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This paper concerns the mathematical formulation of two-dimensional steady surface
gravity waves in a Lagrangian description of motion. It is demonstrated first that
classical second-order Lagrangian Stokes-like approximations do not exactly represent
a steady wave motion in the presence of net mass transport (Stokes drift). A
general mathematically correct formulation is then derived. This derivation leads
naturally to a Lagrangian Stokes-like perturbation scheme that is uniformly valid
for all time – in other words, without secular terms. This scheme is illustrated, both
for irrotational waves, with seventh-order and third-order approximations in deep
water and finite depth, respectively, and for rotational waves with a third-order
approximation of the Gerstner-like wave on finite depth. It is also shown that the
Lagrangian approximations are more accurate than their Eulerian counterparts of
the same order.

1. Introduction
Although numerical models for surface gravity waves are undergoing constant

improvement – in terms of speed, accuracy and generality (Fenton 1999; Dias &
Bridges 2006) – simplified analytical models remain (and will remain) in common use.
Indeed, such models provide insight and are also accurate enough for many practical
applications. The simplest analytical models are the linear ones, but there are many
phenomena that cannot be described properly by linear solutions. For example,
problems involving steep waves often require high-order approximations. Because
the Lagrangian description of motion is intrinsically appropriate for describing steep
waves, it is natural to use this description for deriving simple analytical models.
Nevertheless, the vast majority of analytical investigations are performed using
either the Eulerian description of motion or conformal mapping for two-dimensional
irrotational flows, though the number of papers using a Lagrangian description have
increased in recent years.

In the linear approximation, Lagrangian and Eulerian descriptions have similar
mathematical complexity. This similarity does not occur at higher orders where
algebraic manipulations in Lagrangian form are tedious. This is one reason why the
Eulerian approach is generally preferred. In the pre-computer age, when calculations
had to be performed by hand, it made sense to choose the method yielding the simpler
derivations. This argument is no longer valid since complex algebraic manipulations
can be achieved in seconds using a computer algebra system on a desktop computer.
Hence, today, the most appropriate formulation should be used, regardless of the
algebraic complexity of the derivation. The ability to manipulate algebra is not all,
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however, and one must also ensure that the assumed mathematical form of the solution
can represent the phenomenon under investigation. This assumption is not always
obvious, however. This point is illustrated here with steady waves in the Lagrangian
description. Among all waves, steady solutions are of most importance because
complex sea states are often analysed in terms of superpositions and interactions of
these waves. Such an interpretation requires, in the first place, that steady solutions
are properly described.

Using the velocity potential and the streamfunction as independent variables (which
conformably map the fluid domain onto a half-plane), Stokes (1880) derived a fifth-
order approximation for irrotational waves in deep water (see also Craik 2005).
Several high-order approximations have been subsequently obtained following Stokes’
approach (e.g. Wilton 1914). This type of approximation is now referred to as a Stokes
expansion or Stokes wave. A similar expansion has also been used to investigate
rotational waves (Gouyon 1958). Schwartz (1974) was the first to use a computer to
compute explicitly high-order Stokes approximations. Like Stokes, he used conformal
mapping to simplify the algebra. However, Drennan, Hui & Tenti (1992) have shown
that the Stokes expansion using conformal mapping (here in after named the Stokesian
approximation) has a much smaller radius of convergence than its Eulerian counterpart
(i.e. working in the physical plane).

There are comparatively few attempts to use similar techniques in the
Lagrangian description of motion. Stokes (1847) derived a second-order Lagrangian
approximation for irrotational waves. He found that the particle trajectories
are not closed, thus leading to a net mass transport in the direction of the
wave propagation; this nonlinear phenomenon is now called Stokes drift. Stokes’
second-order approximation was subsequently extended to rotational waves (Miche
1944). Buldakov, Taylor & Eatock-Taylor (2006) computed higher-order irrotational
approximations according to Stokes’ perturbation scheme. They noted that, starting
from the third order, the solution is not bounded; the wave amplitude grows
indefinitely in time. This is clearly due to unphysical secular terms. To overcome
this problem, Buldakov et al. (2006) proposed a modified perturbation scheme where
the particles are recursively relabelled at each order. This is an interesting, but rather
involved, approach. However, Buldakov et al. (2006) do not explain the reason for
the appearance of these secular terms. This is one of the purposes of the present
paper where it is shown that these secular terms appear owing to a mathematical
misrepresentation of steady waves. Abrashkin & Zen’kovich (1990) and Chang,
Liou & Su (2007) avoided secular terms in their approximations by allowing the
phase velocity to be a function of the ‘vertical’ Lagrangian coordinate. Chang et al.
(2007) justified this technique with some heuristic considerations. It is demonstrated
here that uniformly valid approximations of steady waves can indeed be obtained
this way, but this is not the only possibility.

The paper is organized as follows. In § 2, we briefly introduce the well-known
Eulerian and Lagrangian equations of motion for steady two-dimensional gravity
waves propagating at the impermeable surface of an incompressible perfect fluid. In
§ 3, it is demonstrated that the classical second-order Lagrangian approximations
of gravity waves do not represent exactly steady motions with mass transport,
i.e. steadiness is not satisfied identically, but only up to the second order. As a
consequence, secular terms appear at higher orders and these approximations are
thus not uniformly valid for all times. This raises the problem of defining a steady
motion using the Lagrangian description. This is solved in § 4 for two-dimensional
flows of incompressible fluids, where the general Lagrangian mathematical form of
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steady waves is derived, as well as some simplified forms that are convenient for
practical applications. In § 5, a uniformly valid Stokes-like perturbation scheme is
introduced. It allows the construction of approximations without secular terms, and
is hence valid for all times. This is illustrated: (i) for deep-water irrotational waves
with a seventh-order approximation in § 6; (ii) for finite-depth irrotational waves with
a third-order approximation in § 7; (iii) for finite-depth rotational waves without net
mass transport with a third-order approximation in § 8.

2. Definitions, hypothesis and equations
We consider steady two-dimensional gravity waves propagating at the surface of an

incompressible fluid of constant density. The surface tension is neglected, g denotes
the acceleration due to gravity and the pressure is zero at the impermeable free
surface. The fluid mean depth d is either infinite or finite with a fixed horizontal
impermeable sea bed.

2.1. Eulerian description

Let (x, y) be, respectively, the horizontal coordinate and the upward vertical
coordinate in the frame of reference moving with the wave (where the flow is steady),
while t denotes the time. The wave is (2π/k)-periodic in the x-direction, with its crest
at x = 0. y = −d and y = η(x) denote, respectively, the positions of the impermeable
horizontal sea bed and the free surface, while y = 0 is the (Eulerian) mean water level
implying that ∫ π/k

−π/k

η(x) dx =0. (2.1)

u ≡ Dx/Dt and v ≡ Dy/Dt denote the horizontal and vertical velocities, respectively,
D/Dt being the temporal derivative following the motion. The mean flow is

k

2π

∫ π/k

−π/k

∫ η

−d

u dy dx ≡ −cd, (2.2)

c being thus the wave phase velocity observed in the frame of reference without mean
flow (but possibly with net transport at a given depth), which is positive if the wave
propagates in the direction of increasing x. Note that c is not the linear phase velocity
and it is the sole definition (2.2) that is used everywhere in this paper.

The condition of incompressibility is fulfilled by introducing a streamfunction
ψ(x, y) defined with u =ψy , v = − ψx and such that ψ = 0 at the free surface (hence
ψ = dc at the bottom). We note in passing that Dψ/Dt = 0, so ψ is independent of
time in the Lagrangian description of motion.

