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Rigid-analytic varieties with projective reduction
violating Hodge symmetry

Alexander Petrov

Abstract

We construct examples of smooth proper rigid-analytic varieties admitting formal mod-
els with projective special fibers and violating Hodge symmetry for cohomology in
degrees ≥3. This answers negatively the question raised by Hansen and Li.

1. Introduction

A powerful tool in algebraic geometry over the field of complex numbers is viewing smooth
projective varieties as complex manifolds and henceforth using complex analysis to study them.
An important role for that technique is played by Kähler manifolds: this is a subclass of complex
manifolds large enough to contain all smooth projective algebraic varieties and small enough to
be amenable to Hodge theory. In particular, for any compact Kähler manifold X the Hodge-to-de
Rham spectral sequence Ei,j

1 = Hj(X, Ωi
X) ⇒ H i+j

dR (X/C) degenerates at the first page and the
Hodge numbers satisfy Hodge symmetry: dimC Hj(X, Ωi

X) = dimC H i(X, Ωj
X).

The situation in p-adic geometry is somewhat different: p-adic Hodge theory has been
developed for all smooth proper rigid-analytic varieties, without any ‘Kähler’ assumption.
It was proven by Scholze [Sch13] that for any such variety the Hodge-to-de Rham spectral
sequence degenerates. There are, however, examples of smooth proper rigid-analytic varieties
that fail Hodge symmetry. This might suggest that there should be a natural narrower class of
rigid-analytic varieties for which Hodge symmetry does hold.

Let K be a discretely valued p-adic field with ring of integers OK and perfect residue field k. In
[HL20] David Hansen and Shizhang Li raised the following question (see also [Sch18, Conjecture
2.4]) suggesting a candidate for this narrower class.

Question. Let X be a smooth proper rigid-analytic variety over K admitting a formal model
over OK with projective special fiber. Is it true that dimK H i(X, Ωj

X/K) = dimK Hj(X, Ωi
X/K)

for all i, j?

Hansen and Li answered this question positively for i + j = 1 in [HL20, Theorem 1.2]. The
main result of this text is that the answer is in general negative for i + j ≥ 3.

Theorem (Corollary 4.4). For every pair of positive integers i �= j with i + j ≥ 3 there exists a

smooth proper rigid-analytic variety X over Qp admitting a smooth formal model X over Spf Zp
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with projective special fiber XFp such that

dimQp H i(X, Ωj
X/Qp

) �= dimQp Hj(X, Ωi
X/Qp

).

The idea behind the examples comes from the following difference between complex Hodge
theory and p-adic Hodge theory. For any compact Kähler manifold X not only is there an equality
of numbers hi,j(X) = hj,i(X) but there is also a canonical isomorphism of C-vector spaces:

Hj(X, Ωi
X) � H i(X, Ωj

X).

In particular, for a finite group G acting on X the G-representations Hj(X, Ωi
X) and H i(X, Ωj

X)
are dual to each other.

We show that the analogous statement in p-adic geometry fails already for abeloid varieties.
We construct a formal abelian scheme A (necessarily a non-algebraizable one) with an action of
a finite group G of order prime to p such that the G-representations on the cohomology groups
H0(A, Ω1

A) and H1(A,O) of the abeloid generic fiber A of A are not dual to each other.
Moreover, for i + j = 3 we can arrange (Proposition 3.1) that the dimensions of G-invariants

on the spaces H i(A, Ωj
A) and Hj(A, Ωi

A) are different (note that these G-representations are
obtained from H0(A, Ω1

A) and H1(A,O) by taking exterior powers and tensor products). Taking
the direct product with an auxiliary smooth projective formal scheme to make the G-action
free and taking the quotient by G gives the desired example. The examples for i + j > 3 are
obtained simply by taking the direct product with an appropriate projective scheme to move the
asymmetry to higher cohomology via the Künneth formula.

This strategy does not work for i + j = 2 for a good reason: any smooth proper rigid-analytic
variety that admits a smooth (not necessarily with a projective special fiber) formal model
satisfies Hodge symmetry on first and second cohomology.

Proposition 1.1 (Corollary 2.2). If a smooth proper rigid-analytic variety X over K admits a

smooth formal model over OK , then dim H0(X, Ωi
X/K) = dimK H i(X,O) for i = 1, 2.

Proposition 1.1 is a consequence of a certain self-duality of Frobenius action on the crystalline
cohomology of the special fiber and weak admissibility (in the sense of filtered ϕ-modules) of de
Rham cohomology of X coming from the crystalline comparison theorem. As mentioned above,
Hansen and Li proved this statement by a different method for i = 1 in the case of (arbitrarily
singular) projective reduction. Piotr Achinger has independently obtained Proposition 1.1 in the
case of smooth projective reduction by the same method, see [Ach20] for a treatment of a number
of situations where Hodge symmetry does follow from the existence of a model with projective
special fiber, including some cases when reduction is singular.

Notation
Let p be a prime number fixed throughout the text. If X is an object of any of the three
types {smooth proper rigid-analytic variety over K, smooth proper formal scheme over Spf OK ,
smooth proper algebraic variety over an arbitrary field F}, denote by hi,j(X) the num-
ber dimK Hj(X, Ωi

X/K), rkOK
Hj(X, Ωi

X/OK
) or dimF Hj(X, Ωi

X/F ) respectively. Denote also by
δi,j(X) the number hi,j(X) − hj,i(X) in any of the three situations. For the convenience of nota-
tion, we declare hi,j(X) = 0 if i or j is negative. Note that hi,j(X) = hi,j(X) if X is the generic
fiber of a smooth proper formal scheme X by Lemma 4.1. We say that an object X ‘satisfies
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Hodge symmetry in degree d’ if hi,j(X) = hj,i(X) for all i, j with i + j = d and X ‘satisfies Hodge
symmetry’ if it does so for all d.

2. Hodge symmetry in degree 2

For the duration of this section let K be a discretely valued field of characteristic zero with
perfect residue field k of characteristic p. Denote by K0 the subfield W (k)[1/p], and let σ be its
automorphism induced by Frobenius action on k.

The goal of this section is to observe that results of p-adic Hodge theory impose the following
relation between Hodge numbers of a rigid-analytic variety with good reduction. A similar idea
has been used in [FM87, I.4.4] to prove Hodge symmetry for smooth proper algebraic varieties
over K.

