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1. Introduction

Until the late 1980s it was believed that a Rankin–Selberg integral must unfold to a unique

model of the representation in order to be factorizable. By a unique model we mean one

for which the space of functionals on the representation space with certain invariance

properties is one dimensional. The commonest example is the Whittaker model, but

other unique models such as the Bessel model have also been used.

In their pioneering work [14], Piatetski-Shapiro and Rallis interpreted an integral,
earlier considered by Andrianov [1], as an adelic integral that unfolds to a non-unique

model. Although the functional is not factorizable, the integral is, since the local integral

produces the same L-factor for any functional with the same invariance properties applied

to a spherical vector.

There are many examples of adelic integrals that unfold with non-unique models. Only

a few of them have been shown to represent L-functions. Some more examples are detailed

in [2, 3]. All of the examples rely on the knowledge of the generating function for the

L-function considered.

In this paper we consider a new Rankin–Selberg integral on the exceptional group G2
and prove that it represents the standard L-function LS (s, π, st) of degree 7 for cuspidal

representations having a certain Fourier coefficient along the Heisenberg unipotent

subgroup. The candidate global integral was suggested by Dihua Jiang in the course of the

work on [8] and he also performed the unfolding. However, since the generating function

for the L-function was not known, the unramified computation was not completed. It

is only now that we have found a way to overcome this difficulty. To the best of our
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knowledge this is the first time that the unramified computation has been performed

without explicit knowledge of the generating function.

The integral introduced here binds the analytic behaviour of LS (s, π, st) with that

of a degenerate Eisenstein series of Spin8 which was studied in [8]. In the last section

we use information on the poles of this Eisenstein series to show that for a cuspidal

representation π having a certain Fourier coefficient, the non-vanishing of the theta lift

of π to the finite group scheme S3 is equivalent to the L-function having a double pole

at s = 2.

The Rankin–Selberg integral for the standard L-function of generic representations

of G2 was constructed by Ginzburg in [9]. Recently Ginzburg and Hundley [10] have
established the meromorphic continuation of LS (s, π, st) for any cuspidal representation

π using a doubling construction. Their integral representation shows that the set of poles

of LS (s, π, st) is contained in the set of poles of a degenerate Eisenstein series on the

exceptional group of type E8.

2. Preliminaries

Let k be a number field and P be its set of places. For any ν ∈ P denote by kν the local

field associated with ν. If ν <∞ denote by Oν the ring of integers of kν and by qν the

cardinality of the residue field of kν . Let A denote the ring of adeles of k.

2.1. The group G2

Let G be the split simple algebraic group of the exceptional type G2 defined over k with

maximal torus T and Borel subgroup B. Fix a root system of G and denote by α and β

the short and the long simple roots respectively. The Dynkin digram of G has the form

α

©

β

©

and the set of positive roots is

8+ = {α, β, α+β, 2α+β, 3α+β, 3α+ 2β}.

The fundamental weights are denoted by

ω1 = 2α+β, ω2 = 3α+ 2β.

For any root γ fix a one-parametric subgroup xγ : Ga → G. For any simple root γ denote

by wγ the simple reflection with respect to it, that is an element of the Weyl group of

G. Also define the coroot subgroups hγ : Gm → G such that for any root ε,

ε
(
hγ (t)

)
= t 〈ε,γ

∨
〉.

2.2. The partial L-function

The dual Langlands group L G of G is isomorphic to G2(C). Denote the irreducible

seven-dimensional complex representation of G2(C) by st. For an irreducible cuspidal

representation π = ⊗vπv, unramified outside of a finite set of places S, the standard
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partial L-function of π is defined by

LS (s, π, st) =
∏
ν /∈S

1
det

(
I − st(tπν )q

−s
ν

) .
Here tπv is the Satake parameter of πv.

2.3. Fourier coefficients

The group G contains a Heisenberg parabolic subgroup P = M ·U . The Levi part M
is isomorphic to GL2 generated by the simple root α, while U is a five-dimensional

Heisenberg group. We parametrize the elements of U by

u(r1, r2, r3, r4, r5) := xβ (r1) xα+β (r2) x2α+β (r3) x3α+β (r4) x3α+2β (r5) .

The group M acts naturally on U and hence on Hom (U,Ga). It was shown in [12] that

for any field F of characteristic zero the M (F)-orbits of Hom (U (F) , F) are naturally

parametrized by isomorphism classes of cubic F-algebras.

Fixing an additive complex unitary character ψ = ⊗νψν of k\A this gives rise to the

correspondence between M (k)-orbits of complex characters of U (k) \U (A) and cubic

algebras over k. Let us denote by 9s the character corresponding to the split cubic

algebra k× k× k and call it the split character. More explicitly,

9s (u (r1, r2, r3, r4, r5)) = ψ (r2+ r3) .

Its stabilizer S9s in M (k) is isomorphic to S3 and is generated by wα and

hα (−1) xα (−1) x−α (1).
Denote by A (G) the space of automorphic forms on G. For any form ϕ in A (G) and

complex character 9 of U (k) \U (A), define the Fourier coefficient of ϕ with respect to

(U, 9) by

L9 (ϕ) (g) =
∫

U (k)\U (A)
ϕ (ug)9 (u) du.

For any g ∈ G this defines a functional L9 (·) (g) in HomU (A) (A (G) ,C9).
For an automorphic representation π of G (A) we say that π supports a (U, 9)

coefficient if there exists a function ϕ from the underlying space of π such that L9 (ϕ) 6≡ 0.

It was shown in [6, Theorem 3.1] that for any cuspidal representation π there exists an

étale cubic algebra such that π supports a Fourier coefficient with respect to this algebra.

Conversely, in [8] it was shown that for any étale cubic algebra there exists a cuspidal

representation supporting the Fourier coefficient corresponding to it. In this paper we

consider only representations that support the split Fourier coefficient.

For a finite ν ∈ P denote by Kν the maximal compact subgroup G (Ov) of G (kv) and

by Hν the corresponding spherical Hecke algebra. Given a complex character 9 of U (kv)
define

M9 =

{
f : G (kv)→ C

∣∣∣∣ f (ugk) = 9 (u) f (g) ∀u ∈ U (kν) , k ∈ Kν

}
M0

9 =

{
f : G (kv)→ C

∣∣∣∣ f (sugk) = 9 (u) f (g) ∀u ∈ U (kν) , s ∈ S9 , k ∈ Kν

}
.
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For f ∈ Hν define its Fourier transform f 9 with respect to the character 9 by

f 9 (g) =
∫

U (kv)
f (ug)9 (u) du.

Obviously f 9 belongs to M0
9 .

2.4. The group Spin8

Let H be a simply connected split algebraic group of type D4. We label its simple roots

according to the following diagram.

©

α1
©

α2
©

α3

©α4

The group of outer automorphisms of H is isomorphic to S3. Fixing one-parametric

subgroups, xγ : Ga → H defines a splitting of the sequence

1→ Had
→ Aut (H)→ Out (H)→ 1.

In particular the semidirect product H o S3 can be formed. It is well known that the

centralizer of S3 in H o S3 is isomorphic to the group G. We identify G with a subgroup

of H in this way. The group H contains a maximal Heisenberg parabolic subgroup PH =

MH UH such that P = PH ∩G, given by

MH '

{
(g1, g2, g3) ∈ GL2×GL2×GL2

∣∣∣∣ det (g1) = det (g2) = det (g3)

}
.

The modulus character of PH is given by δPH (g1, g2, g3) = |det (g1)|
5.

2.5. The Eisenstein series

Consider the induced representation IH (s) := IndH(A)
PH (A)δ

s
PH

. All induced representations

in this paper are not normalized. For any K -finite standard section fs define an Eisenstein

series

E (g, fs) =
∑

γ∈PH (k)\H(k)

fs (γ g) .

It has a meromorphic continuation to the whole complex plane. The behaviour at s = 4/5
was studied in [8].

Proposition 2.1 ([8], Proposition 9.1). For any standard section fs , the Eisenstein series

E (g, fs) has at most a double pole at s = 4
5 . The double pole is attained by the spherical

section f 0
s . Also, the space

SpanC

{(
s−

4
5

)2

E (g, fs)

∣∣∣∣∣
s= 4

5

 ,
is isomorphic to the minimal representation 5 of H .
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It is customary to define the normalized Eisenstein series

E∗ (g, fs) = j (s) E (g, fs) ,

where

j (s) = ζ (5s) ζ (5s− 1)2 ζ (10s− 4) .

3. The zeta integral

Let π = ⊗πν be an irreducible cuspidal representation of G (A). For ϕ ∈ π and a standard

section fs ∈ IH (s) we consider the following integral:

Z (s, ϕ, f ) =
∫

G(k)\G(A)
ϕ(g)E∗(g, fs) dg.

Since ϕ is cuspidal, and hence rapidly decreasing, the integral defines a meromorphic

function on the complex plane. Our main result is the following.

Theorem 3.1. Let π = ⊗νπν be an irreducible cuspidal representation supporting the split

Fourier coefficient. Let ϕ = ⊗νϕν ∈ π , fs = ⊗ν fs,ν ∈ IH (s) be factorizable data. Let S ⊂
P be a finite set such that if ν /∈ S then

• ν 6 | 2, 3,∞,

• 9s,ν is of conductor Oν ,

• ϕν is spherical,

• fs,ν is spherical.

Then
Z (s, ϕ, f ) = LS (s, π, st) dS (s, ϕS, fS) .

Moreover for any s0 there exist vectors ϕS, fS such that dS (s, ϕS, fS) is analytic in a

neighbourhood of s0 and dS (s0, ϕS, fS) 6= 0.

In particular the partial L-function LS(s, π, st) admits a meromorphic continuation.

Remark 3.1. If π does not support the split Fourier coefficient, the zeta integral vanishes

identically. However if π supports a Fourier coefficient corresponding to an étale cubic

algebra E there is a similar integral, using an Eisenstein series on the quasi-split form of

Spin8 corresponding to E , that is expected to represent the same L-function. We plan

to study these integrals in the near future.

The proof of the theorem will occupy the rest of the paper. In this section we will

explain the main ideas, deferring the technical part to later sections and appendices.

Theorem 3.2 (unfolding). For Re (s)� 0 we have

Z (s, ϕ, f ) =
∫

U (A)\G(A)
L9s (ϕ) (g) F∗ (g, s) dg, (3.1)

where

F∗ (g, s) = j (s)
∫
A

fs
(
w2w3x−α1 (1) xα+β (r)

)
ψ (r) dr.
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This computation was performed by Dihua Jiang, but since his proof was never

published we include it in section 4.

