequence, so called separable computability structures. In this paper we observe maximal
computability structures which are more general than separable computability structures and
we examine their properties. In particular, we examine maximal computability structures on
subspaces of Euclidean space, we give their characterization and we investigate conditions
under which a maximal computability structure on such a space is unique. We also give a
characterization of separable computability structures on a segment.

81. Introduction. One way to impose computability notions in the con-
text of a metric space (X, d) is to fix a dense sequence a = (a;) in this
space with the property that the real numbers d(e;. «;) can be effectively
computed. This means that for each i, j. k € N we can effectively compute
a rational number which approximates d (. @) up to 2-%. We say that the
triple (X, d, ) is a computable metric space. A point x € X is said to be
computable in this space if for each k& € N we can effectively compute j € N
such that the point «; is 27 *-close to x. Similarly, a sequence (x;) in X
is said to be computable in this space if for all i,k € N we can effectively
compute j € N such that the point a; is 2~*-close to x;.

Furthermore, we can define the notion of a computable subset of X.
First, we fix some effective sequence (/;) of rational open balls in (X, d, a);
a rational open ball in (X, d.«) is an open ball centered in some «; with
rational radius. We say that a closed set S in (X, d ) is computably enumerable
in (X, d.a)ifthesetofalli € Nsuch that I;NS # (is recursively enumerable
and we say that S is co-computably enumerablein (X, d. o) if X\ S = U, I
for some recursively enumerable set 4 C N. A set S is called computable
in (X.d, «) if it is computably enumerable and co-computably enumerable
([1.2]).

All these notions depend, by definition, on the sequence . However, it
turns out that if (X, d, @) and (X, d. B) are computable metric spaces, where
a and f are equivalent sequences, then the notions of a computable point, a
computable sequence, a (co-)computably enumerable set and a computable
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set in computable metric spaces (X, d. a) and (X, d, ) coincide. That « and
B are equivalent means that « is a computable sequence in (X, d. ) and
is a computable sequence in (X. d, «).

If (X.d, «) is a computable metric space, let S, denote the set of all
sequences which are computable in this space. If we have computable metric
spaces (X.d, «) and (X.d. B). it turns out that o and S are equivalent if
and only if S, = Sg. So the notions of a computable point, a computable
sequence, a (co-)computably enumerable set and a computable set can be
viewed as notions defined related to the entire set S, and not just to « itself.

Therefore, it makes sense to observe sets of the form S, and to take such
sets of sequences as a basis for computability concepts on a metric space
(X.d). This leads to the notion of a computability structure on a metric
space (X, d).

A computability structure S on (X, d) is a set of sequences in X such that
the following holds:

(i) if (x;).(y;) € 8. then the distances d(x;.y;) can be effectively
computed;

(ii) if (x;) € S and (y;) is a sequence in X which can be computed from
(x;). then (y;) € S.

If (X.d. o) is a computable metric space, then S, is a computability struc-
ture on (X, d). Such computability structures on (X, d) we call separable.
Computability structures have been studied by Pour-El and Richards in [7],
by Yasugi, Mori, and Tsujji in [6, 11] and results related to computability
structures have been studied by Melnikov in [5]. An investigation of com-
putability structures can also be found in [4]. See also [3,9]. Usually, to get
certain results, we need the assumption that a computability structure is
separable.

In this paper we focus on maximal computability structures—
computability structures which are maximal with respect to inclusion. We
investigate this notion and the particular relationship between maximal and
separable computability structures. Although we give some observations
on maximal computability structures in general metric spaces, most of the
paper is devoted to the study of maximal computability structures on sub-
spaces of Euclidean space. Using maximal computability structures, we give
a description of separable computability structures on a line segment in R
and we use this to determine the number of such computability structures
obtaining a result which is a somewhat more precise form of Theorem §.12
from [5].

We believe that the subject of this paper has a potential for further investi-
gations. For example, one way in that direction could be a study of maximal
computability structures on various well-known examples of metric spaces.

Here is how the paper is organized. In Section 2 we give basic notions and
facts and study computability structures in general. In Section 3 we introduce
the notion of a maximal computability structure and prove certain results
related to this notion which hold in a general metric space. In Section 4
we focus on subspaces of Euclidean space. We give a characterization of
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maximal computability structures on such metric spaces, we examine the
problem of uniqueness of a maximal computability structure and we also
prove that each maximal computability structure on R” is separable. In
Section 5 we characterize separable computability structures among maxi-
mal computability structures on a segment and we examine the cardinality
of the set of all separable computability structures on a segment.

§2. Computability structures and basic notions. A function f : N¥ — Q
is said to be recursive if there exist recursive functions a, b, ¢ : N¥t1 5 N
such that

, . a(x)
x) = (=1) 22
F) = ()8
for each x € NF. A function f : N¥ — R is said to be recursive if there exists
a recursive function F : N1 — Q such that

|/ (x) = F(x.0)| <27

for all x € Nf and i € N [7,10]. A number x € R is said to be recursive if
there exists a recursive function f : N — Q such that |x — f(k)| < 27 for
each k € N[8]. A point (x1,....x,) € R"is called recursive if x1, . .., x, are
recursive numbers.

We say that a function f : N¥ — R” is recursive if the component functions
of f are recursive (as functions N — R).

In the following proposition we state some basic facts about recursive
functions N — R.

PROPOSITION 2.1. (i) If f.g: Nk — R are recursive functions.
then f +g. f —g,and [ - g are recursive.

(i) If f: N* = Rand F: N“*1 = R are functions such that F is recursive
and | f (x) — F (x.i)| < & for each x € N* and each i € N, then f
is recursive.

(iii) If f: N* = R is a recursive function such that f(x) > 0 for each
x € NK, then the function N© — R, x — +/ f(x) is recursive.

(iv) If f.g: N¥ — R are recursive functions, then the set

[xeN | () >g0)}

is recursively enumerable.

Let (X, d) be a metric space and (x;) a sequence in X. We say that (x;) is
an effective sequence in (X, d) if the function N> — R,

(i.j) = d(x;. x;)

is recursive. If (x;) and (y;) are sequences in X, we say that ((x;). (y;)) is an
effective pair in (X, d) and we write (x;) o (y;) if the function N> — R,

(i.j) = d(xi.p;)

is recursive. Note that a sequence (x;) is effective in (X, d) if and only if
(x7) ¢ (x;). Also note that (x;) ¢ (y;) implies (y;) ¢ (x;).
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Suppose (X, d) is a metric space and (x;) is a sequence in X. A sequence
(i) in X is said to be computable with respect to (x;) in (X, d) and we write
(i) =< (x;) if there exists a recursive function F : N> — N such that

d(yi. xpgp) <27F
for all i,k € N. A point ¢ € X is said to be computable with respect to

(x;) in (X.d) if there exists a recursive function /' : N — N such that
d(a, xf(k)) < 2% for each k € N.

PROPOSITION 2.2. Let (X.d) be a metric space and let (x;). (y;). (z;) be
sequences in X such that (z;) = (y;) and (y;) = (x;). Then (z;) = (x;).