The conservation of momentum implies, first, that the vorticity ω ≡ vx − uy is a
function of ψ only (ω =ω(ψ)) and, secondly, the Bernoulli equation

2P + 2gy + u2 + v2 = B(ψ), (2.3)

where B is the Bernoulli ‘constant’ and P is the pressure divided by the density.
For irrotational motions, B is independent of ψ and B = c2 in deep water (d → ∞)

and for the solitary wave (k → 0). It is also convenient to introduce a velocity potential
φ such that u =φx and v =φy and so the condition ω = 0 is fulfilled identically.

2.2. Lagrangian description

In the Lagrangian description of motion, the (now dependent) variables x and y

denote the position of a particle at time t and are functions of (x0, y0), the particle
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position at the initial time t =0. The velocities are related to the positions as

u =Dx/Dt = xt (x0, y0, t), v = Dy/Dt = yt (x0, y0, t), (2.4a, b)

and the incompressibility equation and vorticity definition are

∂(x, y)

∂(x0, y0)
= 1, ω =

∂(xt , x)

∂(x0, y0)
+

∂(yt , y)

∂(x0, y0)
, (2.5a)

whereas, for steady flows, the conservation of momentum can be reduced to the
Bernoulli equation (2.3). Various relations and detailed derivations in the Lagrangian
description are given by Lamb (1932) and Wehausen & Laitone (1960), among others.

Using the initial positions (x0, y0) as independent variables is not convenient because
the initial fluid domain is generally complicated and unknown. Moreover, a travelling
wave of permanent form cannot be described simply by functions of x0 − ct . Indeed,
if it were the case, the horizontal position, for example, would be x = x(x0 −ct, y0)
and hence at the surface x = x(x0 −ct, η(x0)) which is a function of x0 − ct only if
η(x0) = 0, i.e. for a flat surface.

Thus, it is easier to solve the equations using the coordinate transformation
(x0, y0) �→ (α, β) that maps the physical fluid domain at t = 0 onto the strip −d � β � 0;
β = 0 and β = −d corresponding to the free surface y = η and to the sea bed y = −d ,
respectively. This transformation (particle relabelling) and its inverse are considered
univalued, continuous and differentiable. Hence, the Jacobian J of the transformation
satisfies

J (α, β) ≡ ∂(x0, y0)

∂(α, β)
> 0, (2.6)

and the incompressibility equation and vorticity definition become, respectively,

∂(x, y)

∂(α, β)
= J,

∂(xt , x)

∂(α, β)
+

∂(yt , y)

∂(α, β)
= Jω. (2.7a, b)

There are, of course, an infinite number of such transformations.
The definition of the steady streamfunction ψ(x, y) yields

dψ = udy − vdx =(uyα − vxα)dα + (uyβ − vxβ)dβ + (uyt − vxt ) dt, (2.8)

thence ψ = ψ(α, β) with

ψα = xtyα − yt xα =
∂(x, y)

∂(t, α)
, ψβ = xtyβ − ytxβ =

∂(x, y)

∂(t, β)
. (2.9a, b)

Equations (2.9) define explicitly the streamfunction in the Lagrangian description.

2.3. Remarks

In this paper, the Eulerian averaging (k/2π)
∫ π/k

−π/k
• dx is used to define all mean

quantities (even when using the Lagrangian description of motion) because it is the
most common and convenient, but another averaging can also be used (Longuet-
Higgins 1986).

The speed c, as defined by (2.2), is sometimes called the Stokes phase velocity. It is
also customary (e.g. Williams 1981) to consider the so-called Euler phase velocity c′

observed in the frame of reference without mean velocity at the bottom, i.e.

−c′ ≡ k

2π

∫ π/k

−π/k

u(x, y =−d) dx. (2.10)

c′ �= c in general, but for irrotational flows, c′ = c in deep water and for solitary waves.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

78
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007007811


On the Lagrangian description of steady surface gravity waves 437

3. The problem of Lagrangian steady waves
Stokes (1847, § 9) derived a second-order Lagrangian approximation for irrotational

waves in deep water which, in the present notations, is

kx = kξ + ε2cte2kβ − εekβ sin kξ, ky = kβ + 1
2
ε2 + εekβ cos kξ, (3.1a, b)

where ξ = α − ct , k is the wavenumber and ε is half the total wave height multiplied
by k (steepness). Note that Stokes’ original approximation does not incorporate the
term ε2/2 in (3.1b); it is introduced here to ensure that η = y(ξ, 0) averages to zero
according to (2.1). Stokes (1847) derived also a second-order approximation on finite
depth–but he did not give the full explicit solution; see Wehausen & Laitone (1960,
equation (27.41)) – and Miche (1944) extended these approximations to rotational
flows. All these second-order approximations can be formally written as

x = ξ + γ (β)t +X(ξ, β), y = β +Y (ξ, β), (3.2a, b)

where X and Y are bounded periodic functions (Fourier polynomials) of ξ = α −ct

and γ characterizes the Stokes drift. On finite depth Y = 0 at the bottom β = −d , while
in deep water the wave has no influence far below the surface so {γ ; X; Y } → 0 as
β → − ∞. If γ (β) = 0 there is no Stokes drift because the particle horizontal coordinate
x

F
observed in the frame of reference without mean flow (where the wave appears to

travel with the speed c), i.e.

x
F

≡ x + ct = α + γ (β)t + X(α − ct, β), (3.3)

is a periodic function in time when γ = 0. Note that Gerstner’s exact rotational
solution (cf. Appendix A) is of the form (3.2), but without Stokes’ drift (γ = 0). Note
also that we could consider a generalization of (3.2) such that γ = γ (α, β), but we
shall see that this is of no interest here, however.

We can also consider higher-order approximations. Using Stokes’ classical
perturbation scheme, the third- and higher-order approximations involve secular
terms; the wave amplitude increases indefinitely in time (Buldakov et al. 2006)
and these approximations are therefore not uniformly valid for all times (though
they are mathematically correct from an asymptotic viewpoint). Thus, for practical
applications, these high-order approximations must be recast (via, e.g. Lie group
transformations, renormalization, etc.) into forms that are uniformly valid for all
times. In order to apply such transformations, it is necessary to know the form of
solution that the approximations must be transformed to. It is natural to try first to
recast the approximations into the form (3.2). However, this cannot be achieved.

Theorem 1. No exact solution describing a steady wave with Stokes’ drift can be
obtained in the form (3.2).

Proof. The substitution of the form of solution (3.2) with γ = γ (α, β) into equations
(2.9) yields

ψα = (γ + cγαt)yξ , ψβ = γyβ + cγβ tyξ +
∂(ξ + X, y)

∂(t, β)
. (3.4a, b)

In these relations, all the terms are bounded periodic functions of time except the
explicit terms t . Therefore, the relations can be fulfilled for all times only if the
coefficients of t vanish, implying that γ is a constant and that there is thus no Stokes’
drift. Further, the free surface being a streamline, ψα = γ yξ = 0 at β = 0 and hence
γ = 0. (In this discussion the trivial cases c = 0 and yξ (ξ, 0) = 0 were disregarded.)
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In conclusion, no uniformly valid steady solutions can be obtained in the form (3.2)
when the Stokes drift is present.

Then the question arises: What is the general mathematical form of a steady wave
in the Lagrangian description of motion? As just shown, this question is not as trivial
as it may sound at first. The answer is necessary for the construction of high-order
approximations (and exact solutions) for steady wave motions that are uniformly
valid for all times.