The function F∗ (g, s) is factorizable whenever the section fs involved is. In particular,

F∗ (g, s) = 5νF∗ν (gν, s) ,

where

F∗ν (g, s) = jν (s)
∫

kν
fs,ν

(
w2w3x−α1 (1) xα+β (r) g

)
ψν (r) dr,

and for almost all places fs,ν = f 0
s,ν ∈ IndH(kν )

PH (kν )
δs

PH
is a spherical vector with f 0

s,ν (1) = 1.

Note that as the space HomU (A)
(
π,C9s

)
is usually infinite dimensional, the functional

L9s is not necessarily factorizable. Nevertheless it will be shown that the integral

Z (ϕ, f, s) is factorizable. The factorizability of the integral follows from the next

surprising local statement, that replaces the unramified computation.

Theorem 3.3 (unramified computation). Let πν be an irreducible unramified

representation of G (kν) and let v0 be a fixed spherical vector in πν . Assume that

HomU (kν )
(
πν,C9s,ν

)
6= 0. There exists s0 ∈ R such that for any Re s > s0 and any l ∈

HomU (kν )
(
πν,C9s,ν

)
it holds that∫

U (kν )\G(kν )
l (πν (g) v0) F∗ν (g, s) dg = L (5s− 2, πν, st) l (v0) , (3.2)

where F∗ν (g, s) is the function corresponding to the normalized spherical section f 0
ν .

The identity in Theorem 3.1 follows from eq. (3.2) using standard argument as in [14].

For the sake of completeness of presentation the argument is included in section 5. This

argument also defines dS (s, ϕS, fS) explicitly.

The proof of Theorem 3.3 is the most non-trivial part of the paper and can be found in

section 7. In fact the proof is quite amusing. Following the ideas of [14] it boils down to

proving the identity between F∗ν (·, s) and a Fourier transform of the generating function

1 of L (s, πν, st). We could not find the explicit formula for 1, which must be very

complicated. Instead we have proven that the two functions become equal after being

convolved with a third function. Both sides are evaluated explicitly (appendices A and B).

Finally we show in Proposition 7.2 that the latter convolution is in fact an invertible

operation.

Theorem 3.4 (ramified computation). For any s0 ∈ C there exist a datum ϕS and fS such

that dS (s, ϕS, fS) is holomorphic and non-vanishing in a neighbourhood of s0.

This theorem is proven in section 8.

4. Unfolding

The proof of Theorem 3.2 is fairly standard. First we introduce some more notation that

will be used in this section and also in section 8

Denote by Q = LV the maximal parabolic subgroup of G other than P. The Levi part

L ' GL2 is generated by the root β. The unipotent radical of the Borel subgroup of L
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will be denoted by Nβ . The unipotent radical V of Q is a three-step nilpotent group.

Denote its commutator [V, V ] by R. It is generated by the subgroups x2α+β , x3α+β and

x3α+2β .

The following fact will be used [15, Theorem 5]:∫
R(k)\R(A)

ϕ (rg) dr =
∑

ν∈Nβ (k)\L(k)

Wψ (ϕ) (νg) , (4.1)

where Wψ (ϕ) is the standard Whittaker coefficient of ϕ.

There are five G (k)-orbits of PH (k) \H (k). The representatives of the orbits and their

stabilizers are given in the next lemma [13, Lemma 2.1].

Lemma 4.1. The following is a list of representatives of G (k)-orbits in PH (k) \H (k) and
their stabilizers:

(1) µ = 1, and the stabilizer Gµ
= P.

(2) µ = w2w1, w2w3, w2w4, and the stabilizer Gµ
= L R.

(3) µ = w2w3x−α1(1) is a representative of the open orbit. The stabilizer of

PH (k) µG (k) is Gµ
= Tµ ·Uµ where

Tµ =
{

h3α+2β (t)
∣∣∣∣t ∈ k×

}
, Uµ

=

{
u (r1, r2, r2, r4, r5)

∣∣∣∣ri ∈ k
}

Proof of Theorem 3.2. For Re (s)� 0 it holds that∫
G(k)\G(A)

ϕ (g) E (g, fs) dg =
∫

G(k)\G(A)
ϕ (g)

∑
γ∈PH (k)\H(k)

fs (γ g) dg

=

∑
µ∈PH (k)\H(k)/G(k)

Iµ (ϕ, fs) ,

where

Iµ (ϕ, fs) =

∫
Gµ(k)\G(A)

ϕ (g) fs (µg) dg.

Next we show that Iµ (ϕ, fs) = 0 unless µ is a representative of the open orbit.

(1) µ = 1. Then

Iµ (ϕ, fs)=

∫
P(k)\G(A)

ϕ (g) fs (g) dg

=

∫
M(k)U (A)\G(A)

fs (g)
∫

U (k)\U (A)
ϕ (ug) du dg = 0,

since ϕ is cuspidal.
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(2) µ = w2w1, w2w3, w2w4. Then

Iµ (ϕ, fs)=

∫
L(k)R(k)\G(A)

ϕ (g) fs (µg) dg

=

∫
L(k)R(A)\G(A)

fs (µg)
∫

R(k)\R(A)
ϕ (rg) dr dg.

Using eq. (4.1) this equals∫
L(k)R(A)\G(A)

fs (µg)
∑

ν∈Nβ (k)\L(k)

Wψ (ϕ) (νg)

=

∫
Nβ (A)R(A)\G(A)

fs (µg)Wψ (ϕ) (g)

(∫
Nβ (k)\Nβ (A)

ψ (n) dn

)
dg = 0.

Now let us compute the contribution from the open orbit. For µ = w2w3x−α1 (1) it
holds that

Iµ (ϕ, f ) =
∫

Tµ(k)Uµ(A)\G(A)

(∫
Uµ(k)\Uµ(A)

ϕ (ug) du
)

fs(µg) dg.

Expanding the function given by an inner integral along the root α+β and collapsing

the sum with the outer integration, the above equals∫
Uµ(A)\G(A)

∫
U (k)\U (A)

ϕ (ug)9s (u) du fs (µg) dg. (4.2)

Since U = Uµ
· xα+β we bring the integral to its final form∫

U (A)\G(A)

∫
U (k)\U (A)

ϕ (ug)9s (u) du
∫
A

fs
(
µxα+β (r) g

)
ψ (r) dr dg

=

∫
U (A)\G(A)

L9s (ϕ) (g)
F∗ (g, s)

j (s)
dg. (4.3)

5. Derivation of the Main Theorem from Theorem 3.3 and 3.4

Proof of Theorem 3.1. Let µ = w2w3x−α1 (1). By definition,

Z (s, ϕ, f ) = lim
−→

S⊂�⊂P
|�|<∞

∫
U (A)�\G(A)�

L9s (ϕ) (g) F∗� (g, s) dg , (5.1)

where G (A)� =
∏
ν∈� G (kν) and

F∗�(g, s) = j�(s)
∫

k�
fs(µxα+β(r)g)ψ(r) dr.

Fix s0 ∈ R such that the right hand side of eq. (3.1) converges for Res > s0. The integrals

of the right hand side of eq. (5.1) must also converge there. Also fix s1 ∈ R such that

eq. (3.2) holds for Res > s1. For a finite set S ⊆ � and ν /∈ � we have∫
U (A)�∪{ν}\G(A)�∪{ν}

L9s (ϕ) (g) F∗�∪ν (g, s) dg
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=

∫
U (A)�\G(A)�

∫
U (kν )\G(kν )

L9s (ϕ) (ggν) F∗�∪ν (ggν, s) dgν dg

=

∫
U (A)�\G(A)�

F∗� (g, s)
∫

U (kν )\G(kν )
L9s (ϕ) (ggν) F∗ν (gν, s) dgν dg

= L (5s− 2, πν, st)
∫

U (A)�\G(A)�
L9s (ϕ) (g) F∗� (g, s) dg,

where the last equality is due to Theorem 3.3. A priori the last equality holds only
for Res > max {s0, s1}, but since L (5s− 2, πν, st) is a meromorphic function the equality

actually holds for Res > s0. Plugging this into equation (5.1) we get

Z (s, ϕ, f )= lim
−→

S⊂�⊂P
|�|<∞

∫
U (A)�\G(A)�

L9s (ϕ) (g) F∗� (g, s) dg

= lim
−→

S⊂�⊂P
|�|<∞

∏
ν∈�\S

L (5s− 2, πν, st)
∫

U (A)S\G(A)S
L9s (ϕ) (g) F∗S (g, s) dg

=LS (5s− 2, π, st)
∫

U (A)S\G(A)S
L9s (ϕ) (g) F∗S (g, s) dg.

We finish the proof by fixing our datum according to Theorem 3.4 and taking

dS (s, ϕS, fS) =

∫
U (A)S\G(A)S

L9s (ϕ) (g) F∗S (g, s) dg.

6. The generating function

Let F = kν with the ring of integers O and uniformizer $ for some ν /∈ S. By abuse of

notation we drop ν from the notation and write in this section, and in section 7 and

appendices A and B, π for πν , ψ for ψν etc.

Recall that G (F) contains the maximal compact subgroup K = G (O). We fix on G
the Haar measure µ such that µ (K ) = 1. Let H = H (G, K ) be the spherical Hecke

algebra of G. In this section we construct a generating function 1 ∈ H
[[

q−s]] for the

local L-function L (s, π, st).
Recall that the Satake isomorphism is an isomorphism of C-algebras H ∼= Rep(L G).

Denote by A j ∈ H the elements corresponding to Sym j (st) under the Satake

isomorphism. In particular, for any unramified representation π and a K -invariant vector

v0 ∈ π it holds that ∫
G

A j (g) π (g) v0 dg = tr
(

Sym j (st) (tπ )
)
v0, (6.1)

where tπ is the Satake parameter of π .

For any unramified representation π the Satake isomorphism induces an algebra

homomorphism that sends f ∈ H to the complex number f̂ (π) such that∫
G

f (g) π (g) v0 dg = f̂ (π) v0.
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In particular for f1, f2 ∈ H it holds that f̂1 ∗ f2 = f̂1 · f̂2. The homomorphism f → f̂ (π)
can be extended linearly to a map of formal power series algebras H[[T ]] → C[[T ]]. Let

T = q−s .

Theorem 6.1. There exists a generating function 1(g, s) ∈ H[[q−s
]], uniformly

converging on a right half-plane, such that for any unramified representation π with

a spherical vector v0 and any functional l on π , it holds that∫
G
1(g, s) l (π (g) v0) dg = L (s, π, st) l (v0) (6.2)

for Res � 0.

