
J. Fluid Mech. (2021), vol. 915, A134, doi:10.1017/jfm.2021.160

Direct effects of boundary permeability on
turbulent flows: observations from an
experimental study using zero-mean-shear
turbulence
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The interaction of zero-mean-shear turbulence (generated using an oscillating grid)
with solid and permeable boundaries is studied experimentally. The influence of wall
permeability is characterised using the permeability Reynolds number, ReK , which
represents the ratio of the typical pore size in the permeable medium to a viscous length
scale. Instantaneous velocity measurements, obtained using two-dimensional particle
imaging velocimetry, are used to study the effect boundary permeability has on the
root mean square of fluctuating velocity components, the vertical flux of turbulent
kinetic energy (TKE) and conditional turbulent statistics associated with events in which
intercomponent energy transfer is concentrated. When ReK � 0.2 the boundary acts as if it
were impermeable; results indicate the interaction is dominated by the kinematic blocking
effect of the boundary on the boundary-normal TKE flux, with additional mechanisms
acting through intercomponent energy transfer. The results show these mechanisms are
inhibited as ReK increases, due to the transportation of turbulent energy into the porous
medium as the macroscopic blocking condition is relaxed, thereby reducing TKE within
the boundary-affected region and inhibiting the formation of high-pressure stagnation
events that are responsible for intercomponent energy transfer. The results illustrate how
the turbulence structure above a permeable boundary is sensitive to the blocking effect on
the boundary-normal turbulent velocity. In light of these results, we propose that further
analysis is required to establish the validity of a commonly used model of the boundary
conditions enforced at the boundary of porous media, in which a no-penetration boundary
condition on the boundary-normal velocity component is proposed.
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1. Introduction

Turbulence interacting with a boundary is a fundamental topic of interest for scientists
working within a broad range of fields. (Here we use the term ‘boundary’ to refer
to the plane separating an impermeable surface, or the surface of a porous medium,
and an adjacent layer of fluid.) As a canonical case, much research has been devoted
to understanding the interaction of a turbulent flow with a flat (smooth or rough)
impermeable surface aligned with the plane of the boundary parallel to the mean velocity
of the flow, which we refer to as turbulent channel flow. This research has yielded
significant developments in our understanding of the structure of the turbulent boundary
layer (TBL) and the mechanisms by which turbulence is produced within the TBL.
However, many natural and engineering materials are permeable, and thus the structure
of the TBL adjacent to the surface of a porous medium is also of great interest. In this
case, the canonical problem consists of turbulent channel flow in which a permeable
medium is bounded on (at least) one side by a turbulent flow. In such situations, a mean
streamwise flow exists both above the surface of the porous medium and also within
the porous medium itself. Recent studies have significantly improved our understanding
of this flow and reveal the breadth of related problems, with applications as diverse as
monitoring and improving water quality in streams and coastal regions (Manes et al. 2009;
Voermans, Ghisalberti & Ivey 2017); improving the efficiency of engineering devices used
for heat and mass transfer, such as catalytic converters and heat exchangers (Kuwata &
Suga 2017); and the design of novel surfaces for drag reduction purposes (Rosti, Brandt &
Pinelli 2018).

In this canonical problem simple well-established models (such as Darcy’s law or
Brinkman 1947) can be used to describe the bulk flow (i.e. volume-averaged flow) within
the permeable medium. The theoretical basis for these well-established models has been
extensively documented in the works of, amongst others, Whitaker, Nield, Bear and Gray
(see, for example, Hassanizadeh & Grey 1979, 1990; Whitaker 1999; Bear 2013; Nield &
Bejan 2013). However, more complex models are required to describe the flow close to the
edge of the permeable medium where there exists an ‘interface region’, above and below
the surface of the permeable medium, in which the flow characteristics depend on both
the flow in the permeable medium and in the adjoining unconfined flow (see, for example,
Bottaro 2019). Models to describe flow in the interface region have been proposed through
use of a boundary condition that describes fluid velocities in the direction of bulk flow
– the so-called ‘slip velocity’ (see, for example, Beavers & Joseph 1967; Hanh, Je &
Choi 2002). The slip velocity represents an empirical approximation of the boundary
conditions imposed by the surface of a permeable medium on the bulk flow. That is, at
the surface of a permeable medium the no-slip and no-penetration boundary conditions
are enforced along the convoluted surface of the elements that constitute the permeable
medium but are not enforced within the voids of the permeable medium, resulting in
a macroscopic relaxation of the boundary conditions. Such conditions are challenging
to model since it is typically infeasible to directly resolve the pore-scale structure of a
permeable medium in studies using computational fluid dynamics (Rosti, Cortelezzi &
Quadrio 2015).

Evidently, the flow in the interface region is influenced by the permeability of the
porous medium – this effect is characterised using the permeability Reynolds number,
defined as ReK ≡ u∗

√
K/ν, where u∗ and K denote the friction velocity and the

absolute permeability, respectively. (The absolute (or intrinsic) permeability is a parameter
characterising the permeability of a porous medium that is independent of fluid properties
(see, for example, Lage 1998). For homogeneous isotropic porous media, the absolute
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Direct effects of boundary permeability on turbulent flows

permeability K is a scalar quantity that can be related to the hydraulic conductivity kp,
which characterises the ease with which a given fluid can travel through a permeable
medium, through the expression K = μkp/(ρg), where μ, ρ and g denote dynamic
viscosity, fluid density and gravitational acceleration respectively (see, for example,
Bear 2013, p. 132).) This approach was initially introduced by Hanh et al. (2002) and
subsequently refined by Breugem, Boersma & Uittenbogaard (2006) in the context of
turbulent channel flows. Results from these studies indicate that when ReK � 1 a surface
is effectively impermeable, with flow characteristics similar to that at an impermeable
surface, as viscous sublayers over separate elements of the porous medium are thick
enough to coalesce and form a continuous viscous sublayer covering the horizontal plane
separating the porous medium and fluid above (Breugem et al. 2006). When ReK � 1, a
surface is highly permeable, and viscous effects are of minor importance (Breugem et al.
2006) such that turbulent eddies may be able to penetrate the permeable boundary (Manes
et al. 2009). Therefore, depending upon the flow conditions, behaviour at a permeable
surface can be thought of as intermediate between the limits of a solid surface and
unconfined flow.

Recent channel flow studies (for example Breugem et al. 2006; Suga et al. 2010; Rosti
et al. 2015; Kuwata & Suga 2017; Voermans et al. 2017; Kim et al. 2020) are beginning to
reveal a more complete picture of the changes in boundary layer structure that occur within
the interface region. The relaxation of the no-slip and no-penetration boundary conditions
on the horizontal plane separating the surface of the porous layer and the fluid above may
give rise to the development of Reynolds shear stress close to the surface of the porous
medium. This observation is associated with an increase in the wall-normal Reynolds
stress despite there being a reduction in the peak of streamwise Reynolds stress. The
development of the Reynolds shear stress close the boundary is of particular importance as
it gives rise to an increase in surface shear stress or skin friction of the boundary (Breugem
et al. 2006; Manes et al. 2009; Yokojima 2011; Kuwata & Suga 2016).

The development of Reynolds shear stress close to the boundary is thought to be
related to the presence of vortical structures that originate from Kelvin–Helmholtz-type
instabilities (Breugem et al. 2006; Manes, Poggi & Ridolfi 2011; Kuwata & Suga 2017;
Efstathiou & Luhar 2018; Rosti et al. 2018). This instability arises as a result of the
development of an inflection in the mean velocity profile close to the boundary. The
presence of these vortical structures is part of a wider change in structure and dynamics
in the boundary layer; quasi-streamwise vortices (such as hairpin vortices) and high- and
low-speed streaks typically observed in a TBL above an impermeable surface have been
reported to be weakened, or to not form at all, above a permeable boundary (Hanh et al.
2002; Breugem et al. 2006; Suga, Mori & Kaneda 2011; Yokojima 2011; Rosti et al.
2015; Suga, Nakagawa & Kaneda 2017). As a means of explanation, it has been noted
that a strong mean velocity gradient (strong mean shear) is required for the existence
of the high- and low-speed streak structures and this condition is not satisfied above
highly permeable boundaries due to the relaxation of the no-slip condition (Breugem
et al. 2006). In addition, because of the weakening of the wall-blocking effect, strong
wall-normal velocities are present near the permeable surface and this also prevents the
development of elongated streaky structures (Breugem et al. 2006). Furthermore, it has
been proposed that strong wallward motions (sweeps) are able to penetrate a porous
medium (Pokrajac & Manes 2009), within which their kinetic energy is dissipated such
that the corresponding ejections (to balance the mass flux) are emitted with reduced
kinetic energy (Suga et al. 2011). The intensity of these upwelling and downwelling
events is further influenced by the passage of large-scale motions in the unconfined flow
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above the permeable medium. Energetic downflow events (sweeps) are associated with
large-scale regions of high streamwise momentum in the unconfined flow, whilst upflow
events (ejections) are associated with large-scale regions of low streamwise momentum in
the unconfined flow (Kim et al. 2020).

Measurements of terms of the transport equations of turbulent kinetic energy (TKE) and
the Reynolds stress tensor provide further insight and indicate that the transport of TKE
towards the boundary is a dominant effect close to the boundary (see for example Breugem
et al. 2006; Yokojima 2011; Kuwata & Suga 2016). In particular, transport by pressure
fluctuations allows TKE to be transported much deeper within a permeable medium than
by turbulent transport, which is limited to a thin interface region of the porous medium
(Breugem et al. 2006; Manes et al. 2009; Kuwata & Suga 2016). The increased transport by
pressure fluctuations has been attributed to the intensification of pressure fluctuations by
the Kelvin–Helmholtz instability and the weakening of the wall-blocking effect (Breugem
et al. 2006; Kuwata & Suga 2016). The intensification of pressure fluctuations also gives
rise to an increase in the intercomponent energy transfer that occurs close to the surface of
the porous medium (Breugem et al. 2006; Kuwata & Suga 2016).

In summary, in a turbulent channel flow, the differences between the structure of
the TBL adjacent to the surface of a porous medium and an impermeable medium are
principally attributed to two physical processes: (i) penetration of turbulent eddies into the
porous media as a result of a relaxation of the macroscopic no-slip and no-penetration
boundary conditions; (ii) a reduction in mean shear close to the boundary due to flow
occurring within the permeable medium itself, which gives rise to an inflection in the
mean velocity profile and an associated Kelvin–Helmholtz-type instability. Thus, aspects
of the dynamics governing the structure of the flow that forms in a permeable channel are
relatively well understood.

However, results obtained through studying this canonical problem do not provide
physical insight into the dynamics governing the interaction of the surface of a porous
medium with a wide range of other turbulent flows. That is, in a permeable channel
flow the influence of the porous medium acts on turbulence both (i) directly, through
the action of the no-slip and no-penetration boundary conditions (on the surfaces of
the solid elements that comprise the porous medium) on turbulent fluctuations, and (ii)
indirectly, through the production of TKE by maintaining mean velocity gradients in the
interface region. Consequently, it is very difficult to use the results obtained from this
canonical problem to develop a general framework for understanding the interaction of
turbulent flows with porous media since, in these flows, it is impossible to distinguish
the direct effects of boundary permeability on turbulent fluctuations from the indirect
effects described above. This limitation necessitates the study of a much broader range of
turbulent flows interacting with porous media, in order to develop a more comprehensive
understanding of this phenomenon.

