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The effect of nonlinear drag on the rise velocity
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We investigate how turbulence in liquid affects the rising speed of gas bubbles within
the inertial range. Experimentally, we employ stereoscopic tracking of bubbles rising
through water turbulence created by the convergence of turbulent jets and characterized
with particle image velocimetry performed throughout the measurement volume. We use
the spatially varying, time-averaged mean water velocity field to consider the physically
relevant bubble slip velocity relative to the mean flow. Over a range of bubble sizes
within the inertial range, we find that the bubble mean rise velocity 〈vz〉 decreases
with the intensity of the turbulence as characterized by its root-mean-square fluctuation
velocity, u′. Non-dimensionalized by the quiescent rise velocity vq, the average rise speed
follows 〈vz〉 /vq ∝ 1/Fr at high Fr, where Fr = u′/

√
dg is a Froude number comparing

the intensity of the turbulence to the bubble buoyancy, with d the bubble diameter and
g the acceleration due to gravity. We complement these results by performing numerical
integration of the Maxey–Riley equation for a point bubble experiencing nonlinear drag in
three-dimensional, homogeneous and isotropic turbulence. These simulations reproduce
the slowdown observed experimentally, and show that the mean magnitude of the slip
velocity is proportional to the large-scale fluctuations of the flow velocity. Combining the
numerical estimate of the slip velocity magnitude with a simple theoretical model, we
show that the scaling 〈vz〉 /vq ∝ 1/Fr originates from a combination of the nonlinear drag
and the nearly isotropic behaviour of the slip velocity at large Fr that drastically reduces
the mean rise speed.
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1. Introduction

1.1. The broader context
Gas bubbles dispersed in a turbulent liquid flow control the transfer of mass and energy
between phases in many environmental processes and industrial applications, such as
wave breaking on the ocean surface (Deike, Melville & Popinet 2016; Deike, Lenain &
Melville 2017) and bubble column reactors (Stöhr, Schanze & Khalili 2009; Risso 2018).
Knowledge of how the turbulence impacts the quantity, size and dynamics of these bubbles
is key to modelling their contributions to transfer rates (Deike & Melville 2018). One
simple yet still-open question regards the average speed at which the bubbles rise through
the turbulent medium due to their buoyancy. Several analytical and experimental studies
have characterized the rise of single bubbles in a quiescent medium, accounting for the
effects of bubble size, liquid composition and the presence of impurities (Duineveld 1995;
Bel Fdhila & Duineveld 1996; Maxworthy et al. 1996; Mougin & Magnaudet 2001; Park
et al. 2017), while the work on particle settling and rise rates in turbulence has shown
non-trivial results (Nielsen 1992).

1.2. Bubble rise in a quiescent medium
Before discussing the effects of turbulence, it is useful to summarize the dynamics of a
bubble rising in a quiescent medium. The quiescent rise velocity vq is given by a balance
between the buoyant force lifting the bubble upwards and the stress from the oncoming
flow opposing its motion, and is written as

vq =
√

4dg/(3CD), (1.1)

where d is the bubble diameter, g is the gravitational acceleration and CD is the drag
coefficient. The drag coefficient is a function of the Reynolds number of the bubble’s
motion Req = dvq/ν (where ν is the liquid kinematic viscosity), which represents the
relative importance of inertial and viscous stresses, and the Bond number Bo = ρgd2/σ
(where ρ is the liquid density and σ is the surface tension of the liquid–gas interface),
which represents the relative importance of gravity and surface tension and should account
for bubble deformability.

When the bubble is small and Req � 1 and Bo � 1, the bubble remains spherical, and
the drag is viscous. The drag coefficient is then well described with the relation for a
solid sphere undergoing viscous drag, CD = 24/Req, leading to a quadratic relationship
between the bubble diameter and the rise speed (Maxworthy et al. 1996).

Moderately sized air bubbles in water (up to d ≈ 2 to 3 mm) have Req 	 1 and Bo � 1,
for which the bubble shape is not significantly deformed, but the drag is inertial. Even
larger bubbles, with Bo > 1, become more deformed and adopt an oblate spheroidal shape,
which increases the drag relative to a sphere of the same volume and causes the rise
velocity to plateau near 30 to 35 cm s−1 (Duineveld 1995; Mougin & Magnaudet 2001).
Bubble rise is modified when surfactants in the liquid adsorb to the bubble surface, which
has been shown experimentally and numerically to reduce both deformation and the bubble
rise velocity (Clift, Grace & Weber 1978; Bel Fdhila & Duineveld 1996).

1.3. Particle motion in turbulence: the Maxey–Riley equation
When a particle rises or sinks by buoyancy forces through a carrier fluid in motion, it is
submitted to additional forces. Here, we take a ‘particle’ to be a bubble, droplet or solid
particle that has a different density than the liquid or gas surrounding it. We consider a
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Rise velocity of bubbles in turbulence

particle of finite size that exerts no feedback onto the flow (as it may with the motion in
its wake, for example) and neglect the Basset history force (which would result from its
previous accelerations). Its motion is described by an equation of motion following the
work of Maxey & Riley (1983),

Vpρpv̇ = F P + F M + F B + F L + F D, (1.2)

where Vp is the volume of the particle, ρp is its density, v is its velocity and the terms on
the right-hand side are, from left to right, the pressure force exerted on the particle, the
added-mass force, the buoyancy force, the shear-induced lift force and the drag force.

The pressure force F P, resulting from the pressure gradient in the carrier fluid, is
expressed by invoking the Navier–Stokes equation for the carrier fluid velocity field u,
leading to

F P = ρVp
Du
Dt

= ρVp

(
∂u
∂t

+ u · ∇u
)

, (1.3)

where ρ is the density of the carrier fluid. The added-mass force F M arises from the fact
that, as a particle accelerates, so must some surrounding fluid. It is given by

F M = CMρVp

(
Du
Dt

− v̇

)
, (1.4)

where v is the particle velocity and CM is the added-mass coefficient, equal to 0.5 as
determined experimentally for a solid sphere (Magnaudet & Eames 2000). The buoyancy
force exerted on the particle is due to a density mismatch between the particle and the
carrier fluid, given by

F B = (ρ − ρp)Vpgez, (1.5)

where g is the acceleration due to gravity and ez is the direction opposite which gravity
acts (upwards). The shear-induced lift force F L arises when the bubble slips through a
region of vortical flow, and is given by

F L = −CLρVp(v − u) × (∇ × u), (1.6)

where CL is the lift coefficient. The lift coefficient is very sensitive to the flow conditions
around the particle, and for deformable bubbles in shear flows, goes from positive to
negative as bubbles exceed a certain size (Tomiyama et al. 2002; Salibindla et al. 2020).
Finally, we model the drag exerted on the particle with

F D = −CDρAp

2
|v − u|(v − u), (1.7)

where Ap is the frontal area of a sphere with volume Vp and CD is the drag coefficient,
which is dependent on the condition at the particle surface and the Reynolds number
Rep = ρ|v − u|d/μ, where μ is the carrier fluid viscosity, of the flow around the particle.
For Rep � 1, the drag on the particle is dominated by viscosity, and the drag coefficient is
given by CD = 24/Rep, leading to a linear relationship between the slip velocity and drag
force. When Rep is larger than 100, the drag force mainly originates from inertial forces.
In this regime (but before the boundary layer around the sphere transitions to turbulence
around O(Rep) ≈ 1 × 105), CD = 0.5 is a good approximation for a rigid sphere, yielding
a nonlinear relationship between the bubble slip velocity and the drag force. Note that
recent work has investigated other nonlinear formulations of the drag for bubbles in
quiescent flow (Barry & Parlange 2018).
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For particles larger than the smallest scales of the flow, Faxén corrections can be
employed to the above equations to filter the velocity field u over the particle’s scale
(Calzavarini et al. 2009; Homann & Bec 2010). Finite size corrections to the Maxey–Riley
equation are of primary importance to model accurately highly intermittent statistics
such as particle accelerations. However, the large-scale statistics such as the velocity
distribution should be much less sensitive to finite size corrections, which will be neglected
in the present study.

When the carrier flow velocity field u is turbulent, it is comprised of fluctuating
motions over a range of scales, the smallest of which are characterized by the Kolmogorov
scale η (at which velocity fluctuations are quickly damped by viscous diffusion). The
largest scale is usually defined as the integral length scale Lint, beyond which velocity
fluctuations become uncorrelated (Pope 2000). The scale of the fluctuations in the velocity
is parameterized by u′, the root-mean-square of the velocity fluctuations.

1.4. Framing the problem: bubble rise in turbulence
To frame the problem in dimensionless terms, we first simplify the point-particle
approximation for the case of light bubbles in a much denser fluid, considering the limit
of negligible particle inertia, ρp � ρ. Further, we take constant values for the added mass,
drag and lift coefficients, neglecting their dependence on the local flow around the point
bubble. We then non-dimensionalize (1.2) with two descriptors of the turbulent field u: the
integral length scale Lint and the root mean square velocity fluctuation u′, writing

x̃ = x
Lint

, t̃ = t
Lint/u′ , ṽ = v

u′ , ũ = u
u′ , (1.8a–d)

so that (1.2) reads

4d∗CM

3CD
˙̃v = 4d∗(1 + CM)

3CD

Dũ
Dt̃

+ 1
β2 ez − 4d∗CL

3CD
(ṽ − ũ) × (∇̃ × ũ) − |ṽ − ũ|(ṽ − ũ).

(1.9)

For simplicity, we refer to the first term on the right-hand side, which is a combination of
the pressure and added-mass terms, as the pressure term.

This equation defines the dimensionless turbulence intensity β = u′/vq and the
dimensionless bubble size d∗ = d/Lint. The drag coefficient is a function of the bubble
inertia and deformability, and is usually parameterized as a function of the bubble’s Bond
number Bo = ρgd2/σ and its quiescent Reynolds number Req = dvq/ν, while one might
also consider the drag and lift coefficients to depend on the local turbulence characteristics.
The turbulence can be characterized by the large-scale turbulence Reynolds number
Ret = Lintu′/ν.

In total, the problem involves 8 dimensional variables (〈vz〉, d, g, σ , ρ, Lint, ν and u′),
together spanning three dimensions. Invoking Buckingham’s Π theorem, we then have
five dimensionless variables, leading us to look for the average dimensionless rise velocity
〈vz〉 /vq(d, g, σ/ρ) as a function of the four independent dimensionless parameters

β = u′

vq(d, g, σ/ρ)
, Bo = gd2

σ/ρ
, d∗ = d

Lint
, and Ret = Lintu′

ν
, (1.10a–d)

where vq is the quiescent rise velocity, set by the other variables.
Other relevant dimensionless parameters can be defined as a function of the four that

we have chosen. The turbulent Weber number, We, gives the ratio between the turbulent
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Rise velocity of bubbles in turbulence

stresses acting on a bubble, which deform it, and the restoring force of surface tension,
which works to maintain a spherical shape. With vq defined as vq = √

4dg/(3CD) and d
within the inertial subrange of the turbulence, the turbulent Weber number can be written
as We = ε2/3d5/3/(σ/ρ) = (0.7u′3/Lint)

2/3d5/3/(σ/ρ) = 0.79(4/3CD)β2Bo d∗2/3. The
quiescent particle Reynolds number, Req = ρvqd/μ, gives the ratio between the inertial
and viscous forces acting on the bubble as it rises in a quiescent flow, and (as will
become evident) for small β gives the approximate scale of the instantaneous particle
Reynolds number Rep = ρ|v − u|d/μ. Note that Req = Retd∗/β. Finally, the bubble
Froude number,

Fr = u′
√

dg
, (1.11)

is a parameterization of the turbulence intensity, but unlike β, is agnostic to the quiescent
drag coefficient CD. It can be expressed by removing the drag coefficient dependence of β

with Fr = β
√

3CD/4.
In this study, we will focus on the effects of β and d∗, neglecting the impact of bubble

deformation and assuming that Req is large enough to yield a constant drag coefficient.

1.5. Heavy particles in turbulence
Here, we briefly review work on the related problem of the settling speeds of heavy
particles in turbulence. Wang & Maxey (1993) showed through simulations of particles
subject to Stokes drag, which is proportional to the slip velocity, that such particles tend
to settle faster in the presence of turbulence than in an otherwise stationary flow. This
occurs to the greatest extent when the particle’s response time τp = ρpd2/18μ (which
sets the quiescent settling velocity as vq = τpg) is comparable to the Kolmogorov time
scale of the turbulence, τη, which is the time scale of the smallest turbulent motions.
Shorter particle response times allow the particle to immediately adapt to the changing
surroundings, while longer particle response times filter out some of the turbulent motions.
The increase in settling rate has been attributed to the particles’ inertia causing them to
spiral out of regions of rotating flow and accumulate on the ‘fast tracks’ of fast-moving
downwards flow between eddies (Maxey & Corrsin 1986).