Proof. We must show that there exists 1 with 1̂ (π, s) = L (s, π, st). The construction

is formal. By the well known Poincaré identity,

L (s, π, st)=
1

det
(
1− q−sst (tπ )

) = 7∏
i=1

(
1− q−sst (tπ )i i

)−1

=

7∏
i=1

∞∑
j=0

(
q−sst (tπ )i i

) j
=

∞∑
j=0

tr
(

Sym j (st (tπ ))
)

q− js,

where tπ is the Satake parameter of π . The series converges absolutely for Res � 0.

Plugging eq. (6.1) into the previous equality gives

L (s, π, st) l (v0) = l

 ∞∑
j=0

(∫
G

A j (g) π(g)v0q− jsdg
) . (6.3)

Ignoring for the moment the convergence issue and exchanging formally the sum and the

integral, we obtain

L (s, π, st) l (v0) = l

∫
G

 ∞∑
j=0

A j (g) q− js

π(g)v0dg


for Re (s)� 0. The assertion then holds for 1(·, s) =

∑
∞

j=0 A j q− js for any unramified

representation π . Uniqueness follows from the fact that the action of the spherical

functions of unramified representations gives rise to a spectral decomposition of H.

It remains to justify the exchange of the sum and the integral in eq. (6.3).

Let us introduce some standard notation. Let 3 denote the cocharacter lattice of g
and for any γ ∈ 3 denote by tγ its representative in the maximal torus T . Let 3+ denote

the set of dominant coweights. There is a partial order on 3+: γ 6 λ if and only if λ− γ

can be written as a non-negative combination of the positive coroots. Let ρ be half of

the sum of all the positive roots.

Making use of the Cartan decomposition G = K3+K we obtain

∞∑
j=0

(∫
G

A j (g) ·π (g) v0dg
)

q− js
=

∞∑
j=0

∑
γ∈3+

A j
(
tγ
)
·ωπ (tγ )µ

(
K tγ K

)
q− jsv0,
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where ωπ (g) = 〈v∨0 , π(g)v0〉 is the normalized spherical function. Here v∨0 is the K -fixed

vector in π∨ such that 〈v∨0 , v0〉 = 1.

Let us show that this double series converges absolutely for any π and hence it is

possible to interchange the order of the summations. For this purpose we shall produce

a bound for each term.

Lemma 6.1. (1) For any j > 0,∣∣∣∣{γ ∈ 3+∣∣∣∣γ 6 [ j, 0]
}∣∣∣∣ 6 ( j + 1) (2 j + 1) .

(2) A j
(
tγ
)
= 0 unless γ 6 [ j, 0] .

(3) Assume that γ 6 [ j, 0]. Then there exist constants C1,C2,C3, z > 0 such that

∣∣A j
(
tγ
)∣∣ 6 C1 j7∣∣ωπ (tγ )∣∣ 6 C2q j z

µ
(
K tγ K

)
6 C3q6 j .

Proof. For any dominant coweight λ, that can be simultaneously regarded as a dominant

weight of the dual group, denote by Aλ ∈ H the function corresponding to the highest

weight irreducible representation Vλ of L G via the Satake isomorphism.

Let γ = nα∨+mβ∨. Then γ 6 [ j, 0]⇒ n 6 j,m 6 2 j . Obviously, the number of such

roots γ is bounded by ( j + 1) (2 j + 1); this proves (1).
Recall from [15, page 836] that the j-symmetric algebra of st decomposes as follows:

Sym j (st) =

j⊕
k=0

k≡ j(mod 2)

V[k,0].

Hence A j (g) =
∑ j

k=0
k≡ j(mod 2)

A[k,0] (g). According to [11, § 4],

Aλ
(
tγ
)
=

q−(λ,ρ)Pλ,γ (q) γ 6 λ

0 otherwise,

where Pλ,γ is an affine Kazhdan–Lustigue polynomial of degree at most (λ− γ, ρ) with

non-negative integral coefficients. (2) follows immediately.

We now prove (3). In particular, for γ 6 λ it holds that

0 6 Aλ
(
tγ
)
= q−(λ,ρ)Pλ,γ (q) 6 Pλ,γ (1) = dim Vλ (γ ) 6 dim Vλ.

By the Weyl character formula

dim Vλ = 5α>0
(λ+ ρ, α)

(ρ, α)
,

The Rankin–Selberg integral with a non-unique model for the standard L-function of G2 159

https://doi.org/10.1017/S147474801300039X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801300039X


N. Gurevich and A. Segal

there exists C1 > 0 such that dim V[k,0] 6 C1k6. In particular, for γ 6 [ j, 0] one has

A j
(
tγ
)
=

j∑
k=0

k= j(mod 2)

Ak
(
tγ
)
6 C1 j7.

This proves the first bound in (3).

Let us prove the second bound in (3). Assume that the unramified representation π is

a constituent of IndG
Bχ where χ is an unramified character. There exists a constant z > 0

such that for any w ∈ W one has

|wχ (hα ($))| ,
∣∣wχ (hβ ($))∣∣ 6 q z .

Then for γ = nα∨+mβ∨ 6 [ j, 0] one has
∣∣wχ (tγ )∣∣ 6 q j z

· q2 j z
= q3 j z .

Hence by Macdonald’s formula [4, Theorem 4.2] there exists C2 > 0, z > 0 such that∣∣ωπ (tγ )∣∣ < C2q3 j z .

Finally it is known that for γ = nα∨+mβ∨ one has µ
(
K tγ K

)
= C3q2n+2m for some

constant C3 > 0. For γ 6 [ j, 0] it is bounded by C3q6 j and hence (3) is proven.

Taking all the bounds into account we obtain

∞∑
j=0

∑
tγ ∈3+

∣∣A j
(
tγ
)∣∣ · ∣∣ωπ (tγ )∣∣µ (K tγ K

)
‖v0‖

∣∣∣q− js
∣∣∣

6
∞∑
j=0

∑
γ6[ j,0]

∣∣A j
(
tγ
)∣∣ · ∣∣ωπ (tγ )∣∣µ (K tγ K

)
‖v0‖ q− jRe(s)

6
∞∑
j=0

∑
γ6[ j,0]

C1 j7
·C2q3 j z

·C3q6 j
· q− jRe(s)

‖v0‖ 6 C ·
∞∑
j=0

j9
· q(6+3z−Re(s)) j

‖v0‖

which converges absolutely for Re (s)� 0.

Bounds in the lemma ensure that for Re (s)� 0 the series
∑
∞

j=0 A j (g)q− js converges
absolutely and uniformly (in G) and hence the function 1(g, s) is defined for any s in

some right half-plane.

7. Unramified computation

In this section we prove Theorem 3.3. For any l ∈ HomU (F)
(
π,C9s

)
one has

L (s, π, st) l(v0) =

∫
G

l (π(g)v0)1 (g, s) dg =
∫

U\G
l (π (g) v0)1

9s (g, s) dg.

Thus, in order to prove that for all unramified π and all l ∈ HomU
(
π,C9s

)
eq. (3.2)

holds, it is enough to show that for Res � 0,

19s (g, 5s− 2) = F∗ (g, s) . (7.1)
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Remark 7.1. Recall that the integrand of∫
U\G

l (π (g) v0) F (g, s) dg

is U -invariant and l ∈ HomU (π,C9s ); hence F (g, s) ∈M9s .

While the right hand side of eq. (7.1) is given explicitly, we do not have an explicit

formula for the generating function 1(g, s).
To overcome that difficulty we introduce a new function D ∈ H

[[
q−s]]. Recall the

Cartan decomposition G = K T+K where

T+ =
{

t ∈ T
∣∣∣∣ |γ (t)| 6 1 ∀γ ∈ 8+

}
.

The function D is the bi-K -invariant defined on the torus T+ by

D(t, s) = |ω1(t)|5s+1
∀t ∈ T+.

The relation between D and 1 can be seen from the following proposition.

Proposition 7.1. There exists P (·, s) ∈ H
[
q−s] and s0 ∈ R such that for Res > s0 it holds

that

D (·, s) = 1(·, 5s− 2) ∗ P (·, s) .

More precisely,

P (·, s) =
P0
(
q2−5s) A0− P1

(
q2−5s) A1

ζ (5s− 1) ζ (5s+ 1) ζ (5s− 2)
, (7.2)

where

P0 (z) =
z4

q2 +

(
1

q2 +
1
q

)
z3
+

z2

q
+

(
1
q
+ 1

)
z+ 1, P1 (z) =

z2

q
.

Proof. Let v0
∨
∈ π∨ be the unramified vector such that

〈
v0
∨, v0

〉
= 1 and let ωπ be the

normalized spherical function associated with π given by

ωπ (g) =
〈
v0
∨, π (g) v0

〉
.

For any functional l of π one has∫
G

D (g, s) l (π(g)v0) dg = l (v0)

∫
G

D (g, s) ωπ (g) dg.

Using Macdonald’s formula [4, Theorem 4.2] for ωπ , this integral turns into a sum of

geometric progressions that converges for Res � 0. A direct computation yields

D̂ (π, s) =
∫

G
D (g, s) ωπ (g) dg = L (5s− 2, π, st) · Q (π, s) . (7.3)

Here

Q (π, s) =
P0
(
q2−5s)

− P1
(
q2−5s) tr (st) (tπ )

ζ (5s− 1) ζ (5s+ 1) ζ (5s− 2)
. (7.4)

On the other hand, L (5s− 2, π, st) = 1̂ (π, 5s− 2) and obviously Q (π, s) = P̂ (π, s).
Since eq. (7.3) holds for any unramified π , the proposition follows.
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Since the Fourier transform is a map of H modules, we have the following corollary:

Corollary 7.1.

D9s (s) = 19s (5s− 2) ∗ P (s) .

The basic identity Remark (7.1) will follow once we prove

D9s = F∗ ∗ P (7.5)

and:

Proposition 7.2. There exists s0 such that f ∗ P (·, s) ≡ 0 implies f ≡ 0 for any f ∈M9s

whenever Res > s0

Indeed from eq. (7.5) we get(
19s (·, 5s− 2)− F∗ (·, s)

)
∗ P (·, s) =

(
D9s − F∗

)
∗ P = 0

and hence by Proposition 7.2 we have 19s = F∗ for Res � 0. We now turn to proving

Proposition 7.2 and eq. (7.5).

The following observation is useful for the proof of Proposition 7.2.

