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CR-HARMONIC MAPS

GAUTIER DIETRICH

Abstract. We develop the notion of renormalized energy in Cauchy–Riemann

(CR) geometry for maps from a strictly pseudoconvex pseudo-Hermitian

manifold to a Riemannian manifold. This energy is a CR invariant functional

whose critical points, which we call CR-harmonic maps, satisfy a CR covariant

partial differential equation. The corresponding operator coincides on functions

with the CR Paneitz operator.
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§1. Introduction

Let (M, g) and (N, h) be two Riemannian manifolds. The Dirichlet energy of a map

ϕ : (M, g)→ (N, h) is defined as

E(ϕ) =
1

2

∫
M
‖Tϕ‖2g,hdvolg.

When dimM = 2, the energy is conformally invariant with respect to g. This is of

considerable usefulness, for example, to construct conformal minimal immersions of

Riemann surfaces [Mil79]. However, in higher dimension, the energy is no longer conformally

invariant.

Critical points of a functional are solutions to a partial differential equation called the

Euler–Lagrange equation of the functional; in other words, they form the kernel of a certain

differential operator. In our case, the critical points of the Dirichlet energy are called

harmonic maps, and harmonic functions ϕ : (M, g)→ (R, eucl) coincide with the kernel

of the Laplacian.

In a recent work, Bérard has shown the existence, given two Riemannian manifolds

(M, g) and (N, h), with M of even dimension n, of a functional E n
g on C∞(M, N),

conformally invariant with respect to g, and equal to the usual energy when n= 2 [Bér13].

This functional is called renormalized energy, and its critical points are called conformal-

harmonic maps. Conformal-harmonic maps generalize harmonic maps; moreover, when

n= 4 and N = R, the induced operator coincides with the Paneitz operator.

Received November 13, 2019.
The author was supported in part by the grant ANR-17-CE40-0034 of the French National Research

Agency ANR (project CCEM).

c© 2019 Foundation Nagoya Mathematical Journal

https://doi.org/10.1017/nmj.2019.40 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.40
https://orcid.org/0000-0002-5995-0858
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/nmj.2019.40&domain=pdf
https://doi.org/10.1017/nmj.2019.40


CR-HARMONIC MAPS 223

We develop here the notions of Cauchy–Riemann (CR)-harmonicity and renormalized

energy in CR geometry. CR-harmonic maps also generalize CR-holomorphic maps, which

are notoriously hard to come by. When dimM = 3 and N = R, the induced operator

coincides with the CR Paneitz operator. This generalizes the recent work of Marugame

[Mar18]. Another extension of the CR Paneitz operator to maps has been proposed by

Chong, Dong, Ren and Yang [CDRY19]. The main result is the following, which summarizes

Proposition 4.1 and Theorem 3.3.

Theorem 1.1. Let (M2n+1, H, J, θ) be a compact strictly pseudoconvex pseudo-

Hermitian manifold and (N, h) be a Riemannian manifold. There exists a functional Fn
on C∞(M, N) which is a CR invariant, that is, conformally invariant with respect to θ.

For ϕ ∈ C∞(M, N), it reads

Fn(ϕ) =
(−1)n+1

2n!2

∫
M

〈
(δθ,hb ∇

ϕ∗h)n−1δθ,hb Tϕ, δθ,hb Tϕ
〉
h
θ ∧ dθn

+ lower order terms (in derivatives of ϕ),

where δθ,hb is the Webster divergence on Ω1(M)⊗ ϕ∗TN .

The Euler–Lagrange equation of Fn is a partial differential equation of order 2n+ 2,

which is itself CR covariant. For ϕ ∈ C∞(M, N), it reads

0 =
(−1)n

n!
(δθ,hb ∇

ϕ∗h)nδθ,hb Tϕ+ lower order terms (in derivatives of ϕ).

Moreover, we provide explicit computations of P1 and F1 in Theorems 3.11 and 4.4,

respectively.

The paper is organized as follows: in Section 2, we recall notions of asymptotically

complex hyperbolic (ACH) geometry. In Section 3, we adapt the classical construction

by Graham, Jenne, Mason and Sparling to obtain a CR Paneitz operator acting on maps,

and we define CR-harmonicity [GJMS92]. We also provide an explicit computation of the

operator in dimension 3. In Section 4, we develop the corresponding notion of renormalized

energy. Section 5 presents computations in higher dimension, which do not allow for an

explicit expression of the operator. Finally, Section 6 gives a correspondence between

CR-harmonic maps on a pseudo-Hermitian manifold and conformal-harmonic maps on its

Fefferman bundle.

We adopt the following convention: small Greek letters will denote indices in {1, . . . , n};
capital Greek letters in {1, . . . , n, 1, . . . , n}; small Latin letters in {0, 1, . . . , n}; capital

Latin letters in {0, 1, . . . , n, 0, 1, . . . , n}. Moreover, we use the Einstein summation

convention everywhere.

§2. ACHE manifolds

Asymptotically hyperbolic (AH for short) manifolds are manifolds which admit a

conformal infinity, that is to say, a boundary equipped with a conformal structure which is,

roughly speaking, a generalization of the standard conformal sphere seen as the boundary

of the Poincaré disk. Reciprocally, every compact conformal manifold can be filled with

an AH manifold Xn+1 whose metric is Einstein, thus called AH-Einstein or AHE, when n

is odd. When n is even, a conformally invariant obstruction to the existence of an AHE

metric that is smooth up to the boundary appears [FG85, GH05]. Recently, Gursky and
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224 G. DIETRICH

Székelyhidi have announced that an AHE metric exists locally for all n> 3 [GS17]. This

approach provides a correspondence between a Riemannian structure on a manifold and

a conformal structure on its boundary. Information on the conformal infinity can thus be

read on the AHE metric.

The complex counterparts of AH manifolds, ACH manifolds, have been introduced by

Epstein, Melrose and Mendoza [EMM91]. They generalize the construction by Fefferman,

Cheng and Yau, of asymptotically Bergman metrics, which are Kähler–Einstein metrics on

bounded strictly pseudoconvex domains of Cn+1, which are asymptotic to the CR structure

of the boundary [Fef76, CY80]. The regularity of these metrics near the boundary has been

studied by Lee and Melrose [LM82]. To an ACH manifold thus corresponds a CR infinity.

For example, the CR infinity of the complex hyperbolic space CHn+1 is S2n+1 endowed

with its standard CR structure.

Because of the anisotropy of their structure, pseudo-Hermitian manifolds of odd dimen-

sion N often behave, mutatis mutandis, like Riemannian manifolds of dimension N + 1.

They are sometimes said to have homogeneous dimension N + 1 [JL89]. In particular,

ACH manifolds have been known to share similarities with the “n even” real case. The

asymptotic development of ACH-Einstein (ACHE) and ACH-Kähler–Einstein metrics has

been extensively studied by O. Biquard, M. Herzlich and Y. Matsumoto, and obstructions

to smoothness have been identified [Biq00, BH05, Mat14].

Let us consider the sphere S2n+1 ⊂ Cn+1 endowed with its standard contact form

θ0 =
i

4

(
zjdz

j − zjdzj
)
|S2n+1 .

Let γ0 = dθ0(·, i·) be the induced metric on the contact distribution ker θ0. The Bergman

metric on the ball B2n+2 is given in polar coordinates by

g0 = dt2 + 4 sinh2(t)θ2
0 + 4 sinh2

(
t

2

)
γ0.