4. Lagrangian description of a steady wave motion
By definition, a steady wave motion is such that the flow appears independent

of time at all fixed positions (x, y). (A travelling wave of permanent form is such
that there exists a frame of reference where, via a Galilean transformation, the flow
appears steady.) As stated, steadiness is essentially an Eulerian concept and therefore
its Lagrangian counterpart must be made precise. Obviously, a steady flow in the
Lagrangian description cannot be defined as independent of time because that would
imply the absence of motion. This section is devoted to the derivation of the general
Lagrangian formulation of steady flows, as well as some simplified formulations.

4.1. General coordinates

In the Eulerian description of motion, if the streamfunction is independent of time,
it implies (via the ψ definition) that the velocity is also constant in time. Therefore,
the sole condition ψt =0 is sufficient to define completely a steady flow. In the
Lagrangian description of steady flows, the particle positions are varying in time, as
already mentioned, but we have seen that the streamfunction is independent of time,
i.e. ψ = ψ(α, β). This latter feature is sufficient to define explicitly a steady flow, as in
the Eulerian case.

The Eulerian definition of ψ is transformed into the Lagrangian form as

u =
∂ψ

∂y
=

∂(x, ψ)

∂(x, y)
⇐⇒ ∂x

∂t
=

1

J

∂(x, ψ)

∂(α, β)
, (4.1a, b)

v = − ∂ ψ

∂x
=

∂(y, ψ)

∂(x, y)
⇐⇒ ∂y

∂t
=

1

J

∂(y, ψ)

∂(α, β)
. (4.1c, d)

Then, because ψ is independent of t , (4.1b–d) are easily solved taking (α, ψ, t) – or
(β, ψ, t) – as independent variables and, after integration, returning to the original
variables (α, β, t). Thus, we obtain easily

x = Ξ (τ, ψ) , y = Υ (τ, ψ), τ ≡ t + T (α, β),
∂(T , ψ)

∂(α, β)
= J, (4.2a–d)

Ξ and Υ being unspecified functions. The solution (4.2) is the most general
Lagrangian formulation of steady two-dimensional flows for incompressible fluids.
Note that, with (4.2), the mass conservation (2.7a) and the two relations (2.9) yield
the single equation

∂(Ξ, Υ )

∂(τ, ψ)
= 1. (4.3)

In summary, a steady wave motion is expressed in terms of functions of t + T (α, β)
– with T given by (4.2d) – and not in terms of functions of t − α/c, in general.
The latter possibility can be obtained with some changes of variables, however, as
shown below. Indeed, T is defined implicitly by the auxiliary equation (4.2d) that has
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infinitely many solutions; this reflects the fact that the particles can be labelled in
infinitely many ways. It is thus of practical interest to introduce special coordinates
such that the solution is simpler.

4.2. Special coordinates such that ψ =ψ(β)

Since the free surface and the bottom are streamlines, and because the streamfunction
is independent of time, it is natural for the sake of simplicity to chose parametric
variables (particle labels) such that each streamline is also an iso-β line, i.e. ψ = ψ(β).
With this particular choice of variables, the solution (4.2) becomes

x = Ξ (τ, β), y = Υ (τ, β), τ = t +

(
dψ

dβ

)−1 ∫
J dα. (4.4)

This simplified solution is still too general for most practical applications and further
simplifications are desirable.

4.3. Simplified coordinates such that ψ = ψ(β) and J = J (β)

The solution would obviously be simpler if ψ = ψ(β) together with J = J (β), a
situation that can be obtained by relabelling the particles as follows.

Starting from the simplified coordinates such that ψ = ψ(β), the change of
coordinates (particle relabelling)

α�(α, β) ≡ −
∫

CJ

ψβ

dα, β�(β) ≡ −
∫

jψβ

C
dβ, (4.5a, b)

where C and j are arbitrary regular functions of β , yields

∂(α�, β�)

∂(α, β)
= j (β)J (α, β), τ = t − α�

C(β)
. (4.6a, b)

The mass conservation (2.7a) then becomes

∂(x, y)

∂(α�, β�)
=

1

j (β)
≡ J �(β�), (4.7)

showing that it is possible to use coordinates such that both ψ and J depend only
on the particle ‘vertical’ label.

Thus, with the simplified variables (α�, β�) and introducing ξ ≡ − Cτ = α� − Ct –
but hereinafter omitting the stars for brevity – the equations of incompressibility,
vorticity and Bernoulli become, respectively,

J =
∂(x, y)

∂(ξ, β)
= − 1

C

dψ

dβ
, (4.8a)

∂(xξ , x)

∂(ξ, β)
+

∂(yξ , y)

∂(ξ, β)
−

x2
ξ + y2

ξ

C

dC

dβ
= −Jω

C
, (4.8b)

2P + 2gy + (Cxξ )
2 + (Cyξ )

2 = B, (4.8c)

where ψ , B , C and J are functions of β only; while P , x and y are functions of
both ξ and β . Note that ξ is not a Lagrangian variable because it depends on t .
This modified Lagrangian variable was apparently first introduced by Abrashkin &
Zen’kovich (1990) who showed that it can be conveniently used to describe waves
with mass transport; it is also used by Chang et al. (2007) who give a fifth-order
irrotational approximation on finite depth.
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4.4. Normalized coordinates

We have seen that x = x(ξ, β) and y = y(ξ, β), with ξ = α − C(β)t , is a general form of
steady waves under the constraints J = J (β) and ψ = ψ(β). Further simplifications are
actually possible. For instance, via particle relabelling, we can take C = constant= c

together with J = 1, without loss of generality. This can be easily seen taking C(β) = c

and j (β) = 1 in (4.5), which is a possible choice because these variables are arbitrary.
It can also be seen directly from the pseudo-Lagrangian ξ -variable when rewritten as

ξ = α − Ct = (C/c)[(c/C)α − ct] = (C/c)[α† − ct], (4.9)

where α† ≡ αc/C(β) and introducing β† ≡
∫ β

0
(C/c)Jdβ . Note that in (4.9), the

definition (2.2) of c is not used, meaning that (via particle relabelling) a steady
wave motion can always be expressed as a function of α − ct , independently of the
way c is defined.

Lagrangian variables such that J =1 are sometimes called Miche’s coordinates
(named after Miche 1944). Dealing with Miche’s variables is not always a good idea,
however, because such a choice restricts the possible simple forms of solution and
complicates the derivations. For instance, the well-known Gerstner exact rotational
wave has a very simple algebraic expression with J �= 1. It is algebraically more
complicated, and practically not advantageous, to rewrite Gerstner’s solution so that
J = 1 (see note (iii) in Appendix A). Other illustrations of this point are demonstrated
below for irrotational and Gerstner-like waves on fluid of finite depth.

4.5. Remarks

A conclusion of this section is that the mathematical form of a steady flow is not
independent of the choice of the particle labels. Conversely, if a special form of
solution is introduced a priori, we must check that there indeed exists a special
coordinate system leading to this peculiar form. This is not always the case, as shown
above with the expression (3.2). This claim remains a fortiori true for unsteady flows
for which the correct mathematical expression of a given flow will be more difficult
to derive, in general.

The general form of solution (4.2) derives from kinematical considerations only. It
is therefore also valid for heterogeneous viscous fluids over a non-horizontal sea bed
and in the presence of surface tension, provided that the fluid is incompressible and
in steady two-dimensional motion. The generalizations in three dimensions and for
compressible fluids are given in the Appendix C.