Proposition 2.1. If X is a smooth proper formal scheme over OK , then for its generic fiber X

and every n the following relation among hi,j := hi,j(X) holds:

h1,n−1 + 2h2,n−2 + · · · + n · hn,0 = n · h0,n + (n − 1) · h1,n−1 + · · · + hn−1,1. (1)

Corollary 2.2. For a smooth proper formal scheme X over Spf OK we have the following for

the generic fiber X = XK :

(i) h1,0(X) = h0,1(X) and h2,0(X) = h0,2(X);
(ii) for odd n the Betti numbers dimQp Hn

ét(XK̄ , Qp) = dimK Hn
dR(X/K) are even.

Proof. (i) The equality (1) takes forms h1,0 = h0,1 and h1,1 + 2h2,0 = 2h0,2 + h1,1 for n = 1, 2
respectively.

(ii) The sum of the left-hand side and the right-hand side of (1) is, of course, even and is
also equal to n · (h0,n + h1,n−1 + · · · + hn,0) = n · dimK Hn

dR(X/K), so dimK Hn
dR(X/K) is even

for odd n. �

We first recall the set-up of rational p-adic Hodge theory. Let MFϕ
K be the category of filtered

ϕ-modules over K [Fon79]. Its objects are finite-dimensional vector spaces D over K0 equipped
with a semi-linear automorphism ϕD : D → D and a deceasing filtration F iDK on the K-vector
space DK := D ⊗K0 K. To every such object we can attach two integers

tN (D) =
∑
α∈Q

α · dimK0 Dα, tH(D) =
∑
i∈Z

i · dimK gri DK . (2)

Here Dα is the slope α direct summand of the ϕ-module D under the Dieudonne–Manin
decomposition and gri DK := F iDK/F i+1DK are the graded pieces of the filtration. Note that
tN depends only on the semi-linear endomorphism and we will also use the notation tN (D) for
a ϕ-module D not equipped with a filtration. A filtered ϕ-module D ∈ MFϕ

K is called weakly
admissible if tN (D) = tH(D) and for every subobject D′ ⊂ D we have tN (D′) ≥ tH(D′). For an
integer i denote by K0(i) the filtered ϕ-module given by a one-dimensional vector space D = K0

with ϕd = p−iσ and the filtration defined by F−iDK = DK , F−i+1DK = 0. For a filtered ϕ-
module D define its i-fold twist D(i) as the tensor product D ⊗K0 K0(i), we use the same
notation for twisting ϕ-modules not equipped with a filtration.

We have the following symmetry of Frobenius slopes, due to [Suh12].
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Lemma 2.3 (Corollary 2.2.4 in [Suh12]). Let Y be a smooth proper variety over k. For the ϕ-

module D = Hn
cris(Y/W (k))[1/p] we have tN (D) = n · dimK0 D − tN (D).

Proof. For the convenience of the reader we recall the proof in the case when Y is projective
over an arbitrary perfect field or arbitrary proper defined over a finite field.

If Y is projective, denote by L ∈ H2
cris(Y/W (k)) the crystalline Chern class of an ample line

bundle on Y . The hard Lefschetz theorem for crystalline cohomology ([KM74, Corollary 1(2)] in
the case of a finite base field) shows that cup-product with Ld−min(n,2d−n) induces an isomorphism
Hn

cris(Y/W (k))[1/p](n − d) � H2d−n
cris (Y/W (k))[1/p] of ϕ-modules over K0. On the other hand,

Poincaré duality provides an isomorphism H2d−n
cris (Y/W (k))[1/p] � Hn

cris(Y/W (k))∨[1/p](−d).
Combining these isomorphisms we get Hn

cris(Y/W (k))[1/p](n) � Hn
cris(Y/W (k))[1/p]∨. Since

tN (D∨(−n)) = −tN (D(n)) = −tN (D) + n · dimK0 D we get the desired equality.
If Y is not projective but is defined over a finite field k = Fq the result follows from Weil

conjectures: the multiset of q-power Frobenius eigenvalues consists of algebraic integers and is
stable under complex conjugation. Hence, it is stable under the operation α 
→ qnα−1 = ᾱ so the
multiset of slopes is stable under λ 
→ n − λ, as desired. �

Proof of Proposition 2.1. Consider the filtered ϕ-module given by D = Hn
cris(Xk/W (k))[1/p]

with the Frobenius structure induced by Fr : Xk → Xk ×k,σ k and the filtration on DK is
given by the Hodge filtration on the de Rham cohomology of the generic fiber Hn

dR(X/K) �
Hn

cris(X/W (k)) ⊗W (k) K = DK .
By the crystalline comparison theorem proved in [BMS18, Theorem 1.1(i)] for smooth proper

formal schemes, the filtered ϕ-module D is obtained by applying the functor Dcris to the p-adic
Galois representation Hn

et(XK̄ , Qp). In particular, D is weakly admissible by [Fon79, Proposition
4.4.5].

Hence, tH(D) = tN (D) so by Lemma 2.3 we get tH(D) = n · dimK Hn
dR(X/K) − tH(D). As

tH(D) = h1,n−1 + 2h2,n−2 + · · · + n · hn,0 and dimK Hn
dR(X/K) = h0,n + h1,n−1 + · · · + hn,0 we

get the desired equality. �

Remark 2.4. The above proof used only that the endpoints of the Newton and Hodge poly-
gons of D coincide. The full strength of weak admissibility, however, does not put any further
restrictions on the Hodge numbers. For any tuple of non-negative integers h0,n, h1,n−1, . . . , hn,0

satisfying (1) equip the vector space D := Qb
p of dimension b = h0,n + h1,n−1 + · · · + hn,0 with an

endomorphism ϕ that has irreducible characteristic polynomial with all roots having valuation
a/b where a = h1,n−1 + 2h2,n−2 · · · + n · hn,0. Endowing D with an arbitrary filtration F iD such
that dimQp F iD = hi,n−i + hi+1,n−i−1 + · · · + hn,0 turns D into an object of MFϕ

Qp
with Hodge

numbers hi,n−i which is weakly admissible just because there are no proper non-zero submod-
ules stable under ϕ. Alternatively, we can apply [FR05, Theorem 1] that shows the existence
of a weakly admissible module over W (k̄)[1/p] with any given Newton polygon and any Hodge
polygon having the same endpoints and lying below it.

