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The objective was to determine the effects of supplementing the diet with fish oil during the
peri-partum period on the immune competence and the pathophysiological response to a
lipopolysaccharide-induced mastitis challenge. Multiparous Holstein cows (n=30) were com-
pletely randomized to one of two treatments at 3 weeks pre-partum. Treatments differed only in
the source of supplemental lipid and included either Energy Booster� or fish oil. Treatment diets
were fed from –21 d relative to expected date of parturition until 10 d post partum. Treatments
were fed as a bolus prior to the a.m. feeding. The dose of lipid during the pre-partum period
was 250 g/d, whereas the amount of lipid supplemented post partum was adjusted to the level
of intake, approximately 0.92% of the previous day’s dry matter intake. Ex-vivo analyses of
immune competence were measured including the antimicrobial activity of whole blood against
Escherichia coli, Salmonella typhimurium and Candida albicans as well as the production of
interferon-c by peripheral blood mononuclear cultures. At 7 days in milk cows were infused
with 100 mg of Esch. coli lipopolysaccharide into one rear quarter. Supplementing fish oil
increased plasma concentrations of eicosapentaenoic and docosahexaenoic acids, but had no
affect on the proportions of arachidonic acid at calving. Fish oil did not influence the
production of interferon-c or the antimicrobial activity of whole blood against any of the
microorganisms. Furthermore, fish oil had no ameliorative effect on either the local or
the systemic acute phase response following an intramammary lipopolysaccharide challenge in
early lactating Holstein cows. Supplementing fish oil in the diet of peri-partum cows will not
protect them from deleterious effects of an excessive acute phase response.
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During the peri-partum period, dairy cattle are more
susceptible to several infection modalities as well as to
metabolic diseases than at other times during the lactation
cycle. Alterations in hormone profiles, metabolic de-
mands, and the stress of parturition contribute to a reduced
host defence. Shuster et al. (1996) reported that peri-
partum cows demonstrated an impaired ability to control
the early growth of coliforms after an intramammary
challenge when compared with mid-lactation cows.
However, the authors observed that the rapid growth oc-
curred before neutrophil recruitment into the mammary
gland irrespective of lactation stage, which suggested

deficiencies in aspects of immunity other than activation of
the acute phase response (APR). Furthermore, early lactat-
ing cows activated the APR possibly to a greater extent as
evidenced by a more rapid and elevated pro-inflammatory
cytokine response and recruitment of neutrophils to the
mammary gland. Using a cross-over design, Lehtolainen et
al. (2003) reported that cows in early lactation had a more
robust APR than in late lactation in response to an intra-
mammary lipopolysaccharide (LPS) challenge. The ques-
tion remains as to whether the magnitude of the incurred
pro-inflammatory response in early lactation is of benefit
or detriment towards a progression to a pathological state.
Therefore, strategies that limit the intensity or duration of
the APR may benefit the health and ability of the cow to
recover from a coliform infection in early lactation.

Increased intakes of the omega-3 (n-3) fatty acids (FA),
eicosapentaenoic acid (EPA; C20:5) and docosahexaenoic
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acid (DHA; C22:6), in animal models other than ruminants
alleviate inflammation (see Calder, 2006). Furthermore,
both enteral and parenteral supplementation of fish oil
decreased the pathogenesis and increased survival in en-
dotoxaemic and septicaemic models (Mascioli et al. 1989;
Johnson et al. 1993). However, in addition to attenuating
the APR, dietary fish oil impaired other aspects of the im-
mune system including the production of reactive oxygen
species (Rees et al. 2006) and lymphocyte proliferation
(Anderson & Fritsche, 2004) which might further compro-
mise disease resistance during early lactation. There are no
data in peri-partum dairy cattle on effects of supplemental
fish oil on the APR to an intramammary challenge with
LPS. Therefore, the objective was to determine the effects
of supplementing fish oil during the peri-partum period on
the APR following a LPS challenge.