PrOOF. Let F. G : N> — N be recursive functions such that
d(zi. ypir) <27 and d(yi. xgup) <27F (1)
for all i, k € N. Then, for all i,k € N, we have d (z;, (4 1) <2~ % and
k+1

d(VE(iks1) XG(F(ike1) k1) < 2~ (k+1) and the triangle inequality implies

d(zi. %G (p(iks1yuen) < 27
Hence (z;) =< (x;). -
PrOPOSITION 2.3. Let (X.d) be a metric space and let (x;). (y;). (a;). (B:)
be sequences in X such that (x;) =< (o;) and (y;) = (B:). Suppose (a;) o (B;).
Then (x;) o (y;).
ProOF. Let F, G : N> — N be recursive functions such that
d(xi.apip) <27%andd(y;, Ba(ix)) < 27k
for all i, j,k € N. In general, if a,a’, b, b’ € X, then
|d(a.b) —d(a'.b")| <d(a,a")+d(b.b"),

which follows easily from the triangle inequality. Therefore, for all i, j, k € N
we have

d(xi.y;) = d(ap(rsr) Borsn)| <
<d(xi.apirsn) +d ;. Poinin) <2- 2=l — ok,
It follows from Proposition 2.1(ii) that the function N> — R, (i.j)
d(x;.y;) is recursive. 4

COROLLARY 2.4. Let (X.d) be a metric space and (y;). (x;) sequences in
X such that (y;) = (x;). Suppose (x;) is effective. Then (y;) is effective.

An effective sequence (x;) in a metric space (X, d) is said to be an effective
separating sequence if (x;) is dense in (X, d), i.e., if {x; | i € N} is a dense
setin (X, d).

If @ = (o) is an effective separating sequence in (X, d), then the triple
(X.d. o) is called a computable metric space. If (X, d,a) is a computable
metric space. then a point x € X is said to be computable in (X.d. o) if
x is computable with respect to oo and a sequence (x;) in X is said to be
computable in (X, d, o) if (x;) is computable with respect to o.

ExamMpPLE2.5. Letn € N\ {0} and let d be the Euclidean metric on R”. Let
(x;) and (y;) be sequences in R” and let (x/),.... (x/') and (y})..... (y}) be
the component sequences of (x;) and (y;).
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(i) Suppose (x;) and (y;) are recursive (as functions N — R"). Then
(x;) © (y;) (in the metric space (R".d)). Namely, for all i, j € N we
have

d(xi,y;) = \/(X} = PP A (] = )

and the claim follows from statements (i) and (iii) of Proposition 2.1.
In particular, each recursive sequence in R” is effective in (R”, d).

(ii) Suppose (x;) is recursive and (y;) < (x;). Then (y;) is also recur-
sive. Namely, if F : N2 — N is a recursive function such that
d(yj.xp(jx) < 27% for all j.k € N, then for each / € {1.....n}
and all j, k € N we have

‘y; - xlllf"(j,k)‘ < d(yj,xp(,;k)) < 2k

and Proposition 2.1(ii) implies that (y})(yf) are recursive
sequences. ‘

Now, if @ : N — R” is a recursive sequence such that {a; | i € N} isa
dense setin (R", d), then « is an effective separating sequence in (R”, d) and
(R",d, «) is a computable metric space.

Let (X, d) be a metric space and let S be a set whose elements are sequences
in X,ie.S C XN. We say that S is a computability structure on (X, d)
(see [11]) if the following properties hold:

(i) if (x;), (»;) € S, then (x;) o (y;):
(ii) if (x;) € Sand (y;) = (x;). then (y;) € S.

Note the following: if (X, d) is a metric space and S C X" such that
property (ii) above holds, then the following holds:

(iii) if (x;) € Sand f : N — Nisa recursive function. then (x /(;))ien € S.
So if S is a computability structure on (X, d), then (iii) holds.

If S is a computability structure on (X.d). then each (x;) € S is an
effective sequence in (X, d ). which follows directly from (i).

ExampLE 2.6. (i) Let (X, d) be a metric space and let @ € X. Let (x;)
be the sequence in X defined by x; = a,i € Nand let S = {(x;)}.
Then S is a computability structure on (X, d).

(ii) Let d be the Euclidean metric on R”. By Example 2.5 the set of all
recursive sequences in R” is a computability structure on (R”, d).

If (X.d) is a metric space and « a sequence in (X.d), let S, denote the
set of all sequences (x;) in X such that (x;) < «. Note that o € S,,.

PROPOSITION 2.7. Let (X.d) be a metric space and o a sequence in X .
Then o is an effective sequence in (X.d) if and only if S, is a computability
structure on (X, d).

ProoOF. If S, is computability structure on (X, d). then « is effective in
(X.d)sincea € S,,.

Conversely, if « is effective in (X, d). then S, is computability structure
on (X, d): property (i) from definition of a computability structure follows
from Proposition 2.3, and property (ii) follows from Proposition 2.2. =
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Suppose o and f are effective sequences in a metric space (X, d). We say
that a and f§ are equivalent and write o ~ f§ if a is computable with respect
to f and f is computable with respect to . By Proposition 2.2 for any
sequences « and ff in X we have

a=xpf =8, CSp
and therefore for any effective sequences « and f in (X, d) we have
a~f =S =S
LeEMMA 2.8. Let (X,d) be a metric space and let o = (o) be a sequence
inX.
(i) The sequence o is effective if and only if for each sequence (x;) in X the
following implication holds:

(x)) 2o = (x;j) o0 (2)

(ii) If a an effective separating sequence, then for each sequence (x;) in X
we have
(xi) 2a<=(x;) 00
Proor. (i) If (2) holds. then « is effective since @ < a.
Conversely, suppose « is effective and (x;) < «. Then (x;) € S,, which
together with o € S, and Proposition 2.7 implies (x;) ¢ a.

(ii) Suppose « is an effective separating sequence and (x;) ¢ a.

Let i. k € N. Then there exists j € N such that d(x;. a_,») < 27k Since the
set Q of all (i, k., j) € N* such that d(x;,«;) < 27 is r.e. (by Proposition
2.1(iv)) and for all i, k € N there exists j € N such that (i. k. j) € Q. there
exists a recursive function F : N> — N such that (i, k, F(i.k)) € Q for all
i,k € N. Hence

d(xi, ap(l“k)) <27k

for all i, k € N and therefore (x;) < a. -

PROPOSITION 2.9. Suppose (X.d) is a metric space, S a computability
structure on (X, d), and o a dense sequence in (X, d) such that o € S. Then
o is an effective separating sequence in (X.d) and S = S,,.

ProOF. Obviously, « is an effective separating sequence in (X, d).

If (x;) € S,.then (x;) < o and o € S implies (x;) € S.

Conversely, let (x;) € S. Then (x;) o a and by Lemma 2.8 (x;) < a, i.e..
(x;) € S,.Hence S = S,. .

Let (X.d) be a metric space. We say that S is a separable computability
structure on (X, d ) if S is a computability structure on (X, ) and there exists
a € Ssuch that « is a dense sequence in (X, d ). Note that by Proposition 2.9
S is a separable computability structure on (X, d) if and only if S = S, for
some effective separating sequence o in (X, d).

ExampLE 2.10. Let d be the Euclidean metric on R” and let « be as in
Example 2.5. Then S, is the set of all recursive sequences in R”.

