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This paper addresses computer simulation of cascading failures in electric power
systems+ The paper analyzes the convergence rates of estimator variance in impor-
tance sampling and in random search strategies+ A uniform search strategy based
on the Metropolis algorithm is proposed+

1. INTRODUCTION

In recent years, importance sampling has proven to be a very effective variance
reduction technique in rare-event simulation @2– 4# + It has been used to study cas-
cading disturbances in large power systems @1# + In this paper we analyze the con-
vergence rates of estimator variance to zero in importance sampling and in random
search strategies+We find that the random search strategy may perform better than
importance sampling techniques when the state space of the simulation variable is
countably finite+ Section 2 discusses the motivation for using importance sampling
techniques in simulation studies+ In Section 3 we analyze the performance of some
simple random search strategies+ Sections 4– 6 restate the problem of the power
system security in terms of a network security problem and suggest some graph-
theoretic approaches based on the Metropolis algorithm+
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2. MOTIVATION FOR IMPORTANCE SAMPLING

Suppose we wish to estimate r� E$f~Z!% , where Z is a random variable describ-
ing some observation on a random system+ Usually f is the indicator function of
some set implying that r is the probability of the set+ Suppose that the observation
random variable Z has probability density function p~{!+ The direct ~Monte Carlo!
simulation method would be to generate a sequence of independent and identically
distributed ~i+i+d+! random numbers Z1, Z2, + + + , ZN from the density p~{! and form
the estimate

[rp �{
1

N (i�1

N

p~Zi !+

By the law of large numbers, [rpr r as Nr`+ Therefore, as the number of obser-
vations approaches infinity, we converge to the true value+ Suppose instead that we
generate a sequence of i+i+d+ random numbers Z1, Z2, + + + , ZN using a possibly dif-
ferent density q~{!+We then form the estimate

[rq �{
1

N (i�1

N p~Zi !

q~Zi !
f~Zi !+

The ratio p~{!0q~{! will be called the weight function of the importance sampling
estimator+ It is simple to verify that the expected value of [rq under the density q~{!
is precisely r+

Clearly, the estimate [rq is unbiased, and as N r `, we also expect it to be
converging ~by the law of large numbers! to its mean value r+ The obvious question
is: Are there better choices for q~{! than just p~{!? The answer is that by making a
good choice for q~{!, orders of magnitude decrease in the estimator variance can be
achieved over a direct Monte Carlo simulation+ It is this fact that has spurred most,
if not all, of the recent interest in importance sampling techniques+

The important point is that the rate of convergence of the variance to zero as a
function of N is precisely 10N regardless of the importance sampling strategy cho-
sen+ The next section demonstrates that there are other estimation strategies that
can give better rates of convergence in certain types of problems+

3. ANALYSIS OF RANDOM SEARCH STRATEGIES

Suppose we have some countable state space V+ In the power system security prob-
lem @1#, an element of V would be an ordered sequence of edges deleted from the
network due to an initial failure event+ Since a power system is a finite graph, V
would also be finite ~although usually very large!+ Even though the cardinality of V
may be a very large finite number, on a short-time simulation scale due to the size
of these state spaces they may behave as if they were infinite+ Therefore, it is instruc-
tive to understand the more general countably infinite setting+

Suppose we have some probability measure P over the subsets of V and we are
interested in estimating P~A! for some particular subset of V+ For example, A could
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be the set of all ordered sequences that cause the graph to be disconnected+ To esti-
mate P~A!, we choose a “search” probability measure F over the ~Borel! subsets of
V+ In many situations, this measure F is not known explicitly+ In general, it would
be very hard to write down explicitly what this measure is for some arbitrary ran-
dom path search on a graph+

We choose N independent samples $xi � V : i � 1, + + + ,N % from the F distribu-
tion+ We suppose that we can evaluate P~xi ! for each of these chosen values+ We
keep track of the total number of unique points that we find in set A+ We suppose
that in N trials, we find K such points+