Material and Methods

Experimental design, animals, and diets

Thirty multiparous Holstein cows were housed in individ-
ual pens and completely randomized to one of two treat-
ment diets at 21 d before anticipated date of parturition.
Treatments were supplemental lipid from either Energy
Booster� (Milk Specialties Co., Dundee IL, USA; EB, n=
15) or fish oil (Omega Proteins, Houston TX, USA; FO,
n=15). Energy Booster was chosen as a control treatment
because it is a highly saturated, rumen-inert lipid source.
Treatment diets were fed from –21 d relative to expected
date of parturition until 10 d post partum. Treatments were
fed as a bolus prior to the morning feeding and were of-
fered within 15 min of collecting the prior day’s refusals.
The dose of lipid during the pre-partum period was 250 g/
d, whereas the amount of lipid supplemented post partum
was adjusted to the level of intake, approximately 0.92%
of the previous day’s dry matter intake (DMI). The com-
position of the bolus was 150 g each of rolled barley grain,
shredded beet pulp, and cane molasses plus 550 g of the
respective total mixed ration plus the supplemental lipid
source. After the entire bolus was consumed, typically
within 15 min, each cow was offered ad libitum either a
single pre-partum diet prior to parturition or a lactation
diet post partum. Immediately after parturition cows were
switched to the lactation diet and milked twice daily.

The amounts of feed offered and refused were measured
daily. Samples of the total mixed ration were collected
twice weekly and composited by month and frozen
at –20 8C until analysed at a commercial laboratory
(Cumberland Valley Analytical Services, Maugansville
MD, USA).

All calves received 6 l of frozen-thawed pooled co-
lostrum within the first 24 h of life. Subsequently, all calves
were fed 1.9 l of a 22.5% crude protein and 18% fat
commercial milk replacer (Calva Products, Acampo CA,
USA) twice daily. A commercial calf starter (Nutrena
DairyWay, Cargill Inc., Minneapolis MN, USA) was

offered ad libitum. The first blood sample taken from
calves for ex-vivo immunological analyses was taken prior
to colostrum feeding.

Fatty acid composition of plasma

On day 21 pre-partum and day 1 post partum, peripheral
blood from a subsample of animals (n=5/lipid treatment)
was collected, centrifuged, and plasma stored at –80 8C
until further analysis. Lipid was extracted from plasma
with chloroform–methanol (2 : 1, v/v) and total phospho-
lipids isolated by thin-layer chromatography using hexane–
diethyl ether–acetic acid (90 : 30 : 1, v/v/v) as the elution
phase. Fatty acid methyl esters were prepared by incu-
bation with 2 M-KOH in methanol for 15 min at room
temperature. The ester mixture was separated using a
Hewlett Packard 5890 GC (Hewlett Packard, Avondale
PA, USA). Unknown peak areas were compared with a
known quantity of an external standard mixture containing
all reported FA. All data are expressed as 100 g/kg of the
total peaks recovered.

Ex-vivo immunological assays

Whole blood antimicrobial capacity against various micro-
organisms was determined in cows at 21 d pre-partum,
and at 1 d and 21 d post partum, and in the calves at 2 h
and 1 d and 21 d after birth. The general assay as de-
scribed previously (Millet et al. 2007) was optimized in
Holstein cows and calves. The antimicrobial capacity was
determined as the percent of the inoculum killed, which
was calculated as [(1–(number of viable cfu after incu-
bation/number of viable cfu inoculated)]. The sample CV
was 15.8%. The ex-vivo capacity of peripheral blood
mononuclear cell cultures to produce interferon-c (IFN-c)
was determined only in cows on day 21 pre-partum and
again at day 1 and day 21 post partum. The viability of calf
peripheral blood mononuclear cells on day 1 after partur-
ition was low (<50%); therefore cell cultures were dis-
continued. Thirty-ml of peripheral blood was collected,
and peripheral blood mononuclear cells were isolated by
density centrifugation using 1.083 g/l Percoll. After iso-
lation, the peripheral blood mononuclear cells were re-
suspended in RPMI 1640 and 10 g/l antibiotic–antimycotic
solution (Gibco-Invitrogen, Carlsbad CA, USA). The
number of viable cells was determined by trypan blue ex-
clusion using a haemacytometer. Peripheral blood mono-
nuclear cells were diluted to a working concentration of
106 peripheral blood mononuclear cells/ml in RPMI+50 g/
l fetal calf serum. Two-hundred-ml of the working cell
suspension were added in triplicate to a 96-well plate.
Cell cultures to determine IFN-c were stimulated with
both 0 mg/ml and 5 mg/ml of phytohaemagglutin-P (PHA-P;
Sigma-Aldrich Chemical Co., St. Louis MO, USA) for 72 h.
Following incubation cell suspensions were centrifuged
and the supernatant removed and stored at –80 8C until
assayed for IFN-c by ELISA using a commercial kit
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(Endogen, Rockford IL, USA). All ELISA procedures fol-
lowed the manufacturer’s instructions. The intraplate and
interplate CV was 3.5% and 5.4%, respectively.