Indeed. if (x;) € S,. then (x;) is a recursive sequence in R” by claim (ii) of
Example 2.5. On the other hand, if (x;) is a recursive sequence in R”, then
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by claim (i) of the same example we have (x;) ¢ @ and Lemma 2.8 implies
(x;) 2 a.ie., (x;) €8,.

So the set of all recursive sequences in R” is a separable computability
structure on (R”, d).

Suppose (X.d) is a metric space and « an effective sequence in (X, d).
Then

« is a dense sequence <= S, is a separable computability structure. (3)

Indeed, if (x;) is a dense sequence computable with respect to o, then « is
also dense.

Let (X.d) be a metric space and S a computability structure on (X.d).
Let a € X. We say that a is a computable point in the computability structure
S if there exist (x;) € Sand i € Nsuch that a = x;. It is easy to see that the
following statements are equivalent:

(i) a is a computable point in S;
(i) (a,a,a,...)€S:
(iii) there exist (x;) € S and a recursive function f : N — N such that
d(a.xrp)) < 2% for each k € N.

If S is a computability structure on a metric space (X, d). then we will
denote by S° the set of all computable points in S.

§3. Maximal computability structures in general. Let (X, d) be a metric
space and S a computability structure on (X, d). We say that S is a maximal
computability structure on (X, d) if there exists no computability structure
T on (X.d)suchthat S C 7T and S # T.

First we notice that each separable computability structure is maximal.
Indeed, if « is an effective separating sequence in a metric space (X, d) and
T a computability structure on (X, d) such that S, C 7, then o € T and
by Proposition 2.9 we have 7 = S,.

Separable computability structures on a metric space (X, d) in general
need not exist. Certainly, such computability structures do not exist if (X, d)
is not a separable metric space, but even if (X, d) is separable a separable
computability structure on (X, d) need not exist. For example, if X = {0, a},
where a i1s a nonrecursive number and d is the Euclidean metric on X, then
(X.d) clearly does not have a separable computability structure.

On the other hand, each metric space has maximal computability
structures, moreover we have the following proposition.

ProposITION 3.1. Let S be a computability structure on a metric space
(X.d). Then there exists a maximal computability structure M on (X.d)
such that S C M.

PrOOF. Let A be the family of all computability structures 7 on (X, d)
such that S C T. If we partially order A by inclusion, it is straightforward
to check that every chain in A has an upper bound and therefore, by Zorn’s
lemma, there exists a maximal element M in A. Hence M is a maximal
computability structure on (X, d) which contains S. -
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Even when a metric space has separable computability structures, a max-
imal computability structure need not be separable. Moreover, a maximal
computability structure which is dense need not be separable (Example 3.2).

A computability structure S on a metric space (X, d) is said to be dense
if S” is a dense set in (X, d). Clearly, each separable computability structure
is dense. On the other hand, a dense computability structure need not be
separable. For example, if d is the Euclidean metric on R and S a set
of all constant sequences (¢.¢.q....), where ¢ € Q, then S is a dense
computability structure on (R, d ) which is not separable. Note that S is not
a maximal computability structure.

ExaMpPLE 3.2. Let d be the Euclidean metric on [0, 1]. Then there exists a
unique separable computability structure on ([0, 1]. d) (see [4], Example 10
or Theorem 31).

Let o : N — Q be a recursive function whose range is [0.1] N Q (such
a function certainly exists). Then « is an effective separating sequence in
([0.1].d). If x € [0.1] is a point computable with respect to «. then x is
clearly a recursive number. Hence S, is the only separable computability
structure on ([0, 1]. d) and every element of S? is a recursive number.

Let ¢ € [0, 1] be a nonrecursive number. Then {(c,c,c,...)} is a com-
putability structure on ([0, 1], d) and by Proposition 3.1 there exists a maxi-
mal computability structure M on ([0, 1], d) such that {(c,c.c,...)} C M.
It follows ¢ € M°. Since ¢ ¢ S°. we have M # S,. hence M is not a
separable computability structure on ([0, 1], d).

Moreover, let 7 be the set of all constant sequences (x. x, x, ... ), where
x € [0,1] is such that x — ¢ € Q. Then T is a computability structure
on ([0,1].d) and ¢ € T°. Let M be a maximal computability structure on
([0.1], ) which contains 7. We have ¢ € M and we conclude that M is not
separable. If x € [0, 1] is such that x — ¢ € @Q, then x is a computable point
in M and therefore M, is a dense computability structure on ([0, 1].d)
(which is maximal and not separable).

Actually, as we will see, M = M and both of these two computability
structures are equal to the set of all sequences (x;) in [0, 1] such that (x; — ¢)
is a recursive sequence.

Let o be an effective sequence in a metric space (X.d). In contrast to
equivalence (3), the equivalence

a 18 a dense sequence <= S, is a maximal computability structure

does not hold in general (although the implication = always holds).
For example, if ¢ is a nonrecursive number, X = {0,c}, d the Euclidean
metric on X and « = (0,0,0,...), then S, = {a} and {a} is a maximal
computability structure. Hence S, is a maximal computability structure, but
o is not dense in (X, d).

ExaMpPLE 3.3. Let X be a nonempty set and let d be the discrete metric on
X . Suppose M is a maximal computability structure on (X. d). Then M? =
X . Indeed. if there exists x € X such that x ¢ MO, then {(x.x.x....)}UM
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is a computability structure on (X, d) which is different from M and which
contains M. This is impossible. Hence M° = X .

Suppose additionally that the set X is uncountable. We have the following
conclusion: M? is uncountable. hence M is uncountable. Furthermore, M
is a dense computability structure on (X, d) and (X.d) is not separable. In
contrast to this, if S is a separable computability structure on some metric
space, then that metric space is separable and S is countable, namely since
there are only countably many recursive functions N> — N, there are only
countably many sequences which are computable with respect to a given
effective (separating) sequence o.

Let (X, d) be a metric space and let S be a set whose elements are sequences
in X. We say that S is an effective structure on (X, d) if for all (x;). (y;) € S
we have (x;) o (;).

Note that each computability structure on (X, d) is an effective structure
on (X,d). On the other hand, an effective structure need not be a com-
putability structure. For example, if  : N — Q is a recursive surjection
and d the Euclidean metric on R, then {a} is an effective structure on
(R.d). but it is not a computability structure since (0,0,0....) < o and
(0,0,0....) ¢ {a}.

Let (X. d) be a metric space. We say that S is a maximal effective structure
on (X, d) if S is an effective structure on (X, d) and there exists no effective
structure 7 on (X.d) suchthat S C 7 and S # T.

If S is a computability structure, then any subset of S is obviously an
effective structure. Conversely, each effective structure is a subset of some
computability structure. This is the contents of the following proposition.

PROPOSITION 3.4. Let (X.d) be a metric space and S C XN. Then

(i) S is an effective structure on (X,d) if and only if there exists a
computability structure T on (X.d) such that S C T

(ii) S is a maximal effective structure on (X, d) if and only if S is a maximal
computability structure on (X.d).

ProOOF. If S is an effective structure on (X, d). then (J, .5 Sa is a com-
putability structure on (X, d). This follows from Proposition 2.3. Clearly
S € Uyes Sa- This proves (i).