This metric is Kähler and has constant holomorphic sectional curvature −1. The space

(B2n+2, g0) is known as the complex hyperbolic space and is denoted by CHn+1.

More generally, let (M, H, J) be a (2n+ 1)-dimensional orientable compact strictly

pseudoconvex CR manifold. Namely, H is an orientable hyperplane distribution in TM and

J is a complex structure on H. Let θ be a compatible positive contact form and γ = dθ(·, J ·)
be the induced metric. Let R be the Reeb field. Let ∇θ be the Tanaka–Webster connection

of (M, H, J, θ) and τ be the pseudo-Hermitian torsion. Let X = [0, ε)×M , π :X →M be

the natural projection and r be the coordinate on [0, ε). Let X be the interior of X. Let g0

be the metric on X

g0 =
dr2

r2
+
θ2

r2
+
γ

r
.

A function s ∈ C∞(X, R+) is called boundary defining if s > 0 on X, s= 0 and ds 6= 0

on {0} ×M . Equivalently, s= efr for some f in C∞(X, R). A conformal change of the

boundary defining function corresponds to a conformal change of the contact form. Indeed,

let us consider g0 as g0(r, θ), then, for f in C∞(X, R),

g0(efr, θ) = g0(r, e−f |M θ).

We define an order Oe adapted to g0. A normal basis with respect to g0 is e= (r∂r,

rR, r1/2TA), where (TA) is an orthonormal basis for γ, considered as a Hermitian metric. Its
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dual basis is e∗ = (r−1dr, r−1θ, r−1/2θα, r−1/2θα). The order Oe takes e and e∗ for reference.

Thus, we have, for example,

γ = θα ◦ θα = r
(
r−1/2θα

)
◦
(
r−1/2θα

)
=Oe(r),

where λ ◦ µ := λ⊗ µ+ µ⊗ λ.

Definition 2.1. [Biq00] A metric g on X is said to be ACH if g − g0 = oe(1). The CR

manifold (M, H, J) is then called the CR infinity of (X, g).

Example 2.2. For λ > 0,

g =
dr2

r2
+

(1− λ2r2)2

r2
θ2 +

(1− λr)2

r
γ

is an ACH metric on X. Moreover, if (M, H, J, θ) is Einstein, that is, pseudo-Einstein with

vanishing pseudo-Hermitian torsion, with RicW (J, θ) = 2(n+ 1)λγ, then g is an Einstein

metric, satisfying

Ric(g) =−n+ 2

2
g.

Indeed, a complex structure J̃ compatible with g on X is given by J̃ |H×{r} = J and J̃∂r =

−R/(1− λ2r2), that is, dr ◦ J̃ = (1− λ2r2)θ. Let θ0 := (1/
√

2)(1/(1− λ2r2)dr − iθ) and let

σ := θ0 ∧ θ1 ∧ · · · ∧ θn be a section of the canonical bundle.

Then

dσ =
i√
2
dθ ∧ θ1 ∧ · · · ∧ θn − θ0 ∧ dθ1 ∧ · · · ∧ θn + · · ·+ (−1)nθ0 ∧ θ1 ∧ · · · ∧ dθn,

where the first term vanishes, and since τ = 0, dθα = θβ ∧ ωαβ ; hence,

dσ =−ωαα ∧ σ.

The curvature form of σ, in the sense of [BH05], is hence given by −dωαα =−Rθ ρ
α ραθ

α ∧
θα = 2i(n+ 1)λdθ. Moreover,

σ ∧ σ =
(−1)n+1irn+2

(1− λ2r2)2(1− λr)2n
(r−1dr) ∧ ((1− λ2r2)r−1θ) ∧

(
(1− λr)r−1/2θ1

)
∧ · · · ∧

(
(1− λr)r−1/2θn

)
.

Consequently,

|σ|2g =
rn+2

(1− λ2r2)2(1− λr)2n
;

hence, ln |σ|2g = (n+ 2) ln r − 2 ln(1 + λr)− (2n+ 2) ln(1− λr). We have

∂r = 1
2(dr − i(1− λ2r2)θ);

hence,

i∂∂r =−λ2rdr ∧ θ +
1− λ2r2

2
dθ and i∂r ∧ ∂r =

1− λ2r2

2
dr ∧ θ.
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The Ricci form of g is then given by

ρg = −i∂∂ ln |σ|2g + idωαα

= −i∂∂ ln |σ|2g + 2(n+ 1)λdθ

=
n+ 2

2

(
1− λ2r2

r2
dr ∧ θ − (1− λr)2

r
dθ

)
.

With this example in mind, one may ask if there is, in general, an ACHE metric on X.

Contrarily to the theorem of Cheng–Yau for domains of Cn+1, such a metric may not exist

in general [CY80]. Nevertheless, there are formally determined almost ACHE metrics in

the following sense.

Definition 2.3. In any asymptotic development
∑

k ak(p)r
k, the term ak, seen as a

function on M , is called formally determined if it is a universal polynomial on a finite jet

of the CR structure at p ∈M only.

Theorem 2.4. [Mat14] There is an ACH metric gE on X, which is Einstein up to

order n+ 1, that is,

Ric(gE) =−n+ 2

2
gE +Oe(r

n+1),

where Oe denotes the order with respect to any basis e orthonormal for g0. The metric gE
is formally determined modulo Oe(r

n+1). Moreover, we have the asymptotic development

gE = g0 + Φ +Oe(r
3/2),

where

Φ =−2SchW (J, θ) + 2γ(Jτ ·, ·),

where

SchW (J, θ) =
1

n+ 2

(
RicW (J, θ)− ScalW (J, θ)

2(n+ 1)
γ

)
is the CR Schouten tensor.

Remark 2.5. Note that Φ =Oe(r).

We thus have a formally determined almost ACHE metric on X. A more convenient

metric for our study would be an almost ACH-Kähler–Einstein metric on X. We have at

hand the following results.

Proposition 2.6. [BH05] One can construct on X a formal complex structure JX ,

entirely formally determined by the CR infinity, starting from the almost complex structure

J̃ , which is the extension of J to X with J̃∂r =R. Moreover, an extension ∇̃θ of ∇θ to X

is given by

∇̃θr∂r = ∇̃θrR= ∇̃θr∂rr
1/2TA = 0.

Let T̃ θ be the torsion of ∇̃θ and τ̃ := ιRT̃
θ. An asymptotic development of JX is then given

by

JX = J̃ − 2rτ̃ +Oe(r
5/2).

https://doi.org/10.1017/nmj.2019.40 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.40


CR-HARMONIC MAPS 227

Theorem 2.7. [Fef76, BH05, Her07] There is a formally determined ACH-Kähler met-

ric gKE on (X, JX), which is Einstein up to order n+ 3
2 , that is,

Ric(gKE) =−n+ 2

2
gKE +Oe(r

n+ 3
2 ).

Moreover, gE and gKE coincide up to order n+ 1
2 .

In dimension 2n+ 1 = 3, the asymptotic development of gKE , and therefore of gE , is

known at order 3
2 , which will be essential in Sections 3.4 and 4.2.