Of course, there already exists a body of literature investigating the interaction of
different types of turbulent flows with the surface of a porous medium; examples include
permeable pipes (Wagner & Friedrich 1998, 2000) and the impact of a jet on a surface
or screen (Cant, Castro & Walklate 2002; Webb & Castro 2006; Musta & Krueger 2015).
However, these studies still suffer from the same fundamental limitation as the permeable
channel flow; in these flows it is impossible to distinguish the direct effects of boundary
permeability on the turbulent fluctuations from the indirect effects associated with TKE
production and therefore it is difficult to apply the results in contexts different from the
specific flow considered. Instead, what is needed is a means of separating the direct
and indirect effects of a porous surface on turbulent fluctuations; we believe a detailed
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understanding of the direct effects of boundary permeability on turbulent fluctuations is
necessary to fully understand the dynamics governing a wide range of turbulent flows
interacting with porous media.

One can isolate the direct effects of the surface of a porous medium on turbulent
fluctuations by studying a turbulent flow in which there is negligible mean shear at the
surface. That is, in a ‘zero-mean-shear’ turbulent flow, the presence of the permeable
surface acts directly on the turbulent fluctuations through the action of the no-slip and
no-penetration boundary conditions, but does not generate indirect effects on the turbulent
fluctuations such as the production of TKE. It should also be noted that, in addition to
their use in deriving new insight into physical processes, zero-mean-shear flows also serve
as realistic idealisations of some engineered flows. For example, flows that exhibit large
turbulent fluctuations, with only small mean-flow velocities, interacting with porous media
can be found in cleaning and decontamination processes (Connolly, Armstrong & Miksad
1983; Valsaraj et al. 1997; Orlins & Gulliver 2003; Masaló et al. 2008).

Currently, the effects of permeability in the interaction of a zero-mean-shear turbulent
flow with a surface are unknown; studies of the interaction of zero-mean-shear turbulence
with a surface in which the applied boundary conditions are consistent with a real
permeable boundary are, as far as we are aware, unprecedented. In the most closely related
available study, the effects of a ‘perfectly permeable boundary’ on initially homogeneous
isotropic zero-mean-shear turbulence were analysed using direct numerical simulation
(Perot & Moin 1995). Note that, at a ‘perfectly permeable boundary’, the no-slip condition
is enforced at the boundary but the no-penetration condition is not enforced. Perot & Moin
(1995) found that both boundary-tangential and boundary-normal Reynolds stresses were
monotonically reduced by the boundary despite the absence of a blocking condition on the
boundary-normal velocity component. The reduction in boundary-normal Reynolds stress
was reported to be a result of intercomponent energy transfer from the boundary-normal
Reynolds stress to the boundary-tangential Reynolds stresses, which Perot & Moin (1995)
attributed to a viscous dissipative mechanism (i.e. as at an impermeable boundary).
The energy lost close to the boundary from the boundary-normal Reynolds stress
(through the pressure-strain term) was reported to be replenished with turbulent energy
from regions further from the wall by turbulent transport and pressure transport (Perot
& Moin 1995). Aspects of these results exhibit similarities to studies investigating
permeable channel flows, however, the nature of the applied boundary conditions
render the results of Perot & Moin (1995) hard to interpret for a natural permeable
material.

In this study, we report results from experiments using oscillating-grid turbulence to
explore the interaction of turbulence with both solid and permeable boundaries under
conditions in which the flow is dominated by turbulent fluctuations, with only small
mean-flow velocities, thereby closely approximating zero-mean-shear conditions at the
boundaries. In § 2 we describe the experimental set-up and define a permeability Reynolds
number ReK suitable for use in zero-mean-shear turbulence. In § 3 we present experimental
results that describe how the turbulent velocity components are affected by the solid and
permeable boundaries, including measurements of the root mean square (r.m.s.) velocity
components, vertical flux of TKE and mean dynamic pressure gradient, which provide
evidence of the mechanisms governing the interaction. In § 4 we present results of a
statistical analysis of blocked eddy motions in the interface region, which provide further
evidence of the governing mechanisms. The interpretation of these results in the context
of models used to describe flow in the interface region is discussed in § 5. Conclusions are
made in § 6.
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2. Experiments

2.1. Apparatus
A schematic view of the experimental set-up is shown in figure 1. The experiments were
conducted in a transparent acrylic box with internal dimensions 35.2 cm × 35.2 cm ×
48 cm (henceforth denoted the ‘outer box’, see figure 1a), which was filled with a
salt-water solution of uniform density ρ = 1.028 g cm−3. A grid made of stainless steel,
consisting of an array of 7 × 7 bars with square cross-section of 1 cm width and mesh
spacing M = 5 cm (i.e. solidity 36.4 %), was suspended inside the outer box with its plane
horizontal. The edge conditions for the grid were chosen such that the tank walls were
planes of symmetry, as shown in figure 1(b). The grid was attached to the base of a stainless
steel drive shaft (of 1 cm diameter) and was oscillated vertically with constant frequency
f and stroke S (see figure 1a). Here, the stoke S is defined as equal to the amplitude of
the grid’s motion. An open-ended inner box, constructed from 0.5 cm thick transparent
acrylic, with internal dimensions 24.5 cm × 24.5 cm × 26.5 cm, was fixed centrally on
plan at the base of the tank. We will henceforth let 2L = 24.5 cm denote the internal
width of the inner box. The grid was positioned so that when at the bottom of its stroke it
was 1 cm above the top of the inner box. The vertical walls of the inner box were located
equidistant between the outermost and second-outermost bars of the grid, as shown in
figure 1(b). The use of an inner box of this design has been shown to systematically reduce
the mean flow present within the turbulence produced (McCorquodale & Munro 2018b).

Two different porous media were used for this study, in addition to a solid impermeable
surface. The impermeable surface was formed by inserting a solid acrylic plate into the
inner box at a depth H ≈ 4.2M below the grid’s mean position (see figure 1a). A tight fit
was ensured between the plate and the inner box by use of thin neoprene seals, set into
the perimeter of the plate. The porous media were comprised of 2.5 cm thick sheets of
reticulated polyether foam that were inserted into the inner box, parallel to the grid, and
overlaid up to a total thickness of 10 cm. This ensured that the thickness of the permeable
layers did not restrict the depth of flow penetration. The surface of the porous medium was
also located at a depth H ≈ 4.2M below the grid’s mean position.

Reticulated polyether foams have a regular structure comprising open cells that are
pentagonal dodecahedra in shape (see, for example, Szycher 2012; Defonseka 2019).
During the manufacturing process the thin membranes that initially form the faces of each
cell are removed, such that the foams consist of a network of interconnected thin filaments.
Consequently, reticulated polyether foams are 97 % voids by volume (i.e. porosity of
97 %) (Szycher 2012; Defonseka 2019). The size of cells formed can be carefully
controlled during the manufacturing process, thus foams are available over a wide range of
permeabilities. For this study two foams of different permeabilities were used, which are
shown in figure 1(c,d). The geometry of these permeable media are ideal for studying the
effects of permeability on wall turbulence as the high porosity and small filament thickness
of the foams minimises the influence of the roughness of the interface between the porous
layer and the fluid above. Consequently, reticulated polyether foams have also been used
in previous studies investigating permeable boundaries (see, for example, Manes et al.
2011; Mujal-Colilles, Dalziel & Bateman 2015). The absolute permeability, K, of each
foam used is shown in table 1, which was determined using a constant head permeameter
test (British Standards Institution 2010) in which the permeability was determined from
measurements of the pressure drop across a sample at a given (constant) volume flow rate.
Lower and upper bounds for the size of the dodecahedral cells, lcell, present in each porous
medium, are also shown in table 1, which were provided by the manufacturer (Reticel,
private communication). Cell sizes were determined using the Visiocell method (see, for
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H
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 4.
2M
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Lid

2S x1

x2

x1x3
Grid

35.2 cm

ξ

Figure 1. (a,b) Sketches showing the key components of the experimental set-up, including the positioning of
the horizontal grid, the porous layer and the inner and outer boxes; (a) shows a sides view and (b) shows a
plan view. Also shown are the coordinate directions (x1, x2, x3), and the vertical distance from the permeable
boundary, denoted ξ = H − x3. The permeable media used are shown in (c,d); 60 pores per inch (PPI) and 10
PPI foams are shown, respectively. Each permeable medium is shown at the same scale (a reference scale is
provided in (d) which applies to both images).

example, Mullens, Luyten & Zeschky 2006, p. 236). Commercially, reticulated polyether
foams are typically characterised by the mean number of pores present in a linear inch
(PPI) of the permeable matrix; for this study 10 PPI and 60 PPI foams were used. We stress
that this measure is poorly defined, since it is unclear whether in this context ‘pore’ refers
to the dodecahedral cells of the foam or the component faces of the cells. Consequently,
this measure is used here only in a descriptive context in order to facilitate identification of
similar foams used in previous studies. To ensure the foams were fully saturated when in
use, each foam was submerged in a beaker of tap water and placed in a vacuum chamber to
reduce the ambient pressure to approximately −0.9 bar (gauge pressure), which deaerated
the water and foam. The foams were thereafter kept submerged to prevent aeration of the
foams.

For each boundary considered, we report results from 5 sets of experiments in which the
stroke S was set to be either 2.5 cm or 3.0 cm and the frequency of the grid’s oscillation
f was varied between 1.6 and 5.4 Hz. The corresponding grid Reynolds numbers for
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Medium used kp (m s−1) K (m2)×10−8 lcell (mm) ReK

Impermeable plate 0 0 0 0
60 PPI foam 0.0997 (0.0951, 0.107) 1.07 (1.02, 1.15) 0.62–0.86 0.04, 0.06, 0.08, 0.09, 0.10
10 PPI foam 1.6 (1.3, 2.1) 17 (14, 22) 3.4–5.6 0.14, 0.23, 0.30, 0.34, 0.38

Table 1. A summary of hydraulic conductivity, kp, and absolute permeability, K, results obtained from
permeability testing of the reticulated polyether foams. Lower and upper bounds of these estimates are shown
in brackets. Also shown are lower and upper bounds for the size of the cells of the porous media, lcell. Values
of the permeability Reynolds number ReK used are also shown, which correspond to experiments conducted at
the respective grid Reynolds numbers of ReG ≡ MSf /ν ≈ 2020, 4220, 5260, 6480 and 8100.

these five experiments were ReG ≡ MSf /ν ≈ 2020, 4220, 5260, 6480 and 8100. For
each experimental condition, the experiments were repeated, under nominally identical
conditions, a total of 5 times; this approach facilitates the use of ensemble averages
to reduce scatter in the data. We note that we have also re-used measurements from
previous experiments that investigated the interaction of oscillating-grid turbulence with
an impermeable surface (McCorquodale & Munro 2018a), but we focus here on reporting
new data that illustrate the effects of boundary permeability on the interaction.