Now, if S is a maximal effective structure on (X.d). then S = J, .5 Sa
and this means that S is a computability structure. So S is a maximal
computability structure on (X, d).

Conversely, suppose S is a maximal computability structure and 7T is
an effective structure such that S € 7. We have S € T C [J,c7 Sa
and it follows S = (J,c7Sa- So S = T. Hence S is a maximal effective
structure. -

The following proposition follows from Propositions 3.1 and 3.4(ii) (or it
can be proved directly as Proposition 3.1).

PROPOSITION 3.5. Let S be an effective structure on a metric space (X.d).
Then there exists a maximal effective structure M on (X, d) such that S C M.

If f:X = Yand S C XN let £(S) = {(f(x;)) | (x;) € S}. The proof
of the next proposition is straightforward.
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PRrOPOSITION 3.6. Let (X.d) and (Y.d') be metric spaces. let | : X — Y
be a surjective isometry andlet S C X™N. Then S is a (maximal ) computability
structure on (X, d) if and only if f(S) is a (maximal ) computability structure
on (Y.d"). Moreover, S is separable if and only if f(S) is separable.

§4. Maximal computability structures on Euclidean space. If (X.d) is a
metric space, n € N and ay,....a, € X, then we will say that «y....,a, is
an effective finite sequence in (X, d) if d(a;. a;) is a recursive number for all
i.j€{0.....n}.

Suppose ao, . .., a, is an effective finite sequence in a metric space (X, d).
Then {(ao. ag....).....(ay. a,,...)} is a computability structure on (X, d)
and by Proposition 3.1 this computability structure is contained in some
maximal computability structure M on (X, d). Hence there exists a maximal
computability structure M on (X, d) such that ay. ..., a, € M". However,
such a maximal computability structure M need not be unique. In this
section we will focus on the case when (X, d) is a subspace of Euclidean space
and we will examine conditions under which such a maximal computability
structure is unique.

If (X.d) is a metric space and a € X, let RE,X’d) denote the set of all
sequences (x;) in X such that the function N — R, i — d (x;. a) is recursive.

For simplicity of notation, for ay....,a, € X we will write RE,{{‘”W instead
of RED ... AR,
Note that

(x;) € RX = (x)) 0 (a.a.a....).
From previous equivalence and Proposition 2.3 we conclude the following:
if (x;) € RXD and (yi) =2 (x;). then (y;) € RX4) Therefore

(X.d)

. 1s an effective structure <= R/,

. 1s a computability structure.

Suppose ay. . . . . a, is an effective finite sequence in a metric space (X, d).

Then each of the constant sequences (ag.ag....). .... (ay.a,....) is an

element of Rg,f‘d)a". Furthermore, if S is an effective structure on (X, d),

then

seees

ao,...,anes(’:‘ggnyﬂ,d) 4)

0seees an*

Therefore, if Rg,fd)a is an effective structure, then Rg,fd)a is a maximal

effective structure. So, by Proposition 3.4, we have the implication

R\Xd) _is an effective structure —> Rgfd)a

gt S1sa maximal

computability structure.

This, together with (4), gives the following claim.

ProposiTiON 4.1, Let ay, . .., a, be an effective finite sequence in a metric
space (X.d). Suppose that Rg,fd)a is an effective structure. Then Rg,fd)a
is a unique maximal computability structure M on (X, d) such that ay. . ...
a, € M°.

The converse of the previous proposition does not hold in general, i.c.,
it is possible that there exists a unique maximal computability structure on

https://doi.org/10.1017/bsl.2016.26 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2016.26

MAXIMAL COMPUTABILITY STRUCTURES 455

X.d) in which ay, ..., a, are computable points even if RE,X"”C, is not an
( P p 0oty

effective structure. Let us observe the following example.

.....

ExamMpPLE 4.2. Let d be the Euclidean metric on R and let ap = 0. Then
any sequence in {—1, 1} is an element of Rgﬂf’d). But not any sequence in
{—1.1} is effective.

Namely, if (x;) is a sequence in {—1, 1} which is effective in (R, d) and if
A ={i e N|x; =1}, then 4 is r.e. Indeed, if iy € A, then

A={ieN|d(x;x;) <1}

and 4 is r.e. by Proposition 2.1(iv) (in fact A4 is recursive since N \ 4 is also
r.e.). So if we take a subset 4 of N which is not r.e. and we define (x;) by
x; = 1fori € Aand x; = —1fori € N\ 4, then (x;) is a noneffective

sequence in (R, d) which belongs to Réﬂf’d)

Thus Rgﬂf‘d) i1s not an effective structure. On the other hand, we will see later
(Theorem 4.16) that there exists a unique maximal computability structure
on (R, d) in which ay is a computable point.

In what follows we concentrate on maximal computability structures on
subspaces of (R”,d), where d is the Euclidean metric on R”. From now
on, if X C R”, we will write briefly metric space X instead of metric space
(X, d rXXX)'

We first examine conditions under which Rffo
therefore a maximal computability) structure.

., is an effective (and

4.1. Characterization of maximal computability structures. If «y, ...,
a, € R”, let

k
P:{ao+2ti(al~—ao)]tl,...,zkeR}.
i=1

We say that P is the plane in R” spanned by ay, . .., a; (we take P = {ao} if
k=0.)

PROPOSITION 4.3. Let X C R” be such that d(x. y) is a recursive number
for all x,y € X. Then there exists an isometry f : R" — R" such that each
element of f(X) is a recursive point.

ProOF. We may assume that X has at least two elements (otherwise the
claim is obvious).

Choose ap € X and let V' be the vector subspace of R” generated by
the set {x — ap | x € X}. Then there exist k > | and ay,...,a; € X
such that a; — ao.....a;r — ap is a basis for V. In particular, the vectors
ay — ay. ..., da; — ag are linearly independent, i.e., the points ay, . ... a; are
geometrically independent.

Let P be the plane in R” spanned by «y. ..., a;. Then we have X C P.

By the proof of Lemma 10 in [4] there exists an isometry f : R” — R”
such that f(ayp)..... f (ay) are geometrically independent recursive points
in R” and such that f(P) C T, where T = {(¢1,....%4.0,...,0) €
R" | t1,....1; € R}
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Let x € X. The finite sequence ay, ..., a;, x is effective and therefore
flag).....f(ay). f(x) is an effective sequence in 7. Let g : T — R* be
the isometry defined by g(#1,....7.0,....0) = (#1.....1 ). We have that
g(f(ap)).....g(f(ar)) are geometrically independent recursive points in
R* and g(f(ap)).....g(f(ar)).g(f(x)) is an effective sequence in R¥. By
Proposition 8 in [4] the point g ( /' (x)) is recursive in R and, by the definition

of g, the point f (x) is recursive in R”. =

COROLLARY 4.4. Let ay, ..., a; be an effective sequence in R". Then there
exists an isometry f : R" — R" such that f(ay).....f(ay) are recursive
points.

LeEmMMA 4.5. Let (x;) be a recursive sequence in R".

(i) Let L : R" — R™ be a linear map and let a,. . . ., a, be linearly indepen-
dent and recursive vectors in R" such that L(ay), . .., L(a,) are recursive
in R™. Then (L(x;)) is also a recursive sequence in R™.