3. Cyclic group acting on a formal abelian scheme

Fix once and for all a prime number l satisfying the following condition:

l �= p and the order of p in the multiplicative group (Z/l)× is divisible by 4. (3)
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This condition is equivalent to l being a prime divisor of a number of the form p2r + 1. Denote
by k the finite field Fp(μl) obtained by adjoining to Fp all lth roots of unity and by κ ⊂ k the
finite field κ = Fp2 . Let G denote the cyclic group Z/l with a chosen generator σ ∈ G. We will
denote by Z[μl] the ring of integers of the cyclotomic extension Q(μl) inside a chosen algebraic
closure Q̄.

The goal of this section is to exploit the existence of abelian varieties over a finite field with
multiplication by Z[μl] such that the resulting CM type is different from those appearing over
characteristic zero fields. This allows us to construct a formal abelian scheme with an action of
G having asymmetric dimensions of invariant spaces on Hodge cohomology groups in degree 3.

Proposition 3.1. There exists a formal abelian scheme Z with an action of G over Spf W (k′)
for some finite field k′ such that

rkH0(Z, Ω3
Z/W (k′))

G < rkH3(Z,O)G. (4)

Remark 3.2. The proof also produces examples with inequalities going in the other direction, we
record here this particular version for the convenience of applying it to Lemma 5.1.

We first collect the necessary facts about abelian varieties in Lemmas 3.3–3.8 and then use
them together with the combinatorial Lemma 3.10 to prove the Proposition 3.1 at the end of
this section. All the facts about abelian varieties used in this section are contained in [CCO14]
(especially, cf. [CCO14, Example 4.1.2]). We include here the proofs in an attempt to make the
exposition relatively self-contained.

Lemma 3.3. There exists an abelian variety A over κ of dimension (l − 1)/2 equipped with an

action of G such that the eigenvalues of σ ∈ G on H1
cris(A/W (κ)) ⊗W (κ) W (k)[1/p] are the l − 1

pairwise different non-trivial roots of unity of order l and the p2-Frobenius endomorphism of A

is given by σ ◦ [p]A.

Proof. Let ζl be a primitive lth root of unity in Q̄. By Honda–Tate theory, there exists an abelian
variety A′ (unique up to isogeny) over κ with eigenvalues of the p2-Frobenius endomorphism
on first étale cohomology given by the conjugates of the Weil number p · ζl. Since [Qp(μl) :
Qp] = ord(Z/l)× p is even we have 2 dim A′ = [Q(μl) : Q] = l − 1 by [Tat71, Theoreme 1(ii)]. If
ϕA′ denotes the p2-Frobenius endomorphism of A′ then ϕl

A′ acts by pl on H1
et(A

′̄
Fp

, Zt) (where t

is any prime different from p) so ϕl
A′ is equal to the multiplication-by-pl endomorphism of A′.

Hence, ϕA′ induces the action of the subalgebra Z[pζl] ⊂ Z[μl] on the abelian variety A′ with pζl

acting by ϕA′ .
[CCO14, Proposition 1.7.4.4] shows that the Serre’s tensor product A := Z[ζl] ⊗Z[pζl] A′ is an

abelian variety isogenous to A′ that has an action of G with σ acting as ζl. The eigenvalues of
σ on H1

cris(A/W (κ)) are equal to the eigenvalues of ϕA divided by p and, since characteristic
polynomials of ϕA on crystalline and étale cohomology are equal, the eigenvalues of σ are the
l − 1 Galois conjugates of ζl, as desired. �

Remark 3.4. This particular construction does not require the full power of Honda–Tate theory:

we can take A′ to be the Weil restriction of scalars Res
F

p2l

Fp2
E of a supersingular elliptic curve E

defined over Fp with vanishing trace of p-Frobenius endomorphism, cf. [Tat71, Lemme 1 in § 3].
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The map g 
→ gp is an automorphism of the group G. For a representation ρ : G → Aut(V )
on a module V we denote by V τ the representation on the same module in which g ∈ G acts by
ρ(gp).

Lemma 3.5. For any A as in Lemma 3.3 we have the following:

(i) the representations H1(A,O) and H0(A, Ω1
A/κ)τ are isomorphic;

(ii) A lifts to a formal abelian scheme A over Spf W (κ) together with an action of G such that

the representations H1(A,O) and H0(A, Ω1
A/W (κ))

τ are isomorphic.

Proof. (i) Denote by A(1) = A ×κ,Fr κ the Frobenius-twist of A. For a vector space W over κ

denote as well by W (1) := W ⊗κ,Fr κ its twist. Note that the double twist A(2) := (A(1))(1) is
canonically identified with A.

The de Rham cohomology H1
dR(A/κ) carries the Hodge filtration H1

dR(A/κ) =
F 0 ⊃ F 1 ⊃ F 2 = 0 and the conjugate filtration H1

dR(A/κ) = G2 ⊃ G1 ⊃ G0 = 0 satisfying
F 0/F 1 = H0(A, Ω1

A/κ), F 1/F 2 = H1(A,O), G2/G1 = H0(A(1), Ω1
A(1)/κ

), G1/G0 = H1(A(1),O),
see [Kat70, § 7]. The compositions

H1(A(1),O) = G1 → H1
dR(A/κ) → F 0/F 1 = H1(A,O)

and

H1
dR(A(1)/κ) = H1

dR(A/κ)(1) → (F 0/F 1)(1) = H1(A,O)(1) = G1/G0 → H1
dR(A/κ)

are both induced by the relative Frobenius morphism FrA : A → A(1).
Since Fr2

A is equal to the multiplication by p endomorphism [p]A up to composition with an
automorphism, Fr2

A induces the zero map on H1
dR(A/k). Equivalently, ker(Fr∗A : H1

dR(A(1)/κ) →
H1

dR(A/κ)) contains im(Fr∗A : H1
dR(A/κ) = H1

dR(A(2)/κ) → H1
dR(A(1)/κ)) = G

(1)
1 . The sum of

the dimensions of these two vector space is dimκ H1
dR(A/κ) = 2g and the dimension of the image

is equal to g, so the containment is in fact equality and we get G1 = F 1.
This gives a G-equivariant κ-linear isomorphism H1(A(1),O) � H0(A, Ω1

A/κ). If V is a
representation of G on a vector space over a field of characteristic p then the character of
Frobenius-twisted representation V (1) is equal to that of V τ so the first assertion of the lemma
follows.