Theorem 2.8. [BH05, Her07] When n= 1, we have the asymptotic development

gKE = g0 + ΦABθ
A ◦ θB + Ψ01θ

0 ◦ θ1 + Ψ01θ
0 ◦ θ1 +Oe(r

2),

where

Ψ01 =−
√

2

(
1

6
ScalW ,1 −

2i

3
τ1

1,1

)
,

and Φ is given by Theorem 2.4:

Φ11 =−ScalW
4

and Φ11 =−iτ1
1 .

§3. CR-harmonic maps

3.1 Definitions

Let (M, H, J) be a (2n+ 1)-dimensional orientable, compact, strictly pseudoconvex CR

manifold and (X, g) be an ACH manifold with CR infinity (M, H, J), where g is the

approximately ACH-Kähler–Einstein metric given by Theorem 2.7. Let π :X →M be the

standard projection. Let (N, h) be a Riemannian manifold. Let ϕ ∈ C∞(M, N), and let

ϕ̃ ∈ C∞(X, N) be any extension of ϕ, that is, ϕ̃|M = ϕ.

Let T ϕ̃ be the tangent map of ϕ̃. It is a section of the bundle Ω1(X)⊗ ϕ̃∗TN , and its

norm is defined by

‖T ϕ̃‖2g,h := trg(ϕ̃
∗h).

The bundle Ω1(X)⊗ ϕ̃∗TN is canonically equipped with the connection

∇g,h :=∇g ⊗ 1ϕ̃∗TN + 1Ω1(X) ⊗∇
ϕ̃∗h,

where ∇g and ∇h are the respective Levi-Civita connections of g and h, and ∇ϕ̃∗h := ϕ̃∗∇h.

The divergence δg,h is then defined for ω ∈ Ω1(X)⊗ ϕ̃∗TN by

δg,hω :=−(∇g,heI ω)(eI),

where (ei) is an orthonormal basis of T 1,0X for g, considered as a Hermitian metric. We

thus have

δg,hω =−∇ϕ̃∗h
eI

(ω(eI)) + ω(∇geIeI).

For ρ ∈ (0, ε), the energy of ϕ̃ in (ρ, ε)×M is the functional

E(ϕ̃, ρ) =
1

2

∫
(ρ,ε)×M

‖T ϕ̃‖2g,hdvolg.
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228 G. DIETRICH

An extension ϕ̃ is said to be harmonic if it is a critical point of the energy for all ρ.

Equivalently, ϕ̃ is harmonic if and only if δg,hT ϕ̃= 0.

Following the ideas of Graham, Jenne, Mason and Sparling, we want to find the

obstructions to the existence of a smooth harmonic extension [GJMS92]. More precisely,

assuming that ϕ̃ is smooth, we want to know if the first terms of the asymptotic development

of ϕ̃ are determined by the data at infinity. By similarity with the real case and based on

the known asymptotic developments of the approximately ACHE metrics, we expect to find

an obstruction at order n+ 1, taking the form of a CR covariant differential operator of

order 2n+ 2.

Here, the asymptotic development of ϕ̃ will denote, by identification, the asymptotic

development in r of U := exp−1
ϕ ◦ϕ̃ ∈ C∞(X, (ϕ ◦ π)∗TN), that is,

∀p ∈M, ∀r ∈ (0, ε), ϕ̃(p, r) := expϕ(p) (U(p, r)) ,

where, for p ∈M , the exponential map expϕ(p) is a diffeomorphism between a small ball

B(0, ε)⊂ Tϕ(p)N and its image, which is a neighborhood in N of ϕ(p). Note that U(·, 0) = 0.

We denote vϕ̃ := T ϕ̃(v) for v ∈ TX, and similarly for ϕ on TM , and

∀k > 1, ϕk := (∇ϕ̃
∗h
∂r

)k−1∂rϕ̃|r=0.

Note that ϕk is a section of ϕ∗TN ; hence, ∇ϕ∗hϕk is a section of Ω1(M)⊗ ϕ∗TN .

3.2 Computation of the divergence

We use the notations of Section 2. Let (Tα) be a local basis of T 1,0M and Tα := Tα such

that (TA) is orthonormal for γ, considered as a Hermitian metric. Let (θA) be the basis

dual to (TA). Let T0 := (∂r − iR)/
√

2 and θ0 := (dr + iθ)/
√

2 be its dual.

Lemma 3.1. For ω ∈ Ω1(X)⊗ ϕ̃∗TN , we have

δg0,hω = nrω(∂r)− r2
(
∇ϕ̃

∗h
T0

ω(T0) +∇ϕ̃
∗h
T0

ω(T0)
)
− r∇ϕ̃

∗h
TA

ω(TA)

= nrω(∂r)− r2∇ϕ̃
∗h
∂r

ω(∂r)− r2∇ϕ̃
∗h
R ω(R)− r∇ϕ̃

∗h
TA

ω(TA).

Proof. We have

g0 = r−2θ0 ◦ θ0 + r−1θα ◦ θα.

An orthonormal basis of T 1,0X with respect to g0 is hence given by

(e
(0)
0 , e(0)

α ) := (rT0, r
1/2Tα).

The trace of the Levi-Civita connection of g0 is given in this basis by the Koszul formula:

∇g0
e
(0)
I

e
(0)

I
= g0

(
[e

(0)

J
, e

(0)
I ], e

(0)

I

)
e

(0)
J .

Let ∇̃θ be the extension of ∇θ given by Proposition 2.6. We have

[e
(0)
0 , e

(0)

0
] =

1√
2

(
e

(0)

0
− e(0)

0

)
,

[e
(0)
0 , e

(0)
A ] =

1√
2

(
1

2
e

(0)
A − i

(
∇̃θ
e0(0)

e
(0)
A − τ(e

(0)
A )
))

,
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[e
(0)
A , e

(0)
B ] = rdθ(TA, TB)R.

Then, since tr(τ) = 0,

∇g0
e
(0)
I

e
(0)

I
= (n+ 1)r∂r,

and also,

∇ϕ̃
∗h

e
(0)
0

ω(e
(0)

0
) +∇ϕ̃

∗h

e
(0)

0

ω(e
(0)
0 ) = rω(∂r) + r2∇ϕ̃

∗h
∂r

ω(∂r) + r2∇ϕ̃
∗h
R ω(R),

∇ϕ̃
∗h

e
(0)
α

ω(e
(0)
α ) = r∇ϕ̃

∗h
Tα

ω(Tα).

Hence, we have the announced expression for δg0,hω.

Let us denote by (δg,hω)(1) the remainder of δg,hω, that is,

(δg,hω)(1) := δg,hω − δg0,hω.

We prove the following technical lemma, which is crucial for the proof of Theorem 3.3.

Lemma 3.2. For ω ∈ Ω1(X)⊗ ϕ̃∗TN , denoting by OT the order with respect to the basis

(ϕ̃∗TI) in powers of r, we have

(δg,hω)(1) =OT (r2),

and there is no term of order 2 in the remainder of the form r2∇ϕ̃
∗h
∂r

ω(∂r).

Proof. By Theorem 2.4, we have

g − g0 = Φ +Oe(r
3/2) = ΦABθ

A ◦ θB +Oe(r
3/2),

where we recall that Φ =−2SchW (J, θ) + 2γ(Jτ ·, ·) and that Oe denotes the order with

respect to (e
(0)
I ). Note that ΦAB = ΦBA. Since Φ is real, we have also Φαβ = Φαβ and

Φαβ = Φαβ.