Intramammary endotoxin challenge

On day 7 after parturition, one rear teat from each cow
was cleaned with chlorohexidine diacetate and infused
with 100 mg of purified LPS (Esch. coli 0111:B4, Sigma-
Aldrich Chemical Co., St. Louis MO, USA) that was re-
constituted in 5 ml of non-pyrogenic phosphate-buffered
saline. The infused teat had low basal somatic cell counts.
The dose of LPS was chosen because it was previously
shown to cause acute effects on clinical and production
performance of early lactating cows (Lehtolainen et al.
2003). Infusions occurred 30 min following the a.m.
milking. DMI was recorded daily. Milk samples were col-
lected immediately prior to and from the first six milkings
following the LPS challenge from infused and un-infused
quarters, with the latter consisting of a pooled milk sample
from the three un-infused quarters. Milk weights were
recorded. Milk samples were collected and analysed for
somatic cell counts (Fossomatic 5000, Foss North America,
Eden Prairie MN, USA) by a commercial lab (Silliker Labs,
Modesto CA, USA). Additionally, skim milk was diluted
1/50 into Tris buffer (50 mM-Tris, 0.14 M-NaCl, 5 g/l BSA,
and 0.5 g/l Tween 20) prior to storage at –20 8C for de-
termination of milk lactoferrin concentration, which was
measured by a sandwich ELISA per the manufacturer’s
instructions (Bethyl Laboratories, Montgomery TX, USA).
The intraplate and interplate CV was 1.2% and 6.3%, re-
spectively.

Clinical parameters, including heart rate, respiratory
rate and rectal temperature were measured immediately
prior to and at 1, 2, 3, 4, 5, 6, 8, 12, 24 and 72 h following
the LPS challenge. Prior to and at 6 h and 24 h following
the LPS challenge, peripheral blood was collected from a
coccygeal vein to determine total white blood cell counts.

Statistical analyses

Of the 30 cows assigned to the experiment, data from 6
cows were not used for statistical analyses, 3 on each of
the treatments, because the cow either calved within 14 d
of initiating treatments or experienced a health disorder
prior to the LPS infusion day. FA composition of plasma in
both cows and calves was analysed by ANOVA using the
general linear model procedure of SAS (SAS version 9.1,
2003) with treatment as the main effect. The change in the
FA composition from baseline to parturition in the cows
was calculated prior to analysis. Repeated measures data
from the antimicrobial and cell culture cytokine assays
were analysed by restricted maximum likelihood ANOVA
using the Mixed procedure of SAS (SAS version 9.1, 2003).
The full interaction model with treatment, day, and time
as the main effects was fitted for the antimicrobial assay,
whereas the full interaction model with treatment, day,

and dose as the main effects was fitted for the cytokine cell
cultures. For each model the random effect was either cow
or calf nested within treatment. Data from each micro-
organism were analysed separately. Data from day 21
prior to expected parturition were used as a covariate.
Repeated measures data following the LPS challenge were
analysed by restricted maximum likelihood ANOVA using
the Mixed procedure of SAS (SAS version 9.1, 2003). The
model included the fixed effects of treatment, time, and
the interaction of treatment and time; the random effect
was cow nested within treatment. The SLICE option with a
Tukey-Kramer adjustment was used to make multiple
treatment comparisons on time for significant treatment
and time interactions.