2.2. Measurements and notation
In each experiment, two-dimensional two-component particle image velocimetry (PIV),
applied to the vertical plane through the centre of the grid, as shown in figure 1(b), was
used to acquire measurements of instantaneous fluid velocities in the region inside the
inner box spanned by the grid and the permeable medium. The flow was seeded with
neutrally buoyant tracer particles (Pliolite with diameter range 75–125 µm), which were
illuminated within a thin light sheet produced by a pulsed laser. Images of illuminated
particles were recorded at 100 frames per second (at 1280 × 1024 pixel resolution)
using a high-speed digital camera aligned perpendicular to the plane of the light sheet.
PIV calculations were performed using square interrogation windows of 13 × 13 pixels,
overlapped to achieve 8 pixel spacing between velocity vectors, resulting in a physical
spacing between velocity vectors of approximately 0.16 cm. We note that the parameters
used for the PIV were chosen to conform with the guidelines recommended by Keane &
Adrian (1990).

The velocity data were calculated and analysed relative to the right-handed coordinate
system (x1, x2, x3); here, x3 denotes vertical depth below the mid-height of the grid’s
oscillation, and (x1, x2) are the horizontal coordinates relative to the centre of the grid
(see figure 1). The corresponding velocity components are denoted (u1, u2, u3); the
two components measured using the PIV set-up described above are u1(x1, x3, t) and
u3(x1, x3, t), in the central plane at x2 = 0. We also introduce the coordinate ξ = H − x3
to denote vertical height above the permeable boundary (see figure 1a). This coordinate is
used only for convenience when plotting and comparing data; we stress that all velocities
(and derivatives of velocities) were calculated in terms of the right-handed coordinates
(x1, x2, x3). Sufficiently far beneath the grid (see § 2.3), oscillating-grid turbulence (OGT)
is statistically stationary and so the statistical properties of the flow in this region were
analysed using time averages. We use the conventional Reynolds decomposition ui = Ui +
u′

i, where u′
i(x, t) denote the fluctuating components and Ui(x) = ui the time-averaged

mean components (the overbar notation is used throughout to denote time averaging).
In each experiment velocity data were captured for a period of 240 s; analysis of the
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data showed that the time-averaged mean and r.m.s. of fluctuating velocity components
were converged to within approximately 5 % of their ultimate values over this time period
(McCorquodale & Munro 2018a,b).

Alongside measurement errors, the relatively slow convergence of the experimental data
results in not-insignificant experimental uncertainty. However, we stress that the ensemble
of 5 repeat tests for each experiment that we report provides an estimate of uncertainty
within the data. In the analysis presented in §§ 3 and 4 the experimental uncertainty is
indicated by error bars. (A single representative set of error bars is shown in each figure to
prevent the plots from becoming cluttered.) These error bars illustrate that the uncertainty
in the experimental measurements is small in the context of permeability effects that we
identify.

Finally, we note that the estimates of uncertainty described above do not include the
influence of sampling errors arising from the limited resolution of the PIV data. That
is, within the region of the flow for which velocity measurements were obtained (i.e. for
x3 � 2.5M), the Kolmogorov length scale η was estimated to be of the order η ∼ 0.05 cm,
which is finer than the physical spacing between velocity vectors computed by the PIV
calculations (approximately 0.16 cm). (The Kolmogorov length scale was estimated using

the relation η = ν3/4ε−1/4 under the assumption that, in OGT, ε ≈ 0.75(u′2
1 )3/2/�̄ for x3 �

2.5M (Kit, Strang & Fernando 1997).) Thus, the resolution used for PIV calculations was
coarser than the smallest turbulent scales within the flow, such that velocity averaging
occurred across interrogation windows and some turbulent fluctuations were unresolved.
Consequently, the full energy content of the turbulent flow was not determined by the
analysis. However, we stress that the range in scales of turbulent fluctuations that were
under-resolved in the current analysis is very small in the context of the size of the integral
scales of the turbulent flow (which are of the order 2 cm in size, see § 3). The implications
of the limited resolution of the velocity measurements for the analysis presented in §§ 3
and 4 is discussed within these sections.

2.3. Description of the flow produced
Close to the oscillating grid, henceforth referred to as the ‘near-grid region’, jets form
in the wake of the grid elements resulting in a flow field characterised by the presence
of energetic, mesh-sized coherent vortex structures that interact and breakdown as they
are advected away from the grid. This coherent flow structure breaks down within a
distance of 2.5 mesh lengths from the grid (i.e. for x3 � 2.5M) (see, for example,
McCorquodale & Munro 2018b). Within the near-grid region the oscillation of the grid
directly influences the structure of the flow on a time scale of the order 1/f . However,
under ideal conditions, the turbulent flow beyond this region, which we henceforth refer
to as the ‘turbulent-diffusive region’, is statistically stationary, homogeneous and isotropic
in planes parallel to the grid, with negligible mean flow (De Silva & Fernando 1994).
Moreover, velocity measurements in this region do not indicate the presence of periodic
signatures relating to the grid forcing (McCorquodale & Munro 2017). The turbulence
is, however, inhomogeneous in planes normal to the grid; the r.m.s. turbulent velocity
components u and w (where w ≡ (u′

3u′
3)

1/2, u ≡ (u′
1u′

1)
1/2) decay with increasing distance

normal to the grid. The presence of the impermeable plate or porous layer inserted above
the base of the acrylic box also results in a boundary-affected region of the flow, which we
define as the thin layer of height δs above the boundary over which the degree of isotropy
w/u departs from a value of 1 and decreases as the boundary is approached. McCorquodale
& Munro (2017) reported that with the current apparatus δs is of the order of the integral
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length scale of the turbulence when the boundary is impermeable. The results reported
here for permeable media are consistent with this observation (see § 3.1).

Under the idealised conditions assumed to occur beyond the near-grid region of the flow,
the steady form of the Reynolds stress transport equations may be written as

0 = − ∂

∂xk
u′

iu
′
ju

′
k︸ ︷︷ ︸

Tij

− 1
ρ

(
∂

∂xi
p′u′

j + ∂

∂xj
p′u′

i

)
︸ ︷︷ ︸

Πd
ij

+ 1
ρ

p′
(

∂u′
j

∂xi
+ ∂u′

i
∂xj

)
︸ ︷︷ ︸

Π s
ij

+ ν
∂2u′

iu
′
j

∂xk∂xk︸ ︷︷ ︸
Dij

−2ν
∂u′

i
∂xk

∂u′
j

∂xk︸ ︷︷ ︸
εij

.

(2.1)

The terms Tij and Πd
ij denote, respectively, transport by velocity and pressure fluctuations;

Π s
ij is the inter-component energy redistribution due to the correlation between fluctuating

strain and pressure fields; Dij and εij denote viscous diffusion and viscous dissipation.
We stress that since the turbulence is approximately homogeneous on horizontal planes
then u′

iu
′
j ≈ 0 for i /= j. Hence, a comprehensive understanding of the flow follows from

considering terms of the transport equations for the Reynolds stresses u′
1u′

1, u′
2u′

2 and u′
3u′

3
(i.e. u2, v2 and w2), and the transport equation for TKE, which is obtained from the trace
of (2.1) noting that u′

iu
′
i/2 = q′2 denotes the TKE.

From (2.1) it follows that the TKE transport equation may be written as

0 = −1
2

∂

∂xk
u′

iu
′
iu

′
k︸ ︷︷ ︸

Tii

− 1
ρ

∂

∂xi
p′u′

i︸ ︷︷ ︸
Πd

ii

+ ν

2
∂2u′

iu
′
i

∂xk∂xk︸ ︷︷ ︸
Dii

−ν
∂u′

i
∂xk

∂u′
i

∂xk︸ ︷︷ ︸
εii

, (2.2)

but by noting that turbulence is homogeneous in the x1–x2 plane, parallel to the grid, such
that turbulence statistics only vary in the x3 direction, the TKE budget can be simplified to

0 = − d
dx3

(
p′u′

3
ρ

+ u′
3q′2 + ν

d
dx3

q′2
)

+ ε. (2.3)

Outside the boundary-affected region the viscous transport term can be assumed to be
negligible, since the transfer process is predominantly inertial in high Reynolds number
flows, and thus in the turbulent-diffusive region the flow is governed by a balance of the
viscous dissipation of TKE and the transport of TKE by velocity and pressure fluctuations.

By parametrising the leading-order terms of (2.3), Thompson & Turner (1975) and
Hopfinger & Toly (1976) were able to obtain an expression describing the spatial decay of
the r.m.s. velocity components u and w with increasing distance normal to the grid, valid
within the turbulent-diffusive region. The resulting expression has since been validated
empirically and flow in the turbulent-diffusive region is commonly described by the
standard model

u = C1Sf
( x3

M1/2S1/2

)−γ

, (2.4a)

w = C2u, (2.4b)

with γ ≈ 0.8–1.5, C1 ≈ 0.2–0.5 and C2 ≈ 1.1–1.4 (Thompson & Turner 1975; Hopfinger
& Toly 1976; McDougall 1979; Hopfinger & Linden 1982; Atkinson, Damiani & Harleman
1987; Nokes 1988; De Silva & Fernando 1994; Kit et al. 1997).
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Direct effects of boundary permeability on turbulent flows

Simple expressions can also be obtained to describe how the time-averaged
mean dynamic pressure, denoted P, should vary within the turbulent-diffusive and
boundary-affected regions of the flow. That is, rearranging the steady mean-flow
momentum equations, and omitting the body force term for gravitational acceleration since
we concerned with the dynamic pressure, gives

∂P
∂xi

= −ρUj
∂Ui

∂xj
− ρ

∂(u′
iu

′
j)

∂xj
+ μ

∂2Ui

∂xj∂xj
, (2.5)

where μ denotes dynamic viscosity. Under ideal conditions (i.e. negligible mean flow, with
turbulence that is homogeneous in the x1–x2 plane, parallel to the grid), these equations
simplify to

∂P
∂x3

= −ρ
∂(u′

3u′
3)

∂x3
= −ρ

∂w2

∂x3
and

∂P
∂xi

= 0, i = 1, 2. (2.6a,b)

Hence, in light of (2.4), within the turbulent-diffusive region we expect the mean dynamic
pressure to increase with depth beneath the grid, but at a rate that decays with increasing
x3.

In practice, minor differences in the flow produced by OGT apparatus are found
to occur relative to the idealised flow described above. In particular, OGT apparatus
are known to exhibit secondary circulations (see, for example, McKenna & McGillis
2004), which give rise to small mean flow velocities within the turbulent-diffusive and
boundary-affected regions of the flow. We stress that the OGT apparatus used in this study
has been specifically designed to conform with experimental conditions that have been
found to minimise the magnitude of the mean-flow velocities within the turbulent-diffusive
and boundary-affected regions of the flow (Hopfinger & Toly 1976; McDougall 1979;
Fernando & De Silva 1993; McCorquodale & Munro 2018b). Consequently, previous
studies using the same apparatus (McCorquodale & Munro 2017, 2018b) indicate that
within the turbulent-diffusive and boundary-affected region of the flow the turbulent
velocity components are of comparable or greater magnitude than mean-flow velocity
components. Moreover, having acquired measurements of terms in the transport equation
for TKE representing the transport and production due to the mean flow, McCorquodale &
Munro (2017) concluded that although the presence of a mean flow indicates the presence
of mean shear in the boundary-affected region – such that the turbulence is not strictly
zero mean shear – the levels are sufficiently small in magnitude to allow meaningful
comparisons to be made with zero-mean-shear conditions. McCorquodale & Munro (2017,
2018b) also showed that anisotropic regions exist adjacent to the tank sidewalls, but that
the flow in the turbulent-diffusive region is approximately homogeneous on the x1–x2
plane, parallel to the grid, over a central region of the inner tank (i.e. for |x1/L| ≤ 1/2).
Hence, throughout this paper, our attention is focused on the central region |x1/L| ≤ 1/2
and the sidewall anisotropic regions are ignored in the calculation of turbulent statistics.
The notation 〈·〉1 is henceforth used to denote quantities that have been spatially averaged,
in the x1 direction, over this region.