An orthonormal basis of T 1,0X with respect to g induced from e(0) is formally given by

(e0, eα) :=
(
e

(0)
0 + e

(1)
0 , e

(0)
α + e

(1)
α

)
,

where, by the Gram–Schmidt process, and since Φ is horizontal,

e
(1)
0 =Oe(r

3/2) and e(1)
α =Oe(r).

This leads to(
δg,hω

)(1)
= −∇ϕ̃

∗h

e
(0)
I

ω
(
e

(1)

I

)
−∇ϕ̃

∗h

e
(1)
I

ω
(
e

(0)

I

)
−∇ϕ̃

∗h

e
(1)
I

ω
(
e

(1)

I

)
+ ω

(
∇g
e
(0)
I

e
(0)

I
−∇g0

e
(0)
I

e
(0)

I

)
+ ω

(
∇g
e
(0)
I

e
(1)

I

)
+ ω

(
∇g
e
(1)
I

e
(0)

I

)
+ ω

(
∇g
e
(1)
I

e
(1)

I

)
,

all terms of which are in OT (r2) and are not of the form r2∇ϕ̃
∗h
∂r

ω(∂r).
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3.3 An obstruction to regularity

Theorem 3.3. Let (M, H, J) be a (2n+ 1)-dimensional orientable, compact, strictly

pseudoconvex CR manifold and (X, g) be an ACH manifold with CR infinity (M, H, J),

where g is the approximately ACH-Kähler–Einstein metric given by Theorem 2.7. Let π :

X →M be the standard projection. Let (N, h) be a Riemannian manifold, and let ϕ ∈
C∞(M, N).

There exists a section U of (ϕ ◦ π)∗TN , unique modulo OT (rn+1), such that ϕ̃= expϕ ◦U
satisfies {

ϕ̃|M = ϕ,
δg,hT ϕ̃ = OT (rn+2).

The asymptotic development in r of U is

U = U1r + · · ·+ Un
rn

n!
+ Pn(ϕ)

rn+1

(n+ 1)!
log r +OT (rn+1),

where U1, . . . , Un, Pn are formally determined by ϕ, g and h.

Pn(ϕ) is an obstruction to the regularity of U and is given by

Pn(ϕ) =
(
∇ϕ̃

∗h
∂r

)n
δ̃θ,hb T ϕ̃

∣∣∣
r=0
− n

(
∇ϕ̃

∗h
∂r

)n−1
∇ϕ̃

∗h
R Rϕ̃

∣∣∣∣
r=0

+
1

n+ 1

(
∇ϕ̃

∗h
∂r

)n+1 (
δg,hT ϕ̃

)(1)
∣∣∣∣
r=0

=
(−1)n

n!
(δθ,hb ∇

ϕ∗h)nδθ,hb Tϕ+ lower order terms (in derivatives of ϕ).

Proof. For m ∈ N, we have

δg,hT ϕ̃=OT (rm+1) ⇐⇒ ∀k 6m,
(
∇ϕ̃

∗h
∂r

)k
δg,hT ϕ̃

∣∣∣∣
r=0

= 0.

We recall the notation

ϕk :=
(
∇ϕ̃

∗h
∂r

)k−1
∂rϕ̃

∣∣∣∣
r=0

.

Now, by Lemma 3.1, we have, for ω ∈ Ω1(X)⊗ ϕ̃∗TN ,

∇ϕ̃
∗h
∂r

δg,hω
∣∣∣
r=0

= n ω(∂r)|r=0 + δθ,hb (ω|r=0),

and, for all 2 6 k 6 n,

1

k

(
∇ϕ̃

∗h
∂r

)k
δg,hω

∣∣∣∣
r=0

= (n− k + 1)
(
∇ϕ̃

∗h
∂r

)k−1
ω(∂r)

∣∣∣∣
r=0

+
(
∇ϕ̃

∗h
∂r

)k−1
δ̃θ,hb ω

∣∣∣∣
r=0

− (k − 1)
(
∇ϕ̃

∗h
∂r

)k−2
∇ϕ̃

∗h
R ω(R)

∣∣∣∣
r=0

+
1

k

(
∇ϕ̃

∗h
∂r

)k (
δg,hω

)(1)
∣∣∣∣
r=0

,

where

∀ω0 ∈ Ω1(M)⊗ ϕ∗TN, δθ,hb ω0 :=−∇ϕ
∗h
TA

ω0(TA)

and

∀ω ∈ Ω1(X)⊗ ϕ̃∗TN, δ̃θ,hb ω :=−∇ϕ̃
∗h
TA

ω(TA).
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Consequently, δg,hT ϕ̃=OT (rn+1) is equivalent to nϕ1 = −δθ,hb Tϕ,

(n− k + 1)ϕk = −
(
∇ϕ̃

∗h
∂r

)k−1
δ̃θ,hb T ϕ̃

∣∣∣∣
r=0

−Dk−1(ϕ) ∀2 6 k 6 n,

where

Dk−1(ϕ) :=−(k − 1)
(
∇ϕ̃

∗h
∂r

)k−2
∇ϕ̃

∗h
R Rϕ̃

∣∣∣∣
r=0

+
1

k

(
∇ϕ̃

∗h
∂r

)k (
δg,hT ϕ̃

)(1)
∣∣∣∣
r=0

.

By Lemma 3.2, Dk−1(ϕ) only depends on ϕ, ϕ1, . . . , ϕk−1. This observation comes from

the fact that, although (
∇ϕ̃

∗h
∂r

)k (
r2∇ϕ̃

∗h
∂r

∂rϕ̃
)∣∣∣
r=0

= 2ϕk,

∀X, Y ∈ {∂r, R, TA}, (X, Y ) 6=(∂r, ∂r),
(
∇ϕ̃

∗h
∂r

)k(
r2∇ϕ̃

∗h
X Y ϕ̃

)∣∣∣
r=0

does not depend on ϕk.

By induction, Dk−1(ϕ) is thus well defined.

In conclusion, requiring δg,hT ϕ̃=OT (rn+1) gives an asymptotic development for ϕ̃ in

powers of r, and this development is unique up to order n with respect to T .

Assume now that δg,hT ϕ̃=OT (rn+1) and that ϕ̃ admits a Taylor development up to

order n+ 1. Then

δg,hT ϕ̃=OT (rn+2)⇐⇒
(
∇ϕ̃

∗h
∂r

)n
δ̃θ,hb T ϕ̃

∣∣∣
r=0

+Dn(ϕ) = 0.

This equality cannot be true in general. Consequently, we introduce a term in rn+1 log r in

the development of ϕ̃:

U = U1r + · · ·+ Un
rn

n!
+ Pn(ϕ)

rn+1

(n+ 1)!
log r +OT (rn+1).

The coefficient Pn(ϕ) verifies

1

n+ 1

(
∇ϕ̃

∗h
∂r

)n+1
δg,hT ϕ̃

∣∣∣∣
r=0

=−Pn(ϕ) +
(
∇ϕ̃

∗h
∂r

)n
δ̃θ,hb T ϕ̃

∣∣∣
r=0

+Dn(ϕ);

hence,

δg,hT ϕ̃=OT (rn+2)⇐⇒ Pn(ϕ) =
(
∇ϕ̃

∗h
∂r

)n
δ̃θ,hb T ϕ̃

∣∣∣
r=0

+Dn(ϕ).

This yields the announced obstruction, which only depends on ϕ. Since

ϕk =− 1

n− k + 1
δθ,hb ∇

ϕ∗hϕk−1 + lower order terms (in derivatives of ϕ),

we have the announced leading term.