Remark 7.2. We note that H can be completed into a C∗-algebra Ĥ as a closed subspace

of the reduced group C∗-algebra of G. One way to do this is to use the action of H
on L2 (K \G/K ) by convolution. This is a separable Hilbert space and H admits an

embedding into B
(
L2 (K \G/K )

)
in which we complete it with respect to the operator

norm. In fact, for our needs we only need to know that a C∗-norm and such a completion

exist.

Proof of Proposition 7.2. We will show a stronger statement: there exists s0 such

that for any Re (s) > s0 the element P (·, s) is invertible in Ĥ. For Re (s)� 0 this is

equivalent to showing that

A0−
P1
(
q2−5s)

P0
(
q2−5s

) A1

is invertible. Since Ĥ is a C∗-algebra it will suffice to show that

∥∥∥∥ P1
(
q2−5s)

P0(q2−5s)
A1

∥∥∥∥ < 1. We

have ∥∥∥∥∥ P1
(
q2−5s)

P0
(
q2−5s

) A1

∥∥∥∥∥ =
∣∣∣∣∣ P1

(
q2−5s)

P0
(
q2−5s

) ∣∣∣∣∣ ‖A1‖

and since

lim
Re(s)→∞

P0(q2−5s) = 1 and lim
Re(s)→∞

P1(q2−5s) = 0,

there exists s0 such that for Re (s) > s0 we have∣∣∣∣∣ P1
(
q2−5s)

P0
(
q2−5s

) ∣∣∣∣∣ < 1
‖A1‖

.
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It remains to verify eq. (7.5). We shall evaluate both functions explicitly and

miraculously get the same answer. Recall that S9s = StabM (9s) ' S3 is generated by

wα and hα (−1) xα (−1) xα (1).

Theorem 7.1. For all g ∈ G(F) and Re(s)� 0,

D9s (g, s) = (F∗ ∗ P) (g, s) (7.6)

More precisely, both functions vanish outside of S9s UTK. For t = hα(t1)hβ(t2) ∈ T the
values of both functions at t equal

1+q1−5s

ζ (5s+1)

∣∣∣ t2
t1

∣∣∣ |t1|5s ,

∣∣∣∣ t2
1
t2

∣∣∣∣ < 1

1+q1−5s

ζ (5s+1)

∣∣∣ t2
t1

∣∣∣5s
|t1| ,

∣∣∣∣ t2
1
t2

∣∣∣∣ > 1

1+2q1−5s

ζ (5s+1) |t1|
5s+1 ,

∣∣∣∣ t2
1
t2

∣∣∣∣ = 1.

if t1,
t2
t1
∈ O and zero otherwise.

For the right hand side of equation (7.6) we first compute explicitly the function

Fs =
F∗s
j(s) and then perform the convolution. This tedious, but quite straightforward,

computation is performed in appendix A.

Now let us explain how to evaluate the left hand side. Let SO7 be the special orthogonal

group viewed as a subgroup of GL7, preserving the split symmetric form (δi,7−i ). Fix an

embedding ι : G (F)→ SO7 (F) as in [13]. In appendix B we give a realization of this

map. Define a function 0 : G (F)→ R by

0 (g) = max
16i, j67

∣∣ι(g)i, j
∣∣ .

The following result is easily checked.

Lemma 7.1. 0 is a bi-K -invariant function and for t ∈ T+,

0 (t) = |ω1(t)|−1 .

Thus D (g, s) =
∑
∞

k=0 Dk (g) q−(5s+1)k , where

Dk (g) =
{

1, 0(g) = qk

0, otherwise.

For any g ∈ G define Uk (g) =
{
u ∈ U : 0(ug) 6 qk} and let

Ek (g) =
{

1, 0 (g) 6 qk

0, otherwise.

Obviously,

Dk (g) = Ek (g)− Ek−1 (g)
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and, in particular,

D9s (g, s) =
∞∑

k=0

(E9s
k (g)− E9s

k−1 (g))q
−(5s+1)k,

where

E9s
k (g) =

∫
U

1Uk (g) (ug)9s (u) du =
∫

Uk (g)
9s (u) du.

The computation of E9s
k (g) can be further reduced to a calculation of volumes of

certain sets. For a given g there are at most two values of k for which E9s
k (g) 6= 0. The

detailed computation is performed in appendix B.

8. Ramified computation

In this section we prove Theorem 3.4.
Recall from Theorem 3.2 that for the representative of the open orbit µ,

dS (s, ϕ, fs) =

∫
US\GS

L9s (ϕ) (g) F∗ (g, s) dg = j (s)
∫

Uµ
S \GS

L9s (ϕ) (g) fs (µg) dg.

For p ∈ Gµ (kν) define

χs (p) = δs
PH
(µpµ−1).

Since µ generates the open double coset in H , there is an inclusion

i : indG(kS)
Gµ(kS)

χs ↪→ IndH(kS)
PH (kS)

δs
PH

defined by i( fs) (pµg) = δs
PH
(p) fs (g), and i ( f ) vanishes on all other double cosets

P (kS) µ
′G (kS).

For any φS ∈ S (kS) define an action of φS on π by

φS ∗ϕ =

∫
kS

φS (r) πS
(
x2α+β (r)

)
ϕ dr.

It is easy to see that

L9s

(
πS
(
h3α+2β (t)

)
(φS ∗ϕ)

)
= φ̂S (t) L9s

(
πS
(
h3α+2β (t)

)
ϕ
)
,

where φ̂S is a Fourier transform of φS .

Let us write

JS (s, ϕ) =
∫

k×S

L9s (ϕ) (t) |t |
5s d×t.

Lemma 8.1. For any s0 ∈ C and any ϕ ∈ π such that L9s (ϕ) 6= 0, there exists φS ∈ S (kS)

such that JS (s, φS ∗ϕ) 6= 0 around s0.

Proof. One has∫
k×S

L9s (φS ∗ϕ) (t) |t |5s d×t =
∫

k×S

φ̂S (t) L9s (ϕ) (t) |t |
5s d×t.

164

https://doi.org/10.1017/S147474801300039X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801300039X


Since the image of k×S inside kS is locally closed we may choose φS such that φ̂S is

supported on a relatively compact neighbourhood of 1 ∈ k×S . Choose φS such that the

support of φ̂S is sufficiently small to ensure the non-vanishing of JS (s, φS ∗ϕ) around

s0.

Consider the decomposition

GS = Gµ
S · T

c
S ·U

c
S · KS, T c

S =

{
xβ (t)

∣∣∣∣t ∈ k×S

}
, U c

S =

{
xα (r1) xα+β (r2)

∣∣∣∣ri ∈ kS

}
.

For any Schwarz function 8S on (T c
·U c
· K )S define fs (8S) ∈ indGS

Gµ
S
χs by

fs (8S)
(
gµg

)
= χs

(
gµ
)
8S (g) .

Then for any ϕ ∈ π it holds that

dS
(
s, ϕ, f (8)s

)
= JS (s,8S ∗ϕ) (8.1)

By the Dixmier–Malliavin theorem [5] there exists a Schwarz function 8S on

(T c
·U c
· K )S and ϕ ∈ π such that L9s (8S ∗ϕ) 6= 0. Then for any φS ∈ S (kS),

dS (s, φS ∗ϕ, f (8S)) = JS (s, φS ∗ (8 ∗ϕ)) .

By Lemma 8.1 there exists a Schwarz function φS ∈ S (kS) such that

dS (s, φS ∗ϕ, fs (8S)) is an entire function and does not vanish in a neighbourhood of

s0.

9. Application — the 2-lift for the dual pair (S3,G2)

The theta correspondence 2H for the dual pair (S3,G2) in the group H o S3 has been

studied in [8]. The minimal representation 5 of H can be extended to the group H o S3.

A cuspidal representation π belongs to the image of 2H if∫
G(k)\G(A)

ϕ (g) F (g) dg 6= 0

for ϕ in the space π and F in the space of the minimal representation 5. It was proven

in [8] that any such representation π supports the split Fourier coefficient. Besides, π is

a non-tempered representation and LS (π, s, st) has a double pole at s = 2. Taking the

residue (of depth 2) at s = 2 for the main equality, we obtain the converse, i.e. the double

pole of the standard L-function at s = 2 characterizes the image of 2H . In other words:

Theorem 9.1. For a cuspidal representation π of G (A) that supports the split Fourier

coefficient, the following statements are equivalent:

(1) LS (s, π, st) has a double pole at s = 2.

(2) 2H (π) 6= 0.

The Rankin–Selberg integral with a non-unique model for the standard L-function of G2 165

https://doi.org/10.1017/S147474801300039X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801300039X


N. Gurevich and A. Segal

Acknowledgements

First and foremost we thank Dihua Jiang for suggesting the candidate zeta integral for

the L-function and making the first step in the proof. It is a pleasure to thank Wee

Teck Gan for many useful discussions. We thank the referee for the careful reading of

the manuscript and for his or her valuable questions and remarks. Part of this work

constitutes of the M.Sc. thesis of the second-named author. The first-named author was

partially supported by grant 1691/10 from the Israel Science Foundation.

A. Computing F (·, s) ∗ P (·, s)

Recall that

P(s) =
P0 A0+ P1 A1

ζ (5s− 1) ζ (5s+ 1) ζ (5s− 2)

and by [11, p. 231]

A0 = 1K , A1 = q−3
(
1K +1Kω∨2 ($)K

)
;

hence

F∗ (·, s) ∗ P (·, s)

= j (s)

(
P0 (s)− q−3 P1

(
q−s)) F (·, s)− q−3 P1

(
q2−5s) F (·, s) ∗ 1Kω∨2 ($)K

(·)

ζ (5s− 1) ζ (5s+ 1) ζ (5s− 2)
.(A 1)

We shall compute each summand separately. In this section we prove the following result.

Proposition A.1. The following hold for (F (·, s) ∗ P (·, s)).

(1) (F∗ (·, s) ∗ P (·, s)) ∈M0
9s

.

(2) (F∗ (·, s) ∗ P (·, s)) (g) = 0 unless g ∈ S9s UTK.

(3) Let t = hα (t1) hβ (t2) ∈ T . If t1,
t2
t1
∈ O it holds that

(
F∗ (·, s) ∗ P (·, s)

)
(t) =



1+q1−5s

ζ (5s+1)

∣∣∣ t2
t1

∣∣∣ |t1|5s ,

∣∣∣∣ t2
1
t2

∣∣∣∣ < 1

1+q1−5s

ζ (5s+1)

∣∣∣ t2
t1

∣∣∣5s
|t1| ,

∣∣∣∣ t2
1
t2

∣∣∣∣ > 1

1+2q1−5s

ζ (5s+1) |t1|
5s+1 ,

∣∣∣∣ t2
1
t2

∣∣∣∣ = 1

; (A 2)

otherwise (F∗ (·, s) ∗ P (·, s)) (t) = 0.