5. Stokes-like perturbation scheme
Having defined above the mathematical form of steady flows in the Lagrangian

description of motion, it is now easy to introduce a perturbation scheme leading to
approximate solutions that are uniformly valid for all times, for either rotational or
irrotational flows, with or without mass transport.

5.1. Fourier series

In a frame of reference moving with the speed of the net mass transport along a
given streamline (the corresponding particle trajectories appear closed), the wave has
an apparent wavenumber K , an apparent velocity C and an apparent period 2π/KC.
The mass transport is (a priori ) different for each streamline and therefore, owing to
the Doppler effect, the parameters K and C are functions of ψ , in general. Hence, for
(2π/k)-periodic waves symmetric around the crest, it is natural to seek solutions that
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are expandable in Fourier series (using the simplified coordinates introduced in § 4.3)
as

x = k−1Kξ −
∞∑

i=1

Xi sin iKξ, y =

∞∑
i=0

Yi cos iKξ, (5.1a, b)

with ξ = α − Ct and where K , C, Xi and Yi are functions of β to be determined.
Fourier series are uniformly convergent for continuous functions with a piecewise
continuous first derivative, meaning that all periodic solutions of physical interest can
be represented by the series (5.1). Other eigenfunctions could also be used, however.

Obviously, from (5.1a), the mass transport velocity is −CK/k in the frame of
reference moving with the wave, which is independent of β in the absence of Stokes
drift. Hence, the transport velocity is c − CK/k in the frame of reference without
mean flow.

Note that the expansion (5.1) is not of the form (3.2), even if C is constant.
However, substituting c by C = c + γ (β) into the functions X and Y of (3.2), the
resulting expression takes the form (5.1) with K = k.

5.2. Small-parameter expansion

To solve the equations iteratively, the functions are further expanded in power series

{Xi; Yi} =

∞∑
j=0

εi+j {Xi,j ; Yi,j }, {K; C} =

∞∑
j=0

εj {Kj ; Cj }, (5.2)

and the equations are fulfilled for all powers of ε independently. The expansion
parameter ε is chosen here to be the wave steepness (half the total wave height
multiplied by k), implying that

ε =

∞∑
i=1

∞∑
j=0

ε2i+j−1kY2i−1,j (β = 0). (5.3)

The relation (5.3) must also be satisfied for all powers of ε independently, thus giving
an extra set of equations necessary to close the problem.

Another expansion parameter could of course be used; the present expansion
parameter being one of the most common and convenient, however. Some arguments
for choosing ε as the expansion parameter are given in the Appendix B. Owing to
this particular choice, approximations and exact solutions will be compared with
identical wavelength and steepness (in addition with identical parameters g, d , frame
of reference, mean water level and position of the wave crest), but the solutions could
also be compared with another pair of identical parameters (period, mean momentum
flux, mean kinetic energy, etc.).

With this Stokes-like double series, we have enough free functions at our disposal
to fulfil the equations at all orders. Actually, we have more freedom than required
by the equations; extra relations are introduced imposing that the solution must be
uniformly valid in the whole fluid and for all time, i.e. cancelling the secular terms.

When working with the non-normalized coordinates, there are still extra degrees of
freedom and, to close the problem, we can impose two extra conditions among, e.g.
K = k, C = c, J =1, ψ = −βc, or Y0 being a linear function of β . However, not all of
these constraints are independent and some cannot be imposed simultaneously. For
instance, the constraints K = k and C = c cannot be used together for irrotational
waves because that would imply the absence of Stokes’ drift.
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5.3. Remarks

In his amplitude expansion of surface waves, Stokes expanded also the phase velocity
in order to avoid secular terms in the solution. He could have instead expanded the
wavenumber. The Stokes-like expansion in the Lagrangian description is similar with
the additional feature that the wavenumber or phase velocity must be a function of
ψ in order to describe the net mass transport (if it is present).

Stokes-like expansions are not efficient in shallow water (i.e. for kd 
 1) and an
alternative perturbation scheme should hence be introduced. A Lagrangian shallow-
water theory presents no particular difficulties, but it is out of the scope of the current
work, where the motivation is to simply illustrate the advantage of the Lagrangian
formulation.

6. Application to irrotational waves in deep water
The perturbation scheme above is applied to irrotational gravity waves (ω = 0),

considering only the low-order approximations of seventh-order for deep water. The
goal here is simply to illustrate the efficiency of the Lagrangian formulation, and not
to provide a thorough mathematical investigation.

6.1. Seventh-order approximation

In deep water, B = c2. Far below the surface, the wave has no influence and therefore
the solution must tend to a uniform current, i.e. Xi → 0, Yi > 0 → 0, K → K∞ and
C → C∞ as β → −∞. It is obvious that – via a change of definition of the α-variable –
we can impose K∞ = k without loss of generality and thus C∞ = c.

It is here advantageous (and possible) to impose C = c and ψ = −cβ , so that
the solution is a function of α − ct and β has a simple connection to the
physical quantities c and ψ; it also yields J = 1. We are thus using the simplified
normalized (Miche’s) coordinates. To the seventh-order, after some algebra, we
obtain

kY0 = kβ − 1
2
ε2 + 1

2
ε4 + 13

24
ε6 +

(
ε2 − 3ε4 + 13

6
ε6

)
e2kβ

+(3ε4 − 15ε6) e4kβ + 53
4
ε6e6kβ, (6.1a)

kX1 =
(
ε − 3

2
ε3 − 1

24
ε5 − 3007

1440
ε7

)
ekβ +

(
5
2
ε3 − 35

4
ε5 + 475

48
ε7

)
e3kβ

+
(

43
4
ε5 − 1369

24
ε7

)
e5kβ + 441

8
ε7e7kβ, (6.1b)

kY1 =
(
ε − 3

2
ε3 − 1

24
ε5 − 3007

1440
ε7

)
ekβ +

(
3
2
ε3 − 21

4
ε5 + 95

16
ε7

)
e3kβ

+
(

21
4
ε5 − 665

24
ε7

)
e5kβ + 189

8
ε7e7kβ, (6.1c)

kX2 =
(

1
2
ε4 − 7

12
ε6

)
e2kβ −

(
1
6
ε4 − 35

12
ε6

)
e4kβ − 25

18
ε6e6kβ, (6.1d)

kY2 =
(

1
2
ε4 − 7

12
ε6

)
e2kβ −

(
1
3
ε4 − 10

3
ε6

)
e4kβ − 22

9
ε6e6kβ, (6.1e)

kX3 =
(

1
12

ε5 + 49
144

ε7
)
e3kβ −

(
1
72

ε5 − 85
432

ε7
)
e5kβ − 31

288
ε7e7kβ, (6.1f)

kY3 =
(

1
12

ε5 + 49
144

ε7
)
e3kβ −

(
1
24

ε5 − 25
144

ε7
)
e5kβ − 9

32
ε7e7kβ, (6.1g)

kX4 = 1
72

ε6e4kβ − 1
720

ε6e6kβ, (6.1h)

kY4 = 1
72

ε6e4kβ − 1
180

ε6e6kβ, (6.1i)

kX5 = 1
480

ε7e5kβ − 1
7200

ε7e7kβ, (6.1j)

kY5 = 1
480

ε7e5kβ − 1
1440

ε7e7kβ, (6.1k)
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and

K =
[
1 −

(
ε2 − 3ε4 + 13

6
ε6

)
e2kβ − (3ε4 − 14ε6)e4kβ − 53

4
ε6e6kβ

]
k, (6.2a)

c =
[
1 + 1

2
ε2 + 1

8
ε4 + 1

16
ε6

]√
g/k. (6.2b)