All repeated data were tested to determine the most
appropriate covariance structures for the within-subject
measurements and were chosen for each analysis based
on the Schwarz’s Bayesian Information Criterion. Least
squares means (±SEM) are reported throughout. Treatment
difference of Pf0.05 was considered significant and
0.05<Pf0.10 was considered a tendency.

Results

Dry matter intake and plasma fatty acid composition

Cows were supplemented for 21.5±5.58 d and 22.5±
5.35 d (mean±SD) during the pre-partum period for EB and
FO, respectively. Ingredient and chemical compositions of
the pre-partum and post-partum diets are presented in
Table 1. The FA composition of the lipid supplements
were as intended with the greater n-6:n-3 for EB compared
with FO (Table 2). DMI and changes in body weight
(BW) and body condition score during the peri-partum
period were not different among treatments. Average DMI
was 14.7 and 18.5 kg/d for pre-partum and post-partum
periods, respectively. Furthermore, there were no differ-
ences between treatments with respect to milk yield or
composition (data not shown). EPA and DHA were in-
creased while there was a tendency for docosapentaenoic
acid n-3 to increase in plasma with supplemental FO
(Table 3). In EB cows, the plasma phospholipid concen-
trations of all n-6 FA decreased over the pre-partum
period. Supplementing FO further numerically decreased
the proportion of linoleic acid but the response was highly
variable and not significant. Dihomo-c-linolenic and ad-
renic (22:4n6) acids were decreased with supplemental FO.

Ex-vivo immunological assays

Antimicrobial activity of whole blood was not affected by
supplemental FO (Table 4). In addition, there were no
interactions of treatment and day or treatment and time.
There was a day effect (P<0.001) in the antimicrobial ac-
tivity of whole blood against Esch. coli and Sal. typhi-
murium and it was apparent in both the cow and calf
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(Table 4). The day effect for the Cand. albicans only
reached a tendency (P=0.08) in the cows and there was
no day effect for the Cand. albicans in the calves. The
production of IFN-c was not different between treatments.
Furthermore, no time effect was evident.

Intramammary lipopolysaccharide challenge

Intramammary infusion of 100 mg of purified LPS caused
an acute and severe APR. Clinical signs of an APR were
apparent within 2 h of the LPS challenge; however, the
supplemental FO had no effect on the responses (Table 6).
DMI of cows was suppressed (P<0.001) following the LPS
challenge. Data from EB and FO were pooled, and DMI

Table 1. Ingredient and nutrient composition of the basal pre-
partum and post-partum diets fed to multiparous Holstein cows
during late pregnancy and early lactation

Diet

Pre-partum Lactating

% of dietary DM
Ingredient

Low Dietary Cation-Anion
Difference (DCAD) alfalfa
hay, chopped

31.1 —

Lactating alfalfa hay, chopped — 49.9
Oat hay, chopped 20.6 —
Almond hulls 10.4 9.2
Beet pulp, shredded 3.4 4.8
Corn, steam-flaked 11.4 14.8
Barley, steam rolled 7.0 10.1
Soybean meal 1.2 4.9
Dried distillers grains — 3.1
Fat — 0.8
Salt — 0.4
Post-partum vitamin mineral
mix†

— 2

Pre-partum vitamin mineral
mix‡

5.8 —

Anionic supplement· 9.2 —

Nutrient content¶
DM 92.1±0.5 91.9±0.2
CP 13.9±0.3 19.4±0.7
Acid Detergent Fibre 30.9±0.3 22.9±0.5
Neutral Detergent Fibre 43.4±0.6 29.7±0.7
Ether extract 2.4±0.06 3.4±0.10
Non-Fibre Carbohydrates 34.0 39.7
NEL, Mcal/kg of DM 1.38±0.01 1.55±0.02
Ca 0.78±0.04 0.89±0.03
P 0.29±0.01 0.40±0.02
Mg 0.47±0.02 0.43±0.04
K 1.38±0.05 2.15±0.13
Na 0.21±0.003 0.38±0.02
S 0.21±0.003 —
Cl 1.13±0.02 —
DCAD, mEq/kg –0.84 —