For each experiment reported here, data describing the statistical structure of the mean
and turbulent components of the flow above the boundary-affected region were in good
agreement with the above description of the flow. (We note that representative results
describing the structure of the flow produced by the apparatus have also been reported
previously by McCorquodale & Munro (2017) and McCorquodale & Munro (2018b).)
Consequently, here we focus on reporting results within the boundary-affected region
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of the flow, which, recall, we define as the thin layer of height δs above the permeable
boundary over which the degree of isotropy w/u departs from a value of 1 and decreases
as the boundary is approached.

2.4. Permeability Reynolds number
Throughout this paper, the effects of boundary permeability are characterised using the
permeability Reynolds number ReK , which is a measure of the inhibiting effects of viscous
forces at a permeable boundary. Physically, ReK can be interpreted as the ratio of the
typical pore size in a permeable matrix, which scales with the square root of the absolute
permeability

√
K (see for example Katz & Thompson 1986), to the typical viscous sublayer

thickness δv over the surface of the elements that constitute the permeable medium. (The
viscous sublayer at the surface of a porous medium retains the same interpretation as
the viscous sublayer at an impermeable boundary; the viscous sublayer is the region
of flow adjacent to the surface(s) of an impermeable boundary or a porous medium in
which viscous stresses predominate over turbulent stresses.) In a channel flow, the viscous
sublayer scales with ν/u∗, such that (Breugem et al. 2006)

ReK ≡ u∗
√

K
ν

, (2.7)

where u∗ denotes the friction velocity.
However, an alternative expression for the viscous sublayer thickness is required for the

current problem in which zero-mean-shear turbulence interacts with a boundary (u∗ is
undefined in the current flow). In studying the interaction of an initially isotropic turbulent
flow with an impermeable surface that moves at the free-stream velocity of the turbulent
flow, such that there is zero mean shear in the boundary-affected region of the flow, Hunt
& Graham (1978) proposed that the viscous sublayer thickness δv over the impermeable
boundary scaled as

δv ∝ [ν�/uδ]1/2, (2.8)

where � denotes the integral length scale of the turbulence outside the boundary-affected
region and uδ = (u′

1u′
1)

1/2 at ξ = δs. Since these terms are defined at the edge of the
boundary-affected region, these definitions preclude any effects on the flow relating to the
modifying effects of the boundary. In addition, in turbulence that is otherwise isotropic
outside the boundary-affected region u′

1u′
1 = u′

2u′
2 = u′

3u′
3 so that each velocity component

can be used interchangeably for this characteristic value of uδ . Hunt (1984) subsequently
asserted the validity of this expression for the flow considered in this study, in which
statistically steady turbulence interacts with a surface in the absence of mean shear. That
is, in the current flow, δv is estimated to be smaller than the integral length scale �, which
scales with the thickness of the boundary-affected region, by a factor equal to the square
root of the turbulent Reynolds number, i.e. δv/δs ∝ δv/� ∝ Re−1/2 where Re ≡ uδ�/ν.
Equation (2.8) gives rise to a permeability Reynolds number defined as

ReK ≡
√

uδK
ν�

. (2.9)

The values of ReK for each experimental condition, evaluated using (2.9), are shown in
table 1.

We note that although previous studies using OGT have reported measurements of the
viscous sublayer thickness of the order given by (2.8) (Brumley & Jirka 1987; Kit et al.
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Direct effects of boundary permeability on turbulent flows

1997), here, the corresponding measurements did not obey the implied Re−1/2 scaling.
That is, (2.8) predicts values of δv of the correct order of magnitude, but the measurements
of δv did not exhibit any consistent Reynolds number scaling. We attribute this result to the
small Reynolds number range considered and uncertainty in the methods used to define
the edge of the viscous sublayer.

3. Statistical structure of turbulence in the boundary-affected region

In this section we present experimental results to show how boundary permeability
affected measurements of the r.m.s. velocity components, vertical flux of TKE and mean
dynamic pressure gradient, which provide evidence of the mechanisms governing the
interaction. We note that, since we were unable to fully resolve the dissipative scales
within the flow (see § 2.1), this may lead to a slight underestimate of the total energy
content within the flow. However, we stress that in this section we are primarily concerned
with the effect of the boundary on the (well-resolved) large scales within the flow, such
that this limitation does not alter the conclusions drawn.

3.1. Thickness of the boundary-affected region
In § 2 we defined the boundary-affected region as a thin layer, of thickness δs, directly
above the boundary over which the degree of isotropy 〈w〉1/〈u〉1 departs from its value of
approximately 1 away from the boundary, and decreases as the boundary is approached.
At this point it is instructive to define a reference value �0 of the (time-averaged) integral
length scale �̄; previous research indicates that δs scales with the integral length scale of
the turbulence (Perot & Moin 1995).

Estimates for the integral length scales were obtained from the velocity measurements
by computation of autocorrelation coefficients, using the approach previously described by
Kit et al. (1997) and McCorquodale & Munro (2017). That is, the integral length scale � is
defined as the integral of the autocorrelation function of u′

1(x1, x3, t), over the spatial lag
up to which the autocorrelation function first crosses zero; time-averaged integral length
scales are denoted �̄. The computed values of �̄ are shown in figure 2(a), plotted against
height, ξ , above the boundary. Figure 2(a) shows that �̄ exhibits a notable degree of scatter,
but for ξ � 3 cm the data are relatively constant, taking values typically between 2 and 2.3
cm. For heights ξ < 3 cm the values of �̄ increase slightly, before rapidly reducing at ξ ≈

0.75 cm. Figure 2(a) also shows that slightly larger values of �̄ are obtained for experiments
conducted at the larger values of ReG considered. No link between the values of �̄ and
permeability Reynolds number ReK was identified. In order to facilitate comparison with
previous work (McCorquodale & Munro 2017, 2018a), we define the reference integral
length scale �0 to be the peak value attained by �̄ in the near-boundary region.

Turning now to estimates of the thickness of the boundary-affected region, measured
values of the degree of isotropy 〈w〉1/〈u〉1 are shown in figure 2(b), plotted against scaled
height ξ/�0. Figure 2(b) shows a rapid increase in anisotropy occurs at ξ/�0 ≈ 1 as the
boundary is approached, departing from the far-field trend 〈w〉1/〈u〉1 ≈ 1. No link has
been identified with either ReG or ReK and the point at which this departure from the
far-field trend occurs. We therefore conclude that the boundary-affected region extends up
to δs/�0 ≈ ξ/�0 ≈ 1 across the entire ReK range considered.

However, we note that the data in figure 2(b) show the degree of anisotropy over the
region ξ/�0 � 0.5 is affected by the boundary permeability ReK . That is, increasing
ReK reduces the observed anisotropy. In figure 2(b), results for ReK � 0.2 collapse, to
within experimental uncertainty, onto the data obtained for ReK ≈ 0, but there is a distinct
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(a)

0
1.0 1.5 2.0

�
–
(cm)

ξ 
(c
m
)

2.5 3.0

2

4

6

8
ReG = 2020
ReG = 4220
ReG = 5260
ReG = 6480
ReG = 8100

(b)

0

0.5

1.0

1.5

2.0

2.5

0.25 0.50 0.75 1.00 1.25

ξ 
/�

0

ReK ≤ 0.20
ReK ≈ 0.23
ReK ≈ 0.30
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〈w〉1/〈u〉1
Figure 2. (a) Computed values of the time-averaged integral length scale, �̄, plotted against height ξ . (b)
Measurements of the degree of isotropy 〈w〉1/〈u〉1, plotted against normalised height ξ/�0. In both plots a single
data set is shown for each experimental condition reported in table 1, which is an average of the measurements
obtained across the n = 5 repeats conducted for each condition. In (a), data obtained at different ReG are shown
separately by line colour (see legend), whilst the type of boundary in use is shown by the line type; ‘–’, ‘- -’ and
‘- · -’ denote an impermeable surface, 60 PPI porous layer and 10 PPI porous layer, respectively. In (b), data at
different ReK are shown separately, irrespective of ReG (see legend). Also shown are representative error bars,
corresponding to the standard error across the n = 5 repeats; error bars are shown for the cases ReG ≈ 8100
and ReK ≈ 0.30 in (a,b) respectively.

departure from this trend for ReK � 0.2. This indicates that for ReK � 0.2 the boundary
is effectively impermeable and the no-penetration and viscous boundary conditions are,
at least approximately, enforced. In contrast, for ReK � 0.2 boundary permeability has a
contributing effect to the turbulence structure in the boundary-affected region.

3.2. Root-mean-square velocity data and turbulent kinetic energy
Here, we consider the r.m.s. of fluctuating velocity components in more detail in order
to explain how boundary permeability influences the degree of isotropy within the
boundary-affected region. The effect of the boundary on the r.m.s. turbulent velocity
components is shown in figure 3(a,b). The data have been normalised using values of the
r.m.s. turbulent velocity components that we would expect in the absence of the boundary.
That is, values of u and w that would be expected in the absence of the boundary, which
we denote u0 and w0, were determined by applying a best fit of the form given by (2.4) to
measurements of 〈u〉1 and 〈w〉1 in the turbulent-diffusive region of the flow (i.e. ξ > �0)
and extrapolating the best fit to the boundary-affected region of the flow (i.e. ξ < �0).
Using this approach, estimates of u0 and w0 were evaluated for each vertical location
within the boundary-affected region of the flow at which measurements of 〈u〉1 and 〈w〉1
were obtained. A similar procedure has also been used to obtain reference values for other
parameters reported in this section.

Figure 3(a) shows that the boundary-normal component w is monotonically reduced
by the presence of the boundary. For ReK � 0.2 the observed reduction in w is in
quantitative agreement with results from previous studies investigating the interaction of
zero-mean-shear turbulence with an impermeable boundary (Thomas & Hancock 1977;
Hunt & Graham 1978; Hannoun, Fernando & List 1988; Aronson, Johansson & Löfdahl
1997). However, figure 3(a) also shows that the magnitude of w/w0 over ξ/�0 � 0.5
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ReK ≤ 0.20
ReK ≈ 0.23
ReK ≈ 0.30
ReK ≈ 0.34
ReK ≈ 0.38

ξ 
/�

0

〈w〉1/w0 〈u〉1/u0

0

0.5
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(b)(a)

Figure 3. Plots showing the scaled r.m.s. of fluctuating velocity components (a) 〈w〉1/w0 and (b) 〈u〉1/u0. In
each plot a single data set is shown for each experimental condition reported in table 1, which is an average of
the measurements obtained across the n = 5 repeats conducted for each condition. The data at different ReK
are shown separately, irrespective of ReG. Also shown are representative error bars for the case ReK ≈ 0.3,
corresponding to the standard error across the n = 5 repeats.

is slightly greater for experiments conducted at ReK > 0.2 and suggests the magnitude
increases with increasing ReK . Although a small effect, these data indicate that for
ReK � 0.2 the boundary permeability begins to inhibit the kinematic blocking condition
that is otherwise enforced when ReK = 0.