(ii) Let f : R" — R™ be an affine map and let ay. ....a, € R" be geo-
metrically independent recursive points such that f(ay)..... f(a,) are
recursive in R™. Then (f (x;)) is a recursive sequence in R™.

ProOF. (i) Let ey,..., e, be the standard basis of R”. For i € {1,...,n}
let BI,.... . € R be such that

e; = flay+ -+ Bla,.

Then the tuple (A1, . ... f) is a unique solution to n x n system with recursive
coefficients (since e;, aj. . .., a, are recursive). By applying Cramer’s rule, it
is easily seen that . ..., f5, are recursive. We have

L(e;) = piL(ar) + -+ B,L(ay)

implying that L(e;) is recursive. Hence L(e)....,L(e,) are recursive
elements of R”.

Let (x;) be a recursive sequence in R”. Let (x}), ..., (x”) be the component
sequences of (x;). For each i € N we have

1
X; =x;e1+ -+ Xx'ey

and therefore
L(x;) = x;L(e1) + -+ + x]' L(ey).
So (L(x;)) is a recursive sequence in R”.
(ii) As f is an affine map, there exist a linear operator L : R" — R”™
and a vector ¢ € R™ such that f(x) = L(x) + ¢ for all x € R". We have

¢ = f(ao) = L(ao), so
f(x) = f(ag) + L(x — ao)

for all x € R". Vectors a; — ay,...,a, — ay are linearly independent and
recursive and for 7 € {1,...,n} we have

L(a; — ap) = f(a;) — f(ao).
so L(ay — ap).....L(a, — ao) are recursive in R”. Let (x;) be a recursive

sequence in R”. Obviously, (x; — ag) is also a recursive sequence in R”.
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By claim (i), (L(x; — ag)) is a recursive sequence in R” and since f(x;) =
f(ag) + L(x; — ap). foralli € N, (f(x;)) is a recursive sequence. -

LEMMA 4.6. Let ay. ..., ay be recursive points in R" and let P be the plane
spanned by ay. . ... ax. If (x;) is a sequence in P such that (x;) € Rg ..
then (x;) is a recursive sequence in R".

Proor. We may assume that ay,...,q; are geometrically independent
(otherwise we take i, .... 5 € {0,...,k}sothata,....,a,; are geometrically
independent and span P).

As P is a k-plane, it is isometric to RX. Let g : P — RX be an isometry.
Obviously. g (ag). . ... g(ay)isa geometrically independent effective sequence
in R¥, so by Corollary 4.4, there exists an isometry / : R¥ — R¥ such that
h(g(ap)).....h(g(ay)) are recursive points. We define /' = h o g. Obviously.
£ is an isometry P — R such that f(ay)..... f(ay) are recursive points.

.....

recursive sequence in R¥. The function /! : RX — P is also an isometry.
Note that P — qq is a vector subspace of R”. If we compose f~! by the
map P — P — ag. X — X — dp, we get a surjective isometry R — P — aq
which is therefore an affine map (Mazur—Ulam theorem). We conclude that
/1. asa function R¥ — R”,is affine. Clearly f~'(f(ag))..... £~ '(f(ay))
are recursive points in R” and, by Lemma 4.5(ii). (x;) = (f~'(f(x;))) isa

recursive sequence in R”. -
LemMA 4.7. Let ay, ..., a,.1 be an effective sequence in R" and let P be
the plane spanned by points ay. . ... a;. If (x;) is a sequence in P such that
(x;) € RE - then (x;) € RY .
ProoOF. Let Q be a plane spanned by «a, ..., a; 1. If Qis a one-point set,

then the claim is obvious. Otherwise, there exists / € {I....,k + 1} and
an isometry f : Q — R’ with the property that f(ag)..... f(ax,1) are
recursive in R’.

Letg : Q —ay — Q. g(x) = x + ap. As in the proof of Lemma 4.6
we conclude that f o g is an (injective) affine map. It follows that f(P) is
the plane in R/ spanned by points f(ag)..... f(a;). We have that (f(x;))

a sequence in f(P) such that (f(x;)) € Rﬂﬁk(;;) ..... () Now Lemma 4.6

implies that (/' (x;)) is a recursive sequence R’. Therefore ( f (x;)) € R%?l(aﬂo
(claim (i) of Example 2.5) and so (x;) € R’ -

iy1”

Let X € R” and let ay, ..., a; be a geometrically independent effective
sequence in X. We say that ay, . . . , a; is a maximal geometrically independent
effective sequence in X if there exists no ;1 € X such that ay, ..., ay, ai1
is a geometrically independent effective sequence.

THEOREM 4.8. Let X C R" and let aq. . ... a; be a maximal geometrically
independent effective sequence in X. Then Ry, is a maximal computability
structure. Moreover, this is a unique maximal computability structure on X in
which ay. . . .. a; are computable points.
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PrOOF. Let f : P — RK be an isometry such that f(ag)..... f(a;) are
recursive points in R* (the existance of such an isometry can be proved as
in the proof of Lemma 4.6).

Note that by maximality of o, ..., a;
(x)) ERY 4 = xi €P. foralli €N.

.....

..... Flap) It follows from

Lemma 4.6 that (f(x;)). (f(y;)) are recursive sequences in R¥. It follows
(f(x:)) o (f(»:)) (Example 2.5) and consequently (x;) ¢ (y;). Now we
have that RY  is an effective structure, so the claim follows from
Proposition 4.1. -

COROLLARY 4.9. Let X C R". If ay,...,a, € X is a geometrically inde-
pendent effective sequence, then Rffo _____ o, 18 a unique maximal computability
structure on X in which ay, . .., a, are computable points.

The following theorem gives a precise description of maximal com-
putability structures on a subspace X of Euclidean space: each maximal

computability structure on X is of the form R} .

THEOREM 4.10. Let X C R". Let M be a maximal computability structure
on X and k € N the largest number with the property that there are k + 1
geometrically independent points in M°. If ay. . . .. ai. € M° are geometrically
independent, then ay, . . ., ay is a maximal geometrically independent effective
sequence in X and M = Ry,

ProoF. Obviously we have

MCRY .. (5)

We claim that there is no a;,; € X such that «o,...,a;, is a geometri-
cally independent effective sequence. Let us suppose that such a;,; € X
exists. If P is the plane spanned by ay. ..., a;. then obviously M° C P,
so ary1 ¢ M. Also, if (x;) € M, then (x;) is a sequence in P and from
(5) it follows that (x;) € Ry . By Lemma 4.7, we have (x;) € R; . so
MU{(ag 1. a1, - .. )} isacomputability structure. This contradicts the fact
that M is a maximal computability structure and a;; ¢ M. Therefore,
such ay; does not exist.

Now by Theorem 4.8, R}, is a computability structure, so the claim
of the theorem follows from (5). =

4.2. Canonical computability structures. Suppose X C R” and let S be
the set of all sequences (x;) in X which are recursive in R”. Since the set
of all recursive sequences in R” is a computability structure on R” (even
separable, Example 2.10), we have that S is a computability structure on X
We say that S is a canonical computability structure on X .