† Mix contained a minimum of 8.5% Ca, 4.5% P, 6.5% Mg, 1.0% K,

1.6% S, 500 mg of Cu/kg, 2000 mg Mn/kg, 17 mg Se/kg, 3250 mg Zn/kg,
44 mg I/kg, 400 000 i.u. of vitamin A/kg, 140 000 i.u. of vitamin D/kg, and

3150 i.u. vitamin E/kg

‡ Mix contained a minimum of 3.0% Ca, 1.0% P, 0.4% Mg, 1.0% K,

145 mg of Cu/kg, 615 mg Mn/kg, 3.7 mg Se/kg, 4.5 mg I/kg, 97 000 i.u. of

vitamin A/kg, 22 000 i.u. of vitamin D/kg, and 1650 i.u. of vitamin E/kg

· SoyChlor 16-7 (West Central Soy, Ralston, IA)

¶ Nutrient content based on monthly composites of TMR samples (n=7

for each TMR). Values for NFC and DCAD were estimated by the NRC

(2001) model using mean composition data

Table 2. Fatty acid profile† of Energy Booster and fish oil

Fatty acid

Lipid supplements‡

Energy Booster Fish oil

100 g/kg of fatty acids
14:0 2.19 8.32
16:0 29.1 16.88
16:1 0.56 10.87
18:0 55.26 3.17
18:1 3.51 5.92
18:1, all trans 3.27 4.42
18:2, n6 0.52 1.52
CLA, cis-9 trans-11 ND· ND
18:3, n3 0.03 2.08
20:3, n6 ND 0.22
20:4, n6 ND 0.93
20:5, n3 ND 13.16
22:4, n6 ND 0.29
22:5, n6 ND 0.65
22:5, n3 ND 2.42
22:6, n3 ND 12.46
Unknown 2.37 9.74
n6:n3 17.33 0.12

† Fatty acids profile of interest, reported proportion of total recovered

peaks

‡ Energy Booster (Milk Specialties Co., Dundee IL) and Fish oil (Omega

Proteins, Houston TX)

·ND=non-detectable

Table 3. Change in the fatty acid composition of plasma
phospholipids in the cow from 21 d before expected parturition
to parturition in response to supplemental lipid source. Values
are Least Squares Means±SEM for n=12

Fatty acid Day – 21†

Treatment estimates

SEM P<EB Fish

g/100 g FA
Omega-6

18:2 22.9 –0.35 –3.63 1.57 0.18
20:3 4.6 –1.3 –3.1 0.3 0.01
20:4 5.5 –0.46 –0.43 0.45 0.53
22:4 1.1 –0.29 –0.84 0.15 0.04
22:5 0.3 –0.05 0.10 0.06 0.12

Omega-3
20:5 0.7 0.05 2.63 0.36 0.001
22:5 2.0 –0.15 0.55 0.23 0.07
22:6 0.3 0.01 2.43 0.13 0.001

† Mean of pretreatment values
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decreased by 16.8% and 12.5% on the day of infusion
and 1 d post-infusion, respectively. DMI returned to the
baseline by day 2. Intramammary LPS decreased (P<
0.001) milk production in both un-infused and infused
quarters. When EB and FO data were pooled, milk pro-
duction in the LPS infused quarter decreased by 20.8,
38.1, 20.5 and 13.2% during the first four milkings, re-
spectively, and returned to baseline yields by the fifth
milking. More modest decreases (P<0.001) in milk yield
were apparent in the un-infused quarters decreasing during
the first two milkings by 13.1 and 8.3%, respectively, and
returning to baseline yields by the third milking.

Rectal temperatures increased (P<0.001) rapidly and
peaked 5 h after the challenge at approximately 3 8C
above baseline. LPS also caused rapid increases (P<0.001)
in both heart and respiratory rates, and similarly to the
febrile response peaked at 5 h and there was no effect of
supplemental FO. The somatic cell count response in both
un-infused and infused quarters was affected by time.