A.1. The spaces M9s ,M0
9s

In this subsection we list some properties of the spaces M9s and M0
9s

, defined in

section 2, which will be used in this section and in appendix B. By Iwasawa decomposition

any function H ∈M9s is determined by the values that it attains on BM/(BM ∩ K ),
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i.e. on the elements

g = hα (t1) hβ (t2) xα (d) ,

where d ∈ F/O. In this appendix if d ∈ O we choose d = 1 as a representative. In

appendix B if d ∈ O we choose d = 0 as a representative.

Note that for any positive root γ and |d| > 1 one has

x−γ (d) = xγ (d−1)hγ (d−1)k

xγ (d) = hγ (d) x−γ (d) k′, (A 3)

for some k, k′ ∈ K .

Using the invariance properties one easily checks the following lemma.

Lemma A.1. Let g = hα (t1) hβ (t2) xα (d).

(1) Let H ∈M9s . Then H (g) = 0 unless

t1, dt1+
t2
t1
, 2d

t2
t1
+ d2t1 ∈ O. (A 4)

(2) Let H ∈M0
9s

. Then H (g) = 0 unless

t1,
t2
t1
, d2t1, d

t2
t1
∈ O. (A 5)

Proof.

(1) Note that for any u ∈ U ∩ K it holds that

H (g) = H (gu) = H
(
ugg

)
= 9s

(
ug) H (g) .

So if H (g) 6= 0 then

9s
(
ug)
= 1 ∀u ∈ U ∩ K .

Note that for u (r1, r2, r3, r4, r5) ∈ U ∩ K it holds that

ug
= u

(
r ′1,

dt2
2t1

r1+
t2
t1

r2,
d2t1

4
r1+ dt1r2+ t1r3, r ′4, r

′

5

)
,

for some r ′1, r
′

4, r
′

5. Applying 9s to ug yields

9s
(
ug)
= 9s

((
dt2
2t1
+

d2t1
4

)
r1+

(
t2
t1
+ dt1r2

)
r2+ t1r3

)
.
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In order that 9s (ug) 6= 1, the coefficients of r1, r2 and r3 must belong to O. It then

follows that

9s
(
ug)
= 1∀r1, r2, r3 ∈ O ⇒

dt2
2t1
+

d2t1
4
,

t2
t1
+ dt1, t1 ∈ O.

(2) This follows from the previous item by applying wα-invariance.

The following lemma will be useful in the computation of the second summand of

eq. (A 1).

Lemma A.2. Let H ∈M9s , t ∈ T and 1K t K be a characteristic function of the double
coset K t K . Then

H ∗1K t K (g) =
∑

i

H(gb−1
i ),

where K t K =
∐

K bi . Note that the representatives bi can be taken in the Borel subgroup

B of G.

A.2. Computation of Fs

Proposition A.2. Assume that g = hα (t1) hβ (t2) xα (d) ∈ M satisfies eq. (A 5). It holds

that

F (g, s) =



ζ (5s−1)
ζ (5s) |t1|

5s
∣∣∣ t2

t1

∣∣∣ (1−
∣∣∣$ t2

t1

∣∣∣5s−1
)
,∣∣∣∣d2 t2

1
t2
+ d

∣∣∣∣ 6 1

ζ (5s−1)
ζ (5s) |t1|

5s
∣∣∣ t2

t1

∣∣∣ ∣∣∣∣d2 t2
1
t2
+ d

∣∣∣∣1−5s
(

1−
∣∣∣∣$ (

d2 t2
1
t2
+ d

)
t2
t1

∣∣∣∣5s−1
)
,∣∣∣∣d2 t2

1
t2
+ d

∣∣∣∣ > 1.

For g ∈ M violating eq. (A 5), we have F (g, s) = 0.

Proof. We recall that

F (g, s) =
∫

F
fs
(
µxα+β (r) g

)
ψ (r) dr,

where fs here is the spherical section such that fs (1) = 1. For g as above we have

F (g, s)=
∫

F
fs
(
w2w3x−α1 (1) xα+β (r) hα (t1) hβ (t2) xα (d)

)
ψ (r) dr

= |t1|5s
∫

F
fs

(
w2w3x−α1

(
t2
1
t2

)
xα2+α3

(
t1
t2

r
)

xα1 (d) xα3 (d)

)
ψ (r) dr.

Making a change of variables r ′ = t1
t2

and conjugating w3 to the right we get

F (g, s) = |t1|5s
∣∣∣∣ t2t1
∣∣∣∣ ∫

F
fs

(
w2x−α1

(
t2
1
t2

)
xα2(r

′)xα1 (d) x−α3 (d)

)
ψ

(
t2
t1

r ′
)

dr ′.
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Due to eq. (A 3) we have

F (m, s)

= |t1|5s
∣∣∣∣ t2t1
∣∣∣∣ ∫

F
fs

(
w2x−α1

(
t2
1
t2

)
xα2(r

′)xα1 (d) xα3(d
−1)hα3(d

−1)

)
ψ

(
t2
t1

r ′
)

dr ′.

Conjugating the elements associated with α3 to the left and using a similar equality for

α1 yields

F (g, s)=
∣∣∣∣ t1d
∣∣∣∣5s ∣∣∣∣ t2t1

∣∣∣∣ ∫
F

fs

(
w2x−α1

(
t2
1
t2

)
xα2

(
r ′

d

)
xα1 (d)

)
ψ

(
t2
t1

r ′
)

dr ′

=

∣∣∣∣ t1d
∣∣∣∣5s ∣∣∣∣ t2t1

∣∣∣∣ ∫
F

fs

(
w2x−α1

(
t2
1
t2

)
xα2

(
r ′

d

)
hα1 (d) x−α1 (d)

)
ψ

(
t2
t1

r ′
)

dr ′

= |t1|5s
∣∣∣∣ t2t1
∣∣∣∣ ∫

F
fs

(
w2xα2(r

′)x−α1

(
d2 t2

1
t2
+ d

))
ψ

(
t2
t1

r ′
)

dr ′.

If

∣∣∣∣d2 t2
1
t2
+ d

∣∣∣∣ 6 1 we have

F (g, s) = |t1|5s
∣∣∣∣ t2t1
∣∣∣∣ ∫

F
fs
(
w2xα2(r

′)
)
ψ

(
t2
t1

r ′
)

dr ′.

The integral is evaluated by separation to O and F \O and once again using eq. (A 3).

It holds that∫
F

fs
(
w2xα2(r

′)
)
ψ

(
t2
t1

r ′
)

dr ′

=

∫
O

fs
(
w2xα2(r

′)
)
ψ

(
t2
t1

r ′
)

dr ′+
∫

F\O
fs
(
w2xα2(r

′)
)
ψ

(
t2
t1

r ′
)

dr ′

= 1+
∫

F\O
|r ′|−5sψ

(
t2
t1

r ′
)

dr ′

= 1+
∑

1<qk<
∣∣∣ t2

t1

∣∣∣
q−5ks

∫
|r |=qk

ψ (r) dr −
∣∣∣∣ t2t1
∣∣∣∣−5s ∫

|r |=
∣∣∣ t2

t1

∣∣∣ ψ (r) dr

=
ζ (5s− 1)
ζ (5s)

(
1−

∣∣∣∣$ t2
t1

∣∣∣∣5s−1
)
.

And hence

F (g, s) =
ζ (5s− 1)
ζ (5s)

|t1|5s
∣∣∣∣ t2t1
∣∣∣∣
(

1−
∣∣∣∣$ t2

t1

∣∣∣∣5s−1
)
.

Assume now that

∣∣∣∣d2 t2
1
t2
+ d

∣∣∣∣ > 1 and define p = d2 t2
1
t2
+ d. It holds that

F (g, s)= |t1|5s
∣∣∣∣ t2t1
∣∣∣∣ ∫

F
fs(w2xα2(r

′)xα1(p
−1)α∨1 (p

−1))ψ

(
t2
t1

r ′
)

dr ′
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=

∣∣∣∣ t1p
∣∣∣∣5s ∣∣∣∣ t2t1

∣∣∣∣ ∫
F

fs

(
w2xα2

(
r ′

p

))
ψ

(
t2
t1

r ′
)

dr ′
(

r ′′ =
r ′

p

)
=

∣∣∣∣ t1p
∣∣∣∣5s ∣∣∣∣p t2

t1

∣∣∣∣ ∫
F

fs
(
w2xα2

(
r ′′
))
ψ

(
t2
t1

pr ′′
)

dr ′′.

If |p t2
t1
| 6 1 then, as in the previous case,

F (g, s) =
ζ (5s− 1)
ζ (5s)

|t1|5s
∣∣∣∣ t2t1
∣∣∣∣
∣∣∣∣∣d2 t2

1
t2
+ d

∣∣∣∣∣
1−5s

1−

∣∣∣∣∣$
(

d2 t2
1
t2
+ d

)
t2
t1

∣∣∣∣∣
5s−1

 .
If on the other hand |p t2

t1
| > 1, like for the previous cases it holds that∫

F
fs
(
w2xα2 (r)

)
ψ

(
t2
t1

pr
)

dr =
∫
O
ψ

(
t2
t1

pr
)

dr +
∫

F\O
|r |−5s ψ

(
t2
t1

pr
)

dr = 0+ 0,

since ψ is of conductor O. Note that when
∣∣∣p t2

t1

∣∣∣ > 1, eq. (A 5) is violated.

Corollary A.1. (1) F (·, s) ∈M0
9s

.

(2) F (·, s) ∗ P (·, s) ∈M0
9s

.

Proof. In order to prove (1) it is enough to prove

F (wg, s) = F (g, s)

for any g = hα (t1) hβ (t2) xα (d) and any generator w of S9s . Recall that S9s is generated

by wα and w̃ = hα (−1) xα (−1) x−α (1).
Note that for g = hα (t1) hβ (t2) xα (d) it holds that

hα (−1) xα (−1) x−α (1) gwα = hα

(
−

t2
t1

)
hβ (t2) x−α

(
−

(
d +

t2
t2
1

))
.