A canonical computability structure need not be maximal. For example,
if X does not contain any recursive point, then S = () and therefore S is
not maximal (if X # ()). Another example is the set X defined as the line
segment in R? with endpoints (0,0) and (1, 7). where y is a nonrecursive
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number. The only recursive point in X is (0,0) and so S contains only the
constant sequence ((0,0). (0,0),...). On the other hand, it is clear that there
exist points in X'\ {(0, 0) } whose distances from (0, 0) are recursive numbers.
So § is not a maximal computability structure on X.

Although canonical computability structures need not be maximal, each
maximal computability structure is canonical “up to isometry.” This is the
contents of the next theorem.

THEOREM 4.11. Let X C R” and let M be a maximal computability
structure on X. Then there exists an isometry f : R" — R" such that
{(f(x) | (x;) € M} is a canonical computability structure on f(X).

seensdfe

metrically independent effective sequence ay. ... .a; in X. By Corollary 4.4
there exists an isometry f : R” — R” such that f(ap).....[f(ax) are
recursive points. It follows

{(FG) | () eMy=RID (6)

seees

Let S be a canonical computability structure on f (X ). Then clearly S C

R;Efo)) _____ f(ap)- On the other hand, each element of R;Efo)) f(a) 18 DY (6)

equal to (f(x;)) for some (x;) € M.ie. (x;) € R} _, .By maximality of

ao. . . ., a; we have that (x;) is a sequence in the plane spanned by aq. . .., ai
and so (f(x;)) is a sequence in the plane spanned by f(ay)..... f(ax)

which, together with (f(x;)) € R;Ei))),...,f(ak) and Lemma 4.6, gives that

(f(x;)) is a recursive sequence in R”. So (f(x;)) € S and this proves that

S = R;Efo)) /(q)- From this and (6) follows the claim of the theorem.

As we saw, a maximal computability structure on a metric space (X, d)
need not be separable, even when (X, d) is a subspace of Euclidean space
(Example 3.2). However, the situation is different when the ambient space
is entire Euclidean space.

......

THEOREM 4.12. Every maximal computability structure on R" is separable.

Proor. Let M be a maximal computability structure on R”". By
Theorem 4.11 there exists an isometry f : R” — R” such that /(M) is a
canonical computability structure on f (R"). Since each isometry R” — R”
is surjective, f (M) is a canonical computability structure on R” which
is separable by Example 2.10. So f (M) is separable and thus M is also
separable (Proposition 3.6). =

4.3. More about uniqueness of maximal computability structures.

LemMma 4.13. Let ay,...,a,_ be geometrically independent recursive
points in R" and let x € R" be such that d(ay. x). ....d(a,_1, x) are recursive
numbers. Then x is a recursive point in R".

Proor. If x € P, the claim follows from Lemma 4.6 and the fact that
x is a recursive point if and only if the constant sequence (x, x, x,...) is
recursive.

If x ¢ P, we have
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d(x.ar)* = (x — ar.x — ai)
= [|x[|* = 2 (x. ax) + |lax

forallk € {0,...,n — 1}. If we subtract the first equation in (7) from other
n — 1 equations, we get

) (7)

b

(x. =2ay + 2a0) = d(x.a;)* —d(x.a0)* — ||la||* + ||aol*. (8)
forallk € {1,....n —1}. The number on the left in (8) is recursive, so after
dividing the equation (8) by —2, we have that

sk = (X, ax — ap) )

is a recursive number, for all k € {1,...,n —1}. Let A bethe (n — 1) x n
matrix whose k-th row is the n-tuple a;, — ay. i.e.,

ay — dao
A=

ap—1 — do

If x = (x1.....,x,), from (9) we get

X1 51
Al 1 | =
Xn Sn—1
Since a; — ay. ....a,_1 — ao are linearly independent, the rank of matrix 4

is n — 1. Therefore, there exists a column in 4 which is a linear combination
of other columns. Let us denote by p the number of that column. Let B be
the matrix that we get from A4 by deleting the p-th column. We have

X1
S1+ Xy
B xp—l .
Xp+1 )
. Sp—1+ [n—lxp
Xn
for some recursive numbers ¢, ..., ,_;. Since B is invertible, we have
X1
Sp+ 11X
X, _
=11 = p-! : : (10)
Xp+1
. Sp—1 + [n—lxp
Xn

As the coefficients of B are recursive, the inverse matrix B! also has recur-
sive coefficients. It follows from (10) that for all i € {1,...,n}, i # p there
are recursive numbers «;, f5; such that

X :a,~+ﬁ,-xp. (11)
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We have
111 = 2 (x. ao) + [lao||* = d (x. a0)?,
1.€.,
X+ XX e X, +0 =0, (12)
for some recursive numbers y1., . ..,7,.d. From (11) we get

axy + fx, +y =0,

where a. .y are recursive and (. f.7) # (0,0,0). Namely, if (a. f.y) =
(0.0.0), then for any x,, € R we would have that the n-tuple (x;. .. .. x,) with
the property (11) satisfies the equation (12). This is impossible because the
equation (12) determines a sphere in R” (and (11), for x, € R, determines a
line in R"). Therefore, x,, is a solution of the quadratic (or linear) equation
with recursive coefficients, so x, is a recursive number. Now from (11)
it follows that xi,..., x, are recursive numbers, so x is a recursive point
in R”. =

The previous lemma does not hold uniformly. i.e.. if (x;) is a sequence
in R” such that (d (ag. x;))ien. - ... (d(a,—_1, x;))ien are recursive sequences,
then (x;) need not be recursive. Namely, with notation of Example 4.2, we
have that (d (ag. x;));en is a recursive sequence, but (x;) is not recursive in
R (since it is not effective). This also shows that Lemma 4.6 does not hold if
we remove the assumption that (x;) is a sequence in P (we have (x;) € RE .
but (x;) is not recursive).

By Theorems 4.8 and 4.10, M is a maximal computability structure on a
subspace X of R” ifand only if M = R}, .whereay.....a; isa maximal
geometrically independent effective sequence in X. The question here is,
can we reduce the number of points which are needed in this description

of M? More precisely, if ag, .. ., a; is a maximal geometrically independent
effective sequence in X and k > 1. does it hold R}, = RX . ?The

answer in negative, as the following simple example shows.

ExamMpLE 4.14. Letag = 0, a; = 1 and X = R. Then ay, a; is a maximal
geometrically independent effective sequence in X, but Ri{w F Rffo To see
this, choose a sequence (x;) in {—1, 1} which is nonrecursive as a function
N — R (there are uncountably many sequences in {—1, 1}, but only count-
ably many recursive functions N — R). Then (x;) € R} . but (x;) ¢ R) ,,
(otherwise the equality x; = 1 — d(x;,a;) would imply the recursiveness

of (x;)).

On the other hand, the reduction of number of points which determine
a maximal computability structure can be viewed in the following way. If
ap. . ... ay 1s a maximal geometrically independent effective sequence in X',
then there exists a unique maximal computability structure M on X in
which ay. ..., a; are computable points (Theorem 4.8). In this sense we
can say that a maximal geometrically independent effective sequence in X
determines a unigue maximal computability structure on X. The question
is can some geometrically independent effective sequence in X which is not
maximal also determine a unigue maximal computability structure on X?
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More specifically, is M also a unigue maximal computability structure in
which ay, . .., a,_ are computable points?