(ii) By [Mes72, Theorem V.1.10] the category of formal abelian schemes over W (κ) is
equivalent to the category of pairs (A0, F̃ ) where A0 is an abelian variety over κ and F̃ is a
W (κ)-submodule of H1

cris(A0/W (κ)) such that the quotient H1
cris(A0/W (κ))/F̃ is torsion-free

and F̃ /p is equal to the first step of Hodge filtration F 1 ⊂ H1
dR(A/κ) = H1

cris(A/W (κ))/p.
Since the eigenvalues of σ on H1

cris(A/W (κ)) are pair-wise different, the same is true for the
action of σ on H1

dR(A/κ) so there is a unique isomorphism H1
dR(A/κ) � H0(A, Ω1

A/κ) ⊕ H1(A,O)
of G-representations splitting the Hodge filtration on H1

dR(A/κ). Since the isomorphism class of
a representation of G on a finite free W (κ)-module is completely determined by its reduction
modulo p, there is a unique G-equivariant decomposition H1

cris(A/W (κ)) = F̃ ⊕ F̃ ′ lifting the
decomposition of the de Rham cohomology. The formal lift A of A defined by F̃ then comes
equipped with a lift of the action of G because F̃ ⊂ H1

cris(A/W (κ)) is stable under G. The
assertion about the action of G on Hodge cohomology groups of A is a formal consequence
of (i). �
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The result of Lemma 3.5(i) is specific to positive characteristic: for an abelian variety B

with an action of G over a field F of characteristic zero the representations H0(B, Ω1
B/F ) and

H1(B,O)∨ have to be isomorphic by the next lemma, whereas for A as above the representations
H0(A, Ω1

A/κ) and H1(A,O)∨ � H0(A, Ω1
A/κ)τ∨ are self-dual and are not isomorphic to each other

(in fact, any representation of G on a Fp2-vector space has to be self-dual because −1 = p2r in
(Z/l)× for some r by the assumption on l). The same is happening for the lift A, so, in particular,
it has to be non-algebraizable.

Lemma 3.6. For an abelian variety B over a field F of characteristic zero equipped with an

action of a finite group H the representations H0(B, Ω1
B/F ) and H1(B,O)∨ are isomorphic.

Proof. Choose an ample line bundle L on B. Then M :=
⊗

h∈Hh∗(L) is an ample line bun-
dle inducing a H-equivariant polarization λM : B → B∨ that is separable because char F = 0.
The induced map λ∗

M : H0(B∨, Ω1
B∨/F ) → H0(B, Ω1

B/F ) provides a H-equivariant isomorphism
between H0(B, Ω1

B/F ) and H1(B,O)∨ � H0(B∨, Ω1
B∨/F ) �

The abelian schemes constructed in Lemma 3.5 do not yet provide the desired Z because
for all i, j the module H i(A, Ωj

A/W (κ)) is the τ -twist of Hj(A, Ωi
A/W (κ)) and, in particular, these

modules have equal ranks of invariants. We will break this symmetry by taking the direct product
with an appropriate algebraic abelian scheme with complex multiplication by Q(μl).

Recall that k is an extension of Fp containing all lth roots of unity, so any representation
of G on a finite free module over W (k) is isomorphic to a direct sum of characters χζ given by
sending σ to a degree l root of unity ζ ∈ μl ⊂ W (k)×.

Definition 3.7. We call a representation U of G on a finite free W (k)-module typical if it
has the form

⊕d
i=1

⊕
ζ∈Si

χζ where each Si is a subset of μl of cardinality (l − 1)/2 such that
Si ∩ S−1

i = ∅ and d is some number.

If B is an algebraic abelian scheme over W (k) of dimension (l − 1)/2 with a non-trivial action
of G then the representation H0(B, Ω1

B/W (k)) is typical: singular cohomology H1(BC(C), Z) of
the base change of B along any embedding W (k) → C is a free abelian group of rank l − 1
with a non-trivial action of G. Hence, all non-trivial characters appear in H1(BC, Z) exactly
once and by Lemma 3.6 these characters have to be distributed between H0(BC, Ω1

BC/C
) =

H0(B, Ω1
B/W (k)) ⊗W (k) C and H1(BC,O) in such a way that χζ and χζ−1 never occur in the

same piece of the Hodge decomposition. The next lemma deduces from the theory of complex
multiplication that every typical representation arises from an abelian scheme over the ring of
integers in an unramified extension of Qp.

Lemma 3.8. For any typical representation of G on a finite free W (k)-module U there exists

an abelian scheme B with an action of G over the ring of integers OL = W (k′) of a finite

unramified extension L = W (k′)[1/p] ⊃ W (k)[1/p] such that H0(B, Ω1
B/OL

) � U ⊗W (k) OL and

H1(B,O) � U∨ ⊗W (k) OL as G-representations.

Proof. It is enough to prove the lemma for typical representations of rank (l − 1)/2 because
we have H0(B1 ×OL

B2, Ω1
B1×OL

B2/OL
) � H0(B1, Ω1

B1/OL
) ⊕ H0(B2, Ω1

B2/OL
) and likewise
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H1(B1 ×OL
B2,O) � H1(B1,O) ⊕ H1(B2,O) for all abelian schemes B1, B2, so the general

case can be obtained by taking the products.
Fix a non-trivial root of unity ζl ∈ Q(μl) and an embedding Q(μl) ⊂ W (k)[1/p], giving a

bijection between roots of unity in Q(μl) and W (k). Each non-trivial root of unity ζ ∈ μl(W (k))
thus defines an embedding of the cyclotomic field ϕζ : Q(μl) → Q̄ into the algebraic closure given
by ζl 
→ ζ.

Let U be a typical representation of rank (l − 1)/2 over W (k). We associate to U the set
Φ = {ϕζ |χζ−1 appears in U} of embeddings. By the definition of typical representation Φ is a
CM type of the field Q(μl). Since Q(μl) is Galois over Q, the reflex field of Φ is contained in
Q(μl). By [CCO14, Corollary A.4.6.5] applied with N = p (beware that the symbol ‘p’ bears its
own meaning in this corollary) there exists an abelian variety B′ with complex multiplication
by Q(μl) of type Φ defined over an unramified extension F of the reflex field that has good
reduction at all primes above p. Take L = Fp for some prime p ⊂ OF above p and consider the
good model B′ of B′ over OL. The isogeny action of Q(μl) then extends onto B′. In particular,
embedding G into Q(μl) via σ 
→ ζl gives an action of G on B′ in the isogeny category. By our
choice of Φ the G-representation H0(B′, Ω1

B′/OL
) ⊗OL

L is isomorphic to U ⊗W (k) L.
Analogously to the proof of Lemma 3.3, Serre’s tensor product construction gives an isogeny

B′ → B to an abelian scheme B that carries a genuine action of Z[μl]. In particular, G acts on
B such that H0(B, Ω1

B/OL
) is isomorphic to U ⊗W (k) OL, as desired. To see that H1(B,O) is

isomorphic to U∨ ⊗W (k) OL it is enough to check the analogous statement for the generic fiber
BL and this is given by Lemma 3.6. �

Remark 3.9. We have appealed to stronger results of [CCO14] to make sure that there exists B

defined over the ring of integers in an unramified extension of Qp. If we did not care about the
field of definition of the ultimate counterexamples to Hodge symmetry we could have applied a
cruder form of CM theory given e.g. by [Tat71, Lemme 4].