Now, note that g ∈ S9s UTK if and only if d + t2
t2
1
∈ O; when |d| > 1 it holds that

∣∣∣∣ t2
t2
1

∣∣∣∣ = |d|.
In particular, one may write∣∣∣∣∣d2 t2

1
t2
+ d

∣∣∣∣∣ =
∣∣∣∣∣ t2
t2
1

∣∣∣∣∣
∣∣∣∣∣dt2

1
t2
+ 1

∣∣∣∣∣ =
∣∣∣∣∣d + t2

t2
1

∣∣∣∣∣ 6 1.

Case 1 – g ∈ T . For g = hα (t1) hβ (t2) it holds that

wαhα (t1) hβ (t2) w−1
α = hα

(
t2
t1

)
hβ (t2) = hα(t ′1)hβ(t

′

2).

It then holds that F (g, s) = F
(
wαgw−1

α , s
)
= F (wαg, s) since∣∣∣∣∣ t ′21

t ′2

∣∣∣∣∣ =
∣∣∣∣∣ t2
t2
1

∣∣∣∣∣
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and ∣∣∣∣∣t ′1 · t ′2
t ′21

∣∣∣∣∣ = |t1| ,
∣∣∣∣∣ t ′2t ′1 · t

′2
1
t ′2

∣∣∣∣∣ =
∣∣∣∣ t2t1
∣∣∣∣ .

Also,

w̃hα (t1) hβ (t2) wα = hα

(
−

t2
t1

)
hβ (t2) x−α

(
−

t2
t2
1

)
.

If

∣∣∣∣ t2
t2
1

∣∣∣∣ 6 1 then x−α

(
−

t2
t2
1

)
∈ K and also

∣∣∣∣∣
(

t2
t1

)2

t2

∣∣∣∣∣ =
∣∣∣∣ t2

t2
1

∣∣∣∣ 6 1. Write

w̃gwα = hα

(
−

t2
t1

)
hβ (t2) = hα(t ′1)hβ(t

′

2).

Then F (g, s) = F (w̃gwα, s) = F (wαg, s) follows from∣∣∣∣∣ t ′21
t ′2

∣∣∣∣∣ =
∣∣∣∣∣ t2
t2
1

∣∣∣∣∣
and ∣∣∣∣∣t ′1 t ′2

t ′21

∣∣∣∣∣ = |t1| ,
∣∣∣∣∣ t ′2t ′1 · t

′2
1
t ′2

∣∣∣∣∣ =
∣∣∣∣ t2t1
∣∣∣∣ .

If, on the other hand,

∣∣∣∣ t2
t2
1

∣∣∣∣ > 1 then x−α

(
−

t2
t2
1

)
/∈ K and hence

w̃gwα = hα (t1) hβ (t2) xα

(
−

t2
t2
1

)
= hα(t ′1)hβ(t

′

2)xα(d
′).

Note that∣∣∣∣∣d ′2 t ′21
t ′2
+ d ′

∣∣∣∣∣ =
(

t2
t2
1

)2

·
t2
1
t2
−

t2
t2
1
= 0 ∈ O,

and hence F (g, s) = F (w̃gwα, s) = F (wαg, s) is automatic since t ′1 =

t1 and t ′2 = t2 and

∣∣∣∣ t2
1
t2

∣∣∣∣ < 1.

Case 2 – g /∈ T . Let g = hα (t1) hβ (t2) xα (d) /∈ S9s UTK. In particular, |d| , |d2 t2
1
t2
+ d|,

|d + t2
t2
1
| > 1.

Note that

wαgwα = hα

(
t2

dt1

)
hβ (t2) xα (d) k,

for some k ∈ K . We write

hα

(
t2

dt1

)
hβ (t2) xα (d) = hα(t ′1)hβ(t

′

2)xα(d
′).
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Hence F (g, s) = F (wg, s) follows from the fact that∣∣∣∣∣d ′2 t ′21
t ′2
+ d ′

∣∣∣∣∣ =
∣∣∣∣∣d + t2

t2
1

∣∣∣∣∣ > 1

and

t ′1 ·
1

d ′2 t ′21
t ′2
+ d ′
=

t1

d2 t2
1
t2
+ d

,
t ′2
t ′1
·

(
d ′2

t ′21
t ′2
+ d ′

)
=

t2
t1
·

(
d2 t2

1
t2
+ d

)
.

Also,

w̃gwα = hα

 t2

t1

(
d + t2

t2
1

)
 hβ (t2) xα

(
−

(
d +

t2
t2
1

))
k

for some k ∈ K . We write

hα

 t2

t1

(
d + t2

t2
1

)
 hβ (t2) xα

(
−

(
d +

t2
t2
1

))
= hα(t ′1)hβ(t

′

2)xα(d
′).

Hence F (g, s) = F (wg, s) follows from the fact that∣∣∣∣∣d ′2 t ′21
t ′2
+ d ′

∣∣∣∣∣ = |d| > 1

and∣∣∣∣∣∣∣t ′1 ·
1

d ′2 t ′21
t ′2
+ d ′

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ t1

d2 t2
1
t2
+ d

∣∣∣∣∣∣ ,
∣∣∣∣∣ t ′2t ′1 ·

(
d ′2

t ′21
t ′2
+ d ′

)∣∣∣∣∣ =
∣∣∣∣∣ t2t1 ·

(
d2 t2

1
t2
+ d

)∣∣∣∣∣ .
This completes the proof of (1). Item (2) follows immediately.

A.3. Decomposition of Kω∨2 ($)K into left K cosets

We recover the list of left K cosets in Kω∨2 ($)K from [7, Propositions 13.3 and 14.2].

The decomposition of Kω∨2 ($)K =
∐

b′i K as a union of right K cosets is described there;

after listing them we will make them into left cosets. Write b′i = ui b̃i where ui ∈ U ,

b̃i ∈ B ∩M . Fix Y to be Teichmüller representatives in O of O/ ($) (or any other set of

representatives) and Z to be a set of representatives in O of O/($ 2).

172

https://doi.org/10.1017/S147474801300039X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801300039X


t ∈ KM\M/KM : #{ui b̃i K ⊂ Kω∨2 ($)K : representatives ui b̃i
UtK ∩ Kω∨2 ($)K 6= ∅ b̃i ∈ KM t KM }

h−ω2 ($) 1 h−ω2 ($)

h−β ($) q6 u (r1, r2, r3, r4, r5) hω2 ($)

r1, r2, r3, r4 ∈ Y, r5 ∈ Z

hα ($) hβ ($) q (q + 1)

u (r1, 0, 0, 0, 0) h−α ($) h−β ($)
r1 ∈ Y ;
u (0, 0, 0, r4, 0) xα (z) h−β ($)
r4, z ∈ Y

hω2 ($) q4 (q + 1)

u (r1, r2, 0, 0, r5) hβ ($)
r2, r5 ∈ Y, r1 ∈ Z ;
u (0, 0, r3, r4, r5) xα (z) hα ($) hβ ($)
r3, r5, z ∈ Y, r4 ∈ Z

1 q3
− 1

u
(
0, 0, 0, 0, r5

$

)
r5 ∈ Y, r5 6≡ 0;
u
( r1
$ , 0, 0, 0, r5

$

)
r1, r5 ∈ Y, r1 6≡ 0;

u
(

y3r1
$ ,

y2r1
$ ,

yr1
$ ,

r1
$ ,

r5
$

)
r1, r5, y ∈ Y, r1 6≡ 0

We need now to make the right coset representatives
{
b′i
}

into left coset representatives.

Let w0 = wαwβwαwβwαwβ ∈ K be the longest element in the Weyl group of G. Recall

that w0 sends γ to −γ for all γ ∈ 8. Also note that
{
w0b′i

}
is also a full set of

representatives of right cosets.

Denote by θ the Cartan antiinvolution, fixing the torus T such that θ(xγ (r)) = x−γ (r).
Let w0 ∈ K be a lifting to G of the longest Weyl group element such that θ (w0) = w0.

Then

Kω∨2 ($)K = θ
(
Kω∨2 ($)K

)
= θ

(∐
i

w0b′i K

)
=

∐
i

K θ
(
b′i
)
w0 =

∐
i

K t−1
i ni . (A 6)

Fixing bi = t−1
i ni gives a set of left coset representatives of Kω1 ($) K .

A.4. Convolution

Combining eq. (A 1), Proposition A.2 and eq. (A 6), the computation of the convolution
F∗(·, s) ∗ P(·, s) is straightforward. We shall present the computation for toral elements
only, thus proving eq. (A 2). The vanishing F∗(·, s) ∗ P(·, s) outside of S9s UTK is proved

similarly.

By Lemma A.2 we have(
F (·, s) ∗1Kω∨2 ($)K

)
(g) =

∑
i

F(gb−1
i , s).

Assume that g = t = hα (t1) hβ (t2). By S9s -invariance we may assume that

∣∣∣∣ t2
1
t2

∣∣∣∣ 6 1.

The case

∣∣∣∣ t2
1
t2

∣∣∣∣ > 1 follows by symmetry from

∣∣∣∣ t2
1
t2

∣∣∣∣ < 1, since F (·, s) ∈M0
9s

. We can write
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F (·, s) ∗1Kω∨2 ($)K

)
(t) as follows:(

F (·, s) ∗1Kω∨2 ($)K

)
(t)= F

(
h−ω1 ($) t, s

)
+ q6 F

(
hω1 ($) t, s

)
+ q F

(
h−α ($) h−β ($) t, s

)
+ q

∑
y∈O/($)

F
(

h−β ($) t xα
(
−

y
$

)
, s
)
+ q4 F

(
hβ ($) t, s

)
+ q4

∑
y∈O/($)

F
(

hα ($) hβ ($) t xα
(
−

y
$

)
, s
)

+

q
∑

r,y∈O/($)
ψ

(
−

y
$

(
t2
t1

y+ t1

)
r
)
− 1

 F (t, s) . (A 7)

We separate this computation into four cases depending on the absolute value of t1 and

t2. All the following results follow by applying Proposition A.2 to the summands in eq.

(A 7). Define |t1| = q−n and |t2| = q−m .

(1) Assume that |t2| = |t1| = 1:(
F (·, s) ∗1Kω∨2 ($)K

)
(t) =

q6−10s
+ q5−5s

+ 3q4−5s
+ 2q2

− 1
ζ (5s)

and also

F (1, s) =
1

ζ (5s)
.

Plugging this into eq. (A 1) yields

(
F∗ (·, s) ∗ P (·, s)

)
(t) =

1+ 2q1−5s

ζ (5s+ 1)
.