Define

j1 � �min
i
: xi � A�,

j2 � �min:
i:i�j1

xi � A and xi � xj1�,
I

ji � � min:
i:i�ji�1

xi � A and xi � xj1 , xj2
, + + + , xji�1�,

I

jK � � min:
i:i�jK�1

xi � A and xi � xj1 , xj2
, + + + , xjK�1�+

We can then write our estimator as

ZP~A! �(
i�1

K

P~xji !+

Of course, this estimator is biased+ In fact ~as pointed out in @1# !, the estimator will
always be a lower bound ~a useful fact in itself ! to the true value of P~A!+ To get a
better notion of its performance, let us compute the mean squared error of the
estimate:

E @~P~A!� ZP~A!!2 #

� E�� (
xi�A :xi not chosen in

N independent
samples from F

P~xi !�2�
� E�� (

xi�A

P~xi !1$xi not in N samples%�2�
� E�(

xi�A
(

xj�A

P~xi !P~xj !1$xi not in N samples%1$xj not in N samples%�
� (

xi�A
(

xj�A and j�i

P~xi !P~xj !@1 � F~xi !� F~xj !#
N � (

xi�A

P~xi !
2 @1 � F~xi !#

N,
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where 1$B% � 1 if B is true, and zero otherwise+Without loss of generality, we can
assume P~xi ! . 0 for all xi � A ~if not, just delete those points from A!+ From the
above equation, we can immediately draw some important conclusions+ If the state
space V is finite, then we obtain that the mean squared error decreases exponen-
tially ~or geometrically! fast in N+ This is an important point and we will return to
it later+

When V is finite, let us define f1 � minxi�A F~xi ! with minimum occurring at
the value xm1

@i+e+, F~xm1
! � f1# + Of course, this minimum could occur at several

points and so xm1
is not necessarily unique+ For any xi � A and xj � A, we have

0 � 1 � F~xi !� F~xj ! � 1 � F~xi !� 1 � f1 � 1+

Suppose 6V6 � `; it is obvious that

lim
Nr`

1

N
log E @~P~A!� ZP~A!!2 #

� lim
Nr`

1

N
log�@1 � f1#

N� (
xi�A,F~xi !�f1

P~xi !
2 � «~N !��

� lim
Nr`

1

N �log@1 � f1#
N � log� (

xi�A,F~xi !�f1

P~xi !
2 � «~N !��

� log@1 � f1# ,

where limNr`«~N !� 0+ Then we have the following theorem+

Theorem 3.1: Suppose 6V6 � `. Then

lim
Nr`

1

N
log E @~P~A!� ZP~A!!2 # � log@1 � f1# +

The limit log@1 � f1# indicates how fast the mean squared error of the estimate
converges to zero+ The larger the value of f1, the faster the mean squared error con-
verges to zero+When V is finite, the distribution that has maximal f1 is the uniform
distribution+ An immediate consequence of the theorem is the following+

Lemma 3.1: Suppose 6V6 � `. The optimal search distribution is the uniform
distribution.

When the cardinality of theV space is countably infinite, determining the behav-
ior of the random search estimator is quite a bit more complicated+ Let us first
consider a thought experiment+ For simplicity ~and without loss of generality!, let
us suppose that V� Z�, the nonnegative integers+ Define P~ j !� pj and F~ j !� fj

for all j � Z�+ Suppose pi � C0i 1�g ~where C is a constant!+ Suppose we are inter-
ested in A � $i : i � T % + Further, suppose that we decide to sample deterministically
fromV ~instead of choosing random samples from some F!+The best possible choice
~which will not usually be possible! would be to choose the values T, T � 1,
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T � 2, + + + ,T � N � 1 and form the estimate ZP~A!�(i�T
T�N�1 pi + Thus, for the mean

squared error,

E @~P~A!� ZP~A!!2 # � � (
i�T�N

`

pi�
2

�
C1

~T � N !2g
+

This, of course, is the best possible rate for the mean squared error+ Therefore,when
g , 1

2
_ , the possible rate is worse than a relative frequency-type estimator, which

always has a rate of 10N+
One may ask: How much does one have to give up to use a random search

strategy? Let us consider the g�1 case in a little more detail+We get the following
useful upper bound:

E @~P~A!� ZP~A!!2 #

� (
xi�A

(
xj�A and j�i

P~xi !P~xj !@1 � F~xi !� F~xj !#
N � (

xi�A

P~xi !
2 @1 � F~xi !#

N

� (
xi�A
(

xj�A

P~xi !P~xj !@1 � F~xi !#
N+

Suppose that we choose fi � C '0i 1�« for some « . 0+ We can approximate the
above upper bounding sum with the integral

�
T

`�
T

` 1

x 2

1

y 2 �1 �
1

x 1�« �N

dx dy

��
0

10T�
0

10T

@1 � u1�« #N du dv

��
0

10N ~1�d!0~1�«!�
0

10N ~1�d!0~1�«!