Lemma 3.10. Let V be a representation of G on a finite free W (k)-module such that V is

isomorphic to its dual V ∨ but is not isomorphic to the twist V τ . Then there exists a typical

representation U such that

rk Λ3(V ⊕ U)G �= rk Λ3(V τ ⊕ U∨)G. (5)

Proof. Suppose on the contrary that these ranks of invariant subspaces are equal for all
typical U . Using that Λ3(V ⊕ U) � Λ3V ⊕ Λ2V ⊗ U ⊕ V ⊗ Λ2U ⊕ Λ3U and the fact that twist-
ing by an automorphism of G does not change the invariant submodule of a representation we
get

rk(Λ2V ⊗ U⊕r)G + rk(V ⊗ Λ2(U⊕r))G = rk(Λ2V τ ⊗ U∨⊕r)G + rk(V τ ⊗ Λ2(U∨⊕r))G

for all typical U and any multiplicity r (by definition, the class of typical representations is
closed under direct sums). Since Λ2(U⊕r) � (Λ2U)⊕r ⊕ (U⊗2)⊕(r

2) both sides of the equality are
quadratic polynomials in r for a fixed U , and comparing the leading coefficients we get

rk(V ⊗ U⊗2)G = rk(V τ ⊗ U∨⊗2)G.

As V is assumed to be self-dual this equality is equivalent to rk(V ⊗ U⊗2)G = rk(V τ ⊗ U⊗2)G.
In other words, the difference of characters χV − χV τ is orthogonal to any character χU⊗2 for a
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typical U with respect to the pairing 〈χ1, χ2〉 :=
∑

g∈G χ1(g)χ2(g) on the character ring W (k)[G].
Moreover, this implies that χV − χV τ is orthogonal to χU1⊗U2 = χU1 · χU2 for any two typical
representations U1, U2 because 2χU1⊗U2 = χ(U1⊕U2)⊗2 − χU⊗2

1
− χU⊗2

2
.

If ζ is any non-trivial root of unity, then for a set ζ1, . . . , ζ(l−3)/2 of pairwise different roots
such that ζi �= ζ−1

j and ζi �= ζ±1 for all i, j both representations χζ ⊕ χζ1 ⊕ · · · ⊕ χζ(l−3)/2
and

χζ−1 ⊕ χζ1 ⊕ · · · ⊕ χζ(l−3)/2
are typical. Hence the span of characters of typical representations in

W (k)[G] contains all characters of the form χζ − χζ−1 for a non-trivial root of unity ζ. By linearity
of the pairing, χV − χV τ is hence also orthogonal to χ2

ζ + χ2
ζ−1 = (χζ − χζ−1)2 + 2χ1. However,

〈χV , χ2
ζ + χ2

ζ−1〉 = 2〈χV , χ2
ζ〉 by self-duality of V and likewise for V τ so we get a contradiction

since, by assumption, there exists ζ such that multiplicities of χζ−2 in V and V τ are different. �

Proof of Proposition 3.1. Let A be a formal abelian scheme with an action of G provided by
Lemma 3.5(ii). Consider the representation V = H0(A, Ω1

A/W (κ)). We have G-equivariant iso-
morphisms V ⊕ V τ � H0(A, Ω1

A/W (κ)) ⊕ H1(A,O) � H1
dR(A/W (κ)) � H1

cris(A/W (κ)), so every
non-trivial character χζ appears in exactly one of V and V τ with multiplicity one. It follows that
V � (V τ )τ . Since V ∨ is obtained from V by applying the twist τ an even number of times, the
representation V ⊗W (κ) W (k) satisfies the assumptions of Lemma 3.10 and there exists a typical
representation U such that non-equality (5) holds. Let B be an abelian scheme over OL = W (k′)
provided by Lemma 3.8 applied to U . The product Z′ = A×W (k) B equipped with the diago-
nal action then has H0(Z′, Ω1

Z/OL
) � (V ⊕ U) ⊗W (k) OL and H1(Z′,O) � (V τ ⊕ U∨) ⊗W (k) OL

as G-representations.
Since H0(Z′, Ω3

Z/OL
) � Λ3H0(Z′, Ω1

Z′/OL
) and H3(Z′,O) � Λ3H1(Z′,O) we get

rkH0(Z′, Ω3
Z/OL

)G �= rkH3(Z′,O)G.

If rkH0(Z′, Ω3
Z/OL

)G > rk H3(Z′,O)G, then Z = Z′ gives the desired inequality (4). If the
inequality goes the other way, take Z = Z′∨ using that there are G-equivariant isomorphisms
H0(Z′∨, Ω1

OL
) � H1(Z′,O)∨ and H1(Z′∨,O) � H0(Z′, Ω1

Z′/OL
)∨. �

Remark 3.11. (i) The same argument works just as well to provide an abelian scheme with
different ranks of invariants rkH i(Z, Ωj

Z/W (k))
G �= rk H i(Z, Ωj

Z/W (k))
G for any i �= j, i + j ≥ 3.

We chose to treat here only the case (i, j) = (3, 0) and obtain counterexamples to symmetry in
higher degrees by taking products with auxiliary varieties because that simplifies the argument
in the next section.