There was also a treatment by time interaction (P<0.01) in
the infused quarter ; however, examination of the plots and
sliced effects (not shown) revealed no significant differ-
ences at any of the times following the challenge. Relative
to baseline, peripheral blood total white blood cell counts
decreased at 6 h and increased at 24 h post-infusion
(P<0.001). Milk lactoferrin increased in both the un-
infused (P=0.06) and infused quarters (P<0.001) following
LPS challenge. In the infused quarters, lactoferrin peaked
at the fourth milking and had not returned to baseline
concentrations by the sixth milking. Furthermore, in un-
infused quarters, the lactoferrin response was less, and re-
turned to baseline concentrations within the fifth milking.

Discussion

Daily DMI and the changes in both BW and body con-
dition scores were unaffected by either supplemental lipid
or source of the lipid supplement. The increased EPA,
docosapentaenoic acid n-3 and DHA in plasma phospho-
lipids of FO-supplemented cows reflected the intake of
each FA, which was consistent with previous reports in
ruminants (Ashes et al. 1992). Furthermore, the incor-
porations of the n-3 FA into plasma were consistent with
moderate supplementation of (EPA+DHA) into plasma
phospholipids in man (Yaqoob et al. 2000). Supplementing
FO decreased the n-6 FA, dihomo-c-linolenic and adrenic
acids, in plasma phospholipids. Supplementing either 4 g
EPA+DHA/d or 2.1 g EPA/d for 4 weeks to human patients
reduced the proportion of dihomo-c-linolenic acid in
serum phospholipids by approximately 50% (Laidlaw &
Holub, 2003; Miles et al. 2004). However, the lack of a
decrease in plasma arachidonic and docosapentaenoic n-6
acids in cows supplemented with FO suggested that the

Table 4. Temporal anti-microbial capacity of whole blood in both the cow and her calf. Values are Least Squares Means± SEM for
n=12

Microorganism

Day estimates†
Largest

Fixed effects‡

–21 +1 +21 SEM Trt Day· Time¶

% Killing P<

Cow

Escherichia coli 95.4 84.3 97.1 2.3 0.41 0.001 0.001
Salmonella typhimurium 80.8 55.5 80.5 3.1 0.31 0.001 0.001
Candida albicans 62.4 73.7 80.3 4.1 0.94 0.08 0.37

+0 +1 +21
Calf

Escherichia coli 27.4 47.3 74.5 4.9 0.73 0.001 0.001
Salmonella typhimurium –2.0 33.1 61.9 6.0 0.82 0.001 0.002
Candida albicans 62.1 65.6 68.5 6.3 0.50 0.58 0.001

† Assay run on days –21, 1, and 21 (cow); days 0 (2 h post partum; before feeding colostrum), 1, and 21 (calf) relative to parturition. day –21, in the cow

analyses, was used as a covariate and represents the mean

‡ No significant interactions between the main effects were evident

·Day relative to parturition

¶ Incubation time: 15 and 30 min for Escherichia coli and Salmonella typhimurium ; 2 h and 4 h for Candida albicans

Table 5. Effects of supplemental fish oil during the peri-partum
period on the ex-vivo production of interferon-c by peripheral
blood mononuclear cells when stimulated with phytohae-
magglutin-P. Values are Least Squares Means± SEM for n=12†,‡

Main effect
Estimate
labels

Estimates
pg/ml SEM P<

Treatment EB v. FO 367 455 146 0.69
Day +1 v. +21 459 362 116 0.43
Concentration· 0 v. 5 mg/ml 214 607 128 0.01

† Assay run on days –21, +1, and +21 relative to parturition. Day –21

was used as a covariate

‡ No significant interactions between the main effects were evident
·Concentration of phytohaemagglutin-P in cell culture media
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relationship between preformed n-3 long-chain poly-
unsaturated FA in the diet and the proportions of each n-6
long-chain polyunsaturated FA in plasma was complex
and not all n-6 long-chain polyunsaturated FA responded
in a similar manner.