While the above results suggest that viscous drag leads to a Kolmogorov scaling and
increased settling rates, a different picture emerges when Rep is larger and the heavy
particle experiences nonlinear drag. This nonlinearity means that slip in the horizontal
directions increases the drag force in the vertical direction, slowing the settling of heavy
particles or rise of light particles. Fornari et al. (2016) simulated the settling of many
large spherical particles in turbulence (with d ≈ 12η), and Byron et al. (2019) performed
experiments measuring the velocity of single non-spherical particles in the inertial
subrange settling in turbulence. In these scenarios, finite-size effects filter out turbulent
motions which are smaller than the particle. Both studies found that the turbulence reduced
the settling rate. For the simulations, this was attributed to the increase in the vertical
inertial drag due to horizontal slip (Fornari et al. 2016). In the experiments, a strong
correlation between the average settling rate and the average slip velocity was found, with
a vertical offset representing the average settling speed (Byron 2015).

1.6. Light particles and bubbles in turbulence
In this section, we summarize previous work characterizing the rise of bubbles and
buoyant particles in turbulence. Figure 1 shows the parameter space of conditions explored
through various experimental and numerical studies, in terms of the non-dimensional
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Figure 1. The range of parameters considered in this paper and comparable experiments (black, filled
markers), direct numerical simulations (green, open makers) and point-bubble simulations (blue, point-like
markers). (a) The turbulence intensity and dimensionless bubble sizes. The horizontal axis places the bubble
diameter d in relation to the turbulent scales η and Lint, and the vertical axis shows the velocity scale of
the turbulent fluctuations normalized by the bubble’s quiescent rise velocity. The joint distribution of these
quantities for our experimental measurements is shaded in the background. The dash-dotted line corresponds
to the main series of point-bubble simulations we present. (b) The turbulent deformation Weber number We
and the bubble quiescent Reynolds number Req, for experiments, direct numerical simulations and point-bubble
simulations. Most studies were performed in the range We < 1 and Req > 10, for which the bubble deformation
is of small amplitude, and the drag force starts to be nonlinear in the slip velocity.

parameters introduced in § 1.4. In panel (a), the horizontal axis shows the logarithmic
position of the bubble’s diameter d in relation to the Kolmogorov and integral length
scales of the turbulence, η and Lint, and the vertical axis shows β, the ratio between
the fluctuation velocity of the turbulence u′ and the bubble’s quiescent rise speed vq.
In panel (b), the horizontal axis shows the quiescent Reynolds number Req, which will
serve as a lower bound for the typical value of the Reynolds number describing the
instantaneous flow around the bubble, and the vertical axis shows the turbulent Weber
number We = ε2/3d5/3ρ/σ , which represents the extent to which the bubble is deformed
by the background turbulence in the liquid. In the limit of a large density and viscosity
ratios (for example, considering air bubbles in water), the use of β, We, Req and d∗ (in
place of log(d/η)/log(Lint/η)) fully describes the problem of bubble rise in homogeneous,
isotropic turbulence.

Aliseda & Lasheras (2011) studied the motion of 10 to 900 μm air bubbles (comparable
to the Kolmogorov microscale η) in a turbulent water flow with low void fraction
(<10−3) and found that the turbulence decreased the bubbles’ rise velocity. Comparing
the measured rise velocities with the velocity predicted with a quiescent background and a
contaminated interface, a maximum reduction in rise velocity occurred when the bubble’s
viscous response time equals the Kolmogorov time scale. Taken alongside results for
heavy particles from Wang & Maxey (1993), this points to a mechanism that suggests that
turbulent motions have the greatest impact on particles comparable to the Kolmogorov
scales when the drag on the particles is viscous. Similarly, Poorte & Biesheuvel (2002)
found a decrease in rise velocity of up to 35 % for bubbles close to the smallest scales of the
turbulence in weak turbulence, with β < 0.5. Their data presented reasonable agreement
with a turbulent scale-dependent model from Spelt & Biesheuvel (1997) for lower values
of β and linear (viscous) drag.
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Turning to the behaviour of bubbles with larger sizes (closer to the integral scale of the
turbulence), one may expect that large-scale turbulent motions, now comparable to the
bubble size, are less effective at advecting the bubble through the water. Prakash et al.
(2012) measured the rise velocities of d ≈ 3 mm bubbles, with d ≈ 10η, in a vertical
water flow with low β, finding a ∼20 % reduction relative to their quiescent rise rate,
which slightly increased in magnitude with increasing turbulence. Kawanisi, Nielsen &
Zeng (1999) showed with experiments of light particles in grid-generated turbulence
and point-bubble simulations in a turbulent-like velocity field that increasing turbulence
intensity (with β between ∼1 and ∼10) decreases the mean rise rate.

Direct numerical simulation (DNS) of bubbles in turbulence remains limited. The rise
through turbulence of a deformable bubble of the size of the Taylor microscale, d = λ ≈
10η ≈ Lint/2, was studied with DNS (with the level-set method and surface tension) by
Loisy & Naso (2017) with Reλ = λu′/ν = 30. With the turbulence parameters and bubble
size held constant, the gravitational acceleration was changed in order to study the effect of
the ratio of the bubble’s quiescent rise rate to the velocity scale of the turbulence, yielding
β = 0.5, 0.9 and 1.6. Turbulence reduced the rise velocity to the greatest extent when
β ≈ 1. Reichardt, Tryggvason & Sommerfeld (2017) carried out DNS (using
pseudo-spectral forcing with a finite difference/front-tracking method) of large bubbles
in much weaker turbulence, with β < 0.1, and found that less-deformable bubbles are
slowed to a greater extent than more-deformable ones (note that this study was performed
at Reλ < 10).

Simulations of infinitesimally small bubbles immersed in an uncoupled velocity field
have also contributed to our understanding of bubble rise dynamics in turbulence. With
a linear drag force, Mazzitelli & Lohse (2004) showed a maximum reduction in rise
velocity when the bubble’s response time is equal to the Kolmogorov time scale. Snyder
et al. (2007) carried out simulations of point bubbles using a drag force dependent on the
bubble’s instantaneous local Reynolds number, yielding linear drag (with respect to the
slip velocity) for Rep < 1 and nonlinear drag at higher Reynolds numbers, and found a
decrease in bubble rise velocity at all conditions. Inclusion of the lift force was shown to
only slightly reduce the mean rise speed beyond the value obtained with no lift force. As
in the data from Poorte & Biesheuvel (2002), the skewness of the bubble vertical velocity
probability density function obtained from the point-bubble simulations from Snyder et al.
(2007) are dependent on both the non-dimensional turbulence intensity β and the ratio
between the bubble size and the turbulent length scales.

Finally, we note two studies that found an increase in rise speed in turbulence. Salibindla
et al. (2020) present experiments in which the velocity field around bubbles was measured
with tracer particles and showed that, with a fixed intensity of the turbulence, bubbles
below a certain size over-sample regions of uz < 0, while larger bubbles over-sample
uz > 0, leading to an increase in rise speed. The size at which the switch occurs is
attributed to the increased deformation of the bubble and the lift coefficient CL becoming
negative. Additionally, Friedman & Katz (2002) found that small diesel fuel droplets,
which are slightly less dense than water, had their rise speeds increased by turbulence to
six times greater than the quiescent rate. This increase is explained by the ‘fast-tracking’
phenomena discussed by Maxey & Corrsin (1986) in which sufficiently heavy particles
are expelled to the outsides of rotational flow structures, where the velocity is the greatest,
and follow the ‘fast tracks’ between the eddies (Nielsen 2007).
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1.7. Paper outline
While the majority of experiments have shown a decrease in bubble rise speed due to
turbulence, the sometimes contradictory results and interpretation in the literature and the
complexity of the phenomena for both light and heavy particles moving in turbulence
motivate this work.

This paper presents an experimental and numerical study on the rise velocity of bubbles
in turbulence. We focus on the direct effect of two non-dimensional numbers on the rise
speed in turbulence: the effective bubble size d∗ = d/Lint and the turbulence intensity
β = u′/vq (or, at times, the Froude number Fr = u′/

√
gd). The effect of the bubble

deformability is not studied directly but is implicit due to its effect on the rise velocity
at low turbulence.

In § 2, we describe the turbulence generation and bubble tracking methods employed
in the experiment. Section 3 presents the experimental results, which reveal that the
average rise speed of a bubble is slowed to a greater extent in stronger turbulence. In § 4,
we introduce the point-bubble simulations employing the Maxey–Riley equation, employ
results to extract the mechanisms by which turbulence slows a bubble down, and compare
the simulation and experimental results. Section 5 presents a simple theoretical model to
describe the regimes of the slowdown in the limits of small and large Froude number (or
β, as the two parameters differ only according to the quiescent drag coefficient). Finally,
in § 6, we compare our results to those from other studies on bubbles rising through
turbulence, and discuss additional effects not considered in our analysis, such as bubble
deformability, finite-size filtering effects and the structure of the large-scale mean flow.

2. Experimental methods

2.1. Turbulence generation and bubble injection
The experiment consists of a 0.37 m3 tank filled with deionized water, as sketched
in figure 2(a). Turbulence in the water is generated by four submerged water pumps
(Eco-Worthy 1100 GPH 12 V Bilge Pumps), the flow from each of which is split at a
T into two parallel jets. Each of the four sets of parallel jets is positioned at the corner
of a horizontal 25 cm square, and the convergence of the jets creates a turbulent region
at the centre of the square. Compared with other turbulence-generation systems that
use comparable submerged pumps (Variano & Cowen 2008; Byron et al. 2019), ours is
constructed at a much smaller scale, giving the on/off state of any pump much greater
influence on the immediate state of the flow in the turbulent zone. Therefore, instead of
employing a randomly generated pattern with which to activate each pump, we run each
pump continuously.

The resulting flow field consists of a region of intense turbulence where the jets
meet. Below that region, there is decreasing turbulence and a significant downwards flow
(out of the converging zone), comparable in magnitude to the bubbles’ rise velocity. In
our experiment, we take advantage of this heterogeneity to probe a range of turbulent
conditions in a single experiment, as the turbulent fluctuations and length scales change
considerably.

Bubbles are injected through a needle fed by a pressurized air line at the bottom of the
tank, with the injection rate controlled by a flow controller (Alicat). The injection rate is
slow enough to enable the tracking of bubbles optically, and the void fraction (�0.1 %) is
sufficiently low that we expect no feedback onto the turbulence from the bubbles (Rensen,
Luther & Lohse 2005). The typical distance between a bubble and its closest neighbour is
approximately 5 cm, above 10 times the typical bubble diameter. Our tank is left open to the
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water
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Figure 2. (a) A schematic of the experiment, showing the air injection needle and representative bubble
trajectory, pumps submerged in a water tank to create turbulence, a laser and high-speed camera for particle
image velocimetry and two cameras for three-dimensional bubble tracking. (b) A bubble trajectory (blue) and
the region of strong turbulent fluctuations in one of the nine particle image velocimetry planes (red).

atmosphere, and it will become contaminated with surfactants (typically reaching a steady
state in contamination after half an hour), which will adsorb to the bubble interfaces (Van
Dorn 1966; Clift et al. 1978; Henderson & Miles 1990; Deike, Berhanu & Falcon 2012).

To confirm that the results are not merely a result of the turbulence generation
method, a second set of experiments was carried out in a similar, smaller tank involving
pump-generated turbulence with a different spatial arrangement of pumps, and similar
turbulence characterization and bubble tracking methods. This set-up is described in
Appendix B, and the main results reported in this paper are shown using data from both
experiments.