(ii) I am not aware of a simple way of choosing Z that would work uniformly for all p. However,
for any fixed l everything can be made more explicit for primes p for which l satisfied condition
(3). For instance, for p congruent to 2 or 3 modulo 5 we can take l = 5 so that dimA = 2 and B

can also be chosen to be 2-dimensional. In this case (for any of the particular choices of A and B

that give non-symmetric dimensions of invariants) H3
dR(A × B/L)G is a filtered ϕ-module with

Hodge numbers (h3,0, h2,1, h1,2, h0,3) = (0, 5, 2, 1) or (1, 2, 5, 0) and single slope 3/2 (the slopes
can be computed by the Shimura–Taniyama formula). Note that such Hodge numbers satisfy
the relation (1).
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4. Main example

Theorem 4.1. For every pair of distinct positive integers i �= j with i + j ≥ 3 there exists a

smooth proper formal scheme X over Zp with projective special fiber XFp such that the Hodge

cohomology groups H i(X, Ωj
X/Zp

) and Hj(X, Ωi
X/Zp

) are free Zp-modules of different rank.

We first record two standard general facts from formal geometry. The main reference on
rigid-analytic generic fibers of formal schemes is [BL93]. Let K be a discretely valued field of
characteristic zero with ring of integers OK , maximal ideal m ⊂ OK and perfect residue field
k = OK/m of characteristic p.

Lemma 4.1. If X is a smooth proper formal scheme over Spf OK with generic fiber X, then there

is a canonical isomorphism H i(X, Ωj
X/K) � H i(X, Ωj

X/OK
)[1/p]. In particular, hi,j(X) = hi,j(X).

Proof. Let (Ui)i∈I be a finite cover of X by affine open formal subschemes. Their generic fibers Ui

induce a covering of X by affinoid subdomains. For any coherent sheaf F on X its cohomology is
computed by the Čech complex

⊕
i∈IF(Ui) →

⊕
i,j∈IF(Ui ∩ Uj) → · · · . The cohomology of the

sheaf F on X associated to F is computed by the Čech complex
⊕

i∈IF (Ui) →
⊕

i,j∈IF (Ui ∩
Uj) → · · · since higher cohomology of coherent sheaves on affinoids vanish. By definition, F (Ui) =
F(Ui)[1/p] so the Čech complex on the generic fiber is obtained from that of the formal scheme
by inverting p and we get the isomorphism H i(X, F ) � H i(X,F) which implies the statement
by using F = Ωj

X/OK
. �

Lemma 4.2. Let Y be a smooth proper formal scheme over OK with an action of a finite group

Γ of order prime to p. If the special fiber Yk is projective over k and the action of Γ on it is free

there exists a quotient smooth proper formal scheme X over OK with projective special fiber

such that

H i(X, Ωj
X/OK

) � H i(Y, Ωj
Y/OK

)Γ.

Proof. For each n, the quotient Xn := YOK/mn/Γ exists by [SGA1, Expose 1, Proposition V.1.8]
because admissibility of the action can be checked on the reduced subscheme which is projective
in this case. The closed immersions YOK/mn → YOK/mn+1 induce morphisms Xn → Xn+1. Since
the action is free, by [SGA1, Corollarie V.2.4] the morphisms πn : Yn → Xn are étale with Galois
group Γ and the canonical maps OXn ⊗Z Z[Γ] → πn∗OYn are isomorphisms.

Hence, the maps Xn → Xn+1 are closed immersions inducing isomorphisms (this also follows
from order of Γ being invertible on Y, but is not true in general for a non-free action)

Xn+1 ×OK/mn+1 OK/mn � Xn

and the schemes Xn form the desired quotient formal scheme X. If L is an ample line bundle on
Yk then

⊗
γ∈Γγ∗(L) descends to an ample line bundle on Xk so Xk is projective over k.

By the étaleness of the quotient map π : Y → X the canonical morphisms Ωi
X/OK

→
(π∗Ωi

Y/OK
)Γ are isomorphisms and we get a Hochschild–Serre spectral sequence with the second

page Eab
2 = Ha(Γ, Hb(Y, Ωi

Y/OK
)) converging to Ha+b(X, Ωi

X/OK
). Since higher cohomology of Γ

with coefficients in OK-modules vanishes, we get the desired isomorphism. �

Proof of Theorem 4.1. We first treat the case of i + j = 3, and the general case follows from the
Lemma 4.3 below. Let Z be a formal abelian scheme with an action of G over the ring of integers
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OL = W (k′) in some unramified extension L ⊃ Qp provided by Proposition 3.1. We would like
to construct X by taking the quotient of Z by G, but first we need to make the action free in
a way that does not spoil the discrepancy between ranks of invariant submodules. By [Ray79,
Proposition 4.2.3] or [BMS18, § 2.2] there exists a smooth projective complete intersection Y

of dimension ≥ 4 in projective space over OL equipped with a free action of G. We equip the
product Z ×OL

Y with the diagonal action of G which is free because the action on the second
factor is free. Note that H i(Z × Y,O) � H i(Z,O) and H0(Z × Y, Ωi

Z×Y/OL
) � H0(Z, Ωi

Z/OL
) for

i ≤ 3 by Künneth formula and Lefschetz hyperplane theorem [ABM19, Proposition 5.3] applied
to Y.

First, we construct the scheme with desired property over the unramified extension OL

as the quotient X′ := (Z × Y)/G provided by the Lemma 4.2. We have H3(X′,O) = H3(Z ×
Y,O)G = H3(Z,O)G and H0(X′, Ω3

X′/OL
)G = H0(Z, Ω3

Z/OL
)G. Proposition 3.1 supplied Z such

that the ranks of invariant modules H3(Z,O)G and H0(Z, Ω3
Z/OL

)G are different, so H3(X′,O) and
H0(X′, Ω3

X′/OL
) are indeed of different rank. By Proposition 2.1 we have 3h3,0(X′) + h2,1(X′) =

3h0,3(X′) + h1,2(X′) so the ranks of H2(X′, Ω1
X′/OL

) and H1(X′, Ω2
X′/OL

) are forced to be different
as well.

Finally, the example over Zp is obtained by Weil restriction of scalars X := ResOL
Zp

X′. Since
OL is finite étale over Zp this is a smooth proper formal scheme over Zp with projective special
fiber XFp = Resk′

Fp
Xk′ . Since X ×Zp OL is isomorphic to (X′)×d where d is the degree of k′ over

Fp, the Hodge cohomology modules of X are free and h3,0(X) − h0,3(X) = d(h3,0(X′) − h0,3(X′))
because the symmetry on cohomology of X′ in degrees 1 and 2 holds by Corollary 2.2.

Lemma 4.3. Let X be a smooth proper formal scheme over OK such that h3,0(X) �= h0,3(X).
Then for any i, j ≥ 0 with i �= j and i + j > 3 there exists a smooth projective scheme Y over

OK such that hi,j(X × Y) �= hj,i(X × Y).

