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In an early study of the properties and capabilities of the multiregion, relaxed
magnetohydrodynamic model, Hole, Hudson & Dewar claim that they are able to
construct a multiregion stepped pressure cylindrical equilibrium which does not require
the existence of surface currents. We present a brief argument showing that this claim
is incorrect, and clarify the meaning of their statement. Furthermore, even with the
statement clarified, we demonstrate that it is not possible to find solutions to reproduce the
equilibrium corresponding to the parameters given in the article. We invite the authors to
provide a corrigendum with the correct values of the equilibrium they constructed.
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1. Necessity of surface currents in stepped-pressure equilibria

In their article ‘Stepped pressure profile equilibria in cylindrical plasmas via partial
Taylor relaxation’ (Hole, Hudson & Dewar 2006), Hole, Hudson & Dewar write that
their example equilibrium ‘demonstrates the existence of multi-interface, tokamak-like
solutions, which do not require the existence of surface currents’. This statement is
incorrect, since stepped pressure equilibria necessarily require the existence of surface
currents, if Maxwell’s equations are to be satisfied. We will demonstrate this in a brief
manner, following elementary theory of magnetostatics.

In the multiregion, relaxed magnetohydrodynamic (MRXMHD) model (Hudson et al.
2012) and in the particular case of the cylindrical stepped-pressure equilibrium presented
by Hole, Hudson & Dewar and discussed in this comment, pressure jumps are allowed at
each ideal interface. At an interface with a pressure jump, force balance then requires〈

p + B2

2μ0

〉
= 0, (1.1)

where μ0 is the permeability of free space, and 〈x〉 = xi+1 − xi denotes the change in
quantity x across the interface Ii, as the authors write in their (2.3). Now, if there is a
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pressure jump, force balance (1.1) necessarily also requires a jump in the magnitude B of
the magnetic field. One concludes that at a pressure jump, at least one of the components
of the magnetic field has a discontinuity. Then, Ampere’s law in integral form applied to
an Amperian loop straddling the interface immediately implies the existence of a surface
current density K i, in A × m−1, given by (Griffiths 2017)

n × (Bi+1 − Bi) = μ0K i, (1.2)

where n is the unit normal vector to the interface. In the example equilibrium given by
Hole, Hudson & Dewar, there are five interfaces at which the pressure has a jump. We
conclude that there is a surface current density K i at each of the interfaces, contrary to
their claim.

2. Surface currents and continuity of the safety factor

After a careful read of the article, and after analysing figure 1 in it, which shows
continuous profiles for the current density, we believe that what the authors mean by the
absence of surface currents is the fact that they are able to construct an equilibrium for
which, at each plasma–plasma interface, the following is satisfied:

Ji+1 − Ji = 0. (2.1)

To state it with words, the equilibrium they construct is such that at each interface, the
current density immediately on the inside of the interface is equal to the current density
immediately on the outside of the interface. As we showed in the previous section, this is
not equivalent to the absence of surface currents.

Furthermore, even taking into account the misleading definition of a surface current
given by the authors, they write the following additional misleading statement in the
article: ‘This particular example has been chosen with no change in q across the interfaces,
and hence no surface currents’. As we discussed previously, all the interfaces of their
equilibrium have surface currents. In a cylinder, no change in q across an interface is a
necessary (but insufficient) condition for no surface current: through (1.2) one also has
to have continuity of the magnitude B of the magnetic field across the interface. The
relationship between q, current density and surface currents can be clarified as follows.

The safety factor, q, is defined by

q(r) = 2πr
L

Bz(r)
Bθ (r)

, (2.2)

where r is the minor radius of the cylinder, L the length of the (periodic) cylinder, Bz
is the z-component of the magnetic field, Bθ is the θ -component of the magnetic field
and (r, θ, z) is the cylindrical coordinate system naturally associated with the cylindrical
geometry. Let us consider two neighbouring regions i and i + 1 which are each in a Taylor
state with finite current. We therefore have ∇ × Bi = μiBi and ∇ × Bi+1 = μi+1Bi+1, with
μi �= 0 and μi+1 �= 0, so that Bi = (μ0/μi)J i and Bi+1 = (μ0/μi+1)J i+1. Let ri be the
radius of the interface between the ith region and the (i + 1)th region. The condition that
there be no change in q across the interface is