2.2. Turbulence characterization with particle image velocimetry
The turbulent flow field is characterized with two-dimensional, two-component particle
image velocimetry (PIV) (Thielicke & Stamhuis 2014) performed in 9 parallel planes, each
separated by approximately 2 cm. The water is seeded with 25 μm polyamide 12 particles
with a seeding density of approximately 30 g m−3. The imaged plane is illuminated with a
sheet of 532 nm light generated with a 2 W laser and optics and imaged with a high-speed
camera (Phantom VEO4K-PL) equipped with a 100 mm lens. The duration between the
two frames used to calculate each velocity field is 1/1400 s, and the duration between each
velocity field is 1/100 s. For each plane, approximately 3 min of data are obtained. The
location of the front and back planes and qualitative turbulence intensity results from an
interior plane are shown relative to a bubble trajectory in figure 2(b).
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2.2.1. Calibration
To calibrate the PIV set-up, a planar calibration target (created by laser engraving a pattern
on an acrylic sheet) is brought into focus by traversing it along a positioning arm aligned
with the camera’s axis, which defines the y axis of the coordinate system. The rows and
columns of dots on the calibration plate correspond to the x and z (vertical) directions
of the coordinate system, respectively. Pixels in the recorded images are mapped to (x, z)
positions using a perspective transformation in the Python implementation of OpenCV
(Bradski 2000).

2.2.2. Flow-field and turbulent velocity-scale calculation
For each PIV plane positioned at y = yj, the horizontal and vertical components of the
water velocity ux(x, yj, z, t) and uz(x, yj, z, t) are computed using 32 pix × 32 pix windows
with 50 % overlap between adjacent windows, resulting in approximately 1.8 mm between
velocity vectors. The mean flow (ux(x, yj, z), uz(x, yj, z)) is calculated by averaging each in
time. The turbulent fluctuations ûx(x, yj, z, t) and ûz(x, yj, z, t) are calculated by subtracting
the mean flow from the velocity field, and the root-mean-square fluctuations are calculated
with

u′
x(x, yj, z) =

√
ûx(x, yj, z, t)2 =

√(
ux(x, yj, z, t) − ux(x, yj, z)

)2
,

u′
z(x, yj, z) =

√
ûz(x, yj, z, t)2 =

√(
uz(x, yj, z, t) − uz(x, yj, z)

)2
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.1)

The mean flow-field and turbulent fluctuations for three of the nine planes are shown
in figure 3. The flow is not completely isotropic, as the centrelines of the jets used to
create the turbulence all lie in the x–y plane. This leads to stronger fluctuations measured
in the x direction than the z direction: typically, u′

x > u′
z. We approximate the turbulence

root-mean-square fluctuation velocity as u′ =
√

(u′
x

2 + u′
z
2)/2.

Additionally, we calculate the longitudinal structure function DLL(�r) at each point in
the PIV plane with

DLL(x, yj, z, �r) = 1
4

∑
i=−1,+1

((
ûx(x + i�r, yj, z, t) − ûx(x, yj, z, t)

)2
+ (

ûz(x, yj, z + i�r, t) − ûz(x, yj, z, t)
)2)

, (2.2)

which is shown for a point (marked with an x in the fields in (a)) in three of the PIV planes
in figure 3(d). This structure function can be used to calculate the typical turbulent stress
at the bubble scale, ρDLL(d)/2. Since each PIV window overlaps with its neighbours by
50 %, our calculation of DLL(�r) will underestimate the true value for values of �r close
to the PIV window size, which is approximately 3.7 mm.

Additionally, we estimate the local turbulent dissipation rate using the relation ε =
0.7u′3/Lint, where Lint is the integral length scale of the turbulence (Sreenivasan
1998). This agrees reasonably well with the relation DLL(�r) = C2(ε�r)2/3, with the
Kolmogorov constant C2 = 2.0, evaluated by considering the compensated structure
function (DLL/C2)

3/2/�r (Pope 2000). Figure 3(e) compares these two methods of
determining ε at three separate points in the flow field.

Our flow is heterogeneous by nature, due to the regions of high turbulent intensity within
the jets and the recirculation patterns that arise around it. As the injected power is constant
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Figure 3. Summary of PIV results. (a) From left to right, the mean flow, the fluctuations in the x and z
directions, and integral length scale in three of the nine PIV planes. (b) The location of the nine PIV planes in
the tank. The three coloured ones correspond to the three for which fields are shown above. (c) The integral of
the autocorrelation function from which the integral length scale is calculated, at the three points marked by
x markers in each field. (d) The structure function at the three marked points. (e) The compensated structure
function at the corresponding points. The dashed lines give estimates of the dissipation rate with 0.7u′3/Lint.

over the experiments and the experiments are carried out over a long time, it is eventually
balanced by dissipation and the turbulent flow is stationary. The spatial heterogeneity
allows us to probe a range of turbulent conditions in a single experiment. In Appendix A,
we show that in the Lagrangian sense as seen by the bubbles, u′ typically changes over
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a scale not much shorter than the integral time scale of the turbulence. We nevertheless
use the standard structure function and relationships used for homogeneous and isotropic
turbulence to characterize the intensity and length scale of the flow. Additionally, we show
that the velocity gradients of the mean flow are not responsible for the reduction in rise
velocity we report. Finally, as the void fraction of bubbles in the turbulence region is
negligible, we neglect the bubble feedback onto the turbulent statistics.

2.2.3. Turbulent length scales
Around each measure point of a PIV plane, the integral length scale is computed using
the longitudinal autocorrelation function of the velocity fluctuations in the vertical and
horizontal directions,

ρ11(x, yj, z, �r) = 1
4

∑
i=−1,+1

(
ûx(x, yj, z, t)ûx(x + i�r, yj, z, t)

u′x(x, yj, z)2

+ ûz(x, yj, z, t)ûz(x, yj, z + i�r, t)
u′z(x, yj, z)2

)
. (2.3)

As with the longitudinal structure function (2.2), fewer directions are considered for
points near the PIV field boundaries. The integral length scale at a point in the flow is
estimated with

Lint(x, yj, z) = max
(∫ �rmax

0
ρ11(x, yj, z, �r) d�r

)
, (2.4)

which involves the maximum value of the integral instead of its value at �rmax since the
correlation functions are not completely converged for large distance separation. The fields
of Lint for three of the nine PIV planes, and the integral in (2.4) for one point in each plane,
are shown in figure 3.

The dissipation rate is estimated as ε(x, yj, z) = 0.7u′3/Lint (Sreenivasan 1998), which
under the isotropic assumption enables the estimation of the Taylor microscale with

λ =
√

15
ν

ε
u′, (2.5)

and the Kolmogorov microscale with η = (ν3/ε)1/4.
The turbulence length scales, like the other quantities, vary spatially in the experiments

due to the heterogenous nature of the flow. The range of values they take is included in the
summary of turbulent conditions given in § 2.2.5. We remind the reader that those have
been computed using relationships derived for homogeneous and isotropic turbulent flow,
while our flow presents inhomogeneous features, so that they should be considered only
as estimates of the turbulence length scales.

Note that we have computed the autocorrelation function to verify the absence of
characteristic length scales above the integral length scale. The autocorrelation functions
in the various PIV planes decay exponentially above the estimated Lint value, which
validates the absence of any significant larger characteristic length scales in the flow
fluctuations.

2.2.4. Three-dimensional interpolation of PIV results
The flow characteristics are first computed individually for each PIV plane. Once this is
done, the computed quantities–the mean flow, the root-mean-square (r.m.s.) fluctuations
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u′ (m s−1) u′
x/u′

z η (μm) λ (mm) Lint (cm) ε (m2 s−3) Reλ Ret

10th 0.040 0.91 38.5 1.16 1.21 0.002 165 1265
50th 0.100 1.09 66.7 1.94 2.01 0.035 213 2115
90th 0.182 1.44 144.8 3.86 2.90 0.319 256 3042

Table 1. Distribution of turbulent conditions probed by the bubbles. The 10th, 50th and 90th percentiles of
each quantity are given.

and the integral length scale–are interpolated onto a grid of common (x, z) locations, with
each plane differing in its y position.

The interpolated results from all the planes are stacked in the y direction, forming
a three-dimensional grid of data. This allows for the three-dimensional interpolation
of any computed quantity given an (x, y, z) bubble location. The Taylor microscale λ,
Kolmogorov microscale η, and dissipation rate ε are calculated using the interpolated
values of the measured quantities.

2.2.5. Summary of turbulent conditions
Table 1 summarizes the turbulent conditions generated in our experiment. Since the
experiment is by design inhomogeneous, we present the 10th, 50th and 90th percentiles of
the quantities as sampled by the bubbles, which is determined by the process we describe
in the next section.

2.3. Bubble triangulation and tracking
Bubbles are filmed with two synchronized cameras (Basler acA1440-220um) outfitted
with 16 mm lenses, each recording at 200 Hz, as sketched in figure 2. The experiment
is back lit with two spot lights shining on translucent paper behind the experiment. For
each view, the background is determined by taking the 90th percentile of pixel intensities
over whole movie at each pixel location. The background is subtracted from each image,
images are binarized using a pixel intensity threshold, the bright regions inside the bubbles
are filled in and the projected area (in number of pixels) and image location of each bubble
is stored.

2.3.1. Three-dimensional triangulation
The traversing calibration plate is used to map each pixel in each camera to the light
ray in three-dimensional space that reaches the pixel (Machicoane et al. 2019). Then, for
each pair of images taken at a given point in time, three-dimensional bubble locations are
determined by finding the near-intersection of rays through each of the bubbles identified
in each camera’s view. Since each calculated ray passes through the centroid of the bubble
image as projected into the individual camera, and the bubbles are not spherical, the two
rays corresponding to one bubble are not expected to exactly intersect in space. To allow
for this and small errors in the calibration procedure, we allow for a maximum distance
of up to 1 mm between corresponding rays, but this triangulation error is typically much
closer to 0.2 mm.

Bubbles are triangulated in three-dimensional space with a process that minimizes
the number of unpaired bubbles, the triangulation error and the discrepancy in physical
size of each bubble as determined from each camera’s view. The pixel size is calculated
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locally for each triangulated bubble, since the image magnification varies with distance
from the camera. The bubble diameter d is determined with the average equivalent
diameter of the bubble in the two views, given the projected area into each camera.
Python code implementing the method is available at https://github.com/DeikeLab/stereo-
triangulation.

2.3.2. Bubble tracking
Once the three-dimensional positions of bubbles are determined for each point in time,
trajectories are constructed using the open-source Python package Trackpy (Allan et al.
2019), with each bubble allowed a maximum speed of 2 m s−1. To avoid considering
spurious trajectories, we consider only trajectories lasting at least 0.025 s, although most
trajectories are much longer. Since we do not report quantities such as a single bubble’s
mean velocity or its velocity’s autocorrelation, our results are insensitive to instances in
which a single bubble’s trajectory is split into multiple separate trajectories.

Each bubble’s absolute velocity w(t) is calculated by differentiating its position xb(t)
with respect to time using a central difference scheme. To account for the variations in
bubble shape that affect the measured bubble size, each bubble’s diameter d is taken to be
the median of all the instantaneous d values from its trajectory.

3. Experimental results

Our experimental dataset consists of three-dimensional bubble trajectories obtained by
injecting air through needles of various sizes. Multiple bubbles are often observed in the
experiment simultaneously, and in total, we have approximately 4.25 × 105 observations
of bubble velocities, for which we also know the bubble size and local statistics of
the turbulence in the absence of bubbles. With the bubbles tracked at 1/�t = 200 Hz,
this corresponds to approximately 35 bubble − minutes of experimental data. With the
observation times normalized by the local integral time scale of the turbulence, and each
integral time scale constituting one roughly independent event, we have an estimate of∑

�t/(Lint/u′) = 1.1 × 104 independent events in the entire dataset.

3.1. Phenomenological description of three-dimensional displacement of bubble rise
through turbulence

To validate the correspondence between the bubble velocities and the water velocity field
data, we note that with no horizontal buoyant force exerted on the bubbles, we expect the
mean value of the horizontal velocities of bubbles passing through any point to be equal
to the mean horizontal velocity of the water at that point. To this end, we compute the
joint distribution of the bubble horizontal velocity wx(t) and the water mean velocity at
the bubble locations ux(xb(t)) for all the bubble trajectories, which is shown in figure 4(a).
The mean horizontal velocities of bubbles passing through regions with each value of
ux(xb(t)) is shown as the solid red line. Since this line falls on the dashed blue line
representing wx(t) = ux(xb(t)), we are confident that the PIV data capture the mean water
flow experienced by the bubbles.

