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In this paper, drop impact onto a sphere is numerically investigated at moderate
Reynolds and Weber numbers. It is naturally expected that the aspect ratio of the
sphere to the drop, λr, would make a big difference to drop spreading and retraction
on the sphere, compared with drop impact onto a flat substrate. To quantitatively
assess the effect of λr, a diffuse-interface immersed-boundary method is adopted
after being validated against experiments. With the help of numerical simulations, we
identify the key regimes in the spreading and retraction, analyse the results by scaling
laws, and quantitatively evaluate the effect of λr on the impact dynamics. We find
that the thickness of the liquid film spreading on the sphere can be well approximated
by hL,∞(1+ 3/4λ−3/2

r ), where hL,∞ represents the film thickness of drop impact on a
flat substrate. At the early stage of spreading, the temporal variation of the wetted
area is independent of λr when the time is rescaled by the thickness of the liquid
film. Drops are observed to retract on the sphere at a roughly constant speed, and
the predictions of theoretical analysis are in good agreement with numerical results.

Key words: contact lines, drops, thin films

1. Introduction

Impact of a drop onto a solid surface is not only commonly seen in nature, but is
related to a variety of applications in industry; examples are inkjet printing (Derby
2010), surface coating (Rukosuyev, Barannyk & Oshkai 2016) and spray cooling
(Zhou, Chen & Wang 2017). Spreading and retraction of the drop on the solid
surfaces are the key processes in the impact dynamics, and may be accompanied
by fascinating flow phenomena such as splashing (Riboux & Gordillo 2014; Stevens
2014) and bouncing (Liu et al. 2014); recent reviews can be found in Yarin (2006)
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and Josserand & Thoroddsen (2016). The parameter spaces of the flow phenomena
are usually described by the dimensionless groups

Re=
ρU0D
µ

, We=
ρU2

0D
γ

(1.1a,b)

and the wettability of the solid surface (represented by the contact angle θ ). Here, U0

is the impact velocity, D is the diameter, and ρ, µ and γ denote the density, viscosity
and surface tension of the drop respectively.

The dynamics of drop spreading and retraction has been extensively investigated
for drop impact onto a flat plate (Biance, Clanet & Quere 2004; Clanet, BéGuin
& Richard 2004; Bartolo, Josserand & Bonn 2005). For liquids of low viscosity,
it has been experimentally observed that the early spreading is insensitive to the
wettability of the solid surface. At low U0, the radius of the wetted area varies with
an inertia–capillary time scale as r(t)∼ (γD/ρ)1/4t1/2 (Biance et al. 2004); at relatively
high U0, it varies with an inertial time scale as r(t) ∼ (U0D)1/2t1/2 (Kim, Feng &
Chun 2000), and the radius of the maximal wetted area rmax follows rmax/D∼We1/4

(Clanet et al. 2004). For drops with relatively high impact velocity, Bartolo et al.
(2005) experimentally observed that the drop retraction is independent of the impact
velocity. In particular, the retraction velocity, ṙ(t), follows ṙ(t)/rmax ∼ (ρD3/γ )−1/2

when the inertial and capillary forces are dominant, and ṙ(t)/rmax ∼ (µD/γ )−1 when
the capillary and viscous forces are dominant.

Drop impact onto more complex substrates has attracted more and more attention
recently (Liu et al. 2015; Dressaire, Sauret & Boulogne 2016). It has been shown that
the geometry of the substrate can significantly affect the impact dynamics and results
in flow phenomena different from those on a flat plate. A typical example is drop
impact onto a sphere of radius R, in which the aspect ratio of the sphere to the drop,
λr=2R/D, is expected to play an important role. At We∼500, Re∼O(104) and λr∼1,
Rozhkov, Prunet-Foch & Vignes-Adler (2002) experimentally observed the detachment
of the liquid film from the target, forming a thin and conical lamella. At similar Re
and We, Bakshi, Roisman & Tropea (2007) investigated the spreading of the liquid
film on the sphere surface for various values of λr, and suggested that the spreading
dynamics could be divided into three stages: drop deformation, inertia-dominated
spreading and viscosity-dominated spreading. Mitra, Sathe & Doroodchi (2013)
observed drop rebound off of the sphere after impact at relatively small Re and
We; later, they theoretically analysed the maximum wetted area based on energy
conservation (Mitra et al. 2016). Irrespective of these successes in experiments, it
remains unclear how the aspect ratio influences the dynamics of spreading and
retraction after impact, either qualitatively or quantitatively.