Proposition 3.4. Pn does not depend on whether we take g = gE or gKE on X.

Proof. To compute Pn, it is sufficient to be able to compute(
∇ϕ̃

∗h
∂r

)n+1 (
δg,hT ϕ̃

)(1)
∣∣∣∣
r=0

;

that is, by the proof of Lemma 3.2, to know the e
(1)
I at order n+ 1/2 with respect to e(0).

By the Gram–Schmidt process, it is thus sufficient to know g at order n+ 1/2 with respect

to e(0). Hence, by Theorems 2.4 and 2.7, we can equivalently consider gE or gKE .
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Proposition 3.5. Let f ∈ C∞(X, R) and f0 := f |M , and let r̂ = efr be a conformal

change of boundary defining function. Then

P̂n(ϕ) = e−(n+1)f0Pn(ϕ).

The obstruction Pn(ϕ) to the regularity of ϕ̃ is therefore CR covariant.

Proof. We have

U = U1r + · · ·+ Un
rn

n!
+ Pn(ϕ)

rn+1

(n+ 1)!
log r +OT (rn+1).

Now, since expϕ : (ϕ ◦ π)∗TN →N does not depend on r, neither does U . Moreover, since

M is compact, ∀k, OT (r̂k) =OT (rk). We thus have

U = Û1r̂ + · · ·+ Ûn
r̂n

n!
+ P̂n(ϕ)

r̂n+1

(n+ 1)!
log r̂ +OT (r̂n+1)

= Û1e
fr + · · ·+ Ûne

nf r
n

n!
+ P̂n(ϕ)e(n+1)f rn+1

(n+ 1)!
log r +OT (rn+1).

Since the function f itself has a Taylor expansion in r, all polynomial terms are mixed.

However, there is only one term with order rn+1 log r. By identification, this yields the

result.

We then introduce CR-harmonic maps as maps for which the obstruction vanishes.

Definition 3.6. If Pn(ϕ) = 0, ϕ is said to be CR-harmonic.

Example 3.7. Let us assume that (M, H, J, θ) is Einstein with RicW = 2λ(n+ 1)γ. We

know from Example 2.2 that

g =
dr2

r2
+

(1− λ2r2)2

r2
θ2 +

(1− λr)2

r
γ

satisfies Ric(g) =−((n+ 2)/2)g. In this case, we can explicitly compute the divergence

δg,hω, for ω ∈ Ω1(X)⊗ ϕ̃∗TN .

Indeed, an orthonormal basis of T 1,0X with respect to g induced from e(0) is given by

(e0, eα) :=

(
1√
2

(
r∂r − i

r

1− λ2r2
R

)
,
r1/2

1− λr
Tα

)
;

hence,

[e0, e0] =
1√
2

1 + λ2r2

1− λ2r2
(e0 − e0) ,

[e0, eA] =
1

2
√

2

1 + λr

1− λr
eA,

[eA, eB] =
r

(1− λr)2
dθ(TA, TB)R.

Then

∇geIeI =

(
n

1 + λ2r2

1− λ2r2
+

1 + λr

1− λr

)
r∂r,
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and also,

∇ϕ̃∗h
e0 ω(e0) +∇ϕ̃∗h

e0
ω(e0) = rω(∂r) + r2∇ϕ̃

∗h
∂r

ω(∂r) +
r2

(1− λ2r2)2
∇ϕ̃

∗h
R ω(R),

∇ϕ̃∗h
eα ω(eα) =

r

(1− λr)2
∇ϕ̃

∗h
Tα

ω(Tα).

The divergence is hence given by

δg,hω =

(
n

1 + λ2r2

1− λ2r2
+

1 + λr

1− λr
− 1

)
rω(∂r)− r2∇ϕ̃

∗h
∂r

ω(∂r)

− r2

(1− λ2r2)2
∇ϕ̃

∗h
R ω(R) +

r

(1− λr)2
δ̃θ,hb ω.

From Example 3.7, we get the following results.

Corollary 3.8. If (M, H, J, θ) is Einstein, then subharmonic maps which verify

∇ϕ
∗h
R Rϕ= 0 are CR-harmonic.

Proof. Indeed, let ϕ be subharmonic, that is, δθ,hb Tϕ= 0, and such that ∇ϕ
∗h
R Rϕ= 0.

Let ϕ̃ be the extension of ϕ given by Theorem 3.3. We thus have ϕ1 = 0. Moreover, by

Example 3.7, we have(
δg,hT ϕ̃

)(1)
= α(r)∂rϕ̃+ β(r)∇ϕ̃

∗h
R Rϕ̃+ γ(r)δ̃θ,hb T ϕ̃,

where α(r) =O(r2), β(r) =O(r4) and γ(r) =O(r2). Since ϕ1 =∇ϕ
∗h
R Rϕ= 0, we get that

(n− 1)ϕ2 =− ∇ϕ̃
∗h
∂r

δ̃θ,hb T ϕ̃
∣∣∣
r=0
−∇ϕ

∗h
R Rϕ− 1

2

(
∇ϕ̃

∗h
∂r

)2 (
δg,hT ϕ̃

)(1)
∣∣∣∣
r=0

= 0.

By induction, we similarly have ∀k 6 n, ϕk = 0, which implies that Pn(ϕ) = 0.

Corollary 3.9. If (M, H, J, θ) is Einstein and (N, h) is a Kähler manifold, then CR-

holomorphic maps which verify Rϕ= 0 are CR-harmonic.

Proof. Indeed, assuming that Tϕ ◦ J = JN ◦ Tϕ and extending J by taking J(R) = 0,

we have

∇ϕ
∗h
Tα

Tαϕ = ∇ϕ
∗h
JTα

JTαϕ

= JN∇ϕ
∗h
JTα

Tαϕ

= JN∇ϕ
∗h
Tα

JTαϕ+ J([JTα, Tα])ϕ

= −∇ϕ
∗h
Tα

Tαϕ+ iJ([Tα, Tα])ϕ

= −∇ϕ
∗h
Tα

Tαϕ− nJ(R)ϕ;

hence,

δθ,hb Tϕ= nJN (Rϕ).

Consequently, ϕ is CR-harmonic by Corollary 3.8.

Example 3.10. Let (M, H, J) be a circle bundle over a Riemann surface Σ admitting

an Einstein contact form. Then the projection π :M → Σ is CR-harmonic.
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3.4 Explicit obstruction in dimension 3

When n= 1, that is, dim(M) = 3, the asymptotic development of g is given at order 3
2 in

e(0) by Theorem 2.8. Hence, by Proposition 3.4, we can explicitly compute the obstruction.

Theorem 3.11. Still denoting vϕ := Tϕ(v) for v ∈ TM , and also (∇ϕ∗hv)ϕ :=

∇ϕ∗h(vϕ), we have

P1(ϕ) =−δθ,hb ∇
ϕ∗hδθ,hb Tϕ−∇ϕ

∗h
R Rϕ+ 4Im

(
∇ϕ

∗h
T1

(
τ1

1T1

))
ϕ− Sb

(
δθ,hb Tϕ

)
,

where

Sb(X) := Rh
X,T1ϕT1ϕ+ Rh

X,T1ϕ
T1ϕ.