A more pronounced ReK effect is evident in the measurements of the horizontal (i.e.
boundary-tangential) component (u), shown in figure 3(b). The results indicate that for
ReK � 0.2 the boundary acts to increase u within the boundary-affected region, relative to
the far-field trend, except in a thin viscous region immediately adjacent to the boundary.
These data are in agreement with results from previous studies investigating the interaction
of OGT, and random jet arrays, with an impermeable boundary (Brumley & Jirka 1987;
Hannoun et al. 1988; McCorquodale & Munro 2017; Johnson & Cowen 2018). Notably,
however, figure 3(b) shows that the amplification of u/u0 within the boundary-affected
region (ξ/�0 � 1) is significantly inhibited with increasing ReK , for ReK � 0.2.

Given this relative increase in w and relative decrease in u, within the boundary-affected
region, with increasing ReK , a logical explanation would be that changes in
intercomponent energy transfer between the velocity components occur as the boundary
permeability increases. Recall, intercomponent energy transfer is described by the term Π s

ij
in (2.1). Indeed, in § 4 we argue that this is one of the contributing mechanisms. However,
the changes in the velocity components described above also correspond to changes in
turbulent kinetic energy within the boundary-affected region.

Measurements of TKE, here defined as q′2 = u′
iu

′
i/2 ≈ (2u′

1u′
1 + u′

3u′
3)/2 (where v ≈ u

has been assumed), are shown in figure 4(a). In accordance with the results of the r.m.s.
turbulent velocity components, figure 4(a) shows 〈q′2〉1 scaled by q′2

0 , which denotes the
values of 〈q′2〉1 that would be expected in the absence of the boundary, obtained by
extrapolating a best fit applied to the data above the boundary-affected region. Figure 4(a)
shows that when ReK � 0.2 (i.e. the boundary is effectively impermeable) the results
exhibit 〈q′2〉1/q′2

0 > 1 within the boundary-affected region, in accordance with previous
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〈q′2〉1/q0
′2 〈u3
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′q′2)0

Figure 4. Measurements of (a) TKE 〈q′2〉1, and (b) vertical flux of TKE, 〈u′
3q′2〉1. Here, 〈q′2〉1 and 〈u′

3q′2〉1

have been normalised by the values expected in the absence of the boundary, denoted q′2
0 and (u′

3q′2)0
respectively. In both plots a single data set is shown for each experimental condition reported in table 1, which
is an average of the measurements obtained across the n = 5 repeats conducted for each condition. The data at
different ReK are shown separately, irrespective of ReG. Also shown are representative error bars for the case
ReK ≈ 0.3, corresponding to the standard error across the n = 5 repeats.

results at an impermeable boundary (Hannoun et al. 1988; McCorquodale & Munro 2017;
Johnson & Cowen 2018). This indicates that for ReK � 0.2 there is an increase in turbulent
kinetic energy within the boundary-affected region (ξ/�0 � 1), relative to expected values
in the absence of the boundary. However, figure 4(a) shows significant reductions in
〈q′2〉1/q′2

0 occur within the boundary-affected region as ReK is increased. Moreover, for

ReK ≈ 0.38 figure 4(a) shows that 〈q′2〉1/q′2
0 < 1 when ξ/�0 < 1, indicating that in this

case there is no increase in turbulent kinetic energy within the boundary-affected region,
relative to expected values in the absence of the boundary. This reduction in TKE within
the boundary-affected region (relative to an impermeable boundary) indicates that the
changes in u/u0 and w/w0 described above cannot be explained only by changes in
intercomponent energy transfer. Instead, the results can be explained using measurements
of the TKE flux.

A TKE flux exists throughout the flow due to the vertically inhomogeneous nature of
the flow produced by OGT, whereby the magnitude of turbulent fluctuations decays with
distance beneath the grid resulting in a flux of TKE vertically downwards and away from
the grid. In § 2.3 we emphasised that the transport of TKE by velocity fluctuations Tii
is a key process in determining the statistical structure of the flow in zero-mean-shear
turbulence; the TKE transport equation for this flow is 0 = Tii + Πd

ii + Dii + εii, where
Tii = −d(u′

3q′2)/dx3. Measurements of the vertical flux of TKE, 〈u′
3q′2〉1, are shown in

figure 4(b). As before, the data have been scaled by their expected trend in the absence of
the boundary, denoted (u′

3q′2)0, again obtained from a best fit applied to the data above
the boundary-affected region. Previous studies of OGT interacting with an impermeable
boundary reported a reduction in the TKE flux within the boundary-affected region
(ξ/�0 � 1) relative to the far field (Hannoun et al. 1988; McCorquodale & Munro 2017)
as a result of the kinematic blocking effect of the boundary. In terms of the TKE transport
equation, this observation corresponds to an increase in the transport of TKE by velocity
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Direct effects of boundary permeability on turbulent flows

fluctuations Tii within the boundary-affected region, which is offset by a reduction in
transport of TKE by pressure fluctuations Πd

ii ; within the boundary-affected region, values
of εii and Dii have been reported to be approximately constant except within the viscous
sublayer (McCorquodale & Munro 2017).

For ReK � 0.2 the data in figure 4(b) are consistent with the trend previously reported
for the case of an impermeable boundary and reveal that for ξ/�0 � 0.5 the direction
of energy flux is reversed (i.e. 〈u′

3q′2〉1/(u′
3q′2)0 < 0), such that there is a small flux of

energy away from the boundary. The result of this blocking of the TKE flux within the
boundary-affected region is an increase in TKE (Hannoun et al. 1988; McCorquodale
& Munro 2017), as shown in figure 4(a), since additional energy that would otherwise
propagate past the boundary (in its absence) is trapped in the boundary-affected region.
Thus, this effect gives rise to an increase in the boundary-tangential velocity components
relative to expected values in the absence of the boundary (McCorquodale & Munro 2017),
as shown in figure 3(b). We note that McCorquodale & Munro (2018a) also proposed that,
for ReK = 0, a weak net intercomponent energy transfer from w2 to u2 occurs over the
region 0.3 � ξ/�0 � 0.6; this is consistent with the reversed direction of TKE flux shown
in figure 4(b) over this region, and also contributes to observed values of u/u0 > 1.

At a permeable boundary (i.e. for ReK � 0.2) the data in figure 4(b) indicate that the
vertical energy flux does not reduce by as much within the boundary-affected region
(ξ/�0 < 1) relative to experiments at an effectively impermeable boundary (ReK � 0.2).
This trend indicates that the amplification of Tii within the boundary-affected region
(ξ/�0 � 1) is inhibited with increasing ReK , for ReK � 0.2. Most importantly, these data
show that as the boundary is approached the TKE flux remains positive and so is oriented
into the porous medium. This increase in energy flux is attributed to a reduction in the
blocking effect of the boundary (consistent with figure 3a) which enables a weak flux of
energy into the permeable medium when ReK � 0.2.

To better understand the vertical flux of TKE into the boundary-affected region we have
decomposed 〈u′

3q′2〉1 into its components 〈u′
3u′2

1 〉1, 〈u′3
3 〉1, which are shown in figure 5

against scaled height ξ/�0.
The vertical flux of w2 is shown in figure 5(a), and is positive far from the boundary,

which indicates a flux of energy away from the grid transported by turbulent fluctuations.
As the boundary is approached we observe a gradual reduction in 〈u′3

3 〉1/(u′
3q′2)0 as a

result of the blocking effect of the boundary. This trend appears to hold across the entire
ReK range considered here, which is consistent with the results shown in figure 3(a) in
which we observed that only very small increases in w/w0 occurred as ReK increased.

The vertical flux of u2 is shown in figure 5(b), and is also positive far from the boundary,
indicating a flux of energy away from the grid. When ReK � 0.2, 〈u′

3u′2
1 〉1 decreases

on approach to the boundary, reaching approximately 0 at ξ/�0 ≈ 0.6. This trend can
be attributed to the blocking effect of the boundary on the vertical TKE flux, which in
isolation would act to give rise to constant values of u within the boundary-affected region
and correspondingly zero net vertical energy flux. For ξ/�0 � 0.6 the vertical flux of u2

is small but becomes negative indicating that there is a small net flux of u2 away from the
boundary, which is associated with a net intercomponent energy transfer from w2 to u2

as fluid elements are blocked by the surface (McCorquodale & Munro 2018a). This trend
continues until ξ/�0 ≈ 0.3, at which point 〈u′

3u′2
1 〉1 tends to zero as a result of viscous

dissipative effects that are prevalent over the viscous sublayer (McCorquodale & Munro
2017). (We note that the viscous sublayer (in which significant dissipation of TKE occurs)
has thickness of approximately 0.2 to 0.3�0 (see figure 4a).) The negative values of 〈u′

3u′2
1 〉1
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ReK ≈ 0.38
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′q′2)0 〈u3
′u1

′2〉1/2 (u3
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Figure 5. Measurements of the components of the TKE flux (a) 〈u′3
3 〉1 and (b) 〈u′2

1 u′
3〉1, plotted against scaled

height ξ/�0. Each component has been normalised by the values for the total TKE flux expected in the absence
of the boundary denoted (u′

3q′2)0. In both plots a single data set is shown for each experimental condition
reported in table 1, which is an average of the measurements obtained across the n = 5 repeats conducted
for each condition. The data at different ReK are shown separately, irrespective of ReG. Also shown are
representative error bars for the case ReK ≈ 0.3, corresponding to the standard error across the n = 5 repeats.

for ξ/�0 � 0.6 are responsible for the small negative values of u′
3q′2 observed over the

region ξ/�0 � 0.5 in figure 4(b).
When ReK � 0.2, results shown in figure 5(b) show that 〈u′

3u′2
1 〉1 is not reduced by

as much within the boundary-affected region and, at the largest ReK , retains a positive
value throughout, indicating that there is a weak net flux of u2 into the porous medium.
This result indicates that there is reduction in the blocking of the far-field energy flux
as ReK increases and is consistent with the observed reduction in u/u0 when ReK � 0.2
(figure 3c).

To summarise, results of the TKE and vertical flux of TKE indicate that a contributing
factor to the reported reduction in u/u0 as ReK increases (see figure 3b) is a reduction in the
blocking effect of the boundary on the vertical TKE flux, giving rise to a net flux of u2 into
the porous medium when ReK � 0.2. This reduction in the blocking effect of the boundary
on the TKE flux gives rise to the reduction in TKE within the boundary-affected region,
as shown in figure 4(a), as energy is no longer trapped in the boundary-affected region.
Note, however, that although the kinematic blocking condition is inhibited for ReK � 0.2,
viscous dissipation is still significant close to the surface.