@1 � u1�« #N du dv

� �
10N ~1�d!0~1�«!

10T �
10N ~1�d!0~1�«!

10T

@1 � u1�« #N du dv

� � 1

N ~1�d!0~1�«!�2

� � 1

T
�

1

N ~1�d!0~1�«!�2�1 �
1

N 1�d �N

�
1

N 2~1�d!0~1�«!
� C ''e�N d+

Thus, by choosing d ~and «! small enough, we can get arbitrarily close to the
best possible rate 10N 2+ ~Interestingly enough, when « � 1 we can show that the
integral in question has exactly rate 10N+ Therefore, a finer analysis than the above
may be possible+!
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The lesson to be gained from this analysis is that the sampling distribution
should be in some sense as “heavy tailed” or as maximally spread out as we can get
it+ Of course, in the finite state space case, this is the uniform distribution+

In the power systems problem @1# , the random search strategy works because
the state space V is finite and fairly small+ As a result, the guaranteed asymptotic
convergence rate is observed early+ The exponential rate promise ~in the finite state
space setting! is really conditioned upon visiting all the points in V with a high
probability+Many graph problems have their complexity; hence the number of points
inV increases exponentially fast as the size increases+ Consequently, random search
strategies are doomed to perform more poorly as the size of V increases+Obviously,
the random search strategy would fail completely for an uncountably infinite state
space where each point in the space has probability zero of occurrence+ Another
major drawback is the necessity to store all previously chosen samples to make sure
that a given point in V is not used twice+

4. A UNIFORM SEARCH STRATEGY

As we saw in the previous section, the optimal strategy for a random search is to
search uniformly over the state space+ In a path search over a large graph, it is not
at all clear how one goes about searching uniformly over the set of all paths leading
to some failure set+ Indeed, in most applications we do not even know the size of
the failure set or the total number of paths+ In this section, we propose a search
technique based on the Metropolis Algorithm of Markov chain Monte Carlo, which
allows us to easily specify a uniform search distribution+

Suppose we have an undirected graph G � ~V,E !+ We are interested in the
phenomenological effects of cascading link ~link � edge! failures+We suppose that
an initial event triggers a failure on one of the edges, say j � E+ Define the neigh-
borhood edge set N~ j !� $e � E : e and j share a common vertex%+ ~Each element
of N~ j ! represents a possible failure following j in practical power system cascad-
ing failure problems+!With the failure of j, we suppose that each of the elements of
N~ j ! is at “risk” to fail also with given a priori probabilities pe, e � N~ j !+ In the
model we may allow these probabilities to change with the “state” of the graph after
a chain of previous failures have occurred+We are interested in sequences of fail-
ures that disconnect the graph, cause large load losses, violate security criteria, have
large numbers of lines lost—any or all of these+We denote the set of subgraphs of
G that have these properties of large load lost, massive disconnection, and so forth
that result from these unfortunate chains of events as B+ Quite simply then, we wish
to estimate the probability that the original graph G moves into one of the states B
through a sequence of link failures+We suppose ~although it is not completely nec-
essary! that the disconnected graphs are always at least a subset of B+

Typical random searches suffer from the problem that they tend to find the
short-path-length elements of B much more readily than the longer paths associated
perhaps with greater calamities+We propose an algorithm based on techniques from
Markov chain Monte Carlo ~MCMC! to allow us to sample uniformly ~or with any
other distribution!! from the set B regardless of the individual element’s path length+
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We can think of the sequence of line outages as forming a tree+ The original
lost link j is the first node of the tree+ The neighborhood set of that link then gives
rise to the second level of the tree, which will have 6N~ j !6 nodes+ Each of these
nodes will have a neighborhood set that will give rise to the third level of the tree
and so on+ Eventually, a sequence of link outages will terminate with a graph in B+