(2) Assume that |t2| < |t1| and

∣∣∣∣ t2
1
t2

∣∣∣∣ = 1:

(
F (·, s) ∗1Kω∨2 ($)K

)
(t)=

ζ (5s− 1)
ζ (5s)

(
q1+5s−n−5ns

ζ (5ns)
+

q5−5s−n−5ns

ζ (5 (n+ 2) s)
+

q2−n−5ns

ζ (5ns)

+
q4−n−5(n+1)s

ζ (5 (n+ 1) s)
+ (q3

− 1)
q−n−5ns

ζ (5 (n+ 1) s)

+ q

(
2

q1−n−5ns

ζ (5ns)
+ (q − 2)

q2−n−5(n+1)s

ζ (5 (n− 1) s)

)

+ q4

(
2

q−n−5(n+1)s

ζ (5 (n+ 1) s)
+ (q − 2)

q1−n−5(n+2)s

ζ (5ns)

))
and also

F (t, s) =
ζ (5s− 1)
ζ (5s)

q−n−5ns

ζ (5 (n+ 1) s)
.
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Plugging this into eq. (A 1) yields

(
F∗ (·, s) ∗ P (·, s)

)
(t) =

1+ 2q1−5s

ζ (5s+ 1)
|t1|5s+1 .

(3) Assume that |t2| < |t1| and

∣∣∣∣ t2
1
t2

∣∣∣∣ < 1:

(
F (·, s) ∗1Kω∨2 ($)K

)
(t)=

ζ (5s− 1)
ζ (5s)

(
q1+5s−m+n−5ns

ζ (5 (m− n) s)
+

q5−5s−m+n−5ns

ζ (5 (m− n+ 2) s)

+
q1−m+n−5ns+5s

ζ (5 (m− n+ 1) s)
+

q3−5ns−m+n

ζ (5 (m− n+ 2) s)

+ q

(
q1−5ns−m+n

ζ (5 (m− n) s)
+ (q − 1)

q2−5s−m+n−5ns

ζ (5 (m− n− 1) s)

)

+ q4

(
qn−m−5s−5ns

ζ (5 (m− n+ 1) s)
+ (q − 1)

q1−10s−m+n−5ns

ζ (5 (m− n) s)

)

+ (q3
− 1)

qn−m−5ns

ζ (5 (m− n+ 1) s)

)
and also

F (t, s) =
ζ (5s− 1)
ζ (5s)

qn−m−5ns

ζ (5 (m− n+ 1) s)
.

Plugging this into eq. (A 1) yields

(
F∗ (·, s) ∗ P (·, s)

)
(t) =

1+ q1−5s

ζ (5s+ 1)

∣∣∣∣ t2t1
∣∣∣∣ |t1|5s .

(4) Assume that |t2| = |t1| and

∣∣∣∣ t2
1
t2

∣∣∣∣ < 1:

(
F (·, s) ∗1Kω∨2 ($)K

)
(t)=

ζ (5s− 1)
ζ (5s)

(
q5−5s−5ns

ζ (10s− 2)
+

q1+5s−5ns

ζ (5s− 1)
+

q3−5ns

ζ (10s− 2)

+
q4−5s−5ns

ζ (5s− 1)
+ (q2

− 1)
q−5ns

ζ (5s− 1)

)
and also

F (t, s) =
ζ (5s− 1)
ζ (5s)

q−5ns

ζ (5s− 1)
.

Plugging this into eq. (A 1) yields

(
F∗ (·, s) ∗ P (·, s)

)
(t) =

1+ q1−5s

ζ (5s+ 1)
|t1|5s .
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B. Computation of D9s

Recall from §7 that our aim is to compute

E9s
k (g) =

∫
U

1Uk (g) (ug)9s (u) du =
∫

Uk (g)
9s (u) du,

where

Uk (g) = Uk (g) =
{

u ∈ U : 0(ug) 6 qk
}
.

We treat first the case where g ∈ S9s UTK and then the case where g /∈ S9s UTK.

We note the following helpful fact that will be used repeatedly through out this section.

Lemma B.1. For a, b, c ∈ N with a+ b > c it holds that

µ

{
(x, y)

∣∣∣∣ |x | 6 qa, |y| 6 qb, |xy| 6 qc
}
= qc(1+ (a+ b− c)(1− q−1)),

where µ is the Haar measure on G such that µ (K ) = 1.

B.1. Toral elements

For t = hα(t1)hβ(t2) and u = u(r1, r2, r3, r4, r5),

ι(ut)=



1 0 r2 r3
−r4

2
r2r3+ r5

2
r2r4− r2

3
2

0 1 r1 r2
−r3

2
r1r3− r2

2
2

r1r4− 2r2r3− r5

2

0 0 1 0 0
r3

2
r4

2
0 0 0 1 0 −r2 −r3
0 0 0 0 1 −r1 −r2
0 0 0 0 0 1 0
0 0 0 0 0 0 1



·



t1
t2
t1

t2
1
t2

1
t2
t2
1 t1

t2
1
t1



. (B 1)

Consider an element g ∈ T and denote it by t = hα(t1)hβ(t2). Define |t1| = q−n and |t2| =
q−m . By eq. (A 5), Ek (t) = 0 unless |t1| , |

t2
t1
| 6 1. Recall from §2 that E9s

k ∈M0
9s

; hence
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we may assume that |α (t)| = | t
2
1
t2
| 6 1 or |t1| 6 |

t2
t1
|. The case |

t2
1
t2
| > 1 follows from |

t2
1
t2
| < 1

by wα-invariance. Also, Uk (t) = ∅ unless |t1| > q−k . To sum up we have to compute E9s
k (t)

for t1, t2 and k satisfying

q−k 6 |t1| 6
∣∣∣∣ t2t1
∣∣∣∣ 6 1.

We may exchange integration over Uk (t) to integration over a smaller and simpler set,

namely:

Lemma B.2.

E9s
k (t) =

∫
Uk (t)

9s (u) du,

where

Uk (t) =
{

u (r1, r2, r3, r4, r5) ∈ Uk (t)
∣∣∣∣ |r2| , |r3| 6 q

}
.

Proof. For any x, y ∈ F define

U (x,y)
k (t) =

{
u (r1, r2, r3, r4, r5) ∈ Uk (t)

∣∣∣∣r2 = x, r3 = y
}

and note that for s1, s2 ∈ O×,

U (s1x,s2 y)
k (t) = h (s1, s2)U (x,y)

k (t) h−1 (s1, s2) ,

where

h (s1, s2) = hβ (s1) h2α+β (s2). Since δP (h (s1, s2)) = 1 it follows that µ
(

U (s1x,s2 y)
k (t)

)
= µ

(
U (x,y)

k (t)
)

which means that it depends only on t , |x | and |y|. In particular, if

|x | = q i , |y| = q j we denote µ
(

U (x,y)
k (t)

)
by µ

(
U i, j

k (t)
)
.

Thus

E9s
k (t)=

∫
Uk (t)

9s (u) du =
∫

F×F
µ
(

U (x,y)
k (t)

)
ψ (x + y) dx dy

=

∞∑
i, j=−∞

µ(U i, j
k (t))

∫
|x |=q i

ψ (x) dx
∫
|y|=q j

ψ (y) dy.

Since
∫
|z|=ql ψ (z) dz = 0 for l > 1, the proposition follows.

Remark B.1. We can describe Uk (t) by giving a short list of inequalities. Namely, u ∈
Uk (t) if and only if

k > n

|r2| , |r3| 6 q

|r1| , |r2| , |r3| , |r2r3+ r5| ,
∣∣r1r3− r2

2

∣∣ 6 qk+n−m

|r2| , |r3| , |r4| ,
∣∣r2r4− r2

3

∣∣ , |r1r4− 2r2r3− r5| 6 qk−n .
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Corollary B.1.

E9s
k (t) = µ

(
U 0,0

k (t)
)
−µ

(
U 0,1

k (t)
)
−µ

(
U 1,0

k (t)
)
+µ

(
U 1,1

k (t)
)
.

Proof. We first note that for every i, i ′ 6 0, j 6 1 and k it holds that

µ
(

U i, j
k (t)

)
= µ

(
U i ′, j

k (t)
)
, µ

(
U j,i

k (t)
)
= µ

(
U j,i ′

k (t)
)
.

We also recall that ∫
|r |61

ψ (r) = 1,
∫
|r |=q

ψ (r) = −1.

The claim then follows by a simple computation:

E9s
k (t)=

∞∑
i, j=−∞

µ(U i, j
k (t))

∫
|x |=q i

ψ (x) dx
∫
|y|=q j

ψ (y) dy

=µ
(

U 0,0
k (t)

) ∫
|x |61

ψ (x) dx
∫
|y|61

ψ (y) dy

−µ
(

U 0,1
k (t)

) ∫
|x |61

ψ (x) dx
∫
|y|=q

ψ (y) dy

−µ
(

U 1,0
k (t)

) ∫
|x |=q

ψ (x) dx
∫
|y|61

ψ (y) dy

+µ
(

U 1,1
k (t)

) ∫
|x |=q

ψ (x) dx
∫
|y|=q

ψ (y) dy

=µ
(

U 0,0
k (t)

)
−µ

(
U 0,1

k (t)
)
−µ

(
U 1,0

k (t)
)
+µ

(
U 1,1

k (t)
)
.

Proposition B.1. For t as above, with |t1| = q−n, it holds that:

(1) E9s
k (t) = 0 for k 6= n, n+ 1.

(2) E9s
n (t) =

{
1 |α (t)| = 1

|α (t)|−1
|α (t)| < 1,

E9s
n+1 (t) =

{
2q2 |α (t)| = 1

2q2 |α (t)|−1
|α (t)| < 1.

Proof. We separate the proof into sections according to the absolute value of α (t).

• Assume that |α (t)| = 1, i.e.

∣∣∣∣ t2
1
t2

∣∣∣∣ = 1.

(1) Assume that k = n; then u ∈ Uk (t) if and only if

|r1| , |r2| , |r3| , |r4| , |r5| 6 1.

In this case U 0,1
k (t) ,U 1,0

k (t) ,U 1,1
k (t) = ∅ and U 0,0

k (t) = O3. Hence

E9s
n (g) = 1

(2) Assume that k = n+ 1; then u ∈ Uk (t) if and only if

|r1| , |r2| , |r3| , |r4| 6 q
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|r2r3+ r5| ,
∣∣r1r3− r2

2

∣∣ , ∣∣r2r4− r2
3

∣∣ , |r1r4− 2r2r3− r5| 6 q.