Further insight into the effects of boundary permeability can be derived by
considering the time-averaged mean dynamic pressure, denoted P. To estimate the vertical
mean-pressure gradient, ∂P/∂x3, in the boundary-affected region we used the measured
velocity data to estimate the right-hand side of (2.5) (for i = 3). The analysis showed that
contributions to the right-hand side of (2.5) from the mean flow components (advection
and dissipation) were in general small, and so in this case the mean dynamic pressure
gradient can be reasonably approximated using (2.6a,b). Measurements of −∂w2/∂x3 ≈
∂P/∂x3 are shown in figure 6. In figure 6 measurements of ∂w2/∂x3 have been normalised
using the integral length scale �0 and the expected value of the r.m.s. of fluctuating velocity
components at the edge of the boundary-affected region uδ,0. Note that at the edge of the
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ReK ≈ 0.23
ReK ≈ 0.30
ReK ≈ 0.34
ReK ≈ 0.38
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Figure 6. Measurements of ∂w2/∂x3 plotted against scaled height ξ/�0. A single data set is shown for each
experimental condition reported in table 1, which is an average of the measurements obtained across the n = 5
repeats conducted for each condition. The data at different ReK are shown separately, irrespective of ReG. Also
shown are representative error bars for the case ReK ≈ 0.3, corresponding to the standard error across the n = 5
repeats.

boundary-affected region w/u ≈ 1 such that uδ,0 and wδ,0 are approximately equal and
these values can be used interchangeably.

The data in figure 6 indicate that within the boundary-affected region ∂w2/∂x3 increases
in magnitude (and is negative in sign) as the boundary is approached, such that (according
to (2.6a,b)) there is an increase in the mean dynamic pressure gradient. Consequently,
as the fluid approaches the boundary it undergoes an increase in mean dynamic pressure
at the expense of the TKE (see, for example, Hunt & Graham 1978). Hunt & Graham
(1978) predicted that for otherwise spatially homogeneous and isotropic turbulence
interacting with an impermeable boundary this effect leads to a reduction in TKE in
the boundary-affected region. However, the data reported in § 3.2 show that the same
effect does not hold here when the turbulence interacts with an effectively impermeable
boundary (i.e. ReK � 0.2), due to inhomogeneity in the x3 direction. That is, the blocking
effect of an impermeable boundary on the vertical energy flux results in additional
energy contained within the boundary-affected region, relative to the same region in
the absence of the boundary (McCorquodale & Munro 2017). As a consequence, in the
boundary-affected region we observe an increase in both TKE and mean dynamic pressure.

However, the data in figure 6 indicate that, as ReK increases, there is a reduction in
the magnitude of ∂w2/∂x3 and thus the degree by which the mean dynamic pressure
gradient increases within the boundary-affected region diminishes. The corresponding
reduction in mean dynamic pressure (relative to an impermeable boundary) indicates there
is a reduction in the blocking of turbulent motions by the boundary as ReK increases,
consistent with the previous results. This interpretation of the velocity measurements has
an important implication. If there is a reduction in blocking of turbulent motions by the
boundary this must be as a result of transportation of turbulent energy into the boundary; in
other words, there is a reduction in the formation of high-pressure stagnation events as fluid
elements impinge onto the boundary (so-called ‘splats’). Crucially, it is thought that the
imbalance between splats and antisplats (fluid elements ejecting away from the boundary
as a result of high-pressure collisions between fluid parcels) is central to intercomponent
energy transfer. Consequently, a reduction in the formation of high-pressure splats as ReK
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increases is thought to inhibit intercomponent energy transfer and also contribute to the
reduction in the observed values of 〈u〉1/u0, shown in figure 3(b), as ReK increases. This
effect is investigated in more detail in § 4.

4. Analysis of intercomponent energy transfer

The analysis in § 3 identified the flux of TKE as a prominent mechanism in determining
the statistical structure of turbulence in the boundary-affected region. Recall, the transport
of TKE by velocity and pressure fluctuations is described by the terms Tij and Πd

ij in the
transport equations of the Reynolds stress tensor (i.e. (2.1)) and the transport equation
for TKE (i.e. (2.2)). Here we investigate intercomponent energy transfer in order to
derive additional insight into the governing dynamics. Intercomponent energy transfer
is described by the pressure-strain correlation term Π s

ij of the transport equation of the
Reynolds stress tensor (i.e. (2.1)), which in the boundary-affected region is thought to
describe an imbalance in the energy associated with splats and antisplats (see for example
Perot & Moin 1995; Bodart, Cazalbou & Joly 2010). In this context, splats and antisplats
should not be confused with coherent structures that occur in a boundary layer subject to
mean shear. Rather, splats are simply regions of fluid (or eddies) that move towards and
impinge upon a surface whilst antisplats are regions of fluid that accelerate as they move
away from the surface of a boundary (Perot & Moin 1995). At an impermeable boundary,
the genesis of antisplats has been directly linked to the process of splats impinging on
a surface. That is, as a splat impinges upon an impermeable surface it slows down and
may exhibit a tendency to travel parallel to that surface. The subsequent collision of two
fluid elements travelling parallel to the surface will give rise to an antisplat (Perot & Moin
1995; Hunt & Morrison 2000). In addition, as a vortical eddy approaches and interacts
with an impermeable surface (i.e. a splat) it will generate regions of opposite vorticity;
the interaction of these regions of opposite vorticity will in turn result in the ejection
of fluid away from the surface (i.e. an antisplat) (Hunt & Morrison 2000; Bodart et al.
2010; McCorquodale & Munro 2018a). Different mechanisms of generating antisplats are
expected at a permeable surface, which are discussed in § 4.2.

Recently, McCorquodale & Munro (2018a) analysed intercomponent energy transfer
using a statistical approach, related to quadrant-hole analysis (see, for example, Zhu,
van Hout & Katz 2007, and references therein), to identify and isolate events within
the turbulent flow that exhibit characteristics expected of splats and antisplats. That is,
the stagnation flow associated with splats and antisplats is thought to exhibit strongly
decelerating flow (with correspondingly large spatial gradients in u′

3) and McCorquodale
& Munro (2018a) used this feature as a criterion to first identify splats and antisplats and
then to evaluate conditional turbulent statistics associated with splats and antisplats. Here,
we have applied the same approach to the data obtained using the permeable boundaries.

4.1. Criteria for isolating splats and antisplats
It is instructive to revisit the criterion used by McCorquodale & Munro (2018a) to identify
splats and antisplats. Splat events moving towards the boundary (u′

3 > 0) yield negative
values of the vertical strain rate ∂u′

3/∂x3 and antisplat events moving away from the
boundary (u′

3 < 0) yield positive values of the vertical strain rate ∂u′
3/∂x3 (Perot & Moin

1995; Magnaudet 2003; Bodart et al. 2010). However, fluid elements that exhibit these
statistical characteristics exist throughout the entire flow, as a consequence of the random
structure of a turbulent flow. On the other hand, the blocking associated with the formation
of splats and antisplats is expected to give rise to more strongly decelerating flow than
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Direct effects of boundary permeability on turbulent flows

observed in the bulk interior of the flow. McCorquodale & Munro (2018a) proposed that
splats and antisplats may be isolated from the background flow by use of quadrant analysis
on measurements of u′

3 and ∂u′
3/∂x3, and by further applying a threshold or critical value

on the magnitude of the vertical strain rate ∂u′
3/∂x3, defined in comparison to a reference

value of strain rate given by w/�̄w evaluated at the corresponding x3. The reference strain
rate was devised from an order of magnitude analysis (Bodart et al. 2010; McCorquodale &
Munro 2018a); when a packet of size � meets an impermeable surface with velocity u′

3, the
vertical strain rate can be estimated as u′

3/�. For a given point within the boundary-affected
region, the average velocity and size of a fluid packet is given by w and �̄w, where �̄w
denotes the time-averaged transverse integral length scale of the boundary-normal velocity
component u′

3, thus giving an average reference strain rate of w/�̄w.
By analysing the magnitude of vertical strain rate both in the boundary-affected region

and bulk interior of the flow, McCorquodale & Munro (2018a) found the condition
|(�̄w/w)∂u′

3/∂x3| > 6 was sufficient to isolate splats and antisplats from background
fluctuations. That is, the probability that the magnitude of the instantaneous vertical strain
rate exceeds 6w/�̄w was found to be negligible outside the boundary-affected region (see
figure 7), and thus strain rates that exceed this value within the boundary-affected region
were thought to correspond to fluid elements that exhibit strongly decelerating flow in
response to the blocking effect of a surface.

To investigate how boundary permeability influences splat and antisplat formation
we consider the probability of events that exhibit characteristics expected of splats and
antisplats. That is, we split velocity measurements into 4 quadrants based upon the sign of
u′

3 and ∂u′
3/∂x3 and calculate

Quadrant 1 (Q1) : PQ1 ≡
〈
P
(

�̄w

w
∂u′

3
∂x3

> φT ∩ u′
3 > 0

)〉
1
, (4.1a)

Quadrant 2 (Q2) : PQ2 ≡
〈
P
(

�̄w

w
∂u′

3
∂x3

> φT ∩ u′
3 < 0

)〉
1
, (4.1b)

Quadrant 3 (Q3) : PQ3 ≡
〈
P
(

�̄w

w
∂u′

3
∂x3

< −φT ∩ u′
3 < 0

)〉
1
, (4.1c)

Quadrant 4 (Q4) : PQ4 ≡
〈
P
(

�̄w

w
∂u′

3
∂x3

< −φT ∩ u′
3 > 0

)〉
1
, (4.1d)

as a function of ξ/�0, where P(A ∩ B) denotes the probability of A and B and φT denotes
a (positive) constant. When φT = 0 we consider the probabilities of each quadrant PQi
based upon every measurement of the flow field (i.e. PQ1 + PQ2 + PQ3 + PQ4 = 1 when
φT = 0). When φT > 0 the evaluated probabilities associated with each quadrant decrease
because those events that exhibit |(�̄w/w)∂u′

3/∂x3| < φT are excluded from the analysis.
The value of φT used to isolate splats (Q4) and antisplats (Q2) from the background
fluctuations, identified previously by McCorquodale & Munro (2018a), is φT = 6. In the
following, a comparison of the probabilities PQ2 and PQ4 when φT = 0 and φT = 6 enables
us to comment on how boundary permeability effects the magnitude of the strain rates as
fluid elements impinge onto the surface of a porous medium.

We note that when evaluating the statistics described by (4.1) anomalous trends were
identified for experiments at ReG ≈ 2020 and 4220 when ξ/�0 � 0.25. We attribute
this effect to a data processing issue relating to the computation of the strain rates
(McCorquodale & Munro 2018a). That is, within the viscous sublayer, the fluid velocities
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Figure 7. Measurements of the probability that the normalised strain rate (�̄w/w)∂u′
3/∂x3 surpasses a given

constant φT (the values of φT are shown in each plot). Data are separated into quadrants according to the sign of
u′

3 and ∂u′
3/∂x3, as described by (4.1); (a) Q2, (b) Q1, (c) Q3 and (d) Q4. In each plot a single data set is shown

for each experimental condition reported in table 1, which is an average of the measurements obtained across
the n = 5 repeats conducted for each condition. The data at different ReK are shown separately, irrespective
of ReG. Also shown are representative error bars for the case ReK ≈ 0.3, corresponding to the standard error
across the n = 5 repeats.

are much smaller than within the bulk of the flow, such that the uncertainty within these
measurements increases as a proportion of the fluid velocity. Thus, the error associated
with these measurements may give rise to unreliable estimates of the strain rate. This
effect is thought to be most prevalent at low Reynolds number as a result of the lower
fluid velocities that occur in these experiments. Consequently, measurements of PQi are
not reported here for ξ/�0 � 0.25 when ReG ≈ 2020 and 4220. We also note that, since
we were unable to fully resolve the dissipative scales within the flow (see § 2.2), this may
lead to a slight underestimate of the instantaneous vertical strain ∂u′

3/∂x3 in the experiment
data. However, we stress that in this section we are primarily concerned with fluid elements
as they are blocked by the boundary – a process which primarily influences the large
scales within the flow (McCorquodale & Munro 2018a). Therefore, the small scales are

915 A134-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.160


Direct effects of boundary permeability on turbulent flows

not thought to be dynamically significant within this analysis; the small unresolved scales
are not blocked by the surface except within ξ/�0 � 0.1.