This Lagrangian Stokes-like approximation is free of secular terms and is therefore
uniformly valid in the whole fluid domain and for all times; this remains true at
higher orders. At the free surface β =0, this seventh-order Stokes-like approximation
becomes

kx = Kξ −
(
ε + ε3 + 47

24
ε5 + 8483

1440
ε7

)
sin Kξ −

(
1
3
ε4 + 17

18
ε6

)
sin 2Kξ

−
(

5
72

ε5 + 371
864

ε7
)
sin 3Kξ − 1

80
ε6 sin 4Kξ − 7

3600
ε7 sin 5Kξ, (6.3a)

kη = 1
2
ε2 + 1

2
ε4 + 23

24
ε6 +

(
ε − 1

24
ε5 − 337

1440
ε7

)
cosKξ +

(
1
6
ε4 + 11

36
ε6

)
cos 2Kξ

+
(

1
24

ε5 + 67
288

ε7
)
cos 3Kξ + 1

120
ε6 cos 4Kξ + 1

720
ε7 cos 5Kξ, (6.3b)

K =
[
1 − ε2 − 17

12
ε6

]
k. (6.3c)

Notice that the first harmonic (twice the fundamental frequency) appears at the
fourth-order only, the second harmonic appears at the fifth-order, and so on. In
Eulerian description too, the first harmonic appears only at the fourth-order for
the velocity field (see (B 1a)), but it appears at the second-order for the surface
elevation (see (B 1b)). Conversely, the first harmonic appears at second order in the
Stokesian approximation (see (B 2)). At least for the low-order approximations, this
shows the superiority of the Lagrangian formulation over the Eulerian and Stokesian
formulations.

6.2. Stokes drift

The particle drift velocity V observed in the frame of reference where the velocity of
the fluid tends to zero as y → − ∞ is

V (β) ≡ c − k−1KC, (6.4)

hence

c−1 V =
(
ε2 − 3ε4+ 13

6
ε6

)
e2kβ + (3ε4 − 14ε6)e4kβ + 53

4
ε6e6kβ + O(ε8). (6.5)

At the surface, the drift velocity is therefore

c−1 V (0) = ε2 + 17
12

ε6 + O(ε8), (6.6)

a result first obtained by Longuet-Higgins (1987, equation 5.4d) via a different route.
The particle trajectories are open orbits with a net mass transport in the direction
of the wave propagation (figure 1(a)). Subtracting the mass transport component,
the resulting closed orbits are highly symmetric, even for steep waves (figure 1(b)).
Further details on these matters are given by Longuet-Higgins (1987).

6.3. Comparison with other approximations and exact solution

Comparisons of (6.1) for a steep wave (ε =0.424) with an exact numerical solution
(Fenton 1988) and with seventh-order Eulerian and Stokesian approximations
(Appendix B) show that it is accurate (figure 2), even for the vertical velocity
at the surface for which the Stokesian approximation (B 2) is totally meaningless.
The Lagrangian approximation is also somewhat more accurate than its Eulerian
counterpart, (B 1). For moderately steep waves, the accuracy of the Nth-order
Lagrangian approximation of the surface matches that of the Eulerian approximation
of order N + 2 (see also notes (v) and (vi) in Appendix A).
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–3 –1 0 321–2
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–0.5
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0.5

k (x + ct)

ky

kx + KCt

(a) (b)

Figure 1. Streamlines and trajectories over two periods in deep water (ω = 0, ε =0.4): – – –,
streamlines (iso-β for kβ = −1/2, −1); —, trajectories; ——, free surface (β = 0). (a) Complete
trajectories; (b) trajectories minus mass transport.

0 1 2 3

–0.2

0

0.2

0.4

0 1 2 3

0.2

0.1

0.3

0.4

kη

kx

v 
× 

√k
/g

(a)

(b)

Figure 2. Deep-water seventh-order approximations and exact solution (ω = 0, ε = 0.424): —,
exact (Fenton 1988); – – –, Lagrange (6.1)–(6.3); · · ·, Euler (B 1); – · –, Stokes (B 2). (a) Surface
elevation; (b) vertical velocity at the surface.

The superiority of Stokes-like expansions in Eulerian variables over the Stokesian
ones is clearly demonstrated by Drennan et al. (1992). The Lagrangian expansion
is even better. The superiority of the Lagrangian formulation also appears in the
Fourier coefficients of the surface elevation. To the leading order, the nth Fourier
coefficients of x and η (6.3a–b), i.e. respectively for n � 2

(n+ 2)εn+2

n (n+ 1)!
,

εn+2

(n+1)!
,

are smaller and decay faster than their Eulerian and Stokesian counterparts (see
Appendix B). This is an indication that the Lagrangian Stokes-like expansion may
indeed have a larger radius of convergence than the Eulerian one and, a fortiori ,
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0 0.1 0.2 0.3
0.4

0.5

0.6

0.7

1/ N

ε̂

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

kx̂

ε̂ = 0.436 + 0.755 N –1

kx̂ = –0.016 +1.34 N –1/2   

(a)

(b)

1/√N

Figure 3. Convergence characteristics of the Lagrangian Stokes-like approximation of the
highest irrotational wave in deep water: �, third- to tenth-order approximations; —, linear

regressions. (a) Steepness; (b) Absissa where ηx = −1/
√

3.

of the Stokesian too. Thus, it would be interesting to determine whether or not the
radius of convergence of the Lagrangian Stokes-like expansion includes the highest
wave. Low-order approximations of the highest wave give some indications of this
possibility.

6.4. Highest wave

The advantage of the Lagrangian Stokes-like approximation is more significant for
the steepest waves, which cannot be computed with Fenton’s program and which are
poorly approximated by an Eulerian expansion of low order. For instance, the Eulerian
approximations always have a smooth crest whereas the Lagrangian approximations
predict a sharp crest for ε = ε̂ ≈ 1, 0.5819, 0.5119 for the first-, fifth- and tenth-order
approximations, respectively. The convergence of the Nth-order approximation ε̂

N
(of

the maximum steepness ε̂) appears to be logarithmic with ε̂
N

∼ ε̂ + λ/N as N → ∞
where ε̂ ≈ 0.436 and λ≈ 0.755 (figure 3a). Assuming that this is the case, a better
estimation of the limit is obtained via the Richardson extrapolation ε̂′

N
= 2ε̂

2N
− ε̂

N

giving ε̂′
5 ≈ 0.44187, which is less than 0.3% off the ‘exact’ one ε̂ ≈ 0.44316 (Williams

1981).
All these approximations of the highest wave have a 0◦ inner angle at the crest – a

cusp such that η(x) − η(0) ∝ |x|2/3 locally – whereas the exact inner angle is 120◦, i.e.

dη

dx

∣∣∣∣
x=0±

=
∓1√

3
. (6.7)

Nevertheless, if x̂
N

(0 � kx̂
N

< π) denotes the horizontal position where ηx = − 3−1/2

for the Nth-order Lagrangian approximation of the highest wave, the low-
order approximations indicate the asymptotic behaviour kx̂

N
∼ − 0.016 + 1.34N−1/2

(figure 3b) which is consistent with (6.7), i.e. it shows that probably x̂
N

→ 0 as N → ∞,
as it should be.
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Although further analyses are required, this brief investigation suggests that the
Lagrangian Stokes-like expansion could be convergent for the highest wave. It also
shows that the convergence should then be very slow (logarithmic). However, for
practical calculations, the rate of convergence may be improved using another
expansion parameter (Cokelet 1977) and via some efficient convergence improvement
techniques (Weniger 1989).