In this paper, we numerically investigate the drop deposition on a sphere after
impact at moderate Reynolds and Weber numbers (We ranges from 25 to 400 and
Re∼O(103)). The aim of our study is to provide a full understanding of the dynamics
of the spreading and retraction on the sphere through numerical simulation and
theoretical analysis. An axisymmetric diffuse-interface immersed-boundary method
(Liu & Ding 2015) is used for this purpose after being validated against experiments.
Based on the numerical results, we investigate flow details that are not accessible
in experiments, identify the key regimes in the spreading and retraction, analyse the
results by scaling laws, and quantitatively evaluate the effect of λr on the impact
dynamics.
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2. Methodology

We consider here a liquid drop impacting on a sphere, and investigate its dynamics
using an axisymmetric diffuse-interface immersed-boundary method (Liu & Ding
2015). This method allows for simulation of incompressible multiphase flows
involving rigid objects of irregular shape and moving contact lines. The liquid–gas
interface is represented by the volume fraction of the liquid, CL, the evolution of
which is governed by

∂CL

∂t
+∇ · (uCL)=

1
Pe
∇

2ψ, (2.1)

where the chemical potential ψ is defined as

ψ =C3
L − 1.5C2

L + 0.5CL −CLCS(1−CL −CS)−Cn2
∇

2CL (2.2)

and the Cahn number Cn is a dimensionless measure of the thickness of the diffuse
interface. The Péclet number is set to Pe= 1/Cn (Liu & Ding 2015). To simulate the
motion of contact lines on the curved substrate, a characteristic moving contact line
model (Lee & Kim 2011; Liu & Ding 2015) is used to update CL at the embedded
solid objects. The distribution of the volume fraction of the solid, CS, is prescribed
according to the position of the sphere. More details of the numerical implementation
can be found in Liu & Ding (2015).

The method is verified by comparing with our experiments on drop impact onto a
sphere, despite the fact that the same codes have been used to simulate water entry
problems and the obtained results compared favourably with experiments (Ding et al.
2015). The experimental set-up includes polished steel spheres of 3 mm in diameter,
which are fixed on a steel needle, and droplets of size between 2 mm and 2.5 mm.
The impact velocity ranges from 0.5 m s−1 to 1.5 m s−1 by adjusting the height of
drop release. The impact dynamics is recorded by a high-speed camera at 1500 f.p.s.
with a resolution of 1024 × 1400 pixels. The advancing contact angle is measured
on a flat steel surface. The comparison between the experimental and numerical
results with a mesh spacing of 1x= 0.003 is presented in figure 1. Unless otherwise
stated, the interface in the simulation is represented by the C = 0.5 contour, and
t = 0 corresponds to the moment when the drop comes into contact with the sphere.
Clearly, a good agreement has been achieved. Figure 2 shows the grid independence
study with 1x= 0.002, 0.003 and 0.005. We found that the results with 1x= 0.002
and 0.003 are virtually overlapped with respect to the drop shape at t= 0.9. Therefore,
in the following, we use a Cartesian mesh with 1x= 0.003 in the simulations.

3. Results and discussion

3.1. Flow features
Typical features of interface dynamics after drop impact at moderate Reynolds and
Weber numbers can be observed in figure 3, where sequences of drop shapes are
shown at Re = 1068, We = 144, θ = 60◦ and λr = 2.6. At short times, the drop
impact leads to high pressure at the north pole of the sphere and the occurrence
of a thin layer of liquid film, which spreads out to wet the sphere. At later times
(2 6 tU0/D 6 4.25), a rim occurs near the front of liquid film. After reaching the
maximum wetted area (at tU0/D = 4.25), the film front retracts. In the subsequent
dewetting process, the rim grows slowly by gathering the liquid in the film.
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FIGURE 1. Snapshots of drop impact onto a solid sphere, in which a water drop of
D = 2.22 mm hits a steel sphere of 3 mm in diameter at an impact velocity of U0 =

0.74 m s−1. The advancing contact angle θA = 95◦ in experiments. Numerical results at
We = 16.8, Re = 1638, θ = 95◦ and λr = 1.35 (solid curves) are superimposed on the
experimental results at dimensionless times tU0/D = 0.2, 0.45, 0.9 and 1.35 (from left
to right).