Similarly, the plot in figure 4(b) compares the vertical velocities of the bubbles
wz(t) to the mean vertical velocity of the water uz(xb(t)) at the bubbles’ instantaneous
locations. First, we note that bubbles are observed much more often in regions of mean
downwards water flow, uz(xb(t)) < 0. This results from the fact that, in the laboratory
frame of reference, bubbles linger in regions where the local downwards water velocity
is approximately opposite to their slip velocity, which is typically upwards. This effect is
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Figure 4. In black and white, the joint distributions of bubble and mean water velocities in the horizontal
(a) and vertical (b) directions. Darker regions correspond to a greater number of measurements. The solid line
represents the mean velocities of bubbles when they are at a point in the flow with a given mean water velocity.
The correspondence between the mean value of wx and the local value of ūx(xb) shown in (a) suggests the
mean bubble horizontal motion aligns with the mean water horizontal motion. The offset between the mean
value of wz and the local value of ūz(xb) shown in (b) suggests that the bubbles typically have a positive vertical
velocity relative to the surrounding mean flow.

accounted for in our analysis through the subtraction of the local mean water velocity from
the observed bubble velocities. Secondly, we see that the mean value of a bubble’s vertical
velocity is greater than the local value of the mean vertical water velocity: the bubbles rise
through the turbulence.

Figure 5(a) shows the path one bubble takes as it rises through the turbulence. The
trajectory begins at the bottom of the region shown. As the bubble rises due to gravity, its
path is altered due both to the surrounding turbulent fluctuations and the structure of the
mean flow induced in our experiment. The turbulence is responsible for the small-scale
deviations in the trajectory, while the large-scale ‘loop’ performed by the bubble results
from its advection into a region of strong downwards mean flow.

The horizontal and vertical components of the bubble’s velocity in the laboratory frame,
wx(t) and wz(t), are shown for a small portion of its trajectory as the black curves in
figures 5(b) and 5(c). To account for the mean velocity in the water induced by the forcing,
we interpolate the local mean water velocity at each position ux(xb(t)) and uz(xb(t)),
shown as the dashed grey lines in (b,c), and subtract them from wx(t) and wz(t) to compute
the bubble’s relative velocity through the turbulence,

vx = wx − ux, vz = wz − uz, (3.1a,b)

which are shown as the red curves. With the mean water velocity subtracted, the velocities
vx and vz represent the motion of the bubbles due to the turbulent fluctuations.

This subtraction of the continuous phase mean velocity extends the analysis performed
with counter-flow water channels (Mathai et al. 2018; Salibindla et al. 2020), since
we subtract a spatially varying mean flow. This appears critical when considering
heterogeneous turbulent flow to isolate the effect of the turbulent fluctuations by removing
the effect of the mean flow. As is shown in Appendix A.1, the time scales of the Lagrangian
change in the turbulence statistics for the bubbles in our heterogeneous flow are typically
not significantly shorter than than the relevant time scales of the turbulence, and they are

924 A2-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

55
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.556


D.J. Ruth, M. Vernet, S. Perrard and L. Deike

20 cm

z
xy

1.25
–0.6

–0.4

–0.2

0.2

0.4

0.6

0

1.50 1.75 2.00 2.25 2.50 2.75 3.00

t (s)

H
o
ri

zo
n
ta

l 
sp

ee
d
 (

m
 s

–
1
)

1.25
–0.6

–0.4

–0.2

0.2

0.4

0.6

0

1.50 1.75 2.00 2.25 2.50 2.75 3.00

t (s)

V
er

ti
ca

l 
sp

ee
d
 (

m
 s

–
1
)

wx(t)
ux(xb(t))
vx = wx – ux 

wz(t)
uz(xb(t))
vz = wz – uz

(a) (b) (c)

Figure 5. Experimental data for one bubble rising in turbulence. (a) The trajectory taken by the bubble rising
through turbulence. (b) For the portion of the trajectory inside the region resolved with PIV, the bubble’s
absolute horizontal velocity ub(t), the local mean horizontal water velocity at the bubble’s location ux(xb(t))
and the bubble’s relative rise velocity, which is the difference between the two. (c) The corresponding vertical
velocities.

much longer than the characteristic time scales of the bubble dynamics. This means that
the advection of a bubble through regions of varying turbulence intensity happens slowly
enough that the bubble has time to adapt to its new turbulent surroundings. In the end, the
large-scale heterogeneity of the turbulence and our mean-subtraction technique enable us
to explore a wide range of the problem’s parameter space, as we bin measurements by the
local turbulent characteristics, similar to the method employed by Vejražka, Zedníková &
Stanovský (2018) when analysing bubble break-up.

3.2. Probability distribution of bubble velocities
The distribution of the bubbles’ velocities is shown in figure 6 as a function of the bubble
size and local velocity fluctuation scale in the turbulence. Distributions of horizontal
velocity are shown in (a,b,c), and distributions of vertical velocity are shown in (d,e,f ).
The sizes of the bubbles considered increases from left to right. Dashed lines give the
distributions of the absolute bubble velocities in the laboratory frame, w, while solid lines
give the distributions of velocities relative to the local mean water flow, v.

At larger values of u′, with u′ denoted by the line colour, the standard deviation of both
horizontal and vertical bubble velocities increases. At the same time, larger values of u′
lead to a decreased mean rise speed, evident in the leftwards shift of distributions of vz
with increasing u′.

Without subtracting the mean water flow, the absolute vertical velocities of the bubbles
wz (shown as dashed lines) are shifted to the left, owing to the large downwards flow out
of the turbulent region. The magnitude of this shift increases with u′ due to the turbulence
generation method we employ: regions of strongest turbulence in our set-up also have the
largest mean flow. The distributions of the horizontal velocities are symmetric, while the
distributions of vertical velocities have strong negative tails.

Figure 7 shows the same data, with distributions shifted by their mean to show the
velocity fluctuations and normalized by their standard deviations. Bubble sizes are now
parameterized by d∗ = d/Lint, which gives their diameter relative to the integral length
scale of the turbulence, and the turbulence intensity is now binned by β = u′/vq, which
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Figure 6. The probability distributions of the bubbles’ horizontal (a–c) and vertical (d–f ) velocities, for small
(a,d), medium (b,e) and large (c, f ) bubbles, in regions of various u′. Dashed lines show the distribution of
the bubbles’ absolute velocities wx and wz, without the local mean water flow subtracted. Solid lines show
the distributions of bubble relative velocity relative to the mean flow, vx and vz, which are the bubble velocity
quantities considered in the rest of this paper. The horizontal velocity distributions are symmetric and centred
around zero while the distributions of vz are skewed and centred around a non-zero value smaller than the
rise speed in quiescent water. The distributions appear broader at high turbulence strength for both velocity
components.

is the ratio of the turbulence fluctuation velocity to the bubble’s quiescent rise speed, as
determined by the method presented in the next section.

The distributions of bubble horizontal velocity vx, shown in (a,b,c), are well described
by Gaussians over a range of bubble sizes and turbulence intensities. The distributions of
vertical velocity vz, however, exhibit large negative tails, especially in weaker turbulence,
suggesting an up–down anisotropy in the bubbles’ motions. The skewness values 〈((vz −
〈vz〉)/v′

z)
3〉 (with v′

z =
√

〈(vz − 〈vz〉)2〉 the standard deviation of vertical velocity) for the
vertical velocity distributions are given in the figure caption, showing significant negative
skewness for small β.

Overall, the rise velocity distributions approach Gaussian distributions at large u′,
and are reasonably well described by their mean value and standard deviation (r.m.s.
fluctuations), except for vz at small β. This justifies our use of the first two moments of the
velocity distributions to describe their statistics in the rest of this paper.

3.3. Average rise velocity and bubble vertical velocity fluctuations
After having discussed distribution of the velocities of bubbles rising through turbulence,
we now show in figure 8(a) that the turbulence slows the bubbles’ mean rise rates 〈vz〉,
and does so to a greater extent when the turbulence is stronger.

We bin the measurements of bubble rise velocity in turbulence vz by the local turbulent
fluctuations in the water u′ and the bubble size d, and present the corresponding rise speed
curves (the mean value of vz in each bin) as the solid coloured lines. Each point, then,
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Figure 7. The probability distributions of the bubbles’ horizontal (a–c) and vertical (d–f ) velocity fluctuations,
normalized by their standard deviation, for small (a,d), medium (b,e) and large (c, f ) bubbles, in regions of
various u′. Dashed lines show the distribution of the bubbles’ absolute velocities wx and wz, without the local
mean water flow subtracted. Solid lines show the distributions of velocity relative to the mean flow vx and vz,
which is the quantity considered in the rest of this paper. The skewness of the vz distributions ranges from
−0.96 to −1.04 for β ≈ 0.22, from −0.31 to −0.47 for β ≈ 0.45 and from −0.01 to −0.14 for β ≈ 0.68.

represents the average of all measurements of bubbles with diameter approximately d in
regions with turbulent fluctuations approximately u′. For all intensities of the turbulence,
the average bubble rise speed increases with the bubble size. Increasing values of u′ reduce
the mean bubble rise speed. Data from our second experiment, described in Appendix B,
are shown as the coloured dotted lines. The good agreement between the two datasets
shows that our results are not dependent on the specificity of the large-scale mean flow.

As a point of comparison, the dashed curve shows a parameterization of the rise speed
of air bubbles in clean, quiescent water from Park et al. (2017), and the dash-dotted line
shows the corresponding curve for dirty water from Clift et al. (1978), given by

vq = ν

d
M−0.149(J − 0.857), (3.2)

where the Morton number is M = gμ4(ρ − ρp)/(ρ
2σ 3) ≈ gμ4/(ρσ 3), and the value of J

is given by
J = 0.94H0.757, 2 < H � 59.3,

J = 3.42H0.441, H > 59.3,

}
(3.3)

with H = (4/3)Bo M−0.149(μ/μref )
−0.14, where μref is a reference liquid viscosity of 9 ×

10−4 kg m s−1. The change in behaviour at H = 59.3 corresponds to the development of
oscillations in the bubble path (Clift et al. 1978). We note that other parameterizations for
rise velocity in contaminated water exist in the literature (Thorpe 1982).

Additionally, in figure 8(b) we show the standard deviation of the bubbles’ vertical
velocities, using the same binning technique. As already discussed, the standard deviation
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Figure 8. Experimental statistics of the motion of bubbles of various sizes in regions of turbulence of various
intensities. (a) The mean rise speed of bubbles as a function of the bubble diameter d, binned by the local value
of the vertical fluctuations in the turbulence u′. The dashed line shows the rise velocity of a clean bubble in
a quiescent flow (Park et al. 2017), the dash-dotted line shows the rise velocity of a contaminated bubble in a
quiescent flow (Clift et al. 1978) and the solid grey line shows the inferred rise rates at u′ = 0. Dotted lines show
data from our second experiment. Bubbles are slowed down (relative to the quiescent case) by the turbulence,
and this slowdown is more pronounced as the turbulence increases. For the main experiment, each bin is
comprised of approximately 45 bubble − seconds of bubble observations, corresponding to approximately 250
large-scale eddy turnover times, on average. (b) The standard deviation of the bubbles’ vertical velocities.

of the bubble velocity increases with the turbulence fluctuations u′. At any intensity of the
turbulence, the standard deviation in bubble velocity is smaller for larger bubbles. At lower
values of u′, the vertical velocity standard deviation for smaller bubbles is significantly
higher than u′, but the size dependence disappears in regions of more intense turbulence.

3.4. Inference of rise speed at β � 1
We evaluate the rise velocity at low turbulence and compare it to results from the literature
for quiescent water. The weakest turbulence we probe experimentally has u′ ≈ 0.03 m s−1,
so we extrapolate the average rise velocity to u′ = 0, denoted vz,0(d), with a linear fit to
〈vz〉 (u′) for each bubble diameter. This is sketched for three bins of d in figure 9(a). The
choice of bounds in u′ for this linear fit (between 0.03 m s−1 and 0.08 m s−1) is somewhat
arbitrary, but provides a good balance between (a) providing a sufficient amount of data
for each fit and (b) spanning a range in which the 〈vz〉 and u′ relation is approximately
linear. Using this extrapolation technique to calculate the speed from which to measure
the reduction in rise velocity accounts for modifications to the flow field around the bubble
in turbulence, which may render the quiescent rise velocity curve a physically irrelevant
comparison.