Bz,i(ri)

Bθ,i(ri)
= Bz,i+1(ri)

Bθ,i+1(ri)
⇔ Jz,i(ri)

Jθ,i(ri)
= Jz,i+1(ri)

Jθ,i+1(ri)
. (2.3)

Equation (2.3) shows that the absence of a jump in q across the interface implies the ratio
of current densities on either side of the interface is the same, but does not imply the
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absence of jumps in the current densities at the interfaces. The conclusion of this section
is that if one desires to numerically construct stepped-pressure equilibria which do not
have jumps in the current densities at the ideal interfaces, solving for equilibria which
have a continuous safety factor profile q may not be a satisfactory solution.

3. Impossibility of constructing the desired equilibrium with the data given

In the article, the authors characterize the equilibrium they constructed by providing
the radii ri of the interfaces, the coefficients ki and di in front of the Bessel functions for
the magnetic field, and the magnitude of the components Bθ,V and Bz,V of the vacuum
field. Since the authors do not provide the values of the Beltrami parameters μi, the
set of parameters prescribing the equilibrium in their (3.4) is not completely specified.
We therefore attempted to compute the values of the μi in order to fully specify the
equilibrium, by enforcing the constraint that there be no jump in the current density at
the interfaces, in agreement with figure 1 and with the statements of the authors in the
article.

With the information given by the authors, the problem can be solved interface by
interface. At the first interface, with radius r1, only the Beltrami parameters μ1 and μ2
are unknown. We can therefore look for all the zeros of the function

F(μ1, μ2) = (Jz,11(μ1) − Jz,21(μ2))
2 + (Jθ,11(μ1) − Jθ,21(μ2))

2, (3.1)

where Jz,11(μ1) = μ1k1J0(|μ1|r1), Jθ,11(μ1) = |μ1|k1J1(|μ1|r1), Jz,21(μ2) = μ2(k2J0(|μ2|
r1) + d2Y0(|μ2|r1)), and Jθ,21(μ2) = |μ2|(k2J1(|μ2|r1) + d2Y1(|μ2|r1)), with k1, k2, d2
scalar coefficients given in the article, and J0, J1 and Y0, Y1 Bessel functions of the first
kind of order 0, 1 and second kind of order 0, 1, respectively. Note that F is such that
F(−μ1,−μ2) = F(μ1, μ2). Thanks to this symmetry with respect to the origin in (μ1, μ2)
space, it suffices to look for zeros of F for μ1 ∈ R

∗, μ2 > 0 (neither μ1 = 0 nor μ2 = 0
are allowed since we know from the article that the current densities are finite in regions 1
and 2), and all zeros of F can then be obtained without further computation. Furthermore,
the authors write that the obtained equilibrium is tokamak-like. We therefore assume that
there is no reversal of the magnetic field. Since the current densities also do not change
sign in figure 1 of the article, we can restrict our search to the region in which μ1 and μ2
have the same sign, namely μ1 > 0, μ2 > 0.

In figure 1, we show the contours of F in the domain (0, 160] × (0, 160]. The sinusoidal
nature of the Bessel functions leads to a clear landscape of alternating valleys and ridges.
We can search for the global minima of F by looking for the minima in each valley. Doing
so, we numerically find two global minima in this domain. To confirm the existence of
these two global minima, we use Newton’s method to find the zeros of the vector function
whose two components are the jump in the Jz current density and the jump in the Jθ

current density at the interface, and taking the global minima we found as initial guesses
for these Newton solves. We indeed find two solutions: (μ1, μ2) ≈ (3.066135, 2.574780)
and (μ1, μ2) ≈ (141.8329, 110.2088). We note that by continuing the search for minima
inside the valleys beyond the limits of the domain (0, 160] × (0, 160], one finds additional
global minima. However, they correspond to higher values of both μ1 and μ2. Both
the solution (μ1, μ2) ≈ (141.8329, 110.2088) and these additional minima correspond to
highly oscillatory magnetic fields and safety factor, which change sign within the regions
in which they are defined. They can be discarded since they do not correspond to the
profiles shown in the article. We conclude that there are only two acceptable solutions
without a jump in the current densities between region 1 and region 2: (μ1, μ2) ≈
(3.066135, 2.574780) and (μ1, μ2) ≈ (−3.066135,−2.574780).
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FIGURE 1. Contour plot of F(μ1, μ2) as defined in (3.1) over the domain (0, 160] × (0, 160].