Proof. An orthonormal basis of T 1,0X with respect to g is given by

(e0, e1) :=
(
e

(0)
0 − r

3/2Ψ01e
(0)
1 , (1− rΦ11) e

(0)
1 − rΦ11e

(0)

1

)
+Oe(r

2).

We have

[e0, e0] =
1√
2

(
e0 − e0 − r3/2Ψ01e1 + r3/2Ψ01e1

)
+Oe(r

2),

[e0, e1] =
1√
2

((
1

2
− rΦ11

)
e1 − rΦ11e1 − i

(
∇̃θe0e1 − τ(e1)

))
+Oe(r

2),

[e0, e1] =
1√
2

((
1

2
− rΦ11

)
e1 − rΦ11e1 − i

(
∇̃θe0e1 − τ(e1)

))
+Oe(r

2),

[e1, e1] = r3/2
(
Φ11,1 − Φ11,1

)
e1 − r3/2

(
Φ11,1 − Φ11,1

)
e1 +Oe(r

2).

Hence,

∇geIeI = 2r (1− rΦ11) ∂r

− r2
(√

2Ψ01 + Φ11,1 − Φ11,1

)
T1

− r2
(√

2Ψ01 + Φ11,1 − Φ11,1

)
T1 +OT (r5/2).

We also have, for ω ∈ Ω1(X)⊗ ϕ̃∗TN ,

∇ϕ̃∗h
e0 ω(e0) +∇ϕ̃∗h

e0
ω(e0) = rω(∂r) + r2∇ϕ̃

∗h
∂r

ω(∂r) + r2∇ϕ̃
∗h
R ω(R)

−
√

2r2Ψ01ω(T1)−
√

2r2Ψ01ω(T1) +OT (r5/2),

∇ϕ̃∗h
e1 ω(e1) = r∇ϕ̃

∗h
T1

ω(T1)− r2∇ϕ̃
∗h
T1

(Φ11ω(T1))− r2∇ϕ̃
∗h
T1

(Φ11ω(T1))

− r2Φ11∇
ϕ̃∗h
T1

ω(T1)− r2Φ11∇ϕ̃
∗h
T1

ω(T1) +OT (r3).

The divergence is hence given by

δg,hω = r(1− 2rΦ11)
(
ω(∂r)−∇ϕ̃

∗h
T1

ω(T1)−∇ϕ̃
∗h
T1

ω(T1)
)
− r2∇ϕ̃

∗h
∂r

ω(∂r)− r2∇ϕ̃
∗h
R ω(R)

+ 4r2Im
(
∇ϕ̃

∗h
T1

(
τ1

1ω(T1)
))

+OT (r5/2)

= δg0,hω − 2r2Φ11∇
ϕ̃∗h
∂r

δg,hω + 4r2Im
(
∇ϕ̃

∗h
T1

(
τ1

1ω(T1)
))

+OT (r5/2).
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Then, by Theorem 3.3, we have

P1(ϕ) = ∇ϕ̃
∗h
∂r

δ̃θ,hb T ϕ̃|r=0 −∇ϕ
∗h
R Rϕ+ 4Im

(
∇ϕ

∗h
T1

(
τ1

1T1

))
ϕ

= δθ,hb ∇
ϕ∗hϕ1 + Rh

ϕ1,T1ϕT1ϕ+ Rh
ϕ1,T1ϕ

T1ϕ−∇ϕ
∗h
R Rϕ+ 4Im

(
∇ϕ

∗h
T1

(
τ1

1T1

))
ϕ,

hence, since ϕ1 =−δθ,hb Tϕ, the announced obstruction.

Note that on functions, meaning that N = R, P1 reduces to a multiple of the CR Paneitz

operator. Since the construction follows the ideas of Graham et al., this was expected. A

similar phenomenon appears in the real case [Bér13].

Example 3.12. Let us consider id : (M, H, J, θ)→ (M, g := gJ,θ).

Since ∇gRR= 0 by [DT06, Lemma 1.3], we have, using the Koszul formula,

δθ,gb T id = −∇gT1T1 −∇
g
T1
T1

= −g ([T1, T1], T1) T1 − g ([T1, T1], T1) T1

− g ([R, T1], T1)R− g ([R, T1], T1)R

− g ([T1, R], R) T1 − g ([T1, R], R) T1

= 0;

hence,

P1(id) = 4Im∇gT1
(
τ1

1T1

)
.

Consequently, the identity is CR-harmonic if and only if Im∇gT1(τ1
1T1) = 0. This is, in

particular, verified when θ is normal, that is, when τ = 0.

§4. Renormalized energy

4.1 Definition

Let ϕ ∈ C∞(M, N) and ϕ̃ be the extension of ϕ constructed in Theorem 3.3. For ρ in

(0, ε), let

E(ϕ̃, ρ) =
1

2

∫
(ρ,ε)×M

‖T ϕ̃‖2g,hdvolg

be the energy of ϕ̃ in (ρ, ε)×M . We have

‖T ϕ̃‖2g,h = f0r + f1r
2 + · · ·+ fnr

n+1 +O(rn+2 log r),

where ∀k 6 n, fk depends only on Uj for j 6 k and on g at order k in e(0), and

dvolg = r−n−2
√

det gdr ∧ θ ∧ dθn.

Consequently,

‖T ϕ̃‖2g,hdvolg =
(
a0r
−n−1 + a1r

−n + · · ·+ anr
−1 +O(log r)

)
dr ∧ θ ∧ dθn,

where ∀k 6 n, ak depends only on Uj for j 6 k and on g at order k. Hence, E admits the

development, when ρ→ 0,

E(ϕ̃, ρ) = E0(ϕ)ρ−n + E1(ϕ)ρ1−n + · · ·+ En−1(ϕ)ρ−1 + Fn(ϕ) log ρ+ En(ϕ) + o(1),
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where ∀k 6 n− 1, Ek depends only on Uj for j 6 k and on g at order k and Fn depends

only on Uj for j 6 n and on g at order n. The coefficient Fn(ϕ) can be written as

Fn(ϕ) =−1

2

∫
M
anθ ∧ dθn =− 1

2n!

∫
M
∂nr
(
rn+1‖T ϕ̃‖2g,hdvolg

)∣∣
r=0

.

By construction, Fn is formally determined by ϕ, g and h. Moreover, we have the

following.

Proposition 4.1. Fn(ϕ) is a CR invariant:

F̂n(ϕ) = Fn(ϕ).

Proof. The proof is similar to the proof of Proposition 3.5. Indeed, if r̂ = efr, then

‖T ϕ̃‖2g,hdvolg =
(
a0r
−n−1 + a1r

−n + · · ·+ anr
−1 + an+1 +O(r)

)
dr ∧ θ ∧ dθn

=
(
â0r̂
−n−1 + â1r̂

−n + · · ·+ ânr̂
−1 + ân+1 +O(r̂)

)
dr̂ ∧ θ ∧ dθn;

hence, when integrating over (r = ρ, r = ε)×M ,

E(ϕ̃, ρ) = E0(ϕ)ρ−n + E1(ϕ)ρ1−n + · · ·+ En−1(ϕ)ρ−1 + Fn(ϕ) log ρ+ En(ϕ) + o(1)

= Ê0(ϕ)ρ−n + Ê1(ϕ)ρ1−n + · · ·+ Ên−1(ϕ)ρ−1 + F̂n(ϕ) log ρ+ Ên(ϕ) + o(1).