The resulting vz,0(d) curve is shown in figure 8(a) as the solid grey line. We observe that
it is relatively close to the rise velocity for contaminated bubbles in quiescence described
by Clift et al. (1978), (3.2). In the following, we will employ this correlation in calculating
vq for our experimental data. Figure 9(b,c) shows the same data, expressed as an effective
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Figure 9. The effect of the turbulent fluctuations on the bubble’s rise velocity. (a) The rise speed of bubbles
as a function of the turbulence intensity for various size classes of bubbles, shown as solid lines. The dotted
line gives the corresponding data from our second experiment for the smallest size class of bubbles. The linear
fits to each trend for 0.03 m s−1 � u′ � 0.08 m s−1 are shown as dashed lines, and the solid circles represent
the inferred rise velocity at u′ = 0. (b,c) The effective quiescent drag coefficient CD,0 associated with the
extrapolated rise speed at u′ = 0, plotted as a a function of the associated Reynolds and Bond numbers. Dashed
and dashed-dotted curves give the relations for clean and contaminated bubbles, respectively, in quiescent flow,
from Clift et al. (1978) and Park et al. (2017).

drag coefficient CD,0 calculated with

4π

3

(
d
2

)3

ρg = CD,0
π

2

(
d
2

)2

ρv2
z,0 (3.4)

and plotted against the Reynolds and Bond numbers. The rise velocity curve in clean
water presents a behaviour significantly different from the extrapolated values at u′ = 0.
The discrepancy may have several physical origins. First, the experiments were carried
out with a vessel open to the ambient air on top, so the water may have been significantly
contaminated. Another justification for the use of the quiescent, contaminated rise velocity
is that it removes the maximum of rise speed for bubbles near d = 2 mm, for which wake
instabilities can significantly increase the rise speed. In the presence of a turbulent flow
even of small intensity compared with the rise speed, the wake instabilities may have been
inhibited.

To summarize, our inferred rise velocity at very low turbulence is close to the rise
velocity of bubbles with contaminated surfaces in quiescence, taken from Clift et al.
(1978). We will use this parameterization as an appropriate baseline in computing the
reduction in rise velocity due to the turbulence.

3.5. Dimensionless rise velocity
Next, we use our experimental data to compute the average non-dimensional rise velocity
of bubbles in turbulence, 〈vz〉 (d, u′)/vq(d). Figure 8 suggests that 〈vz〉 ∝ 1/u′, together
with some d scaling, so that we consider 〈vz〉 /vq as a function of the bubble Froude
number Fr = u′/

√
dg = β/

√
3CD,0/4 in figure 10 for various values of d∗ = d/Lint.

For all bubble sizes, bubbles in weak turbulence (Fr ≈ 0.25 in our experiments) have
a dimensionless average rise velocity reduced by a small factor, and we would expect
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Figure 10. The non-dimensional rise speed, binned by the size of the bubble in relation to the turbulent integral
length scale d∗ = d/Lint, with the non-dimensional rise velocity 〈vz〉 /vq plotted against the non-dimensional
intensity of the turbulence u′/

√
dg. Solid lines show data from our main experiment; the dotted line shows data

from our second experimental set-up. The thicker line in the background shows 〈vz〉 /vq = c/Fr, with c = 0.37
an adjusted non-dimensional coefficient.

〈vz〉 → vq for Fr→ 0. As the turbulence is increased, the dimensionless average rise
velocity decreases. Moreover, bubbles of all sizes (with d∗ from 0.07 to 0.4, so that
all bubbles considered are within the inertial range of the turbulence) behave in the
same way. The data collapse for various d∗, and at larger Fr scale as

〈vz〉 /vq = c/Fr, (3.5)

with c a non-dimensional coefficient fitted to the data, c = 0.37. As will be discussed
in the following section, this scaling will also be observed in point-bubble simulations,
and will be justified with a theoretical model based on the role of the nonlinear drag and
large-scale fluctuations in reducing the bubbles’ rise velocity. This scaling and collapse in
d∗ is also supported by the results from our second experiment, which are shown as the
dotted green line. This experiment involved smaller bubbles and a shorter typical integral
length scale, leading to larger values of d∗.

4. Point-bubble simulations in homogeneous, isotropic turbulence

Our experimental dataset shows that bubbles of all sizes (within the inertial range) are
on average slowed by the turbulence, but it does not provide any information about the
instantaneous flow field around the bubbles, in particular the slip velocity. To fill this
gap, we carry out simulations of ‘point’ bubbles by solving the Maxey–Riley equation
of motion for an inertial bubble in homogeneous, isotropic turbulence (HIT). In the
Maxey–Riley paradigm, the fluid forces acting on the particle surface are replaced by
effective added mass, drag and lift forces, which take into account some of the finite-size
effects. While computationally easy to carry out using the output of a HIT simulation, two
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important aspects are not resolved with this approach. First, the bubble exerts no feedback
onto the carrier fluid and is therefore advected passively. Second, the interaction with
the turbulent background flow only depends on the bubble velocity and continuous phase
conditions at the bubble centre. Doing so, the temporal variations of added mass, lift and
drag are neglected, as well as their coupling with small scale statistics such as the velocity
gradients.

Note that we consider a HIT flow, a canonical form of turbulence, for which the
statistical properties have been extensively studied and described both experimentally
and theoretically. The point-bubble approach does not capture some effects related to the
finite size of the bubbles, in particular, the spatial averaging operation of fluctuations at
a scale smaller than the bubble size. Previous works have quantified and characterized
these finite-size effects in turbulence, in particular on the accelerations of particles of
varying sizes larger than the Kolmogorov scale and densities close to the fluid density
(Voth et al. 2002). The authors found that larger particles exhibited lower acceleration
variances. Calzavarini et al. (2009) and Prakash et al. (2012) applied Faxén corrections
to the point-bubble equation of motion, in which the fluid velocity in the linear drag term
is replaced with the average of the fluid velocity around the spherical particle’s surface,
and the fluid pressure term instead involves the average pressure over the particle volume,
leading to good agreement with experimental measurements of particle accelerations.

As such, the instantaneous force acting on the bubble in the numerical simulation will
be different from the experimental case, due to the averaging operation that takes place
experimentally. However, we focus here on the large-scale statistics, namely the mean
rise speed and the distribution of v′. As we will see, the fluctuations of v′ are mainly
Gaussian, both experimentally and numerically. This implies that the r.m.s. value of v′ is
set by large-scale processes that do not necessarily require an accurate description of the
influence of small-scale fluctuations. Here, we aim at exploring the role of nonlinear drag,
which may play a greater role than the Faxén corrections in setting the mean rise velocity.
We will also focus on the cross-statistics of the slip velocity v − u and rise velocity 〈vz〉.
Experimentally, the rise velocity may be influenced by other factors such as deformability,
which cannot be captured by any point-like simulation.

4.1. Simulation methodology
We employ the DNS of HIT publicly available on the Johns Hopkins Turbulence Database
(Perlman et al. 2007; Li et al. 2008). The turbulence, generated by a random forcing in
Fourier space, is described by the time-averaged Taylor-scale Reynolds number Reλ =
u′λ/ν = 418 and large-scale Reynolds number Ret = u′Lint/ν = 5060, and is simulated
on a 10243 periodic grid spanning LDNS = 4.6Lint = 2200η in all three directions. For
each condition simulated, nb = 500 to 2500 point bubbles are positioned randomly in the
domain.

Their position in time is advanced with (1.9), the Maxey–Riley equation simplified for a
bubble in a much denser liquid. In total, this presents four initial dimensionless parameters:
CM , CL, β and d∗. The turbulence characteristics are fixed with a single DNS simulation;
therefore, we do not study any turbulent Reynolds number effects, but will compare with
experimental results.

Numerically, (1.9) is integrated using a forward Euler scheme, with the velocity of
bubble i at timestep t + 1 written as vt+1

i = vt
i + f (vt

i, u(xt
i))�t, with xt+1

i = xt
i + vt

i�t
the bubble position. The orientation of the coordinate system is chosen randomly for each
bubble by picking an arbitrary direction for gravity with respect to the DNS; ez is then
defined to be anti-parallel to this direction. The timestep �t for most simulations is 5 times
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Figure 11. The simulation conditions. (a) The relation between Fr and d∗. The joint probability density
function (p.d.f.) of experimentally sampled conditions is shaded in the background. Orange markers denote
the conditions simulated and discussed later in this paper. (b) A simulated three-dimensional bubble trajectory.
(c) The vertical components of the bubble’s velocity v (red) and the instantaneous fluid velocity at the bubble’s
location u (black). Times are normalized by the Eulerian integral time scale of the turbulence Lint/u′. The
inset focuses on a region lasting approximately 0.4Lint/u′, and includes a horizontal black bar denoting the
Kolmogorov time scale tη.

that used in the original DNS of the turbulence, giving �t ≈ τη/40. The integration was
run with twice or half this value of �t for one case to ensure that results were converged
with respect to �t. Python code for the integration of the equation of motion is available
at https://github.com/DeikeLab/point-particles-in-a-flow.

In all the simulations, we consider CM = 0.5, the value for a solid sphere (Magnaudet
& Eames 2000). As the lift coefficient is not yet well defined for deformable bubbles
in turbulence, we initially vary its value between −0.25 and 0.25 to assess its influence
(Magnaudet & Eames 2000; Salibindla et al. 2020), and later fix CL = 0 as we observe the
lift force does not have a strong impact on the results. Finally, we fix CD = 1, prescribing
a constant ratio between β and Fr for the point bubbles (β/Fr = √

3CD/4 ≈ 0.87). The
use of a mean drag coefficient is questionable in particular because the instantaneous
particle Reynolds number Rep = |v − u|d/ν can vary significantly with time. Section 5.4
investigates the effect of a variable drag coefficient by computing Rep at each timestep,
and then setting the drag coefficient accordingly following Snyder et al. (2007). Figure 11
shows the (Fr = u′/

√
dg, d∗ = d/Lint) parameter space of the experiments and the

point-bubble simulations, the latter of which were all carried out at d∗ = 0.12. In the rest
of the paper, we will focus on the role of Fr in setting the rise velocity.

First, to gain a qualitative insight into the bubble’s interaction with the turbulence,
we consider the simulations with two values of β (or Fr) depicted in figure 12. In each
snapshot, the size of the field of view is proportional to the bubble size, and the carrier
velocity field u is scaled by the quiescent rise velocity. The two panels, then, represent the
same view of two bubbles, each of the same size and existing under the same gravitational
acceleration (and therefore with the same vq), but rising through turbulence fields with
differing u′ (but the same Lint and Ret).

The magnitude of the turbulent velocity fluctuations in the carrier fluid increases with
β: the right snapshot, with β = 0.75, presents a wider range of |u| than the left snapshot,
with β = 0.25. The bubble trajectories, too, exhibit markedly different characteristics. For
the weakest turbulence case shown in the left, the bubble quickly passes through the fixed
field of view, gradually curving in one direction but largely unaffected by the surrounding
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Figure 12. Snapshots of the carrier fluid velocity field in the x–z plane coincident with the point bubble,
normalized by vq, (red background) and bubble trajectory (black lines) for two values of β with d∗ = 0.1. The
images are scaled such that the bubble size d and gravitational acceleration g can be treated as constant in both
scenarios, while u′ varies to modify β. CD = 1 is used to prescribe the size of the point bubble in the image.

turbulence. When the velocity scale of the turbulence is larger, the bubble’s trajectory
exhibits tighter curvatures and takes on a more chaotic path. We will see that this is due to
a relative increase of slip velocity compared with the mean rise velocity.

4.2. Comparison to experimentally measured velocities
We consider simulations run with d∗ = 0.12, which is a typical value realized in the
experiments (see figure 11). For now, we omit the lift force by setting CL = 0, but will later
show it has only a small impact on the point-bubble average rise velocity. Figure 13 shows,
for two values of β, the distributions of the normalized bubble vertical velocity vz/vq as
the solid red lines. The distribution of experimentally measured vertical bubble velocities
for bubbles at similar conditions (considering β within 0.1 and d∗ within 0.04 of the
given values) are shown with the solid black lines, without any adjustable parameters. The
experimental and numerical probability distribution functions show similar shapes, while
experimental results present a slightly higher skewness, especially at low β. However, the
general quantitative agreement in terms of the mean velocities and widths displayed by the
p.d.f.s is very encouraging. The differences between the two can be attributed in part to
the binning procedure used in selecting which experimentally measured points to include
in the distribution, while the simulation involves a single, well-defined condition.

Additionally, we show the simulated Eulerian distribution of carrier-phase velocity,
uz/vq, as the dotted red lines. This is created by randomly sampling the DNS at many
locations and points in time. The analogous distribution from the experiments is obtained
from the PIV results. While a slight up–down anisotropy is present in our experiment, the
velocity p.d.f.s in the experiment and simulations are similar.