Proof. Recall that for a formal scheme T the number δi,j(T) is defined as the difference hi,j(T) −
hj,i(T). Note that if Y satisfies Hodge symmetry then

δi,j(T × Y) =
∑

i1+i2=i
j1+j2=j

δi1,j1(T)hi2,j2(Y). (6)

By Proposition 2.1 we have δ2,1(X) = −3δ3,0(X) and δ1,0(X) = δ2,0(X) = 0. Let us assume
that i > j. For a scheme Y denote by HY(x, y) :=

∑
i,j hi,j(Y)xiyj its Hodge polynomial. If

Y1 ⊂ Y2 is a smooth closed subscheme of codimension r + 1 in a smooth proper scheme, then
the Hodge polynomial of the blow-up is given by

HBlY1
Y2(x, y) = HY2(x, y) + HY1(x, y) · (xy + (xy)2 + · · · + (xy)r).

Let Td,n be a smooth degree d hypersurface in Pn+1
OK

where d and n are numbers that we will choose
later. Construct a sequence of smooth projective schemes starting with Y0 = Td,n and for s ≥ 0
defining the scheme Ys+1 as the blow-up of some projective space PNs

OK
along some embedding

Ys ⊂ PNs
OK

of codimension ≥ 2 (the numbers Ns > dimOK
Ys + 1 can be chosen arbitrarily). By

the above formula we have HYs(x, y) = F (xy) + HTd,n
(x, y) · (xy)s · G(xy) where F (t), G(t) ∈

1 + tZ[t] are some polynomials.
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Assume first that i > j + 3. Then take n = i − 3 − j, s = j and consider Y := Ys obtained
by the above inductive procedure from Td,n. We then have hi−2,j−1(Y) = hi−1,j−2(Y) =
hi,j−3(Y) = 0 and hi−3,j(Y) = hn,0(Td,n). This turns (6) into

δi,j(X × Y) = δ3,0(X) · hi−3,j(Y) +
∑

i2+j2<i+j−3

δi−i2,j−j2(X) · hi2,j2(Y).

By [SGA7, XI.Theoreme 1.5] the Hodge numbers ha,b(Td,n) of a hypersurface are zero unless
a + b = n or a = b and ha,a(Td,n) = 1 for 0 ≤ a ≤ n, 2a �= n. It follows that the Hodge polyno-
mial HY(x, y) is congruent modulo the ideal (x, y)n+s to a polynomial of the form K(xy) with
coefficients not depending on the degree d of the hypersurface. In particular, δi,j(X × Y) is the
sum of δ3,0(X) · hi−3,j(Y) = δ3,0(X) · hn,0(Td,n) and a number that does not depend on d. By
[SGA7, Corollaire 2.4] the number is hn,0(Td,n) is equal to

(
d−1
n+1

)
so for large enough d this sum

will be non-zero.
If i = j + 2, then take Y = Ys with n = 1, s = j − 1. An analogous computation gives that

δi,j(X × Y) is the sum of a number that does not depend on d and the expression

δ2,1(X) · h1,0(Td,1) + δ3,0(X) · h0,1(Td,1) = δ3,0(X)(h0,1(Td,1) − 3h1,0(Td,1)) = −2δ3,0(X)
(

d − 1
2

)
,

which is non-zero for d > 2.
Finally, if i = j + 3 or i = j + 1 we will be able to move asymmetry into higher cohomology

just via Tate twists. Consider the scheme Y = (P1
OK

)d where we will again choose d at the end.
We have

δi,j(X × Y) =
∑

r≤(i+j−3)/2

δi−r,j−r(X) ·
(

d

r

)
.

This is a polynomial in d with leading coefficient δi−r,j−r(X) with r = (i + j − 3)/2 which is
nothing but ±δ3,0(X) or ±δ2,1(X) so this expression is non-zero for a large enough value of d. �

This finishes the proof of Theorem 4.1. �

Corollary 4.4. For every pair of positive numbers i �= j with i + j ≥ 3 there exists a smooth

proper rigid-analytic variety X over Qp admitting a smooth formal model X over Spf Zp with

projective special fiber XFp such that

hi,j(X) �= hj,i(X).

Proof. Take X to be the generic fiber of a formal scheme X provided by Theorem 4.1. Applying
Lemma 4.1 gives the result. �

5. Embellishing the main example and a question

We end by noting that the examples provided by Theorem 4.1 can be modified to avoid some of
the characteristic p ‘pathologies’.

In all of the examples constructed above the Hodge cohomology groups H i(X, Ωj
X/Zp

) are
free modules over Zp so the Hodge numbers of the special and generic fibers of X coincide.
In particular, the Hodge symmetry for the special fiber XFp fails as well. The next lemma
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shows that symmetry for the generic fiber cannot be salvaged by requiring that for the special
fiber: there are enough projective schemes failing symmetry for the special fiber to cancel out
the asymmetry on the special fiber by taking products. We only treat here one particular pair
of degrees.

Lemma 5.1. There exists a smooth proper formal scheme X′ over Spf Zp with projective special

fiber such that h3,0(X′) �= h0,3(X′) while h3,0(X′
Fp

) = h0,3(X′
Fp

).

Proof. The proof of Theorem 4.1 provides us with a smooth proper scheme X over Zp with projec-
tive special fiber such that all Hodge groups H i(X, Ωj

X/Zp
) are free over Zp and h3,0(X) < h0,3(X)

while h1,0(X) = h0,1(X) = 0 (the Hodge numbers in degree 1 vanish because representations U, V

used in proof of Proposition 3.1 have trivial invariants). Since Hodge cohomology modules are
free, the Hodge numbers of the special fiber XFp are equal to those of X.

We will now take the product of X with an auxiliary projective scheme that will be con-
structed by approximating the stack B(μp × Z/p). By [ABM19, Theorem 1.2] applied over Zp

to the group scheme μp × Z/p with d = 3 there exists a smooth projective scheme Y′ such
that Hj(Y′

Fp
, Ωi

Y′
Fp

) = Hj(B(μp × Z/p)Fp , Ω
i) and Hj(Y′, Ωi

Y′/Zp
) = Hj(B(μp × Z/p)Zp , Ω

i) for

pairs i, j with i + j ≥ 3 and i = 0 or j = 0. The Hodge polynomial HB(μp×Z/p)Fp
(x, y) :=∑

i,j hi,j(B(μp × Z/p)Fp)x
iyj of this stack is given by the product HBμp,Fp

(x, y)HB(Z/p)Fp
(x, y).