The antimicrobial assay provides an index of the
blood’s ability to protect against potential pathogens.
Differences were evident in the antimicrobial capacity of
blood against the various pathogens; however, fish oil did
not affect the ability of cows or their calves to control the
growth and kill each microorganism. In contrast to the
moderate dose of FO used in the present study, a high
dose of FO, 18% of the diet, impaired the resistance of
mice to the intracellular bacterium Listeria monocytogenes
(Fritsche et al. 2005).

Synthesis of the cytokine IFN-c is imperative for cell-
mediated immunity. Production of IFN-c was unaffected
by day (Table 6) whereas others found an inhibition
around parturition (Shafer-Weaver & Sordillo, 1997;
Lessard et al. 2004). Furthermore, supplemental fish oil
had no influence on the production of IFN-c (Table 5).
A predominant number of studies in animal models other
than ruminants revealed that supplemental FO suppressed
cell-mediated immunity as measured by lymphocyte pro-
liferation (Calder et al. 2002; Anderson & Fritsche, 2004).
Shapiro et al. (1993) reported that prostaglandin (PG) E3

was equally or more potent as PGE2 at suppressing
lymphocyte proliferation to mitogens in vitro. Furthermore,
the addition of polyunsaturated FA to a Jurkat T cell line
displaced cytoplasmic signalling proteins from the lipid
rafts and subsequently reduced signal transduction (Stulnig
et al. 1998). These data provide strong evidence for an
inhibitory effect of EPA and DHA on cell-mediated im-
munity; however, Calder et al. (2002) reported that only
high levels of FO suppressed lymphocyte responses. The
present results were consistent in that moderate incorpor-
ation of EPA and DHA had no influence on mitogen-
stimulated PBMC IFN-c production (Yaqoob et al. 2000).

Infusing 100 mg of purified LPS into one mammary
quarter activated an APR as evident by changes in both
local and systemic signs of inflammation. Supplementing
cows with FO during the peri-partum period had no sig-
nificant effect on any physiological, clinical or production
parameter during the APR (Table 6).

Limiting the pathogenesis of the APR during coliform
mastitis was the objective of many studies (Burvenich &
Peeters, 1982; Anderson et al. 1986; Vangroenweghe et al.
2005). In those studies, pharmacological doses of non-
steroidal anti-inflammatory drugs were given either before
the challenge or at the onset of clinical signs of disease.
Non-steroidal anti-inflammatory drugs had positive effects
on limiting the clinical pathogenesis, but had limited or
no effects on production performance. Similarly to non-
steroidal anti-inflammatory drugs, supplementing FO al-
tered the synthesis of eicosanoids in man (Goldman et al.
1983) and ruminants (Baguma-Nibasheka et al. 1999;
Mattos et al. 2004). A high daily dose of intravenous
emulsions of EPA and DHA (0.3 g EPA+DHA/kg BW)
given to sheep completely abrogated the parturition-
induced production of PGE2 compared with intravenous
emulsions of soybean oil (Baguma-Nibasheka et al. 1999).
More recently, supplementing a high daily dose of FO
(y50–60 g absorbable EPA+DHA, assuming 65% ruminal
escape from biohydrogenation and an intestinal absorption
of 70%) moderately attenuated the post-partum elevation
in plasma PGF-metabolite (Mattos et al. 2004). The daily
dose of absorbable EPA+DHA when expressed in terms of
BW, assuming a 700-kg cow, was approximately 0.079 g
EPA+DHA/kg BW. Although effective in reducing PG
production, supplementing unprotected FO at that con-
centration had adverse effects on DMI. In the present
study, assuming similar efficiencies of biohydrogenation
and intestinal absorption as Mattos et al. (2004) the dose
of absorbable EPA+DHA was approximately 0.042 and
0.033 g/kg BW daily pre-partum and post partum respect-
ively, which was approximately half the dose administered

Table 6. Effects of supplemental fish oil on the acute phase response following an intramammary lipopolysaccharide challenge.
Values are LSM±SEM for n=12