From the numerical simulations, we now have access to the statistics of the
instantaneous liquid velocity at the bubble’s location. Figure 14 shows the simulated
distributions of the vertical and horizontal components of v, u (as sampled by the bubbles)
and v − u (each normalized by u′) for point bubbles at various β and d∗ = 0.12. In
weaker turbulence (β = 0.5), the vertical slip vz − uz (dashed lines) follows a more narrow
distribution centred near vq, but with a larger negative tail: the bubbles are typically rising
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Figure 13. Experimentally measured (black) and simulated (red) velocity distributions for bubbles in
turbulence. Red lines show distributions from the point-bubble simulation with β = 0.5 (a) or β = 1 (b), with
d∗ = 0.12 and CL = 0. The corresponding values of Fr are 0.58 and 1.15. Black lines show the experimental
measurements considering β within 0.1 of the given value, and d∗ within 0.04 of d∗ = 0.12. Both the
experimental and simulated distributions of the Eulerian fluid velocity are approximately Gaussian, and the
measured distribution of bubble vertical velocities matches the shape of the simulated point-bubble vertical
velocities.
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Figure 14. Simulated vertical (a–c) and horizontal (d–f ) velocity distributions for bubbles at various Fr
(columns), all normalized by u′. The distributions of normalized bubble velocity vi/u′ are shown as the solid
lines; the distributions of Lagrangian normalized carrier fluid velocity sampled by the bubbles ui/u′ are shown
as the dashed-dotted lines; and the distributions of bubble normalized slip velocity (vi − ui)/u′ are shown as
the dashed lines, exhibiting exponential tails. The thicker orange curve in the background gives the Gaussian
distribution corresponding to the mean and standard deviation of the bubble normalized velocity vi/u′. The
skewness of the distributions of vz are −0.29 for β = 0.5, −0.02 for β = 1 and 0.02 for β = 3.

through the carrier fluid with a relative velocity comparable to their quiescent rise velocity,
but are slipping at lesser vertical velocities more often than they are at greater vertical
velocities. The vertical fluid velocity the bubble samples uz (dash-dotted lines) has a
distribution close to that of the Eulerian velocity field, centred near 0 with a dimensionless
standard deviation of uz/u′ ≈ 1. The bubbles’ absolute vertical velocity (solid lines), then,
is centred near but below vq, with a spread comparable to the spread in uz.
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Figure 15. Experimental (solid coloured lines, binned by d∗) and simulation results (at d∗ = 0.12). Points
denote the dimensionless rise speed of the bubbles, for CL = −0.25 (dash-dotted black line), CL = 0
(solid black line) and CL = 0.25 (dashed black line). Solid coloured lines (and the single dotted line from
the second experiment) show the experimental results for different values of d∗. (a) The dimensionless
rise speed plotted against the Froude number. The thicker orange line represents the 〈vz〉 /vq = 0.37/Fr
scaling. (b,c) The standard deviations of the horizontal and vertical bubble velocity fluctuations, respectively,
normalized by u′.

As β increases, the distribution of vertical fluid velocities uz sampled remains near
Gaussian, with the standard deviation of uz/u′ ≈ 1. Since the distributions of the vertical
slip velocity vz − uz are centred at or near vq, this increased spread in uz increases the
spread in the bubble’s absolute vertical velocity, vz. The distributions of the bubble’s
vertical slip velocity are asymmetric, in that fast upwards fluctuations are less likely than
fast downwards fluctuations. As with the distributions of experimentally measured vertical
velocities shown in figure 7, the skewness (reported in the caption) is more negative for
smaller β than for larger β. The spread in vz − uz increases when d∗ increases.

The horizontal velocity distributions, when normalized by u′, do not vary much with β

and are mostly Gaussian. The horizontal slip velocity also presents exponential tails, but
is now centred on 0 for all values of β.

Having analysed the distributions of the bubble velocities and the fluid velocities they
sample, we now consider the mean velocities with which they rise through the turbulence,
〈vz〉, which are shown alongside experimental data in figure 15. We vary Fr between 0.1
and 3.5 in our point-bubble simulations, and to assess the impact of the lift force, we
consider CL = −0.25, 0 and 0.25 with d∗ = 0.12. The mean rise speed, normalized by the
quiescent rise speed, is shown in figure 15(a), plotted as a function of Fr. The value of the
lift coefficient has a negligible impact on the mean rise speed.

We note that the values we consider for the lift coefficient are consistent with the ones
reported by Salibindla et al. (2020) in a turbulent flow. The negligible effect of the lift force
within the Maxey–Riley framework is consistent with the work from Snyder et al. (2007),
who employed a more detailed lift coefficient that is dependent on the instantaneous local
flow. The agreement between our experimental data and point-bubble simulations suggests
that for the range of Weber number we consider (typically less than 1), the deformation is
small enough so that the lift force will not have a significant effect. A detailed numerical
study of the lift force effects would indeed require a much more sophisticated modelling
approach.
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To conclude, the numerical results are in good agreement with the collapse of the
experimental data, which are shown again here for comparison. This confirms the
experimentally observed scaling, 〈vz〉 /vq ∝ 1/Fr, valid for Fr � 0.4, while a quadratic
scaling for the decrease in rise velocity at low Froude number could represent the
numerical data.

Figure 15(b,c) shows the standard deviation of the bubble horizontal and vertical
velocities, respectively, as functions of the Froude number. In the point-bubble
simulations, both components are near u′. In the experimental data, bubbles at smaller Fr
exhibit slightly greater velocity fluctuations than the turbulence, which might be attributed
to bubble oscillations and deformability. Simulation results from Spelt & Biesheuvel
(1997) also indicate v′

z/u′ > 1 for bubbles at intermediate β (which in their case are
subjected to viscous drag), as did experiments from Mathai et al. (2018) at low β

(attributed to the bubble oscillations), although we leave open the possibility that our
results are influenced by the heterogeneity of our experiment, which may cause bubbles
to ‘carry’ with them large fluctuation velocities as they leave regions of large u′ and enter
regions of lower u′. However, for Fr > 0.5, our results indicate that the bubble velocity
fluctuations can be attributed to the turbulent flow in which they are submersed.

4.3. Forces acting on the bubble
The mean values of the vertical component of the lift, drag and pressure forces acting
on the point bubbles, each normalized by the vertical component of the buoyancy force
Fbuoyancy,z = πρd3g/6, are shown in figure 16(a). The forces are sketched for a bubble in
a representative flow field in figure 16(b). At low values of Fr, gravity is balanced by the
drag force, and the lift and pressure forces are insignificant. (Without any turbulence, when
Fr = 0, only the drag force is present in (1.9) to counteract buoyancy.) As Fr increases,
the pressure term becomes significant, and in the CL /= 0 cases, the mean vertical lift force
grows in magnitude. This mean lift force is upwards for CL = 0.25 and downwards for
CL = −0.25. Even though the lift force acts upwards on average in the CL = 0.25 case, it
causes bubbles to be slowed to an even greater extent, due to its effect on the preferential
sampling of the flow by the bubbles.

An important result of these simulations is that, even though the turbulence
through which the bubbles rise is homogeneous and isotropic, the pressure term (1 +
CM)ρ(πd3/6) Du/Dt does not average to 0 over a bubble’s trajectory. Instead, we see
〈(Du/Dt)z〉 < 0, meaning that it acts on average in the downwards direction, due to the
bubbles’ preferential sampling of the flow. At larger β, this term plays a significant role
in slowing the bubble down. Further, the means of the vertical drag and pressure forces
display similar trends with or without the lift force present, and for Fr > 1, the ratio
between drag and pressure forces appears constant.

Along with considering the mean values of forces acting on the bubbles, we can consider
the mean values of the vertical fluid velocity sampled by the bubble 〈uz〉, the mean vertical
slip velocity 〈vz − uz〉, the mean magnitude of the entire slip velocity 〈|v − u|〉, and the
mean magnitude of the fluctuation component of the slip velocity

〈|v′ − u′|〉, which are
shown in figure 17, each normalized by vq. The mean value of the vertical fluid velocity
sampled by the bubbles 〈uz〉, shown in blue, is typically slightly less than zero, but for
higher Fr, the mean slip velocity 〈vz − uz〉 is drastically decreased relative to the quiescent
case, in which vz/vq = 1. This reveals that the primary cause of the slowdown in rise
velocity due to the turbulence is not the preferential sampling of uz < 0 regions, but is
instead a decreased vertical slip velocity. Finally, at low values of Fr, the magnitude of the
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Figure 16. Forces acting on the bubble for d∗ = 0.12. (a) The mean value of the vertical component of each
force acting on the bubble at each condition, normalized by the gravitational force, for the constant d∗ cases
shown in figure 15. Dash-dotted blue lines correspond to simulations with CL = −0.25, solid black lines to
CL = 0 and dashed red lines to CL = 0.25. (b) A sketch of a bubble (white) moving through a carrier fluid
whose speed is shown in the image background. The instantaneous buoyant (green), lift (brown), drag (orange)
and pressure (purple) forces acting on the bubble according to v and u are sketched.

slip velocity is given by the quiescent rise velocity, but at larger Fr, it is dominated by the
fluctuations in the slip velocity v′ − u′. The typical magnitude of this slip scales linearly
with u′. This presents an anisotropy in the mean slip velocity 〈v − u〉: at low Fr, we have
〈v − u〉 ≈ vqez (which is nearly 〈vz〉 ez for such conditions), while at large Fr, we have
〈v − u〉 ≈ 0 and 〈|v − u|〉 ≈ u′.

5. Phenomenological model for weak and strong turbulence

To explain the transition from directional slip velocity to nearly isotropic slip velocity and
the resulting trends in the average rise velocity, we propose a simple phenomenological
model, based on the Maxey–Riley equation. We consider a bubble of diameter d immersed
in a homogeneous and isotropic flow, determined by its r.m.s. velocity u′ and its integral
length scale Lint. We consider the limits of negligible inertia of the gas phase (ρp � ρ)
and an infinitesimally small particle. The use of an inertial drag force is justified by the
quite large average Reynolds number at the bubble scale. In our experiments, the quiescent
Reynolds number Req = dvq/ν, which serves as a lower bound for the mean particle
slip Reynolds number Rep = d 〈|v − u|〉 /ν, is between 50 and 1400. In our simulations,
the values of Rep we calculate a posteriori are between 400 and 6000. As we will see,
the nonlinearity of the drag force plays a crucial role in the evolution of the mean rise
velocity with the turbulent intensity. With this inertial drag force, the bubble motion can
be approximated by the Maxey–Riley equation (1.9), which we recall in dimensionless
form

α1d∗v̇ = α2d∗ (∂t + (u · ∇)) u + 1
β2 ez − |v − u|(v − u), (5.1)

where all velocities are here normalized by the r.m.s. velocity u′, d∗ = d/Lint, β = u′/vq,
vq is the quiescent bubble velocity and α1 and α2 are numerical constants involving
the drag and added-mass coefficients (see (1.9)). We neglect the contribution of the
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Figure 17. The mean value of the vertical fluid velocity uz, vertical slip velocity vz − uz, slip velocity
magnitude |v − u| and slip velocity fluctuation magnitude |v′ − u′|, for point-bubble simulations with d∗ =
0.12. The mean vertical slip velocity 〈vz − uz〉 decreases to a much greater extent than that to which the bubble
over-samples regions of uz < 0. At low Fr, the magnitude of the slip velocity |v − u| is dominated by the
bubble’s mean vertical slip 〈vz − uz〉, but at higher Fr, becomes dominated by the fluctuations in the slip
velocity v′ − u′. The dashed black line gives a linear fit to

〈|v′ − u′|〉 /vq for β � 0.5.

lift force. We have removed the ·̃ from the notation denoting dimensionless quantities for
compactness and will specify when we return to dimensional quantities.