Again, since the function f itself has a Taylor expansion in r, all polynomial terms are

mixed. However, the only log ρ term which appears when integrating with respect to r̂

comes from the r̂−1 term. Hence, we have the result.

The principal term of Fn(ϕ) is the following: since

rn+1‖T ϕ̃‖2g,hdvolg =
(〈
TAϕ̃, TAϕ̃

〉
h

+ r‖∂rϕ̃‖2h
)
dr ∧ θ ∧ dθn

+ lower order (in derivations of ϕ) terms,

we have

Fn(ϕ) = − 1

2n!

∫
M

(
n∑
k=0

(
n

k

)〈
δθ,hb ∇

ϕ∗hϕk, ϕn−k
〉
h

+ n

n−1∑
k=0

(
n− 1

k

)
〈ϕk+1, ϕn−k〉h

)
θ

∧dθn + l.o.t.

=
(−1)n+1

2n!2

∫
M

〈
(δθ,hb ∇

ϕ∗h)n−1δθ,hb Tϕ, δθ,hb Tϕ
〉
h
θ ∧ dθn + lower order terms.

Definition 4.2. Fn(ϕ) is called the renormalized energy of ϕ.

Proposition 4.3. The gradient of Fn(ϕ) is (1/2n!)Pn(ϕ), that is to say, for all ϕ̇ ∈
Γ(ϕ∗TN),

dϕFn(ϕ̇) =
1

2n!

∫
M
〈ϕ̇, Pn(ϕ)〉h θ ∧ dθ

n.

Proof. Let ϕ̇ ∈ Γ(ϕ∗TN). Let (ϕt)t∈[−1,1] be a one-parameter family in C∞(M, N) such

that {
ϕ0 = ϕ,

∂tϕt|t=0 = ϕ̇.
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Let us equip X × [−1, 1] with the metric g = g + dt2 and let ξ ∈ C∞(X × [−1, 1], N) be the

map

∀p ∈X, ∀t ∈ [−1, 1], ξ(p, t) = ϕ̃t(p).

We then have

∂t‖T ϕ̃t‖2g,h = ∂t
(
‖Tξ‖2g,h − ‖∂tξ‖2h

)
=
〈
∇g,h∂t Tξ, Tξ

〉
g,h
−
〈
∇ξ

∗h
∂t
∂tξ, ∂tξ

〉
h

=
〈
∇ξ

∗h
∂t
eIξ, eIξ

〉
h

=
〈
∇ξ∗heI

∂tξ, eIξ
〉
h

=
〈
∇ϕ̃

∗
t h
eI ∂tϕ̃t, eI ϕ̃t

〉
h

= eI
〈
∂tϕ̃t, eI ϕ̃t

〉
h
−
〈
∂tϕ̃t,∇

ϕ̃∗
t h
eI eI ϕ̃t

〉
h

;

hence,

∂tE(ϕ̃t, ρ)|t=0 =
1

2

∫
(ρ,ε)×M

(
eI
〈
∂tϕ̃t|t=0, eI ϕ̃

〉
h
−
〈
∂tϕ̃t|t=0,∇ϕ̃

∗h
eI

eI ϕ̃
〉
h

)
dvolg.

There is no log ρ term in the second part, and

1

2

∫
(ρ,ε)×M

eI
〈
∂tϕ̃t|t=0, eI ϕ̃

〉
h
dvolg =

1

2

∫
M
ρ−n 〈∂tϕ̃t|t=0, ∂ρϕ̃〉h θ ∧ dθ

n

+ lower order terms,

whose log ρ term is
1

2n!

∫
M
〈ϕ̇, Pn(ϕ)〉h θ ∧ dθ

n;

hence, we have the result.

4.2 Explicit energy in dimension 3

Here again, when n= 1, that is, dim(M) = 3, knowing the asymptotic development of g

at order 3
2 in e(0) allows for an explicit computation of the renormalized energy.

Theorem 4.4. We have

F1(ϕ) =−1

2

∫
M

(
‖δθ,hb Tϕ‖2h + ‖Rϕ‖2h − 4Im

(
τ1

1 ‖T1ϕ‖
2
h

))
θ ∧ dθ.

Proof. We have

‖T ϕ̃‖2g,h = 2 〈e0ϕ̃, e0ϕ̃〉h + 2 〈e1ϕ̃, e1ϕ̃〉h
= 2r 〈T1ϕ, T1ϕ〉h

+ r2
(
‖ϕ1‖2h + ‖Rϕ‖2h − 4Φ11 〈T1ϕ, T1ϕ〉h − 2Φ11‖T1ϕ‖

2
h − 2Φ11‖T1ϕ‖2h

)
+O(r5/2),
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and

dvolg =
(
1 + 2rΦ11 +O(r2)

)
r−3dr ∧ θ ∧ dθ.

Consequently,

r2‖T ϕ̃‖2gdvolg =
(
2
〈
T1ϕ, T1ϕ

〉
h

+ r
(
‖ϕ1‖2h + ‖Rϕ‖2h − 2Φ11‖T1ϕ‖

2
h − 2Φ11‖T1ϕ‖2h

)
+O(r3/2)

)
dr ∧ θ ∧ dθ,

and finally,

F1(ϕ) =−1

2

∫
M

(
‖ϕ1‖2h + ‖Rϕ‖2h − 4Im

(
τ1

1 ‖T1ϕ‖
2
h

))
θ ∧ dθ.

As an example, for id : (M, H, J, θ)→ (M, gJ,θ), we have

F1(id) =−1
2Vol(M, θ).

§5. Further computations in the general case

We give here a more precise computation for δg,hω and rn+1‖T ϕ̃‖2gdvolg in the general

case, using Theorem 2.4. We show that this computation does not allow for an explicit

expression of the obstruction and of the renormalized energy respectively.

5.1 Computation of the divergence

By Theorem 2.4, we have

g = g0 + ΦABθ
A ◦ θB +Oe(r

3/2),

where, denoting by Rαβ the components of the Webster Ricci tensor,

Φαβ =− 1

n+ 2

(
Rαβ −

ScalW (J, θ)

2(n+ 1)
δαβ

)
, and Φαβ =−iτβα .

By Proposition 2.6, we can equip {r} ×H with a complex structure Jr = J0 + rJ1 +

OT (r2), with

J1Tα =−2ΦαβTβ.

An orthonormal basis of T 1,0X with respect to g is given by

(e0, eα) :=
(
r∂r − irR,

(
δαβ − rΦαβ

)
r1/2Tβ − rΦαβr

1/2Tβ

)
+Oe(r

3/2).

Now, g can be rewritten as

g = (r−1θ0) ◦ (r−1θ0) + (r−1/2θα) ◦ (r−1/2θα) + rΦAB(r−1/2θA) ◦ (r−1/2θB) +Oe(r
3/2).

We have, modulo Oe(r
3/2),

[e0, e0] =
1√
2

(e0 − e0) ,

[e0, eα] =
1√
2

(
1

2
eα − rΦαβeβ − rΦαβeβ − i

(
∇̃θe0eα − τ(eα)

))
,
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[e0, eα] =
1√
2

(
1

2
eα − rΦαβeβ − rΦαβeβ − i

(
∇̃θe0eα − τ(eα)

))
,

[eα, eβ] = r3/2
(
Φαδ,β − Φβδ,α

)
eδ + r3/2 (Φαδ,β − Φβδ,α) eδ,

[eα, eβ] = r3/2
(
Φαδ,β − Φβδ,α

)
eδ − r3/2

(
Φδβ,α − Φαδ,β

)
eδ.