We demonstrate the measurement of U i, j
k (t) in this case as an example to indicate

the calculation carried out in all other cases. Assume that |r2| , |r3| 6 1; then

u ∈ Uk (t) if and only if
|r1| , |r4| , |r5| , |r1r4| 6 q

and hence, by Lemma B.1,

µ
(

U 0,0
k (t)

)
= q (q + (q − 1)) = 2q2

− q.

Assume that |r2| = q and |r3| 6 1. Then |r1r3| 6 q but also
∣∣r1r3− r2

2

∣∣ 6 q which

contradicts the fact that
∣∣r2

2

∣∣ = q2. Hence U 0,1
k (t) = ∅, and by a similar argument

U 1,0
k (t) = ∅.

Assume that |r2| , |r3| = q. Let us parametrize U 1,1
k (t) in the following way:

r1 =
x + r2

2
r3

r4 =
y+ r2

3
r2

r5 = z− r2r3.

The domain of integration for the new variables is |x | , |y| , |z| 6 q. Also

dr1 =
dx
q
, dr4 =

dy
q
, dr5 = dz.

Note that now

|r1r4− 2r2r3− r5| =

∣∣∣∣∣ x + r2
2

r3
·

y+ r2
3

r2
− r2r3− z

∣∣∣∣∣ =
∣∣∣∣∣ xy+ xr2

3 + yr2
2

r2r3
− z

∣∣∣∣∣ 6 q.

Hence

µ
(

U 1,1
k (t)

)
=

∫
$−1O

dx
q

∫
$−1O

dy
q

∫
$−1O

dz = q.

Combining the computed µ
(

U i, j
k (t)

)
yields

E9s
n+1 (t)=µ

(
U 0,0

k (t)
)
−µ

(
U 0,1

k (t)
)
−µ

(
U 1,0

k (t)
)
−µ

(
U 1,1

k (t)
)

=

(
2q2
− q

)
− 0− 0+ q = 2q2.

(3) Assume that k > n+ 1; then u ∈ Uk (t) if and only if

|r2| , |r3| 6 q

|r1| , |r4| , |r5| , |r2r4| , |r1r3| , |r1r4| 6 qk−n .

Hence, according to Lemma B.1,

µ
(

U 0,0
k (t)

)
= q2(k−n)

(
1+ (k− n)

(
1− q−1

))
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µ
(

U 1,0
k (t)

)
=µ

(
U 0,1

k (t)
)
= q2(k−n)

(
1+ (k− n− 1)

(
1− q−1

))
µ
(

U 1,1
k (t)

)
= q2(k−n)

(
1+ (k− n− 2)

(
1− q−1

))
,

and then

E9s
k (g) = 0.

Evaluating D9s at t yields

D9s (t)= q−n E9s
n (t)+ q−n−1

(
E9s

n+1 (t)− E9s
n (t)

)
+ q−n−2 E9s

n+1 (t)

=
1+ 2q1−5s

ζ (5s+ 1)
|t1|5s+1 .

• Assume that |α (t)| < 1, i.e.

∣∣∣∣ t2
1
t2

∣∣∣∣ < 1.

(1) Assume that k = n; then u ∈ Uk (t) if and only if

|r2| , |r3| , |r4| , |r1r4− r5| 6 1

|r1| , |r5| 6 q2n−m .

By making a change of variables r5 = x + r1r4, this is equivalent to

|r2| , |r3| , |r4| , |x | 6 1

|r1| , |r1r4| 6 q2n−m .

Hence, according to Lemma B.1,

µ
(

U 0,0
k (t)

)
= q2n−m

µ
(

U 1,0
k (t)

)
=µ

(
U 0,1

k (t)
)
= µ

(
U 1,1

k (t)
)
= 0,

and then
E9s

n (t) = q2n−m .

(2) Assume that k = n+ 1; then u ∈ Uk (t) if and only if

|r2| , |r3| , |r4| ,
∣∣r2r4− r2

3

∣∣ , |r1r4− 2r2r3− r5| 6 q

|r1| , |r5| , |r1r3| 6 q2n−m+1.

Hence, according to Lemma B.1 and arguments similar to those for case 2 with
|α (t)| = 1,

µ
(

U 0,0
k (t)

)
= q2n−m+2

(
1+

(
1− q−1

))
, µ

(
U 1,0

k (t)
)
= q2n−m+2

µ
(

U 0,1
k (t)

)
= 0, µ

(
U 1,1

k (t)
)
= q2n−m+1,

and then

E9s
n+1 (t) = q2n−m+2.
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(3) Assume that k > n+ 1; then u ∈ Uk (g) if and only if

|r2| , |r3| 6 q

|r1| , |r5| , |r1r3| 6 qk+n−m

|r4| , |r2r4| , |r1r4− r5| 6 qk−n .

By making a change of variables r5 = x + r1r4, this is equivalent to

|r2| , |r3| 6 q

|r1| , |r1r4| , |r1r3| 6 qk+n−m

|r4| , |r2r4| , |x | 6 qk−n .

Hence, according to Lemma B.1,

µ
(

U 0,0
k (t)

)
= qk−nqk+n−m

(
1+ (k− n)

(
1− q−1

))
µ
(

U 1,0
k (t)

)
= qk−nqk+n−m

(
1+ (k− n− 1)

(
1− q−1

))
µ
(

U 0,1
k (t)

)
= qk−nqk+n−m

(
1+ (k− n− 1)

(
1− q−1

))
µ
(

U 1,1
k (t)

)
= qk−nqk+n−m

(
1+ (k− n− 2)

(
1− q−1

))
,

and then

E9s
k (t) = 0.

Evaluating D9s at t yields

D9s (t) =
1+ q1−5s

ζ (5s+ 1)

∣∣∣∣ t2t1
∣∣∣∣ |t1|5s .

B.2. The non-toral case

This case is technically more involved than the case of the toral elements, but all the

ideas for the toral elements can be carried over to this case as well. We will prove the

following result.

Proposition B.2. E9s
k (g) = 0 for g /∈ S9s UTK.

Let g = t xα(d), where t = hα (t1) hβ (t2) and |d| > 1. Since g /∈ S9s UTK it holds that∣∣d2α (t)+ d
∣∣ > 1. By eq. (A 5) Ek (t) = 0 unless

t1,
t2
t1
, d2t1, d

t2
t1
∈ O.

Since E9s
k ∈M0

9s
it is enough to compute E9s

k (g) when |dα (t)| =
∣∣∣∣d t2

1
t2

∣∣∣∣ 6 1; the dual

case follows by wα-invariance.
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The matrix ι (xα (d)) has the form

1 d 0 0 0 0 0
0 1 0 0 0 0 0

0 0 1−d −
d2

2
0 0

0 0 0 1 d 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1−d
0 0 0 0 0 0 1


.

Define |t1| = q−n , |t2| = q−m and |dα (t)| = ql . With this notation, Uk (g) = ∅ when k < n
and so we may assume that k > n.

We now reduce the domain of integration. The proof of this lemma is similar to the

proof of Lemma B.2 and is omitted.

Lemma B.3.

E9s
k (t) =

∫
Ûk (g)

9s (u) du,

where

Ûk (g) =
{

u(r1, r2, r3, r4, r5) ∈ Uk (g)
∣∣∣∣ |r2+ r3| 6 q

}
.

Remark B.2. Define b = d t2
1
t2

. When |dα (t)| 6 1, we have u ∈ Ûk (g) if and only if

k > n

|r2+ r3| 6 q

|r1| , |r2| , |r3| , |r2r3+ r5| ,
∣∣r1r3− r2

2

∣∣ 6 qk+n−m

|br1− r2| , |br2− r3| , |br3− r4| 6 qk−n∣∣r2r4− r2
3 − br2r3− br5

∣∣ , ∣∣r1r4− 2r2r3+ br2
2 − br1r3− r5

∣∣ 6 qk−n .

We are now ready to prove Proposition B.2.

Proof. • Assume that |b| < 1, i.e. l < 0. Note that under this assumption,

Ûk (g) = Uk (g)

and thus

E9s
k (g) = µ

(
U 0,0

k (g)
)
−µ

(
U 0,1

k (g)
)
−µ

(
U 1,0

k (g)
)
+µ

(
U 1,1

k (g)
)
.

(1) Assume that k = n; then u ∈ Ûk (g) if and only if

|r2| 6 q

|r1| , |r5| 6 q2n−m

|r3| , |r4| , |br1− r2| , |r2r4− br5| , |r1r4− 2r2r3+ br2
2 − br1r3− r5| 6 1.
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Hence, according to Lemma B.1 and arguments given for the toral case,

µ
(

U 0,0
k (g)

)
= q−2l , µ

(
U 1,0

k (g)
)
= q−2l

µ
(

U 0,1
k (g)

)
= 0, µ

(
U 1,1

k (g)
)
= 0,

and then

E9s
k (g) = 0.

(2) Assume that k = n+ 1; then u ∈ Ûk (g) if and only if

|r1| 6 q1−l

|r2| , |r3| , |r4| , |r2r4− r2
3 − br5|, |r1r4− 2r2r3− br1r3− r5| 6 q.

Hence, according to Lemma B.1 and arguments given for the toral case,

µ
(

U 0,0
k (g)

)
= q2−l (1+ (1− q−1)) , µ (U 1,0

k (g)
)
= q2−l

(
1+

(
1− q−1

))
µ
(

U 0,1
k (g)

)
= (1− l) q2−l (q − q−1) , µ (U 1,1

k (g)
)
= (1− l) q2−l

(
q − q−1

)
,

and then

E9s
k (g) = 0.

(3) Assume that k > n+ 1 and define x = r2+ r3. Then u ∈ Ûk (g) if and only if

|x | 6 q∣∣r5− r2
3

∣∣ , ∣∣r1r3− r2
3

∣∣ 6 qk+n−m

|r4| , |br1| ,
∣∣br5+ r3r4− (b+ 1) r2

3

∣∣ , ∣∣r1 (r4− br3)+ (b+ 2) r2
3 − 2xr3− r5

∣∣ 6 qk−n .

The set Ûk (g) is invariant under the change of variables

(r1, x, r3, r4, r5) 7→
(

r1, x +$−1, r3, r4, r5+ 2r3$
−1
)
.

Making this change of variables in the integral yields

E9s
k (g) = ψ

(
$−1

)
E9s

k (g) ,

and hence

E9s
k (g) = 0.

•When |b| =
∣∣∣∣d t2

1
t2

∣∣∣∣ = 1 the calculation is more involved and is omitted. Nonetheless E9s
k

vanishes on such elements and hence D9s also vanishes.
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