FIGURE 2. Convergence study for a drop impacting onto a sphere at tU0/D = 0.9. The
flow parameters are the same as in figure 1. The numerical results are obtained on meshes
of different resolution: 1x= 0.002 (solid), 0.003 (dash-dotted) and 0.005 (dotted).

To quantitatively assess the effect of the aspect ratio on the impact dynamics, we
performed two sets of numerical experiments, one with Re= 1068, We= 144, θ = 60◦
and various λr, and the other with Re = 1068, θ = 60◦, λr = 2.6 and various We.
The temporal evolution of the contact line position is shown in figure 4, in terms of
the azimuthal angle ξ (see figure 3c). Several observations can be made from these
results. First, at short times (tU0/D6 2), the spreading rate of the drop on the sphere,
dξ/dt, appears to be independent of We but dependent on λr (figure 4b). Second, the
contact line retracts at a roughly constant speed in all cases, although the value of
the speed may vary. Third, the drop is seen to oscillate on the sphere before reaching
its equilibrium state, and the oscillation frequency is found to be independent of the
impact velocity and λr. This can be interpreted by taking the drop as a spring with
the coefficient of surface tension as the stiffness, which has an oscillatory period of
4
√
ρD3/(6γ ) (Fedorchenko & Wang 2004).

3.2. Thickness of the liquid film
Figure 5 shows snapshots of the drop shape at Re = 1068, We = 144 and θ = 60◦
for various values of λr. For the convenience of comparison, the drop shapes are
projected onto the plane with respect to λrβ and r (see the definitions of β and r
in figure 3f ), along with the results of drop impact onto a flat substrate. The results
show that there are two stages of wetting, characterized by film spreading and rim
development respectively. For a fixed λr, the thickness of the liquid film has more
or less the same value in the first stage of wetting, and it is also observed that the
film thickness decreases with increase of λr. In order to quantitatively measure it, we
define the thickness of the liquid film hL as the mean thickness at tU0/D = 0.5. In
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FIGURE 3. Snapshots of drop impact onto a sphere at Re = 1068, We = 144, λr = 2.6
and θ = 60◦; the dimensionless times tU0/D from (a) to ( f ) correspond to 0.25, 0.5, 2,
4.25, 10 and 15 respectively. In each panel, the pressure contour (left) and velocity vectors
(right) are shown, and the arrow in the sphere indicates the reference vector.

the second stage, the inertia remaining in the liquid film drives the liquid to spread,
and the liquid film becomes thinner and thinner at the centre due to the lack of liquid
supply; on the other hand, the spreading rate of the film is significantly hindered by
the capillary force, leading to the occurrence of the rim.

Figure 6 shows the variation of hL as a function of We in a log–log scale. We can
see that the relation hL/D∼We−1/2 holds for various values of λr. This observation is
consistent with experiments on drop impact onto a flat substrate (Clanet et al. 2004),
in which the film thickness was found to be related to the balance between the surface
tension and the vertical deceleration of the impacting drop, aD (∼U2

0/D). Similarly
to the capillary length (defined as

√
γ /(ρg)), the deformation of the drop in the

impact process will have a length scale characterized by
√
γ /(ρaD) = D/

√
We. It is

reasonable to expect that this length scale will correspond to the film thickness hL. In
this sense, the relation hL/D∼We−1/2 indicates the balance between the deceleration
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FIGURE 4. Time evolution of the angular position of the contact line in drop impact at
Re= 1068 and θ = 60◦, for (a) We= 144 and various λr, and (b) λr= 2.6 and various We.

and the surface tension. However, hL deviates from this relation at relatively large
We, primarily because the drop impact is affected by the viscosity of the impinging
liquid. To quantitatively measure the significance of the liquid viscosity, Clanet et al.
(2004) defined an impact factor P = We Re−4/5, and they experimentally found that
the viscous effect played an important role when P > 0.3. For the cases considered
here, i.e. Re = 1068, this suggests that the transition will occur at We > 79. This is
consistent with our numerical simulations, and, moreover, it is interesting to see that
hL/D∼We−1/4 after the transition (see the inset of figure 6).