We first propose a Markov chain with state space Z, the nodes of the tree+We
wish this Markov chain to have stationary distribution p+ Usually we choose p to
be uniform over Z+ Let Z denote the nodes of the tree+ We specify the transition
structure of the Markov chain as

pij � qijaij , i, j � Z, j � i+

Q � ~qij ! is called the “candidate generating” transition matrix and is arbitrary as
long as it is chosen to be irreducible+ The idea is simple:When the present state is
i , the next “tentative” state j is chosen with probability qij + When j � i , this new
state is “accepted” with probability aij + Hence, the probability of moving from i to
j when j � i is given as above+

We need to specify Q for our tree search+ At node k � Z, there are mk nodes
directly below it+ We denote these as kd,1, kd,2 , + + + , kd,mk

+ There is, of course, only
one node directly above node k, which we denote as ku+We will only allow transi-
tions between k and these neighboring nodes+ Let 0, p, 1 be chosen+We can then
choose

qk kd, i
�

1 � p

mk

, i � 1,2, + + + ,mk ,

and

qk ku
� p+

When k is a leaf, there are no “down” nodes, and so we may choose

qk ku
� 1 when k is a leaf+

These choices, of course, give rise to an irreducible Q+ Furthermore, we use the
Metropolis algorithm choice for aij as

aij � min�1,
qjip~ j !

qijp~i !
�+

When p is uniform, this simplifies to

ak kd, i
� min�1,

mk p

1 � p
�, i � 1,2, + + + ,mk
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and

ak ku
� min�1,

1 � p

mku
p�, i � 1,2, + + + ,mk ,

ak ku
�

1 � p

mku

when k is a leaf+

Thus, we have constructed a Markov chain with a uniform stationary distribu-
tion on the nodes of the tree+ The leaf nodes are visited uniformly, and because
every subgraph in B is associated with a unique leaf, we are also visiting these
subgraphs uniformly+

5. A MODIFIED UNIFORM SEARCH STRATEGY

The strategy described in Section 4 constructs a Markov chain with a uniform sta-
tionary distribution on the nodes of the tree+ Since we only need to produce a uni-
form sampling distribution on the leaf nodes,we can modify the algorithm to reduce
the number of visits of nonleaf nodes while keeping a uniform stationary distribu-
tion on the leaf nodes+We denote L as the state space of all leaf nodes in Z+We start
by modifying the transition matrix Q � ~qij !+ In the previous section, qij is time
invariant ~i+e+, it is not time dependent!+ Now we let qij also depend on the last
state s+When the last state is s and the present state is i , the next “tentative” state j
is chosen with probability qij~s!+As in Section 4, we only allow transitions between
neighboring nodes+ At node k � Z, let 0 , pk , 1 be chosen+ pk can be either
constant or k dependent, but it must be time invariant+ If k is the root, let pk [ 0+
Using the same denotation as in Section 4, we then choose

qk kd, i
~ku ! �

1

mk

, i � 1,2, + + + ,mk ,

qk kd, i
~kd, l ! �

1 � pk

mk � 1
, i � 1,2, + + + , l � 1, l � 1, + + + ,mk ,

qk ku
~kd, l ! � pk , l � 1,2, + + + ,mk +

If mk � 1, we choose pk � 1+ If k is a leaf, then we choose qk ku
� 1+

Suppose we generate a random sequence $xm6xm � Z% by applying transition
matrix Q � ~qij~s!! and assuming aij [ 1+ Because Q is not time invariant, the
sequence $xm% is not a Markov chain+ Let $ yn% be the subsequence of $xm% that
contains all of the leaf nodes in $xm% ~i+e+, yn � L!+ Let

tij � Prob$ yn�1 � j 6yn � i %+

It is easy to prove that the matrix T � ~tij ! is time invariant and irreducible @7# +
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Now, we can construct a Markov chain with state space L, the leaf nodes of the
tree+We specify the transition structure of the Markov chain as follows:

pij � tij bij , i, j � L, j � i,

where tij is as defined earlier and bij is chosen as

bij � min�1,
tji

tij
�+

The implementation is simple+ Start from a leaf yn, walk in the tree by the rule of Q
until another leaf Iy is reached+ Let yn�1 � yn or yn�1 � Iy by the rule of b+ Then start
from yn�1 to generate yn�2 by the same rules+ By the theory of the Metropolis algo-
rithm, the generated sequence is the Markov chain with a uniform stationary dis-
tribution on the leaf nodes of the tree+