By [Tot18, Proposition 11.1] the first multiple HBμp,Fp
is equal to (1 + x)/(1 − xy) and HB(Z/p)Fp

is equal to 1/(1 − y) because the only non-zero Hodge cohomology groups of the classifying
stack of a finite discrete group Γ are given by group cohomology H i(BΓFp ,O) � H i(Γ, Fp). Take
Y := Y′ × El where E is an elliptic curve over Zp and l is a number that we will choose at the
end.

By the above computation, HYFp
(x, y) is given by (1/(1 − y)) · ((1 + x)/(1 − xy)) · (1 +

x + y + xy)l modulo an element of the ideal (x4, xy, y4). For the purpose of comput-
ing h3,0((X × Y)Fp) and h0,3((X × Y)Fp) we only care about this polynomial modulo xy

and we have H(X×Y)Fp
(x, y) ≡ (1 + h2,0(XFp)x

2 + h3,0(XFp)x
3 + h0,2(XFp)y

2 + h0,3(XFp)y
3)(1 +

(l + 1)x + (
(

l
2

)
+ l)x2 + (

(
l
3

)
+

(
l
2

)
)x3 + (l + 1)y + (

(
l
2

)
+ l + 1)y2 + (

(
l
3

)
+

(
l
2

)
+ l + 1)y3) mod-

ulo the ideal (x4, xy, y4). The Hodge numbers of the special fiber XFp × YFp are thus given
by h3,0((X × Y)Fp) =

(
l
3

)
+

(
l
2

)
+ h3,0(XFp) + (l + 1)h2,0(XFp), h0,3((X × Y)Fp) =

(
l
3

)
+

(
l
2

)
+ l +

1 + h0,3(XFp) + (l + 1)h0,2(XFp). Hence, δ3,0((X × Y)Fp) = δ3,0(XFp) + l + 1. Since δ3,0(XFp) < 0
there exists l that makes this difference equal to zero.

The product X × Y is our desired scheme X′. Note that the Hodge numbers hi,0(YQp) of
the generic fiber YQp vanish for i ≤ 3 so the asymmetry h3,0(X′) = h3,0(X) �= h0,3(X) = h0,3(X′)
persists. �

Another feature of the counterexamples to Hodge symmetry obtained by taking quotients
of formal abelian schemes by finite groups is the absence on the special fiber of an ample line
bundle of degree prime to p. Indeed, if the d-dimensional special fiber of X (in the notation of
the proof of Theorem 4.1) admits a line bundle L such that Ld �≡ 0 (mod p) then it induces a
G-equivariant ample line bundle L′ on Zk′ with (L′)dim Zk′ �≡ 0 (mod p) as well (because the order
of G is prime to p). It induces a separable G-equivariant polarization and hence and isomorphism
H0(Z, Ω1

Z′
k/k′) � H1(Zk′ ,O)∨ of G-representations. Hence, for all i and j the representations
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H i(Zk′ , Ωj
Zk′/k′) and Hj(Zk′ , Ωi

Zk′/k′) would be dual to each other and Hodge symmetry for Xk′

and, hence, for X would have to hold.
We note, however, that blowing up a point provides the special fiber with a prime to p

polarization without spoiling Hodge asymmetry.

Lemma 5.2. For every pair of distinct positive integers i, j with i + j ≥ 3 there exists a smooth

proper formal scheme X′ over Zp such that hi,j(X′) �= hj,i(X′) and the special fiber carries an

ample divisor L such that its top self-intersection is prime to p: L
dim(X′

Fp
) �≡ 0 (mod p).

Proof. Let X be a formal scheme provided by Theorem 4.1. Choose a point x : Spf Zp → X (one
sees easily that the proof of Theorem 4.1 can be modified to make sure that at least one point
exists). Let f : X′ → X be the blow-up of X at the closed subscheme given by x. Note that
hi,j(X′) = hi,j(X) for i �= j.

The special fiber X′
Fp

is the blow-up of XFp at a point; denote by E ⊂ X′
Fp

the exceptional
divisor. Let H be any ample divisor on X′

Fp
. We will find a linear combination H + nE with

n ≥ 0 such that the top self-intersection (H + nE)d is prime to p. Since the sum of an ample
divisor with an effective divisor is ample, this will provide an ample divisor with the desired
property.

Suppose that H|E has degree k in Pic(E) = Z. Then Hd−i · Ei = kd−i · (−1)i for i > 0 by
[Ful98, Example 8.3.9.] and the projection formula, so

(H + nE)d = Hd +
d∑

i=1

(
d

i

)
nikd−i(−1)i−1 = Hd − (k − n)d + kd. (7)

For varying n the residue of (k − n)d modulo p takes at least two different values, so we can find
n such that the expression (7) is prime to p. �

Apart from satisfying Hodge symmetry, compact Kähler manifolds must have nonzero middle
Hodge numbers hi,i(X) �= 0 for i ≤ dim X because H i(X, Ωi

X/C
) contains the non-zero ith power

of the class of a Kähler form. It would be interesting to find out whether this is the case for
rigid-analytic varieties with projective reduction.

Question 1. Does there exist a smooth proper rigid-analytic variety X of dimX > 0 admitting
a formal model with projective special fiber such that H1(X, Ω1

X/K) = 0?

Note that X must have non-zero second de Rham cohomology H2
dR(X/K). If X is algebraic

projective, then a non-zero class is given by the first Chern class of an ample line bundle. If, on
the contrary, X is not projective, then no ample line bundle on the special fiber Xk can lift to X.
The obstruction to lifting a line bundle gives a non-zero class in second cohomology as follows.
Consider the long exact sequence

· · · → Pic(X) → Pic(Xk)
δ−→ H2(X, (1 + mOX)×) → · · ·

obtained from the short exact sequence 1 → (1 + mOX)× → O×
X → O×

Xk
→ 1 of sheaves of abelian

groups on the Zariski site of X. For any ample line bundle L ∈ Pic(Xk) the image δ(L) ∈
H2(X, (1 + mOX)×) is non-zero and, since no power of L lifts to X, is a non-torsion element.
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Applying to δ(L) the isomorphism given by the logarithm log : (1 + mOX)×[1/p] � OX[1/p] gives
a non-zero class in H2(X,OX[1/p]) = H2(X,O).
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