Hence,

∇geiei +∇geiei = r (n+ 1− 2rΦαα) ∂r

− r2
(
2Φββ,α − Φαβ,β − Φαβ,β

)
Tα

− r2
(
2Φββ,α − Φαβ,β − Φαβ,β

)
Tα +OT (r5/2),

with Φαα =−tr(Sθ) =−ScalW /2(n+ 1).

Also,

∇ϕ̃∗h
e0 ω(e0) +∇ϕ̃∗h

e0
ω(e0) = rω(∂r) + r2∇ϕ̃

∗h
∂r

ω(∂r) + r2∇ϕ̃
∗h
R ω(R) +OT (r2),

∇ϕ̃∗h
eα ω(eα) = r∇ϕ̃

∗h
Tα

ω(Tα)− r2∇ϕ̃
∗h
Tα

(
Φαβω(Tβ)

)
− r2∇ϕ̃

∗h
Tα

(
Φαβω(Tβ)

)
− r2Φαβ∇

ϕ̃∗h
Tβ

ω(Tα)− r2Φαβ∇ϕ̃
∗h
Tβ

ω(Tα) +OT (r5/2).

Coming back to the divergence, we have

δg,hω = r(n− 2rΦαα)ω(∂r)− r2∇ϕ̃
∗h
∂r

ω(∂r)− r2∇ϕ̃
∗h
R (ω(R))

− r(1− 2rΦαα)
(
∇ϕ̃

∗h
Tα

ω(Tα) +∇ϕ̃
∗h
Tα

ω(Tα)
)

+ 2r2
(
∇ϕ̃

∗h
Tβ

(
Φαβω(Tα)

)
+∇ϕ̃

∗h
Tβ

(
Φαβω(Tα)

))
+ 2r2

(
∇ϕ̃

∗h
Tα

Φαβω(Tβ) +∇ϕ̃
∗h
Tα

Φαβω(Tβ)−∇ϕ̃
∗h
Tα

Φββω(Tα)−∇ϕ̃
∗h
Tα

Φββω(Tα)
)

+OT (r2).

The term of order 2 is consequently not known, which does not allow for an explicit

computation of Pn. Note that

∇ϕ̃
∗h
Tβ

(Φαβω(Tα)) +∇ϕ̃
∗h
Tβ

(
Φαβω(Tα)

)
= 2Im

(
∇ϕ̃

∗h
Tβ

(
τβαω(Tα)

))
and that the potentially hidden r2 terms are necessarily of the form Cαr2ω(Tα) +

Dαr2ω(Tα).

5.2 Computation of the integrand of the energy

We have

‖T ϕ̃‖2g,h = 2 〈e0ϕ̃, e0ϕ̃〉h + 2 〈eαϕ̃, eαϕ̃〉h
= 2r 〈Tαϕ, Tαϕ〉h

+ r2
(
‖ϕ1‖2h + ‖Rϕ‖2h − 2Φαβ

〈
Tαϕ, Tβϕ

〉
h
− 2Φαβ 〈Tαϕ, Tβϕ〉h

−2Φαβ 〈Tαϕ, Tβϕ〉h − 2Φαβ〈Tαϕ, Tβϕ〉h
)

+O(r2),
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and

dvolg =
(
1 + 2rΦαα +O(r3/2)

)
r−n−2dr ∧ θ ∧ dθn.

Consequently,

rn+1‖T ϕ̃‖2gdvolg =
(
2
〈
Tαϕ, Tαϕ

〉
h

+ r
(
‖ϕ1‖2h + ‖Rϕ‖2h − 2Φαβ

〈
Tαϕ, Tβϕ

〉
h
− 2Φαβ

〈
Tαϕ, Tβϕ

〉
h

− 2Φαβ

〈
Tαϕ, Tβϕ

〉
h
− 2Φαβ

〈
Tαϕ, Tβϕ

〉
h

+ 4Φαα

〈
Tαϕ, Tαϕ

〉
h

)
+O(r)

)
dr ∧ θ ∧ dθn.

The term of order 1 is consequently not known, which does not allow for an explicit

computation of Fn.

§6. Relation with the Fefferman bundle in dimension 3

We describe here the correspondence between the obstruction to CR-harmonicity on a

given CR 3-manifold and the obstruction to conformal harmonicity on its Fefferman bundle.

It generalizes the Appendix B. of [CY13].

Let (M, H, J) be a compact strictly pseudoconvex CR 3-manifold and let (N, h) be a

Riemannian manifold. Let (F, gF ) be the Fefferman bundle of (M, H, J). For a detailed

construction of the Fefferman bundle, see [Far86, Lee86, Her09]. Let π : F →M be the

natural bundle projection. Let θ be a positive contact form on M and let $ be the

S1-invariant connection 1-form induced by the Weyl structure attached to θ on F . The

Fefferman metric attached to θ on F is the Lorentzian metric

gF = i$ ◦ π∗θ + 1
2π
∗γ.

By analogy with the Riemannian case [Bér13], given ϕ ∈ C∞(F, N), the obstruction to

the existence of a smooth harmonic extension of ϕ on the interior of (F, gF ) is given by

PF (ϕ) =− 1
16

(
δgF ,h∇ϕ∗hδgF ,hTϕ− δgF ,h

(
2RicgF − 2

3ScalgF
)
Tϕ+ S(δgF ,hTϕ)

)
,

where RicgF is understood as an endomorphism of TF , and RicgF Tϕ := Tϕ(RicgF (·)), and

S(X) :=

4∑
i=1

Rh
X,Tϕ(ei)

Tϕ(ei).

Proposition 6.1. For all ϕ ∈ C∞(M3, N),

π∗

(
δgF ,h∇ϕ∗hδgF ,hT (π∗ϕ)

)
= 4δθ,hb ∇

ϕ∗hδθ,hb Tϕ,

π∗

(
δgF ,h

(
2RicgF − 2

3ScalgF
)
T (π∗ϕ)

)
=−4∇ϕ

∗h
R Rϕ+ 16Im

(
∇ϕ

∗h
T1

(
τ1

1T1

))
ϕ,

and for X in TN ,

π∗ (S((π∗ϕ)∗X)) = 4Sb(ϕ
∗X).

Proof. The first and third equalities are straightforward from the expression of gF . The

second equality comes from the fact that, see [Lee86],

SchgF =−$2 − Sθ2 + 1
2SchW − 1

2γ(Jτ ·, ·) + 1
2TJ ◦ θ,
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where

T = 1
3

(
1
4dbScalW + iδτ

)
and S = δT− |SchW |2 + |τ |2.

Indeed, since ScalgF = 3ScalW and SchW = 1
4ScalWγ, we have then

2RicgF − 2
3ScalgF gF = 4SchgF − 1

3ScalgF gF

= −4$2 − 4Sθ2 − 2γ(Jτ ·, ·) + 2TJ ◦ θ − ScalW i$ ◦ θ,

which gives the second equality.

From the latter comes directly the following.

Theorem 6.2. For all ϕ ∈ C∞(M3, N),

π∗ (PF (π∗ϕ)) = 1
4P1(ϕ).

In particular, a map ϕ :M →N is CR-harmonic if and only if π∗ϕ is conformal-harmonic.
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