ExamPLE 4.15. Let ag = (0,0) and a; = (1.0). Choose a point b on the
unit circle {(x,y) € R? | x> + y? = 1} such that d (b, a;) is a nonrecur-
sive number. Let X = {ag,a;.b}. Then ay, a; is a maximal geometrically
independent effective sequence in X and therefore Ri),a . 1s a maximal com-
putability structure on X', but this is not the only maximal computability
structure on X in which aq is a computable point. Namely, ag. b is also a
maximal geometrically independent effective sequence in X and so Rflf) plsa

maximal computability structure on X which is clearly different from R} , .

However, the statement that a, . . ., a;_1 determine a unique computabil-
ity structure on X will hold if we assume that the geometrically independent
sequence «ay, ..., d; is maximal in X, not just as an effective sequence. This
is the contents of the following theorem, but first we need the following
definition.

If X CR", X # (), we define the number dim X (the dimension of X') as
the largest number k& € N such that there exists a geometrically independent
finite sequence ay,....a; in X. So if kK = dim X, then X is contained in
some k-plane in R”, but it is not contained in any (k — 1)-plane.

THEOREM 4.16. Let X C R", k = dim X, and suppose k > 1. Let
ao, . .., ai_1 beageometrically independent effective sequence in X . Then there
exists a unique maximal computability structure on X in which ay, ..., a;_
are computable points.

Proor. If ay,....a;_; is a maximal geometrically independent effective
sequence in X, then the claim follows from Theorem 4.8.

Otherwise, there exists @, € X such that ag,....q; is a geometrically
independent effective sequence in X and since k = dim X by Theorem 4.8
prove that this is the only maximal computability structure on X in which
ap. . .., di_1 are computable points.

Suppose M is a maximal computability structure on X such that
ap. ....ai_; € M° Then clearly

M QRS,(O _____ G (13)

Let Q be the plane spanned by points ay, ..., a;_1. We claim that there
exists b € MO such that b ¢ Q. Suppose the opposite, i.e., M? C Q. Let
(x;) € M. Then (x;) isasequencein Qand by (13) wehave (x;) € Ry, ..

Now Lemma 4.7 implies that (x;) € R . Hence (x;) € Rj , and this

implying that a;, € M which is impossible since a; ¢ Q.

Hence there exists 5 € M such that b ¢ Q. Let P be the plane spanned
by points ay. . ... ax. Since kK = dim X, we have X C P.

Let f : P — R be an isometry such that f(ay)..... f(a;) are recursive
pointsin R¥ . Since b € M°, we have by (13) thatao. ..., ar_;, bisaneffective
sequence in X. Moreover, this sequence is geometrically independent since

b Q.
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It follows that f(ap),.... f(ax—_1). f(b) is a geometrically independent
effective sequence in R” (its geometrical independence follows from the fact
that /! : R — R” is an affine map). By Lemma 4.13 we have that f(b) is
a recursive point in R¥,

Let (x;) € M. It follows from (13) and b € M° that (x;) € R¥

ag...., ak,].b'
, R*
Now we have (f(x1)) € Rjy)...r_0.r0)
(f(x;)) is a recursive sequence in R¥. This and the fact that f(ay) is a

recursive point give (f(x;)) o (f(ax). f(ax). f(ax)....). So we have (x;) ¢
(ar.ax.ay....). ie. (x;) € R). which together with (13) gives (x;) €

and Lemma 4.6 implies that

Ri...ax
We conclude that M C R . The maximality of M implies M =
RY . and this proves the claim of the theorem. -

85. Characterization of separable computability structures on a segment.
If X € R” is such that dimX > 1 and & = dim X, then by Theorem
4.16 for any geometrically independent effective sequence «y,....a; in X
there exists a unique maximal computability structure M, _, on X in
which these points are computable. The general question here is this: under
what conditions on X and the points «y. ..., a; the computability structure
,,,,, a, 18 separable?

In particular, if X C R and a € X, then there exists a unique maximal
computability structure M, on X in which a is computable. In this section,
we will observe the case when X is a segment and we will give necessary and
sufficient conditions that M, is a separable. First, let us recall some facts
about left and right recursive numbers.

A real number x is said to be left recursive if there exists a recursive
sequence of rational numbers (¢;) such that supImgq = x.

It is easily seen that if F : N¥ — Q is a recursive function and x =
sup Im F, then x is a left recursive number.

PROPOSITION 5.1. If f : N¥ — R is a recursive function and a = sup Im f,
then a is left recursive.

PrOOF. Let F : N¥*! — Q be a recursive function such that
[/ (x) = Flx.i)] <277, (14)
forall x € Nf, i € N. Let G : N¥ — Q be the function defined by
G(x.,i)=F(x,i)—27",
x € N¥, i € N. Inequality (14) gives us
G(x.i) < f(x).

for all x € N¥, i € N, and therefore supIlm G < supIm f. On the other
hand, from (14) we also get

f(x)<F(x.i)+27"=G(x.i)+2-27",

for all x € N¥, j € N. Hence, suplm f < supIm G, so suplm f =
supIm G. As G is recursive NF — Q. a = Im G is left recursive. =
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Similarly, we say that a real number x is right recursive if there exists a
recursive sequence of rational numbers (r;) such that inf Im r = x. We also
have a similar proposition.

PROPOSITION 5.2. If f : N¥ — R is a recursive function and a = inf Im f,
then a is right recursive.

PropoSITION 5.3. If' x > 0 is left recursive, then there exists a recursive
sequence of rational numbers (r;) such that Imr = [0, x] and 0 € Im r.

Proor. By definition, there exists a recursive sequence of rational numbers
(¢i) such that supIm g = x. The set

S ={ieNJ[g =0}
is recursive, so the sequence (s;) defined by

si=q;-xs(i), i €N
is a recursive sequence of rational numbers such that s; > 0, forall i € N
and supIms = x. Let (#;) be a recursive sequence of rational numbers such
that Im7 = QNJ0, 1]and let g1, 0> : N — N be recursive functions such that
N? = {(g1(x), 02(x)) | x € N}. We define

Ti = Soi(i) " Loa(i)»
i € N. Now it is easily seen that (r;) is the desired sequence. =

Before a characterization of separable computability structures on a seg-
ment, we give a characterization of maximal computability structures on
X CR.

ProOPOSITION 5.4. Let X CRanda € X. Let S be the set of all sequences
(x;) in X such that (x; — a) is a recursive sequence. Then S is a maximal
computability structure on X (and clearly a € S°).

PrOOF. Let ¥ = {x —a | x € X}. The function /' : X — Y, f(x) =
X — a, is a surjective isometry. So it suffices to prove that f(S) is a maximal
computability structure on Y.

By the definition of S we have that f(S) is the set of all sequences
in Y which are recursive. If 0 is the only recursive point in Y, then
f(8) ={(0,0,0,...)} and f(S) is a maximal computability structure on
Y. Otherwise, there exists » € Y \ {0} such that b is a recursive number.
Each recursive sequence in Y belongs to R({ »- Conversely, each element of
R({ , is a recursive sequence in R by Lemma 4.6. Hence f(S) = R({ ps SO
f(8S) is a maximal computability structure on Y (Theorem 4.8). -

THEOREM 5.5. Let y > 0. For a € [0,y] let M, be the unique maximal
computability structure on [0, y] such that a € MO. Then M, is a separable
computability structure if and only if a and y — a are left recursive numbers.