Treatment estimates

SEM

Main effects† P<

EB Fish Trt Time Trt*Time

Dry matter intake, kg/d 20.9 19.9 1.5 0.50 0.001 0.90
Milk yield from un-infused quarter, kg/milking 4.63 4.53 0.21 0.37 0.001 0.99
Milk yield from infused quarter, kg/milking 4.45 4.32 0.29 0.35 0.001 0.34
Rectal temperature, 8C 39.8 39.9 0.09 0.17 0.001 0.46
Heart rate, beats/min 90.5 86.2 1.8 0.65 0.001 0.99
Respiratory rate, breaths/min 42.1 43.0 2.8 0.82 0.001 0.76
Linear somatic cell count‡ in un-infused quarter, cells/ml 4.28 3.59 0.36 0.97 0.001 0.40
Linear somatic cell count in infused quarter, cells/ml 9.42 9.34 0.13 0.66 0.001 0.01
Total white blood cell count, cells/ml 8472 7836 969 0.67 0.001 0.19
Milk lactoferrin in un-infused quarter, mg/ml 0.195 0.167 0.025 0.41 0.06 0.19
Milk lactoferrin in infused quarter, mg/ml 0.624 0.679 0.082 0.62 0.001 0.62

† Statistics from analyses of change over baseline

‡ Linear somatic cell count=Log 2 (Somatic cell counts/100 000)
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in the study by Mattos et al. (2004). The productions of PG
were not determined in the present study, but inferences
based on the finding that there was no effect of sup-
plemental FO on the clinical response to LPS suggests that
the dose of FO either did not significantly alter the syn-
thesis of PG or was not sufficient to elicit a biological
response.

Altered eicosanoid metabolism is not the only mech-
anism by which EPA and DHA attenuate the pathogenesis
of the APR. Supplemental FO reduced neutrophil chemo-
taxis to chemotactic ligands (Lee et al. 1985; Schmidt et
al. 1991). Dietary supplementation of healthy human
subjects with 3.2 g EPA+2.2 g DHA daily for 6 weeks de-
creased maximal chemotactic response to leucotriene B4

by 70% (Lee et al. 1985). Further supporting the inhibitory
effect of FO was that 6 weeks after stopping the EPA+DHA
supplementation the chemotactic response returned to
baseline values. Schmidt et al. (1991) revealed chemotaxis
was reduced in a dose-dependent fashion, but the most
dramatic decrease was at the low concentration, 1.3 g/d
supplemental EPA+DHA. When expressed in terms of BW,
the EPA+DHA daily dose in man was only 0.019 g/kg BW,
which is approximately half of the estimated absorbed
dose in the current study. The lack of an effect on somatic
cell counts in infused quarters and leucopenia in peri-
pheral blood indicated no effect of FO on chemotaxis or
margination of neutrophils into mammary gland tissue.

Based on data from man and rodents, the estimated
dose of absorbable EPA and DHA in the present study
should have been sufficient to attenuate aspects of the APR
in these dairy cattle (Schmidt et al. 1991; Michaeli et al.
2007). The exact reason for the discrepancy among
species is unknown and biologically intriguing. Ruminants
might differ from man and rodents in terms of the sensi-
tivity of lipid-mediated effects on biological processes be-
cause they evolved under lower quantities of absorbable
polyunsaturated FA owing to biohydrogenation in the
rumen. Supplementing a large enough dose of FO to alter
eicosanoid production (Baguma-Nibasheka et al. 1999;
Mattos et al. 2004) and possibly the APR in ruminants
would probably have detrimental effects on DMI (Mattos
et al. 2004). The dose of FO in the present study was
chosen because it was expected not to adversely affect
DMI. Future research on the effects of EPA and DHA on
immune competence should use protected lipid sources to
achieve absorbable doses near or above those achieved
by Mattos et al. (2004). Supplementing FO during the peri-
partum period at the doses used in the current study did
not protect early lactating cows from the deleterious ef-
fects of an excessive APR.
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