6. IMPORTANCE SAMPLING IS NOT DEAD

Denote the sequence of subgraphs from B generated by the above Metropolis algo-
rithm as S1,S2, + + + ,SN with associated probabilities of occurrence p~S1!, p~S2!, + + + ,
p~SN !+ Of course, this sequence of subgraphs is not independent, but the variance
reduction technique of importance sampling does not require that in order to give
an unbiased estimate+

We propose the importance sampling estimator

[rIS � 6B 6
1

N (j�1

N

p~Sj !+

An exhaustive search algorithm would find the K �� N unique graphs from the set
$S1,S2, + + + ,SN % denoted as S ~1!,S ~2!, + + + ,S ~K ! and form the estimate

[rES � (
j�1

K

p~S ~ j ! !+

The exhaustive search requires the saving of all the search paths and it becomes
impractical when the size of the system is very large+ The importance sampling
estimator is unbiased but, unfortunately, requires the computation of 6B 6, which
can be difficult+ In applications applied to power systems, the computation of 6B 6 is
often unnecessary, especially when the study is to compare different dispatch strat-
egies @7# + Reference 7 also gives a method to estimate 6B 6 through simulation+

We simulated on an artificial tree to compare different important sampling strat-
egies+ The artificial tree is constructed to mimic the propagation of disturbances in
large power systems+ The details of the construction of the tree can be found in @7# +
Figure 1 shows simulation results on a tree, which has about 2 � 1011 leaf nodes+
One of the reasons we choose to use an artificial tree is that we can construct the
tree in a way that all of the statistical properties of the tree are computable; there-
fore we can evaluate the performance of our simulations conveniently+ Simulation
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results from three sampling strategies are shown in Figure 1+ IS1 ~the solid line!
represents the Metropolis algorithm described in Section 5+ IS2 ~the dashed line!
represents a simple importance sampling strategy+ In IS2, each leaf node sample is
reached by starting a search from the root+At each node in the search path, a topol-
ogy study is performed and a child node is chosen randomly+ In this strategy, each
child node has equal probability to be chosen+ IS3 ~the dot dashed line! differs from
IS2 in that some child nodes have a higher priority to be chosen in the simulation so
that some search paths have significant higher probabilities than other paths+ Fig-
ure 1 shows that IS3 does not perform as well as the other two+ This illustrates the
importance of the proper choice of sample strategy in importance sampling tech-
niques+ The simulation results are consistent with our theory that the sampling dis-
tribution should be in some sense as “heavy tailed” or as maximally spread out as
we can get it+

In our simulation, IS1 and IS2 showed similar performance+ This is because
the structure of the artificial tree makes IS2 behave similarly to uniform sampling+
We expect IS1 and IS2 could perform differently when the structure of the tree
becomes more complex+We also want to point out that IS1 has less average com-
putation cost per sample than IS2 does+ For power system simulations, this means

Figure 1. Simulation results+
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that, on average, IS1 requires fewer power flow calculations to get the same num-
ber of samples+ However, the tuning of a Metropolis algorithm can be tricky @5# +

7. CONCLUSION

Cascading equipment trips occur fairly frequently on electric transmission systems+
Occasionally, cascading disturbances lead to widespread blackouts, which have
caused tremendous economic losses to society and severe damage to equipment+
Concern for security always come first in power system operation+ Because of the
complexity of a large power system, computer simulation is essential in system
security studies+ However, as pointed out in @6# , “lack of computational resources
and of efficient algorithms have been major obstacles in studying large blackouts+”
Importance sampling and random search strategies are two approaches applied in
recent studies @1,6,7# + In this paper, we analyzed the convergence rates of estimator
variance in importance sampling and in random search strategies+We find that the
optimal sampling distribution should be in some sense as “heavy tailed” or as max-
imally spread out as we can get it+ In the finite state space case, this is the uniform
distribution+ This result provides a theoretical foundation for the choice of better
sampling techniques+

In practice, it is not clear how one goes about searching uniformly over the set
of all paths leading to a failure+ In this paper, we described a search strategy that
achieves uniform distribution approximately+ This provides an alternative choice of
sampling strategy for future studies+
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