Proor. If M, is a separable computability structure, then there exists an
effective separating sequence « in [0, y] such that M, = S,. Let o’ be the
sequence in [—a.y — a] defined by o/ = a; — a, i € N. By Proposition 5.4
o' is a recursive sequence. From

y —a =supIma’,
a = supIm(—a’)
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and Proposition 5.1 it follows that y — a and a are left recursive
numbers.

Let us assume now that ¢ and y — a are left recursive numbers. By
Proposition 5.3, there exist recursive sequences of rational numbers (r;)
and (g,) such that

Img =1[0.a]. 0 € Img,
Imr =[0.y — al.
Let o’ be the sequence of rational numbers defined by
o'(2i) = r;,
o' (2i+1) = —q.
i € N. Then o’ is a recursive sequence of rational numbers and obviously
Ima’ =[—a.y —a]. 0 € Ima’. Let a be the sequence defined by

/
o =q; +a,

i € N. Then « is an effective sequence and Im « = [0. y]. so « is an effective
separating sequence in [0,7] and ¢ € Ima. Hence a € SY. Since S, is a
maximal computability structure and a € 8. it must be S, = M,. so M,
is separable. .

Ifc.d € R, ¢ <d.and a € [c, d]. then the function [¢,d] — [0.d — c].
X — x —c is a surjective isometry and this, together with Theorem 5.5, gives
the following conclusion.

COROLLARY 5.6. Letc.d € R, c < d. Fora € [c,d] let M, be the unique
maximal computability structure on [c,d] such that a € MO. Then M, is
separable if and only if a — ¢ and d — a are left recursive numbers.

Suppose a € R and let (x;) and (y;) be recursive sequences of rational
numbers such that ¢ = sup Im x = inf Im y. Then for each & € N there exist
i, j € Nsuch that |x; — y;| < 27 and since the latter condition is decidable
(recursive), there exist recursive functions ¢, ¢, : N — N such that for each
k € N we have |x, ) — Vg,m)| < 27% which implies |a — x,, )| < 27%.
Hence each real number which is both left and right recursive is recursive.
On the other hand, it is easy to conclude that each recursive number is left
and right recursive. Furthermore, it is obvious that the sum of two left (right)
recursive numbers is a left (right) recursive number. Note also the following:
if a is left (right) recursive and r is a nonnegative rational number, then —a
is right (left) recursive and r - a is left (right) recursive.

Let (X, d) be a metric space. There are two general questions:

(1) What is the number of separable computability structures on (X, d)?
(2) What is the number of nonisometric separable computability struc-
tures on (X.d)?

Two computability structures S and 7 on (X, d) are said to be isometric if
there exists a surjective isometry f : X — X such that 7 = f(S).

Let y be a positive real number. In [5] the author asks the question (2) in
the case of the metric space [0, y] and he gives an answer in Theorem 8.12: if
y is recursive, then every two separable computable structures on [0, y] are
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isometric, and if y is left recursive but not recursive, then there are infinitely
many nonisometric separable computability structures on [0, 7] (see also
Fact 8.8. in [5]).

We will now see how these results in a somewhat more general form can
be obtained from Theorem 5.5. Let us first notice that there are only two
isometries [0,y] — [0, y]. Therefore, there are infinitely many separable
computability structures on [0, y] if and only if there are infinitely many
nonisometric separable computability structures on [0, y]. The same holds
if we replace “infinitely” by “countably.”

COROLLARY 5.7. Let y be a positive real number.

1. If y is recursive, then there exists a unique separable computability
structure on [0, y].

2. Ify is left recursive, but not recursive, then there exist infinitely many, but
only countably, separable computability structure on [0, y].

3. If y is not left recursive, then there exists no separable computability
structure on [0, y].

Proor. For a € [0,y] let M, be the unique maximal computability
structure on [0, y] in which « is a computable point. If a.b € [0, y]. then
M, = M, if and only if b — a is a recursive number. Indeed, if M, = M,,
then ¢ and b are computable points in the same computability structure and
therefore their Euclidian distance is a recursive number. Conversely, if b — a
is a recursive number, then b is a computable point in M, (by Proposition
5.4) and so we have M, = M,.

1. Suppose y is recursive. By Theorem 5.5 M is a separable computability
structure on [0, y]. Suppose S is some other separable computability
structure on [0, y]. Then S is also a maximal computability structure
on [0,y] and we have S = M, for some a € [0,y]. By Theorem
5.5 the numbers ¢ and y — a are left recursive. Since —y is recursive
and —a = (y — a) + (—y). we have that —a is left recursive. This.
together with the fact that a is left recursive, gives that « is recursive.
It follows M, = My, i.e., S = M. Hence M, is a unique separable
computability structure on [0, y].

2. Suppose 7 is left recursive and not recursive. Each separable com-
putability structure on [0, y] equals M, for some a € [0, y] which is
a left recursive number (Theorem 5.5). Since there are only countably
many left recursive numbers, we have that there are only countably
many separable computability structures on [0, y]. On the other hand,
there exist infinitely many such computability structures. Namely, for
each rational number r € [0, 1] we have that rp and y —ry = (1 —r)y
are left recursive numbers and by Theorem 5.5 M, is a separable com-
putability structure on [0, y]. The mapping r — M,, is injective: if
r,s € QNJ[O0,1] are such that M,, = M,, then the number sy — ry
is recursive and this is possible only if r = s (for r # s we have
y = ﬁ(sy — ry) and the recursiveness of sy — ry would imply the

recursiveness of y).
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3. Suppose there exists a separable computability structure on [0, y]. Then
this computability structure must be of the form M, where a € [0, y]
is such that @ and y — a are left recursive. But y is the sum of these two
numbers and it follows that y is left recursive. B

Let us note (related to the claim 2 of Corollary 5.7) that there are metric

spaces on which there exist uncountably many separable computability struc-
tures. For example, any Euclidean space R” is such a space. First notice that
the set of all computable points in some separable computability structure
S is countable (since S is countable). Now each point of R” is a computable
point in some maximal (and thus separable) computability structure on R”
and therefore the set of all separable computability structures on R” cannot
be countable.

86. Conclusion. In this paper we have studied maximal computability
structures on a metric space. Although they can be viewed as a generalization
of separable computability structures, they are much less convenient and
practical to deal with than separable computability structures. We gave
certain general observations regarding maximal computability structures
and then we concentrated on subspaces of Euclidean space and properties
of maximal computability structures on these spaces. We gave a precise
description of such computability structures and we investigated conditions
under which a maximal computability structure is unique.

The following question naturally arises: among all maximal computability
structures on a metric space, which are separable? We proved that in the case
of the entire Euclidean space, each maximal computability structure is sepa-
rable. Furthermore, in the case of a segment in R we gave a characterization
of separable computability structures and applied that result to determine the
cardinality of the set of all separable computability structures on a segment.

The latter question shows a possible direction of further investigations.
For a given subspace X of Euclidean space (for example a ball or a cube in
Euclidean space), how can we characterize separable computability struc-
tures on X among maximal computability structures? Of course, instead
of Euclidean space we can observe some other metric spaces which usually
occur in analysis and topology.
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