Measurements of PQi , evaluated when φT = 0 and 6, are shown in figure 7. Figure 7
shows that there is an increase in the overall probability (given by φT = 0) of PQ2 and
PQ4 within the boundary-affected region (ξ/�0 < 1), whilst there is a corresponding
reduction in the overall probability of PQ1 and PQ3 . When φT = 0 there is little, if
any, evident dependence on ReK . Figure 7 also shows PQ1 and PQ3 are negligible
in the boundary-affected region when φT = 6. In contrast, the probabilities PQ2 and
PQ4 evaluated when φT = 6 increase within the boundary-affected region, although the
magnitude of the increase in PQ2 and PQ4 reduces as ReK increases, as shown in figure 7.

For an effectively impermeable boundary (ReK � 0.2), figure 7 indicates that the
increase in probability of PQ2 and PQ4 when φT = 6 is approximately equal to the increase
in probability when φT = 0. Thus, the increase in PQ2 and PQ4 is primarily driven by
events that satisfy the condition φT = 6, which we interpret as a signature of splats and
antisplats due to the inhibiting effects of the boundaries on the turbulence (McCorquodale
& Munro 2018a).

However, for a permeable boundary (ReK � 0.2), figure 7(a,d) shows that the increase
in probability of PQ2 and PQ4 when φT = 6 is smaller than the corresponding increase in
probability when φT = 0. Thus, the increase in PQ2 and PQ4 is driven by events which
do not satisfy the condition φT = 6 (i.e. which exhibit |(�̄w/w)∂u′

3/∂x3| < 6). That is,
the increase in PQ2 and PQ4 when φT = 0 indicates that fluid elements impinging onto
a permeable boundary are still inhibited by the presence of the boundary at the same
frequency as if the boundary were impermeable, but the magnitude of the strain rates
associated with these interactions are smaller than occur at an impermeable boundary. This
effect can be attributed to a reduction in the inhibiting effects of the permeable boundary
as ReK increases, consistent with the results of § 3. Crucially, these results indicate that as
ReK increases there is a reduction in events exhibiting strongly decelerating flow (i.e. splats
and antisplats) in which intercomponent energy transfer is thought to be concentrated (see,
for example, Perot & Moin 1995; Bodart et al. 2010).

4.2. Conditional statistics
In this section we seek to consider explicitly how boundary permeability influences
intercomponent energy transfer by computing conditional turbulent statistics from
measurements of the flow that exhibit characteristics expected of splats and antisplats. We
adopt the approach of McCorquodale & Munro (2018a) and compute conditional r.m.s.
values of u′

1 where the criteria described in § 4.1 to isolate splats and antisplats are used as
conditioning events. That is, intercomponent energy transfer is thought to be governed
by an imbalance in the energy associated with splats and antisplats (see, for example
Perot & Moin 1995; Bodart et al. 2010) and here we investigate how this imbalance
depends on ReK . We denote the r.m.s. values of u′

1 associated with measurements of
the flow indicative of splats and antisplats by uQ4 and uQ2 respectively. Hence, uQ2 and
uQ4 are r.m.s. values of u′

1 given that the measurements used to compute these statistics
satisfy the conditions (�̄w/w)∂u′

3/∂x3 > φT ∩ u′
3 < 0 and (�̄w/w)∂u′

3/∂x3 < −φT ∩ u′
3 >

0, respectively. Values of uQ4 and uQ2 have been computed for both φT = 0 and φT = 6.
That is, conditional uQ2 and uQ4 statistics associated with specifically splats and antisplats
have been computed using the critical value φT = 6 (McCorquodale & Munro 2018a) and
the results compared against conditional statistics evaluated for φT = 0. This comparison
enables us to illustrate how the effects of splats and antisplats on the average statistical
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Figure 8. (a) The r.m.s. measurements uQ2 and uQ4 of the conditionally sampled horizontal velocity
component plotted against scaled height above the boundary ξ/�0 subject to the condition φT = 0. The data
have been normalised to allow a direct comparison between the magnitude of uQ2 and uQ4 . (b) Shows the
same data as (a) subject to the condition φT = 6. In each plot a single data set is shown for each experimental
condition reported in table 1, which is an average of the measurements obtained across the n = 5 repeats
conducted for each condition. The data at different ReK are shown separately, irrespective of ReG (see legend
in (a) which applies to all plots). Also shown are representative error bars for the case ReK ≈ 0.3, corresponding
to the standard error across the n = 5 repeats.

structure of the flow are influenced by ReK . To ensure the use of robust statistics,
measurements of uQ2(φT = 6) and uQ4(φT = 6) are only reported for ξ/�0 ≤ 0.6 since
the probability that measurements of the flow exhibit |(�̄w/w)∂u′

3/∂x3| > 6 (i.e. strongly
decelerating flow indicative of splats and antisplats) is negligible for ξ/�0 � 0.6 (see
§ 4.1). In addition, measurements of uQ2 and uQ4 are only reported for ξ/�0 � 0.25 when
ReG ≈ 2020 and 4220 for the reasons explained in § 4.1.

Measurements of uQ2 and uQ4 are shown in figure 8. We note that uQ4(φT = 0) >

uQ2(φT = 0) outside the boundary-affected region (i.e. for ξ/�0 > 1), which indicates
that the energy associated with turbulent motions incident towards the boundary exceeds
that of turbulent motions moving away from the boundary (recall that uQ4 satisfy the
condition u′

3 > 0 and uQ2 the condition u′
3 < 0). We stress that this is simply a result

of the anisotropic nature of the flow produced by OGT (see § 3.2).
Within the boundary-affected region (i.e. for ξ/�0 < 1) permeability effects are

apparent. At an effectively impermeable boundary (ReK � 0.2) results are consistent with
previous investigations studying the interaction of OGT with an impermeable boundary
(McCorquodale & Munro 2018a). Figure 8(a) shows that uQ4(φT = 0)/uQ2(φT = 0)

reduces at the edge of the boundary-affected region (ξ/�0 ≈ 0.6–1.0) and approaches
a value of approximately 1. This trend physically represents a change in the imbalance
between the energy associated with turbulent motions incident towards the boundary,
which are increasingly less energetic, relative to the energy of turbulent motions moving
away from the boundary. McCorquodale & Munro (2018a) attributed this result to
the effects of turbulent transport, due to the blocking effect of the boundary on
the boundary-normal TKE flux (see § 3.2), which in isolation would act to result in
uQ4 ≈ uQ2 . An imbalance in uQ2 and uQ4 is re-established as the boundary is further
approached; for the region 0.3 � ξ/�0 � 0.6 we note that uQ2(φT = 0) > uQ4(φT =
0) and uQ2(φT = 6) > uQ4(φT = 6), whilst the ratio uQ4/uQ2 continues to decrease.
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Hence, over this finite region the energy associated with turbulent motions moving away
from the boundary exceeds that of the energy of turbulent motions incident towards the
boundary. McCorquodale & Munro (2018a) concluded that this effect arose as a result of a
net intercomponent energy transfer from w2 to u2 associated with splats and antisplats.
Viscous effects dominate closer to the boundary and so uQ4/uQ2 increases within the
viscous sublayer (ξ/�0 � 0.3) as the imbalance between splats and antisplats is governed
by the dissipation of TKE (Perot & Moin 1995).

Figure 8(a) shows similar trends are observed at a permeable boundary (ReK � 0.2);
uQ4/uQ2 also reduces over the region 0.3 � ξ/�0 ≤ 1 and increases over the region
ξ/�0 � 0.3. However, figure 8(a) also shows that within the boundary-affected region the
magnitude of uQ4/uQ2 increases as ReK increases, such that uQ4(φT = 0) > uQ2(φT = 0)

throughout the boundary-affected region. This trend can be explained, in part, by effects
associated with turbulent transport; as ReK increases there is a reduction in the kinematic
blocking effect of the boundary on the TKE flux (see figure 4) such that, on average,
turbulent motions incident towards the boundary are more energetic than turbulent motions
moving away from the boundary (see figure 4). That is, when fluid penetrates into
the porous medium, as the kinematic blocking effect of the boundary is inhibited for
increasing ReK , an equivalent volume of fluid is expelled from the porous medium.
However, fluid expelled from the porous medium is (on average) less energetic than the
fluid that penetrates the porous medium as a result of the high viscous dissipation that
occurs within the porous medium (see below for details).

However, we can deduce insight into intercomponent energy transfer by contrasting the
results shown in figure 8(a) against those shown in figure 8(b), in which we have isolated
strongly decelerating events in which intercomponent energy transfer is thought to be
concentrated (see, for example Perot & Moin 1995; Bodart et al. 2010). That is, figure 8(b)
shows that uQ2 > uQ4 over 0.3 � ξ/�0 � 0.6 when φT = 6, even as ReK increases,
consistent with results from effectively impermeable boundaries (ReK � 0.2). This result
implies that at a permeable boundary (ReK � 0.2) strongly decelerating flow within the
boundary layer (i.e. splats and antisplats) is associated with an intercomponent energy
transfer from w2 to u2, as observed at impermeable boundaries. However, we stress that, on
average, turbulent motions incident towards a permeable boundary exhibit smaller values
of the vertical strain rate ∂u′

3/∂x3 than equivalent motions at an impermeable boundary,
since turbulence is able to penetrate the boundary. Consequently as ReK increases only a
reducing proportion of fluid elements form splats and antisplats (see figure 7). Therefore, at
permeable boundaries there is an overall reduction in intercomponent energy transfer over
this region, due to the depletion of splats and antisplats in the boundary-affected region.
Consequently, we attribute the increase in uQ4(φT = 0)/uQ2(φT = 0) for permeable
boundaries, shown in figure 8(a), to the combined effects of a reduction in the turbulent
transport and a reduction in intercomponent energy transfer as ReK increases.