It is clear from figure 6 that hL is dependent on λr. This can be understood by the
fact that the smaller the sphere is, the less acceleration the drop experiences during
impact, and consequently the larger hL is. We found that the dependence can be well
fitted by

hL ∼ hL,∞(1+ 3/4λ−3/2
r ), (3.1)

where hL,∞ represents the value of hL when λr →∞. The rescaled results for the
film thickness for different values of λr are nearly overlapped, as shown in the inset
of figure 6. Moreover, the fitting of the film thickness in (3.1) suggests that hL,∞ =

0.052D at Re=1068, We=144 and θ =60◦; by contrast, the simulation of drop impact
onto a flat substrate yields a rather close value, i.e. hL,∞ = 0.045D.

3.3. Wetting dynamics
A scaling law is presented here to analyse the wetting dynamics dominated by the
inertia of the drop. Provided that the liquid film spreads on the sphere at a rate
of R dξ/dt, it would require a mass flux of ∼2πρR2hL sin ξ dξ/dt to maintain its
spreading. The mass flux should be supplied by the remaining drop above the liquid
film, driven by the kinetic energy of the drop. Therefore, it has order ∼πD2ρU0/4.
If we assume that the mass supply does not change significantly in the early stage
of wetting, mass conservation of the liquid phase suggests

2λ2
r hL sin ξ

dξ
dt
∼U0. (3.2)
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FIGURE 5. Snapshots of the drop shape at Re= 1068, We= 144 and θ = 60◦ for different
values of λr. The dimensionless times tU0/D from (a) to (d) correspond to 0.5, 1, 2 and 3
respectively.

Since hL has a roughly uniform thickness during the impact and hL/D ∼
1+ 3/4λ−3/2

r , the integration of (3.2) from t= 0 yields

λ2
r (1− cos ξ)∼

t U0

(1+ 3/4λ−3/2
r )D

. (3.3)

When hL � R, the left-hand side of (3.3) is equivalent to the dimensionless wetted
area. Therefore, (3.3) states that the wetted area should increase linearly with the
dimensionless time τ = (t U0)/((1+ 3/4λ−3/2

r )D) at the early impact. Figure 7(a)
shows the numerical results for the wetted area as a function of τ at Re = 1068,
We = 144 and θ = 60◦ for various values of λr. It is clear that (3.3) provides a
good prediction of the wetting dynamics for τ 6 1.5, during which the results for
different values of λr collapse into a straight line. At τ = 1.5, the drop evolves
into a ‘pancake’ with a thickness of approximately hL (see, e.g., figure 3c). The
numerical results deviate from the theoretical prediction afterwards because of the
invalid assumption of uniform film thickness. Figure 7(a) also shows that the maximal
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FIGURE 6. Film thickness hL as a function of We at Re=1068, θ =60◦ and various values
of λr. The dashed line denotes a slope of 1/2. In the inset, D∗ represents (1+ 3/4λ−3/2

r )D,
and the dashed and solid lines denote slopes of 1/2 and 1/4 respectively.
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We

FIGURE 7. Results at Re= 1068 and θ = 60◦. (a) Time evolution of the wetted area in
terms of λ2

r (1− cos ξ) at We= 144; τ denotes t U0/((1+ 3/4λ−3/2
r )D). The solid straight

line represents a linear fitting and the dash-dotted line indicates the moment at which the
drop evolves into a layer of liquid film of uniform thickness; see, e.g., figure 3(c). (b) The
maximal wetted area (in terms of λrξmax) as a function of We at λr= 2.6. The dash-dotted
and dashed lines denote slopes of 1/4 and 1/8 respectively.

wetted area on spheres of different sizes decreases monotonically with λr. Figure 7(b)
shows the maximal wetted area (in terms of its arclength λrξmax) as a function of We
at Re= 1068, λr = 2.6 and θ = 60◦. We can observe that λrξmax ∼We1/4 for We< 75,
and λrξmax∼We1/8 for We> 75. This can be naturally derived from mass conservation,
which suggests that the maximal wetted area should be inversely proportional to the
film thickness.

For small values of ξ , (3.3) can be further simplified, i.e. λrξ ∼ (tU0/D)1/2. Under
extreme conditions such as λr→∞ (i.e. a flat substrate), this implies that the radius
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of the wetted area, L, should satisfy L/D∼ (tU0/D)1/2. This is in good agreement with
previous numerical studies (Kim et al. 2000).