7. Application to irrotational waves on finite depth
In finite depth, as for the case of deep water, we could use the Miche coordinates,

i.e. coordinates such that β = −ψ/c, C = c and J = 1. However, with this particular
choice, the algebra increases greatly with the order, and the third-order approximation
is already too complicated to be reported here. An algebraically simpler solution is
obtained with the alternative choice K = k and Y0 as a linear function of β , i.e. using
the non-normalized simplified coordinates. To the third-order, we obtain

Y0 = β +
β + d

2kd tanh kd
ε2, (7.1a)

X1 =
cosh k(β + d)

k sinh kd
ε +

T (β + d) sinh k(β + d)

(1 − S) sinh kd
ε3

− (S3 + 18S + 8) cosh k(β + d) + 6S(4S2 − 3S − 1) cosh 3k(β + d)

8k (1 − S)3 sinh kd
ε3, (7.1b)

Y1 =
sinh k(β + d)

k sinh kd
ε +

T (β + d) cosh k(β + d)

(1 − S) sinh kd
ε3

− −(5S3 −8S2 +22S+8) sinh k(β+d)+2S(8S2 −7S −1) sinh 3k(β+d)

8k (1−S)3 sinh kd
ε3, (7.1c)

X2 =
S2 − S + 3S2 cosh 2k(β + d)

2k (1 − S)2
ε2, (7.1d)

Y2 =
3S2 sinh 2k(β + d)

2k (1 − S)2
ε2, (7.1e)

X3 =
(34S3 − 38S2 + 4S) cosh k(β + d) + (33S3 − 6S2) cosh 3k(β + d)

24k (1 − S)3 sinh kd
ε3, (7.1f)

Y3 =
6(S3 − S2) sinh k(β + d) + (11S3 − 2S2) sinh 3k(β + d)

8k (1 − S)3 sinh kd
ε3, (7.1g)

and

C

c0

= 1 +
2 + 7S2 − 4S(1 − S) cosh 2k(β + d)

4(1 − S)2
ε2, (7.2a)

c

c0

= 1 +
2 + 7S2 − 4T (1 − S)

4(1 − S)2
ε2, (7.2b)

B

c2
0

= 1 +
2 + 2S + 5S2

2(1 − S)2
ε2, (7.2c)

J = 1 +
T − S cosh 2k(β + d)

1 − S
ε2, (7.2d)

where c2
0 ≡ gk−1 tanh kd , S ≡ sech2kd and T ≡ (2kd)−1 tanh 2kd . As for the deep-

water case, this approximation is free of secular terms; it is hence uniformly valid for
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–0.6

–0.4

–0.2

0

0.2

(kx + KCt)/kd

y
d

Figure 4. Streamlines and relative trajectories in finite depth (ω = 0, ε = π/20, kd = π/4):
– – –, streamlines; —, trajectories minus drift; —, free surface.

all times and this remains true at higher orders. At the free surface, we have

kx = kξ −
[

ε

tanh kd
+

(8 − 54S2 + 19S3) ε3

8(1 − S)3 tanh kd

]
sin kξ

− (2S + S2) ε2

2(1 − S)2
sin 2kξ +

(8S −34S2 − S3)ε3

24(1 − S)3 tanh kd
sin 3kξ, (7.3a)

kη =
ε2

2 tanh kd
+

[
ε+

(4S − 14S2 + 17S3)ε3

8(1 − S)3

]
cos kξ

+
3kdST ε2

(1 − S)2
cos 2kξ − (4S − 14S2 − 17S3)ε3

8(1 − S)8
cos 3kξ, (7.3b)

and at the bottom

C(−d) = c0

[
1 +

2 − 4S + 11S2

4(1 − S)2
ε2

]
+ O(ε4), (7.4)

C(−d) being the wave phase velocity observed in the frame of reference without net
mass transport at the bottom. In this frame of reference, the drift velocity is

V

c0

=

[
ε sinh k(β + d)

sinh kd

]2

+ O(ε4). (7.5)

Subtracting the mass transport, the (then closed) particle trajectories become more
asymmetric (epitrochoidal-like, see figure 4) as the depth decreases and as the steepness
increases (Wehausen & Laitone 1960, § 27α).

The third-order Lagrangian approximation is more accurate than the third-order
Eulerian one, as demonstrated for the relatively steep and long wave example displayed
in figure 5. For this particular example, the third-order Lagrangian surface is also
more accurate than the fifth-order Eulerian approximation of Fenton (1990). This
example demonstrates that Lagrangian approximations are accurate for a broader
range of steepness and wavelength-to-depth ratio than their Eulerian counterparts.
The differences are more pronounced for the steeper waves which cannot be
computed with Fenton’s (1988) program. Other evidence of the superiority of the
Lagrangian approximations is given by Chang et al. (2007) (note that their third-
order approximation is slightly different from the one presented here).
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√gd

η

d

(a)

(b)

Figure 5. Finite-depth third-order approximations and exact solution (ω = 0, ε = π/20, kd =
π/4): —, exact (Fenton 1988); – – –, Lagrange (7.1); · · ·, Euler (Fenton 1985). (a) Surface
elevation; (b) vertical velocity at the surface.

8. Application to Gerstner-like waves on finite depth
An irrotational wave (with a non-zero amplitude) necessarily yields a net mass

transport (Levi-Civita 1912; Constantin 2006). In deep water, Gerstner’s (1802) exact
solution is a rotational wave without Stokes’ drift. The existence of a (rotational)
wave with closed particle trajectories on finite depth was proved by Dubreil-Jacotin
(1934). She showed that this solution is unique when the period is fixed, but the
solution can be obtained explicitly only for deep water (Gerstner’s wave). A third-
order approximation was derived by Kravtchenko & Daubert (1957).

Since there is no net mass transport, both C and K must be constant in the series
(5.1). For the sake of simplicity, it is natural to take K = k for a (2π/k)-periodic wave
(this is always possible via a change of definition of the α-variable) and hence C = c.
Kravtchenko & Daubert (1957) derived their approximation under the constraint
J = 1 but, in order to compare with the irrotational approximation given in § 7, it is
better to take Y0 as a linear function of β . Thus, to the third-order approximation we
have

Y0 = β +
β + d

2kd tanh kd
ε2, (8.1a)

X1 =
cosh k(β + d)

k sinh kd
ε +

(16(kd)2(S − S2)T − 4 − 32S +16S2 − 7S3) cosh k(β + d)

8k (1 − S)3 sinh kd
ε3

+
(1 − S2 − 4(kd)2ST )(β + d) sinh k(β + d)

4(kd)2T (1 − S) sinh kd
ε3 +

15S2 cosh 3k(β + d)

4k (1 − S)2 sinh kd
ε3, (8.1b)

Y1 =
sinh k(β + d)

k sinh kd
ε +

(16(kd)2(S − S2)T − 4 − 28S + 8S2 − 3S3) sinh k(β + d)

8k (1 − S)3 sinh kd
ε3

+
(1 − S2 − 4(kd)2ST )(β + d) cosh k(β + d)

4(kd)2T (1 − S) sinh kd
ε3 +

9S2 sinh 3k(β + d)

4k (1 − S)2 sinh kd
ε3, (8.1c)

X2 =
S2 − S +3S2 cosh 2k(β + d)

2k (1 − S)2
ε2, (8.1d)

Y2 =
3S2 sinh 2k(β + d)

2k (1 − S)2
ε2, (8.1e)
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Figure 6. Comparison between finite-depth third-order Gerstner and irrotational approxima-
tions (ε = π/20, kd = π/4): —, Gerstner surface; ×, irrotational surface; —, Gerstner trajectory;
· · ·, irrotational trajectories after substraction of the Stokes drift.