A limitation in our analysis is that it does not identify the precise changes in
the dynamics associated with splat and antisplat formation that occur as boundary
permeability increases. We note that Perot & Moin (1995) proposed a model describing
splat and antisplat formation above a permeable boundary; they argue that splats and
antisplats still exist above a permeable boundary, but that they no longer represent
stagnation-point regions of the flow. Instead, Perot & Moin (1995) suggest that splats and
antisplats above a permeable boundary represent regions of fluid about to pass through
the boundary; as the fluid elements pass through the boundary they distort and transfer
energy between the velocity components. However, viscous effects close to the boundary
dissipate energy from the fluid elements such that on-average antisplats, which emerge
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from a region of large viscous dissipation, are less energetic than splats. As a result
there is an intercomponent energy transfer from splats to antisplats that is governed by
the viscous dissipation. This dissipative mechanism is similar to that which Perot &
Moin (1995) proposed governed intercomponent energy transfer at a solid impermeable
boundary. We stress that results for the permeable boundaries (ReK � 0.2) shown in
figure 8 are consistent with this model for ξ/�0 � 0.3, over which significant viscous
dissipation occurs (see figure 4).

Outside this dissipative region, McCorquodale & Munro (2018a) and Bodart et al.
(2010) argued that the net imbalance between splats and antisplats at an impermeable
boundary arises in part from the formation of antisplats through so-called self-generation
mechanisms (Hunt & Morrison 2000; Bodart et al. 2010). That is, recall that antisplats
can form due to the interactions of two regions of opposite vorticity when a splat
approaches a boundary; as a splat is blocked by the boundary, the no-slip condition
results in instantaneous shear and the vorticity associated with this shear acts to eject
fluid away from the boundary. The more complicated dynamics arising in this interaction
was not considered in the model of Perot & Moin (1995), in which splats and antisplats
arise as simple consequences of the equation of continuity. McCorquodale & Munro
(2018a) argued that this mechanism gives rise to a net energy transfer from w2 to u2

outside the viscous sublayer. We note that for ReK � 0.2 results shown in figure 8 over
0.3 � ξ/�0 � 0.6 are consistent with an imbalance in energy of splats and antisplats that
results from a net energy transfer from w2 to u2, in accordance with this mechanism. It is
logical then to consider how this mechanism may be influenced by boundary permeability.

Inferences into how the self-generation mechanism of antisplat formation may be
influenced by boundary permeability can be made from studies investigating the
interaction of vortex rings with boundaries. That is, studies investigating the interaction
of a vortex ring with solid impermeable boundaries report a rebound of the vortex ring
away from the boundary (see for example Walker et al. 1987; Orlandi & Verzicco 1993;
Munro, Bethke & Dalziel 2009; Munro 2012) which appears similar, in concept, to the
antisplat self-generation mechanism. However, studies investigating the interaction of
vortex rings with permeable boundaries indicate that vortex ring rebound is inhibited
as boundary permeability increases (Mujal-Colilles et al. 2015); the relaxation of the
kinematic blocking condition facilitates penetration of the flow into the boundary and a
reduction in instantaneous shear such that the vorticity that acts to eject fluid away from
the boundary is weaker. The results presented here are consistent with these observations;
we have observed a relaxation of the kinematic blocking effect of the boundary (§ 3)
that reduces the strain rate of fluid elements as they impinge onto the boundary (§ 4.1).
Consequently, we propose that the ‘self-generation’ mechanism of antisplat formation is
inhibited as ReK increases, thereby depleting the formation and splats and antisplats and
contributing to the observed reduction in intercomponent energy transfer.

5. Discussion

In this section we focus on the interpretation of our results in the wider context of the
interaction of turbulent flows with permeable boundaries. We note that in this study we
have considered only a limited range of ReK ; recall that this description of a permeable
medium characterises the behaviour at the boundary as intermediate between the limits
of a solid impermeable boundary and unconfined flow. The data reported in §§ 3 and
4 illustrate that the insight derived here is applicable to permeable media in which the
boundary still exerts a significant influence on the flow. Nonetheless, it is anticipated that
the results obtained here can be widely applied for two reasons. Firstly, the range of ReK

915 A134-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.160


Direct effects of boundary permeability on turbulent flows

considered here is applicable to a number of examples of turbulent flows interacting with
boundaries. For example, sediments beds in rivers and marine systems typically exist in
the range ReK ∼ 10−3 to 10 (Voermans et al. 2017). (We note that Voermans et al. (2017)
adopt the definition of ReK given by (2.7), which is different from that used in this study
(2.9.) However, the underlying interpretation of ReK is identical in both cases (see § 2.4)
and consequently we anticipate the values of ReK for sediment beds to be of the same order
of magnitude when using either algebraic definition of ReK .) Secondly, the results reported
provide insight into the underlying physical mechanisms that govern the interaction with
boundaries over the important transition between impermeable and permeable regimes.
However, a limitation of this study is that we have only considered porous media with a
single value of porosity (97 %). Thus, further study using porous media of lower porosities
is required to establish to what extent the current results depend on the structure of the
porous medium used.

The data reported in §§ 3 and 4 show that increasing the permeability Reynolds
number results in a gradual reduction in the inhibiting effects of the boundary through
a relaxation of the macroscopic blocking condition. This gives rise to a reduction in
the blocking of the vertical flux of TKE and a suppression of intercomponent energy
transfer. Recall, these physical phenomena are described by the turbulent transport and
pressure-strain terms of (2.1) and (2.2) (see § 2.3). We stress that the results obtained here
using permeable boundaries are distinctly different from those reported by Perot & Moin
(1995), in which the interaction of zero-mean-shear turbulence and a perfectly permeable
boundary was studied through direct numerical simulation. These differences are due to
the fundamentally different boundary conditions used; by studying the perfectly permeable
boundary, Perot & Moin (1995) sought to remove the blocking effect of the boundary
entirely and isolate near-boundary viscous effects within the interaction. Consequently,
the governing mechanisms that are prevalent in their study are simpler than those observed
here. This comparison illustrates the sensitivity of the interaction between turbulence and a
permeable boundary to the boundary conditions imposed on the boundary normal velocity
component. That is, numerical studies can only accurately reproduce the dynamics and
statistical structure of turbulence in the interface region with proper selection of boundary
conditions imposed by a permeable medium.

These results emphasise the care that must be taken when adopting the use of a
model, such as the ‘slip-velocity’ model (see § 1), to describe the boundary conditions
applied at the boundary of a porous medium. We note that the original slip-velocity
boundary conditions proposed by Beavers & Joseph (1967) was developed for use in
laminar flow, but this model has subsequently been extended to turbulent conditions
(Hanh et al. 2002). Of particular note is the boundary condition utilised for the
boundary-normal velocity component; these models enforce a no-penetration condition
on the boundary-normal velocity component (i.e. u′

3 = 0), which retains the kinematic
blocking effect of the boundary on the boundary-normal velocity component as if the
boundary were impermeable. In other words, the model proposed by Hanh et al. (2002)
assumes that flow in permeable media is laminar and governed by Darcy’s law. In essence,
this assumes that the direct effects of boundary permeability on the turbulent velocity
components, which have been isolated in this study, are small in the context of indirect
effects associated with changes in mean shear within the interface region. We stress that
the accuracy of this assumption will vary according to the flow under consideration.
This approach should yield reliable results when ReK � 1, since a permeable boundary
will act as if it were impermeable to turbulent fluctuations and approximately enforce
the no-penetration condition on the boundary-normal velocity component (i.e. u′

3 = 0).
However, results reported in the literature indicate that this assumption becomes unreliable
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in channel flows with permeable boundaries when ReK � 1; significant differences in both
the statistical structure and dynamics of the interface region have been reported between
studies using the slip-velocity model and those modelling flow inside the interface region
as a continuum through the use of volume-averaged Navier–Stokes formulations (see,
for example, Hanh et al. 2002; Breugem et al. 2006; Rosti et al. 2015). We attribute
these differences to the significance of the blocking effect of permeable boundaries on
turbulence fluctuations that is identified here. In short, the boundary conditions specified
by the slip-velocity model at the boundary of a permeable medium may be insufficient
to describe the complex interaction of the blocking effect of permeable boundaries on
turbulent fluctuations in highly permeable media.

However, other factors will also influence the validity of the boundary conditions used
within the slip-velocity model proposed by Hanh et al. (2002). For example, so far
we have only considered turbulent flow in which the depth of penetration of turbulent
fluctuations into the permeable medium is governed ReK . However, in some applications
the permeable media are sufficiently thin that the penetration depth is instead limited by
an underlying impermeable surface, which has a profound influence on the dynamics and
statistical structure of the flow (see, for example Li et al. 2020; Sharma & García-Mayoral
2020). In this case, although increasing the permeability Reynolds numbers results in a
relaxation of the macroscopic blocking condition at the surface of the permeable medium,
the boundary-normal velocity component is still inhibited in the interface region by the
underlying surface at which the no-penetration condition is enforced (see, for example Li
et al. 2020; Sharma & García-Mayoral 2020). Consequently, in a thin permeable medium
the model boundary conditions proposed by Hanh et al. (2002) more closely approximates
the boundary conditions applied at the boundary. In these cases it is conceivable that the
slip-velocity condition may yield accurate results in turbulent channel flows even when
ReK � 1. The direct validation of this hypothesis is an avenue for future study.

6. Conclusion

The interaction between OGT and solid and permeable boundaries (aligned parallel to the
grid) has been studied experimentally. A permeability Reynolds number, ReK , suitable for
use in zero-mean-shear turbulence, is used to determine conditions under which boundary
permeability effects become significant. The results indicate that when ReK � 0.2 the
boundary acts as if it were impermeable. In this case the interaction is dominated by the
blocking of a far-field TKE flux by the kinematic blocking condition (McCorquodale &
Munro 2017), with secondary mechanisms acting through intercomponent energy transfers
(Perot & Moin 1995; Walker, Leighton & Garza-Rios 1996; McCorquodale & Munro
2018a).

For ReK � 0.2 the inhibiting effects of the boundary are reduced, which results in both
an increase in the magnitude of the boundary-normal r.m.s. turbulent velocity components
and a reduction in the magnitude of the boundary-tangential r.m.s. turbulent velocity
components. This is primarily attributed to a relaxation of the macroscopic blocking
condition as turbulent motions penetrate into the porous medium, such that there is a
reduction in the blocking of the vertical flux of TKE. Intercomponent energy transfer is
also found to be suppressed due to the macroscopic relaxation of the blocking condition.
That is, the penetration of turbulence into the porous medium inhibits the formation of
rapidly decelerating flow (splats) in the boundary-affected region; at an impermeable
boundary the stagnation flow associated with splat events gives rise to energy transfer
between velocity components, but the relative occurrence of these events diminishes as
turbulent motions penetrate the porous medium such that energy transfer reduces overall.
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Within the viscous sublayer, dissipative effects that are dominant at an impermeable
boundary (i.e. ReK � 0.2) are also found to be prevalent even as ReK increases; we
attribute this trend to the moderate ReK range used.

This study has enabled, for the first time, the direct effects of boundary permeability
on turbulent fluctuations to be isolated from indirect effects, which are associated with
changes in the mean shear. These results provide insight into the mechanisms that govern
the interaction of turbulence with permeable boundaries in flows in which the mean shear
is small, such that the dynamics of the interaction is governed by eddy impingement.
Moreover, these results illustrate that turbulent structure over a permeable boundary
is strongly influenced by the blocking effect of the boundary on the boundary-normal
velocity component. In light of these observations, we argue that further analysis of the
‘slip-velocity’ model (Hanh et al. 2002), which does not consider this important aspect of
the interaction, is required to establish conditions under which the model can be accurately
utilised.
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