3.4. Rate of rim retraction
In the retraction stage, the capillary force acts as the driving force to pull the rim
back, while the inertia and viscosity are the resisting forces. Due to the relative
significance of the two resisting forces, which can be represented by the Ohnesorge
number Oh(=

√
We/Re), the retraction speed may exhibit different dependence on the

Weber number (Bartolo et al. 2005). For a drop with low viscosity, the motion of
the rim can be modelled by

d
dt

(
mR

dξ
dt

)
= Fc, (3.4)

where m is the mass of the rim and Fc = 2πR sin ξ(1− cos θ)γ is the capillary force
acting on the rim. Based on the observation of a constant angular velocity of retraction
dξ/dt (see figure 4), (3.4) can be simplified as

R
dξ
dt

dm
dt
= Fc. (3.5)

With the assumption of a stationary liquid film (see, e.g., figure 3d,e for the velocity
distribution in the film), the mass flux of the rim, dm/dt, can be approximated by
2πR2 hmin ρ sin ξ dξ/dt, where hmin is the film thickness when the film has the maximal
wetted area (or ξ reaches its maximum value, ξmax). Volume conservation suggests that
hmin ∼D/(λ2

r (1− cos ξmax)). Therefore, the retraction speed follows

dξ
dt
∼

√
(1− cos θ)(1− cos ξmax)

τi
, (3.6)

where τi =
√
ρD3/γ is the inertial–capillary time scale. Figure 8(a) shows ξ/(1 −

cos ξmax)
1/2 as a function of t/τi for Oh< 0.008. All of the numerical results appear

to collapse into a single line in the retraction stage, and thus are in good agreement
with the theoretical analysis in (3.6). On the other hand, 1− cos ξmax approaches ξ 2

max
when λr→∞, and thus (3.6) can be rewritten as ṙ/rmax∼ τ

−1
i . This is consistent with

the results for a flat substrate by Bartolo et al. (2005).
For a drop with high viscosity, the viscous effect Fv near the contact line

can be modelled by a linear force–velocity relation (de Gennes 1985), such that
Fv ∼µR2ξ(dξ/dt). Therefore, the balance between Fv and Fc yields

dξ
dt
∼
(1− cos θ) sin ξ

λrξ
τ−1
v , (3.7)

where τv=µD/γ is the viscous–capillary time scale. Figure 8(b) shows the numerical
results for drop retraction with Oh > 0.013, in terms of ξ ξmax/ sin ξmax versus the
time t/τv. We can observe that the results are roughly parallel to each other in the
retraction stage, suggesting that (3.7) gives a good prediction of the rim retraction in
the viscous–capillary regime.
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FIGURE 8. (a) Inertial–capillary retraction at Oh< 0.008, in terms of ξ rescaled by (1−
cos ξmax)

1/2 versus t/τi, and (b) viscous–capillary retraction at Oh> 0.013, in terms of ξ
rescaled by sin ξmax/ξmax versus t/τv .

4. Conclusion

Drop impact onto a sphere was numerically investigated at moderate Reynolds
and Weber numbers using a diffuse-interface immersed-boundary method, with the
aim of providing a quantitative evaluation of the effect of λr on the dynamics of
drop spreading and retraction. Based on the numerical results, it was found that the
thickness of the liquid film, hL, can be well approximated by hL∼ hL,∞(1+ 3/4λ−3/2

r ).
The variation of hL with the Weber number appears to have two scaling laws,
hL/D ∼We−1/2 for Oh < 0.008 and hL/D ∼We−1/4 for Oh > 0.008, primarily due to
the viscous effect becoming significant at relatively large Oh. It is very interesting to
see that coincidentally at roughly the same parameters (Oh ≈ 0.008 or We ≈ 75 and
Re= 1068), the regime transition also occurs in the drop retraction and the maximal
wetting area when varying the Weber number. At the early stage of spreading, the
temporal variation of the wetted area was shown to be independent of λr when the
time was rescaled by the thickness of the liquid film, due to the fact that the impact
inertia is dominant during that period. The retraction rates were theoretically analysed
by taking λr into account, and the theoretical prediction was consistent with the
numerical results.
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