We introduce a Reynolds-type decomposition for v and u:

v = v0ez + v′ and u = u′, (5.2a,b)

since 〈v〉 · ex = 〈v〉 · ey = 0 and 〈u〉 = 0, where the brackets 〈〉 stand for the average
operation over bubble trajectory realizations. The average momentum terms such as
〈(u · ∇)u〉 can be non-zero even in a HIT flow, as shown from figure 16(a), due to the
preferential sampling of the flow by the bubble. Introducing this decomposition into (5.1)
and taking the ensemble average over the trajectory yields

〈|v − u|(vi − ui)〉 = α2d∗ 〈(u · ∇)ui〉 , i = x, y (5.3)

〈|v − u|(vz − uz)〉 = α2d∗ 〈(u · ∇)uz〉 + 1
β2 . (5.4)

The cornerstone of the behaviour of v0 lies in the expression of |v − u|. Using the
Reynolds decomposition of v, its square can be expressed as a sum of three contributing
terms,

|v − u|2 = v2
0 + |v′ − u′|2 + 2ez · (v′ − u′)v0. (5.5)

The expression of 〈|v − u|〉 can then be obtained in asymptotic cases, in which one of the
terms is dominant. In the following, since

〈
ez · (v′ − u′)

〉 = 0, we neglect the contribution
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of ez · (v′ − u′) to |v − u|. We are left with two contributing terms,

|v − u| =
√

v2
0 + |v′ − u′|2. (5.6)

This defines two regimes, namely v0 	 |v′ − u′|, which corresponds to β � 1, and v0 �
|v′ − u′|, which corresponds to β 	 1. Qualitative differences between these two regimes
can be seen by comparing the low-β and high-β (albeit with β < 1) simulation snapshots
in figure 12. The bubble velocity v at low β is mainly dominated by the mean rise velocity
〈vz〉 ez, while the velocity fluctuations dominate the mean rise velocity for large β.

5.1. Case of β � 1: v0 	 |v − u|
In the β � 1 limit, we expect the rise velocity to be only slightly perturbed by the presence
of the background flow. In that regime, using v0 	 |v′ − u′|, we have |v − u| ≈ v0(1 +
(|v′ − u′|2)/(2v2

0)) and, neglecting the convective term in (5.4) (β � 1), we obtain

〈|v − u|(vz − uz)〉 = v0

(
v0 +

〈|v′ − u′|2〉
2v0

)
= 1

β2 , (5.7)

which yields v0 =
√

1/β2 − 〈|v′ − u′|2〉 /2.

Using
〈|v′ − u′|〉 = χu′ (which can be justified by figure 17), and recalling that with

dimensions for 〈vz〉 and u′ we have v0 = 〈vz〉 /u′, β = u′/vq, we have the following
dimensional result:

〈vz〉 = vq

(
1 − χ

4
u′2

v2
q

)
. (5.8)

This result is consistent with our numerical results shown in figure 15 at small Fr (or small
β), in that the slope of 〈vz〉 /vq goes to 0 as Fr → 0. Note that this result yields a reduction
in rise speed quadratic in β, as does the analysis from Spelt & Biesheuvel (1997) for small
β, in which the constant is dependent on both the bubble’s viscous response time and the
size of the bubble in relation to the turbulence.

5.2. Case of β 	 1: v0 � |v′ − u′|
In the second limit case, the main contribution to |v − u| originates from the fluctuation,
i.e. v0 � |v′ − u′|. This yields

〈|v − u|〉 = 〈|v′ − u′|〉+ 1
2

v2
0

〈|v′ − u′|〉 + O(v4
0). (5.9)

The next hypothesis is to consider that the statistical properties of the fluctuations of the
horizontal and vertical components of u and v are similar (in other words, the fluctuations

924 A2-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

55
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.556


Rise velocity of bubbles in turbulence

are decoupled from the mean). Equation (5.3) (for ui, i = x, y) gives〈|v − u|(v′
i − u′

i)
〉 = α2d∗ 〈(u · ∇)ui

′〉 , (5.10)

which yields in the z direction〈|v − u|(v′
z − u′

z)
〉 = α2d∗ 〈(u · ∇)uz

′〉 . (5.11)

With these assumptions, we can replace the pressure term in the vertical momentum
equation (5.4) with the fluctuations in the vertical drag force, yielding

〈|v − u|(vz − uz)〉 = 〈|v − u|(v′
z − u′

z)
〉+ 1

β2 . (5.12)

Using vz = v0 + v′
z, uz = u′

z and (5.9), and keeping only the lowest order in power of v0,
we have 〈|v′ − u′|〉 v0 = 1

β2 . (5.13)

In dimensional form, this reads

〈vz〉 = v2
q

〈|v′ − u′|〉 . (5.14)

The final scaling of v0 depends on the value of
〈|v′ − u′|〉 for large fluctuations compared

with the bubble rise velocity. This relationship is confirmed with our point-bubble data
in figure 18, which shows the dimensionless rise speed plotted against

〈|v′ − u′|〉 /vq, at
two values of d∗. Although the two curves do not collapse when plotted against Fr (in the
inset), both exhibit the same relationship between the rise speed and the mean value of the
fluctuations of the slip velocity magnitude.

From figure 17, this magnitude scales as
〈|v′ − u′|〉 ∝ u′, set by an order-one constant

that may depend on the bubble size d∗. On top of this, other size-dependent effects arise
in the experiment which may not be captured by point-like simulations. For smaller d∗ the
bubble dynamics should become highly intermittent, and the distribution of |v′ − u′| will
both significantly decrease in magnitude and exhibit larger tails. The bubble deformation
may also play an important role on the d∗ dependency of the bubble rise velocity.

Going back to the dimensional formulation, the high Fr (or high β) regime leads to the
following scaling for the bubble rise velocity:

〈vz〉 ∝ vq

Fr
, (5.15)

which is indeed the scaling observed for relatively high Fr both in the experiments and
point-bubble simulations in figures 10 and 15. This large Froude number scaling arises
from the nonlinear drag force, which tends to make the slip velocity v − u statistically
isotropic and, as a consequence, reduces drastically the vertical slip velocity, henceforth
the mean rise speed.

5.3. Bubble behaviour in a random Gaussian field
We note that our phenomenological model does not rely on flow features specific to HIT.
As such, our results may be generalized to random flow fields which do not possess all the
attributes of turbulent flows, as long as the typical bubble Reynolds number is sufficiently
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Figure 18. The average dimensionless point-bubble rise speed as a function of
〈|v′ − u′|〉 /vq. (Inset) The

non-dimensional rise speed plotted against the Froude number. Comparing the two plots shows that the mean
value of the slip fluctuation speed sets the rise speed.

greater than 1 to yield a nonlinear relationship between the drag force and the slip velocity.
To that end, we simulate the motion of point bubbles in a random Gaussian field composed
of N Fourier modes following Mei (1994), where the fluid velocity u is defined as

u(x, t) = 1√
N

N∑
m=1

(bm cos(km · x + ωmt) + cm sin(km · x + ωmt)), (5.16)

in which bm, cm, km and ωm are picked from Gaussian distributions with 0 mean. The
standard deviation of the distributions of bm and cm sets the large-scale velocity scale
u′, the fluctuation velocity in HIT. The standard deviation of the distribution of the
components km sets the large-scale length 1/k0, analogous to the integral length scale of
the turbulence. Finally, the standard deviation ω0 = u′k0 of the distribution of ωm sets the
large-scale time scale 1/ω0, analogous to Tint = Lint/u′ in HIT. We set the dimensionless
bubble size to dk0 = 0.12, and keep the constants in the Maxey–Riley equation equal to
the values used in our main HIT simulations (CD = 1, CM = 0.5, CL = 0).

The mean dimensionless rise velocity 〈vz〉/vq for these point bubbles in the Gaussian
fields is shown as a function of Fr = u′/

√
gd in figure 19 as the solid black curve. As

in HIT, 〈vz〉/vq follows a 1/Fr scaling at large Froude number. Here, the scaling is more
pronounced in the slip velocity 〈vz − uz〉 than in the mean rise velocity 〈vz〉.

Further, the average magnitude of the slip velocity 〈|v − u|〉 (shown in figure 19 as the
dashed cyan curve) also scales with u′ in the Gaussian field. In both HIT and this random
Gaussian field, the slowdown of the bubble due to the external flow is the result of the
nonlinear drag force acting on the bubble. Since the fluctuation magnitude of the slip
velocity increases linearly with Fr, the quadratic drag force along the vertical direction
increases proportionally. From a balance with buoyancy force, the average bubble vertical
velocity then decreases as 1/Fr.
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Figure 19. The mean rise velocity (black, solid line), mean magnitude of the slip velocity (cyan, dashed
line) and mean vertical slip velocity (dark red, dotted line), of point bubbles in random Gaussian fields, with
dk0 = 0.12 and varying Fr. At large Fr, the mean dimensionless rise velocity scales as 1/Fr (as does the mean
vertical slip velocity, since the over-sampling of uz < 0 is negligible), and the mean magnitude of the slip
velocity scales as Fr, congruent with our phenomenological model.

5.4. Point-bubble simulations with variable drag coefficient
To assess the use of a constant CD, we have run simulations of bubbles in random
Gaussian fields using a time-varying drag coefficient, which is evaluated using the
instantaneous bubble Reynolds number Rep = |v − u|d/ν. There is no general formula
for the drag coefficient in an unstationary turbulent flow. Following Snyder et al. (2007),
we approximate the instantaneous drag coefficient by the value for a rigid sphere in a
stationary flow of the same instantaneous Reynolds number, for which we have

CD = 24
Rep

, Rep < 1, (5.17)

=
(

24
Rep

)(
1 + 3.6

Re0.313
p

(
Rep − 1

19

)2
)

, 1 � Rep � 20, (5.18)

=
(

24
Rep

)(
1 + 0.15Re0.687

p

)
, Rep > 20. (5.19)

The viscosity ν in the simulation is defined by matching the bubble Archimedes number
Ar = gd3/ν2 to the corresponding values for an air bubble in water with d = 1, 2 and 4
mm. For each value of Ar, we run simulations with a range of Fr and dk0 = 0.1.

The quiescent rise velocity is obtained for each condition by integrating the equation
of motion using the variable drag coefficient with a quiescent velocity field. The same
integration is then carried out using a random Gaussian field (as described in § 5.3), and
the corresponding reduction in rise velocity is calculated. Finally, we calculate 〈CD〉 from
this simulation, and run a final simulation using the version of the Maxey–Riley equation
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Figure 20. (a) Rise velocity for bubbles in random Gaussian fields with a variable drag coefficient CD using
the local Reynolds number Rep and the Snyder et al. (2007) formulation (solid line). Dashed lines correspond
to the case of a constant drag coefficient equal to the average value of the variable-CD. Colours correspond
to different bubble sizes (d = 1, 2 and 4 mm). We observe no significant change in rise speed between the
constant-CD and variable-CD formulations. (b) Time average drag coefficient CD as a function of the Froude
number. The decrease of CD with the Froude number is attributed to the increase of the mean local Reynolds
number Rep, due to the increased typical slip velocity. (c) The p.d.f.s of CD for Fr = 0.7, 3.1 and 13.0 for
simulations with Ar corresponding to d = 1 mm (red) and d = 4 mm (blue).

with constant coefficients (1.9) employed in our turbulent simulations, with CD fixed at
this average value.

Results are shown in figure 20. Panel (a) shows that the variation itself in CD does not
have a large impact on the rise velocity, as the varying-CD and constant-CD curves for
any d nearly coincide. In other words, the use of a constant value of CD does not produce
results significantly different than would be obtained with a time-varying CD, provided
that the constant value taken for CD is representative of the time-varying one. Panel (b)
shows how, for fixed bubble sizes, the average value of CD changes with Froude number.
As the Froude number is increased, the mean particle Reynolds number Rep = |v − u|d/ν

increases, and thus the average value of CD decreases from the quiescent value, due to the
increased typical slip velocity. Thus, the variation of 〈CD〉 with Fr may affect the scaling of
〈vz〉 in a way that has not been considered in our phenomenological model. However, the
exact variation of CD with the local Reynolds number Rep would require further analysis
to be properly quantified, in particular in an unstationary, turbulent flow.

6. Discussion and conclusion

Having presented our experimental and simulation results, in this section we compare
our results to those from the literature which report bubble rise speeds in turbulence.
Figure 1, presented in the Introduction, gave the parameter space of these investigations,
showing the size of the bubbles simulated relative to η and Lint, the non-dimensional
turbulence intensity β, the turbulent Weber number We and the quiescent Reynolds number
Req. Figure 21 shows the rise velocity and non-dimensional change in speed due to the
turbulence for our data and these additional studies. Experimental results for air bubbles
in water are shown in dimensional terms in panel (a), in which the colour signifies u′.
Panel (b) gives the dimensionless results as a function of the Froude number, in which the
colour signifies d∗.