X3 =
(34S3 − 38S2 + 4S) cosh k(β + d) + (33S3 − 6S2) cosh 3k(β + d)

24k (1 − S)3 sinh kd
ε3, (8.1f)

Y3 =
6(S3 − S2) sinh k(β + d) + (11S3 − 2S2) sinh 3k(β + d)

8k (1 − S)3 sinh kd
ε3, (8.1g)

and

c

c0

= 1 +
S(2 + 9S + 7S2 − 8(kd)2ST )

4(1 + S)(1 − S)2
ε2, (8.2a)

B

c2
0

= 1 +
4 + 4S + 5S2 + 5S3 − 8(kd)2S2T

2(1 + S)(1 − S)2
ε2, (8.2b)

J = 1 +

[
T

1 + S
− S cosh 2k(β + d)

1 − S

]
ε2, (8.2c)

ω

kc0

=
sinh 2k(β + d)

sinh2 kd
ε2, (8.2d)

where c2
0 ≡ gk−1 tanh kd , S ≡ sech2kd and T ≡ (2kd)−1 tanh 2kd . Note that the phase

speed varies with the amplitude, except in the deep-water limit where the Gerstner
wave is recovered.

This approximation is similar to the third-order irrotational one and is also free of
secular terms. They are very close (figure 6) except, perhaps, in shallow water (kd 
 1)
for which the Stokes-like expansions are inefficient.

9. Discussion
For the classical Stokes Lagrangian second-order approximation, it was shown that

steadiness is approximately (but not identically) fulfilled. This raises the question of
the definition of a steady flow in the Lagrangian description of motion. The exact
general mathematical form of a steady flow was then derived for an incompressible
fluid in two-dimensional motion. Some simplified expressions, more convenient for
most practical applications, were also derived. It was thus shown that considering the
wave velocity as a function of the ‘vertical’ label β is a possible consistent choice for
describing mass transport when both ψ and J depend on β only, but it is not the
only possibility.
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Once the Lagrangian form of a steady motion has been clearly defined, it is easy to
introduce a Lagrangian extension of the Stokes expansion. This perturbation scheme
allowed the derivation of approximations that are uniformly valid for all times.
This was demonstrated, for irrotational waves, with a seventh-order approximation
for deep water and a third-order approximation for finite depth and, for rotational
waves, with a third-order approximation with closed particle orbits for finite depth
(Gerstner-like wave). It was further shown that Lagrangian approximations are more
accurate than the Eulerian and Stokesian approximations of the same order. At least
for irrotational waves in deep water, the low-order approximations suggest that the
Lagrangian Stokes-like expansion could possibly be convergent for the highest wave.

The Lagrangian Stokes-like expansion has been illustrated with various choices. In
deep water, the Miche variables were used, i.e. we took C = c and J = 1. On finite
depth, we took K = k and J �= 1 because it yields algebraically simpler approximations.
Though the latter choice may seem more intuitive, it is not necessarily the most
convenient, however. Indeed, to obtain the value of β corresponding to a given
streamline ψ =Cst, for example, one must solve the equation ψ = −

∫
J (β)C(β)dβ ,

which is not convenient for practical applications. Conversely, with the Miche
variables, the β-label is explicitly given by β = −ψ/c. Moreover, the solution being a
function of Kα − Ωt (with Ω ≡ KC), the α and t variables play a symmetrical role
and it is therefore neither more ‘logical’, nor ‘natural’, to take K = k instead of C = c;
the most convenient choice depends on the problem at hand.

The present study is limited to two-dimensional motions. Although the simplified
coordinates of § 4.3 can be used for three-dimensional surface waves (Abrashkin 1996),
the general mathematical Lagrangian form of steady motions in three dimensions
may be of some practical interest. This generalization is given in Appendix C, together
with the extension for compressible fluids.

We have seen that Lagrangian perturbation techniques can be used to derive
approximations that are uniformly valid for long times. This is certainly also true
for unsteady motions, provided that the approximation correctly represents the
phenomenon under investigation. It was shown here that defining a steady flow is
not as trivial as it may sound at first. The Lagrangian definition of a given unsteady
flow will be a more complicated task, in general. Actually, there are few unsteady
flows (e.g. standing waves) that have a precise definition. For such well-defined flows,
we should be able to derive their correct Lagrangian mathematical definition. More
often, complex unsteady flows are not so well-defined, however, and their analysis is
a matter of interpretation and viewpoint, which are not unique. For instance, freak
waves (Kharif & Pelinovsky 2003) are an intensively studied phenomenon, but there
is no (mathematically) precise definition of a freak wave.

The author is grateful to Christopher J. Lawrence and to the referees for their
comments.

Appendix A. Remarks on Gerstner’s waves
The Gerstner (1802) wave is a well-known exact solution for rotational waves in

deep water. In the frame of reference where the flow is steady, the (2π/k)-periodic
Gerstner wave is

kx = kξ − εekβ sin kξ, ky = kβ + 1
2
ε2 + εekβ cos kξ, (A 1a, b)

J = 1 − ε2e2kβ, ω = 2kcε2e2kβ(1 − ε2e2kβ)−1, (A 1c, d)
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where ξ = α − ct , c2 = g/k and ε is half the total wave height multiplied by k. Note
that:

(i) The term ε2/2 in (A 1b) is generally omitted in the literature, but is introduced
here to ensure that η = y(ξ, β = 0) averages zero according to (2.1).

(ii) The particle horizontal position x
F

observed in the frame of reference where
there is no mass transport as β → −∞ (where the wave appears to travel with speed
c) is x

F
= x + ct =α − k−1εekβ sin k(α − ct), so the particle trajectories are closed and

there is no net mass transport (in this frame of reference).
(iii) Gerstner’s solution can be rewritten such that J = 1 via a change of coordinate

(α, β) �→ (α, β ′) with

β ′ = β +
ε2

2k
[1 − e2kβ] ⇐⇒ β = β ′ − ε2

2k
− 1

2k
W

(
−ε2e2kβ ′−ε2)

, (A 2)

where W is the Lambert function (Corless et al. 1996). Thus, Gerstner’s solution
becomes

kx = kξ −
[
−W

(
−ε2e2kβ ′−ε2)]1/2

sin kξ, (A 3a)

ky = kβ ′ − 1
2
W

(
− ε2e2kβ ′−ε2)

+
[
−W

(
− ε2e2kβ ′−ε2)]1/2

cos kξ, (A 3b)

which is substantially more complicated than (A 1).
(iv) The Gerstner wave has isobaric streamlines, i.e. P = P (ψ). Dubreil-Jacotin

(1932) proved that there is no such solution on finite depth. For a homogeneous
adiabatic compressible fluid, Kiebel (1933) proved that the Gerstner wave is the
only wave with isobaric streamlines. Dubreil-Jacotin (1935) extended Kiebel’s result
to heterogeneous incompressible fluids. Gouyon (1958) gave a simple proof for
homogeneous fluids, and Kalisch (2004) rediscovered this result.