For these two values of μ2, we can then look for the values of μ3 such that the current
densities do not have a jump at the interface between region 2 and region 3. We define the
function

G(μ3) = (Jz,22(μ2) − Jz,32(μ3))
2 + (Jθ,22(μ2) − Jθ,32(μ3))

2, (3.2)

where Jz,22(μ2) = μ2(k2J0(|μ2|r2) + d2Y0(|μ2|r2)), Jθ,22(μ2) = |μ2|(k2J1(|μ2|r2) + d2Y1
(|μ2|r2)), Jz,32(μ3) = μ3(k3J0(|μ3|r2) + d3Y0(|μ3|r2)), Jθ,32(μ3) = |μ3|(k3J1(|μ3|r2) +
d3Y1(|μ3|r2)), with r2 the radius of the interface between region 2 and region 3, and
k3, d3 scalar coefficients given in the article. One can show that for μ2 ≈ 2.574780, G
has a unique global minimum for μ3 ∈ (0, 160], with approximate value 1.843450 ×
10−3, reached for μ3 ≈ 2.176953. Likewise, for μ2 ≈ −2.574780, G has a unique global
minimum for μ3 ∈ [−160, 0), with approximate value 1.843450 × 10−3, reached for μ3 ≈
−2.176953. For these values of μ2 and μ3, the magnitude of the jump in Jθ at the interface
is approximately 2.19350 × 10−2 and the magnitude of the jump in Jz at the interface is
approximately 3.69101 × 10−2; it is finite.

We conclude that with the parameter values given by the authors in the article, it is
not possible to construct a stepped-pressure equilibrium such that the jump in the current
densities is zero at each interface within the plasma. We invite the authors to provide in
a corrigendum the correct values for the coefficients ki, di which make the equilibrium
shown in figure 1 of the article realizable, and also provide the values of the Beltrami
parameters μi, in order to completely specify the equilibrium.

In closing, we would like to emphasize the fact that the authors of the article we
comment upon are experts of MRXMHD and stepped-pressure equilibria, have published
a large number of excellent articles on the topic and, as far as we know, have not
repeated their incorrect statements in these other articles. We therefore do not think we
are addressing a controversial question in this comment on their article. Still, given that
the article has gathered a fair number of citations, indicating a fair number of reads, we
thought our comment could save time for future readers, who otherwise may ponder these
questions just like we have for a little while.
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For that same reason, we also highlight the following typographical errors in the
manuscript. In (3.1) of the article, the magnetic field should be

B = {0, sign(μ1)k1J1(|μ1|r), k1J0(|μ1|r)}. (3.3)

In (3.2) of the article, the magnetic field should be

B = {0, sign(μi)(kiJ1(|μi|r) + diY1(|μi|r), kiJ0(|μi|r) + diY0(|μi|r)}. (3.4)

The absolute value of the Beltrami parameter inside the Bessel functions is required
because when u is a negative real number, Y0(u) and Y1(u) are in general complex numbers,
with a non-zero imaginary part. This would correspond to components of the magnetic
field which have a non-zero imaginary part, which is not physical. Mathematically, the
absolute value can be introduced inside the Bessel functions regardless of the sign of the
Beltrami parameters without restricting the solution space because only the squares of
the Beltrami parameters, μ2

i , appear in the differential equations for Bθ and Bz. Strictly
speaking, the absolute value is only required for (3.2). It is not required in (3.1) (provided
one removes sign(μ1) at the same time as the absolute value) since J0(u) and J1(u) are real
numbers for u ∈ R, and J0 is an even function and J1 an odd function, as desired. However,
for the sake of a consistent notation, we believe it is good to use the expressions with
absolute values for (3.1) as well. Finally, the equilibrium must be specified with 4N + 1
parameters, instead of 4N + 2 parameters as stated in the article.
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