The following four paragraphs briefly summarize the included data and explain how
quantities were computed for each study. Aliseda & Lasheras (2011) report the bubble
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Figure 21. Comparison of results from various experiments, DNSs and point-bubble simulations. (a) Bubble
rise speed as a function of the bubble size, with the colour scale denoting the turbulent fluctuation velocity u′,
for experiments involving air bubbles in water turbulence. The dashed lines show the rise velocity of air bubbles
in quiescent water that is clean (the upper curve) and contaminated (the lower curve). (b) The non-dimensional
rise velocity as a function of the Froude number for the experiments, DNSs, and point-bubble simulations.
The thicker lines show the 〈vz〉 /vq = 1 − χβ2/4 relation at low Fr (using CD = 1 to specify β and picking χ

empirically) and the 〈vz〉 /vq = 0.37/β scaling at high Fr.

mean rise speed as a function of the bubble diameter d and the turbulent fluctuations u′.
We aggregate data from their ‘large bubble’ and ‘small bubble’ datasets, but consider only
the measurements with the lower void fraction from the ‘large bubble’ dataset, taking
Lint = 2.5 cm, the grid spacing in their experiment. Additionally, we do not consider their
smallest bubbles, for which the large uncertainty in vq yields a substantial uncertainty in
〈vz〉 /vq. Still, their bubbles are small enough that the drag exerted on them is dominated
by viscosity. Poorte & Biesheuvel (2002) report a non-dimensional slowdown of small
bubbles due to weak turbulence, from which we calculate their mean rise speed. Prakash
et al. (2012) report the rise velocity as a function of Reλ for d ≈ 3 mm. Since they do
not report u′ or Lint, we refer to a study from the same group using a modified version of
the experiment (Mercado et al. 2012), from which we take Lint = 6 cm and interpolate u′
based on the reported value of Reλ (justified by the good agreement between the values
of η reported in Prakash et al. (2012) and those interpolated from the Mercado et al.
(2012) data following the same approach). Salibindla et al. (2020) report the mean rise
speed as a function of d, holding the turbulence constant while changing the bubble size
with u′ = 0.25 m s−1. The quiescent rise speed is calculated using the correlation for
contaminated bubbles in quiescence from Clift et al. (1978) for all experimental datasets
except Poorte & Biesheuvel (2002), which reported the measured values, and Aliseda &
Lasheras (2011), for which we use the relation for a dirty bubble from Park et al. (2017)
(given the small bubble size).
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DNSs of deformable bubbles from Loisy & Naso (2017) are included as well, carried

out at fixed Bo = gd2(ρ − ρp)/σ = 0.38 and variable Ar =
√

gd3ρ(ρ − ρp)/μ, where ρp

is the density of the gas, with turbulence characterized by Reλ = 30 and λ = d. We omit
the DNS results from Reichardt et al. (2017), who used a lower density ratio and Reλ < 10.

We also include point-bubble simulation results in the dimensionless presentation of
rise speed data in figure 21(b). Our point-bubble results, at d∗ = 0.12 and CL = 0, are
shown as the dash-dotted line. Data from Mazzitelli & Lohse (2004) involve one condition
of turbulence in which bubbles (experiencing viscous drag) of varying viscous response
times d2/(24ν) and lift coefficients are simulated. The single case without lift, at Fr =
0.34, is less slowed than the corresponding case with lift. Eight conditions from Snyder
et al. (2007), their ‘small bubbles’ and ‘large bubbles’, each simulated in four turbulent
fields, are included, where we use the corresponding dimensional values they report to find
u′ with u′ = λ/√15ν/ε and Lint with Lint = 0.7u′3/ε.

Results from Salibindla et al. (2020), who varied d in unchanging turbulence, stand
out, as bubbles for which d � 2 mm yield an increase in rise speed relative to quiescent
conditions. Their analysis attributed this to the modulation of the bubble lift and drag
coefficients due to the turbulence’s deformation of larger bubbles. This suggests that the
turbulent Weber number, which until this point we have not considered, is important
(Salibindla et al. 2020). However, our simulation results with positive and negative
values of CL did not yield substantially different results. Nonetheless, we remark that
our simulations do not account for deformation effects, which are certainly important
for large bubbles (>4 mm in typical conditions) and could change the discussion on
the importance of lift force. Additionally, we note the possibility of bubbles migrating
preferentially to regions of varying mean flow according to their size in such an
experiment, which may introduce an additional factor influencing their rise velocity.
Figure 1 showed that the largest bubbles considered by Salibindla et al. (2020) largely
fall within the parameter space of our experiment, suggesting that the differences between
our results for these large bubbles stem from the large-scale structure of the mean
flow.

Despite the scatter in the compiled experimental and simulation data in figure 21(b),
trends are consistent with the two asymptotic scalings presented in § 5. At low β

(equivalently, low Fr, as we now neglect variations in the drag coefficient), bubbles
are slightly slowed relative to their quiescent rise, coherent with the 1 − 〈vz〉 /vq ∝ β2

scaling derived for β � 1. This β2 dependence is coherent with the analysis from Spelt &
Biesheuvel (1997), who for bubbles experiencing viscous drag at low β found a prefactor
dependent on the Taylor microscale of the turbulence and the bubble’s viscous response
time. At larger β (larger Fr), the dimensionless rise velocity decreases and approaches 0,
coherent with the 〈vz〉 /vq ∝ 1/Fr scaling derived for β 	 1. The scatter of points around
these relationships suggests that the factors not captured in our point-bubble model, such
as bubble finite-size effects, turbulent Reynolds number effects, bubble deformability and
the instantaneous local flow field around the bubble, play a role in setting the average rise
speed.

Additionally, the present experiments and those in the literature exhibit some large-scale
inhomogeneities, which we partially account for in our analysis by subtracting the mean
water flow from the observed bubble velocities. However, the impact on the average rise
velocity of gradients in large-scale quantities such as u′ remains an open question, together
with the role of small-scale turbulence–interface interaction. Systematic experiments
employing varying types of forcing which yield distinct inhomogeneities in the turbulence
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Figure 22. The time scales over which the value of u′ seen by the bubble changes. (a) The definition of τu′ ,
which is the duration over which the bubble has been in a region of u′ which is within 0.05 m s−1 of its current
value. (b) Cumulative distribution of u′ for bubbles as they are in regions of different turbulence intensities.
(c) Cumulative distributions of u′ normalized by the integral time scale of the turbulence Tint = Lint/u′.

and DNSs fully resolving the bubble–turbulence interaction would help address these
questions. Similarly, more involved point bubble simulations incorporating finite-size
effects with Faxén corrections and drag, lift and added-mass coefficients dependent on
the instantaneous flow field around the bubble, such as that carried out by Snyder et al.
(2007) (and in our § 5.4), would be a practical way to explore additional bubble-scale
phenomena.

The 1/u′ scaling we derive and observe is relevant for bubbles experiencing nonlinear
drag, for which the typical particle Reynolds number 〈|v − u|〉 d/ν 	 1. A prerequisite,
then, is that the quiescent Reynolds number Req, shown in figure 1, is also much greater
than 1. For air bubbles in water, requiring O(Req) > 100 implies d >∼ 500 μm. Similarly,
as we have neglected the effects of severe bubble deformation and break-up, we require that
the typical turbulent Weber number at the bubble scale, We = 0.79Fr2Bo d∗2/3, is not too
large. Again looking to figure 1, we see that this parameter range (Req 	 1, We < 1) is
relevant for most of our dataset and most similar experiments.

In summary, we have performed experiments in which we measure the average speed
at which air bubbles of various sizes rise through regions of turbulence of varying
intensity in water. The decrease in rise speed relative to quiescent conditions that we
measure is coherent with the rise velocity of point bubbles in turbulence, which we
simulate numerically. At large Froude number Fr = u′/

√
gd, the dimensionless rise

velocity scales as 〈vz〉 /vq ∝ 1/Fr, which can be attributed to the nonlinearity of the
drag force and the r.m.s. slip velocity being proportional to the turbulent intensity u′.
Our experimental data collapse to a single average rise velocity curve over a range of
d∗ = d/Lint, but more extensive experiments and simulations are required to determine
the influence of the turbulent length scales, bubble deformability, heterogeneities in
the turbulence and interactions with non-zero-mean flows, which, among other things,
may introduce dependencies on d that we do not capture with our point-bubble
analysis.

Funding. This work was supported by the NSF CAREER award 1844932 to L.D. We thank the Johns Hopkins
database team for making their data available, and acknowledge the SciServer platform (Taghizadeh-Popp et al.
2020), on which we carried out the point-bubble simulations.
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Figure 23. A simulation of a bubble with d = 4 mm in the mean flow field, initialized at an arbitrary position.
(a,b) The trajectory superimposed over the mean horizontal and vertical flow fields, respectively. (c) The
bubble’s vertical slip velocity. The dashed line gives the quiescent rise velocity.
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Appendix A. Experimental approximation of homogeneous, zero-mean turbulence

Our experiment is inhomogeneous at large scales, which enables us to observe bubbles in
a variety of conditions in a single experiment. However, the flow seen by the bubbles is
homogeneous, in that the time scales over which the statistics of quantities they probe
change (in a Lagrangian sense, following the bubble) are longer than the time scales
relevant to the bubbles’ dynamics.

A.1. Lagrangian time scales
To demonstrate this, for each measurement at a time t we directly compute the duration
τu′ over which the bubble has been within a region of |u′ − u′(xb(t))| � 0.05 m s−1, since
0.05 m s−1 corresponds to a typical size of a bin for u′. This definition of τu′ is illustrated
in figure 22(a): for time t = 17.7 s, denoted by the solid vertical line, the value of u′ is
considered, shown as the solid circle. Next, the range of u′ within ±0.05 m s−1 of this
value is considered, denoted by the shaded region. The most recent time u′ was outside
this range is then found, denoted by the dashed line. The difference between these two
times is τu′(t).

The values of τu′ are computed for each measurement, and the cumulative distribution
of τu′ is shown in figure 22(b) for various ranges of u′. Then, results are normalized by
the local integral time scale Tint = Lint/u′, since the integral time scale sets the time over
which the large-scale turbulent motions act on the bubble to slow its rise. The cumulative
distribution functions of τu′/Tint are shown in figure 22(c). A bubble has been within a
range of comparable u′ for at least half an integral time scale for ∼80 % of measurements.
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Figure 24. The mean simulated rise velocity of 40 bubbles of each size, each subjected only to the two
measured components of the mean flow, initialized randomly within the PIV measurement volume. The
dashed line gives the quiescent rise velocity, and the points are simulation results, all with CD = 1. The
agreement between the two curves suggests that gradients in the mean flow velocity are not responsible for the
experimentally observed decrease in rise velocity in our experiment. The red shaded area shows one standard
deviation of the bubbles’ vertical velocity above and below the mean.

A.2. Insignificance of the mean flow field
A second consideration is the velocity gradients in the mean flow field, which through
nonlinear drag may alter the bubble’s rising velocity. Here, we show that the mean
velocity gradients in our experiment are not strong enough to significantly impact the
mean bubble rising speed, allowing us to attribute the observed reductions in rise velocity
to the turbulence.

Since the PIV data provide two components of the mean flow velocity, we simulate
the motion of a bubble constrained to a single, two-dimensional PIV plane, in which
the flow field u is taken to be the two known components of the mean flow, u(x) =
ūx(x)ex + ūz(x)ez. The bubble trajectory is found by integrating (1.9), in which we neglect
the pressure force by assuming the typical length scale of the mean flow is much greater
than the bubble size. Figure 23 shows the results from one such simulation,

Figure 24 shows the simulated mean velocities of bubbles of various sizes in the mean
flow, with close agreement to the quiescent rise velocity. Only times between 0.25 s after
the bubble’s initialization, and before it leaves the measurement volume, are considered.
Further, the standard deviation of the bubble vertical velocities, denoted by the shaded red
region, is significantly smaller than vq, letting us attribute the experimentally observed
bubble velocity fluctuations to the turbulent fluctuations as well.

Appendix B. Second experiment

Figure 25 shows the flow characteristics of our second experiment, in which we also
measure the rise velocity of bubbles in turbulence. Like our main experiment, it involves
pump-generated water turbulence, but does so at a smaller scale with two planes of
opposing pumps. Results from this experiment are included as dotted lines.
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Figure 25. Summary of PIV results from the second experiment. (a) From left to right, the mean flow, the
fluctuations in the x and z directions and integral length scale in three of the nine PIV planes. (b) The location
of the nine PIV planes in the tank. The three coloured planes correspond to the three for which fields are shown
above. (c) The integral of the autocorrelation function from which the integral length scale is calculated, at the
three marked points. (d) The structure at a single point in each of the three planes, which are marked by an x in
the fields. (e) The compensated structure function. The dashed lines give estimates of the dissipation rate with
0.7u′3/Lint.
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