(v) Gerstner’s wave is also the linear approximation of an irrotational wave.
Eliminating ξ between x and y at the surface β =0 and expanding in power series of
ε up to the fourth order, we obtain

kη = ε cos kx + 1
2
ε2 cos 2kx + 3

8
ε3(cos 3kx − cos kx) + 1

3
ε4(cos 4kx − cos 2kx). (A 4)

The only difference with the fourth-order Eulerian approximation, (B 1b), lies in the
sign of the term ε4 cos 2kx/3. Hence, the surface first-order Lagrangian approximation
includes the third-order Eulerian approximation.

(vi) Further, the expansion (A 4) is of the form

kη =

∞∑
n=1

nn−1

n!2n−1
[εn + O(εn+2)] cos nkx, (A 5)

which, to the leading order, is identical to the irrotational Stokes expansion in deep
water (see Appendix B). Hence, the Gerstner wave captures some higher-order features
of the Stokes wave.

(vii) The approximately trochoidal profile of the Stokes wave in deep water has
long been noted (Stokes 1847; Lamb 1932, art. 250). Constantin (2001) observes that
the Gerstner wave presents features of general interest for deep water waves, and
Leblanc (2004) investigated its local stability.

Appendix B. Eulerian and Stokesian seventh-order approximations
Introducing the complex potential f =φ + iψ and the complex variable z = x + iy,

the seventh-order Stokes-like approximation for an irrotational wave in deep water
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and in the Eulerian description of motion (called here the Eulerian approximation) is

f = −cz + i
√

g/k3
[
− 1

2
ε2 + 1

4
ε4 +35

48
ε6 +

(
ε − 1

2
ε3 − 37

24
ε5 − 4267

1440
ε7

)
e−ikz

+
(

1
2
ε4 + 1

6
ε6

)
e−2ikz +

(
1
12

ε5 + 73
144

ε7
)
e−3ikz

+ 1
72

ε6e−4ikz + 1
480

ε7e−5ikz
]
, (B 1a)

kη =
(
ε − 3

8
ε3 − 211

192
ε5 − 14411

5120
ε7

)
cos kx +

(
1
2
ε2 + 1

3
ε4 − 13

48
ε6

)
cos 2kx

+
(

3
8
ε3 + 99

128
ε5 + 3783

5120
ε7

)
cos 3kx +

(
1
3
ε4 + 217

180
ε6

)
cos 4kx

+
(

125
384

ε5 + 15769
9216

ε7
)
cos 5kx + 27

80
ε6 cos 6kx + 16807

46080
ε7 cos 7kx, (B 1b)

c =
√

g/k
[
1 + 1

2
ε2 + 1

8
ε4 + 1

16
ε6

]
. (B 1c)

Note that, after elimination of Kξ and expansion up to the seventh order, the
equations (6.3) yield (B 1b).

Stokes (1880) also derived a fifth-order approximation using φ and ψ as independent
variables. Introducing the more convenient complex variable ζ = −f/c, the seventh-
order Stokes’ expansion (called here the Stokesian approximation) is

kz = kζ − i
2
ε2 + i

2
ε4 + 13i

24
ε6 + i

(
ε − 3

2
ε3 − 1

24
ε5 − 3007

1440
ε7

)
e−ikζ

+ i
(
ε2 − 5

2
ε4 + 19

12
ε6

)
e−2ikζ + i

(
3
2
ε3 − 31

6
ε5 + 113

18
ε7

)
e−3ikζ

+ i
(

8
3
ε4 − 839

72
ε6

)
e−4ikζ + i

(
125
24

ε5 − 39647
1440

ε7
)
e−5ikζ

+ 54i
5

ε6e−6ikζ + 16807i
720

ε7e−7ikζ . (B 2)

All the approximations above use the steepness ε as the expansion parameter, but
other expansion parameters can also be used. For instance, Stokes used the coefficient
of the fundamental frequency of kη in his expansion in the (x, y)-plane (Stokes 1847,
§ 13) and the coefficient of the fundamental frequency of kz in his expansion in the
(φ, ψ)-plane (Stokes 1880, equations 17–18). However, Schwartz (1974) has found that
Stokes’ expansion parameters do not increase monotonically with the wave height
and, therefore, using the steepness is more convenient. Other expansion parameters
are more efficient in terms of radius and rate of convergence (see e.g. Cokelet 1997),
but they are less practical than the steepness. Indeed, the steepness is easily obtained
from experimental data by direct measurement of the wavelength and height, whereas
the determination of other parameters may require more measurements (e.g. the
velocity field) and more mathematical treatment (e.g. Fourier transform).

Wilton (1914) noted that, to the leading order, the nth Fourier coefficient in the
expansion (B 2) is εnnn−1/n! for all n � 1 (up to infinity). This should be compared with
its Eulerian counterpart (B 1) – where the corresponding coefficient is εnnn−1/n!2n−1

(∀n � 1) for the surface (B 1b) and εn + 2/n!(n − 1) (∀ n � 2) for the potential (B 1a) –
which has faster decaying Fourier coefficients than the Stokesian one, at least to the
leading order. It is shown in § 6 that the Lagrangian Stokes-like expansion of the free
surface has even more rapidly decaying leading-order terms.

Appendix C. Steady three-dimensional flows
The derivations of § 4.1 are briefly generalized here for three-dimensional flows and

subsequently for compressible fluids.
In the Eulerian description, let x = (x1, x2, x3) be the Cartesian coordinate and let

u(x) ≡ Dx/Dt be the velocity field. The fluid incompressibility (∇ · u = 0) is fulfilled
introducing two (scalar) streamfunctions ψ(x) and λ(x) such that u = (∇ψ) ∧ (∇λ)
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(Aris 1962). It can be seen easily that Dψ/Dt =Dλ/Dt = 0, hence the streamfunctions
do not depend on time following the motion.

In Lagrangian description, let α = (α1, α2, α3) be the particle labels, J (α) being the
Jacobian of the transformation x(t =0) �→ α. The definition of the streamfunctions
and the incompressibility yield

ui =
∂(xi, ψ, λ)

∂(x1, x2, x3)
⇐⇒ ∂ xi

∂t
=

1

J

∂(xi, ψ, λ)

∂(α1, α2, α3)
. (C 1a, b)

Because J , ψ and λ do not depend on t , (C 1b) can be easily solved taking, for
example, (α1, ψ, λ, t) as independent variables. Thus, returning to the independent
variables (α, t) after integration, the general solution of (C 1b) is

x = x (τ, ψ, λ) , τ ≡ t + T (α),
∂(T , ψ, λ)

∂(α1, α2, α3)
= J. (C 2a–c)

(C 2) is the general Lagrangian form of a three-dimensional steady flow for an
incompressible fluid. Special forms of T (α) can be obtained relabelling the particles
as in the two-dimensional case (see § 4).

The generalization for a compressible fluid of density ρ is straightforward
because, the mass conservation yielding ∇ · (ρu) = 0, it is sufficient to introduce
two streamfunctions {Ψ ; Λ} such that ρu = (∇Ψ ) ∧ (∇Λ) and to proceed as above.
Doing so, we obtain

x = x (τ, Ψ, Λ) , τ ≡ t + T (α),
∂(T , Ψ, Λ)

∂(α1, α2, α3)
= J ρ0, (C 3a–c)

where ρ0(α) ≡ ρ(α, t = 0).
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Gouyon, R. 1958 Contribution à la théorie des houles. Thèse, Université de Toulouse, France (in
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