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SUMMARY
A new robust neural sliding mode (RNSM) tracking control scheme using radial basis function
(RBF) neural network (NN) is presented for MEMS z-axis gyroscope to achieve robustness and
asymptotic tracking error convergence. An adaptive RBF NN controller is developed to approximate
and compensate the large uncertain system dynamics, and a robust compensator is designed to
eliminate the impact of NN modeling error and external disturbances for guaranteeing the asymptotic
stability property. Moreover, another RBF NN is employed to learn the upper bound of NN modeling
error and external disturbances, so the prior knowledge of the upper bound of system uncertainties is
not required. All the adaptive laws in the RNSM control system are derived in the same Lyapunov
framework, which can guarantee the stability of the closed loop system. Comparative numerical
simulations for an MEMS gyroscope are investigated to verify the effectiveness of the proposed
RNSM tracking control scheme.
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1. Introduction
An MEMS gyroscope is an angular velocity sensor which has been applied on many areas
such as attitude control, consumer electronics, automobile, navigation, etc. However, fabrication
imperfections and environmental variations result in a frequency mismatch and extra stiffness and
damping couplings between two vibrating modes. Since 20 years ago, a lot of research has been
investigated to control MEMS gyroscopes.

The adaptive controllers1 drive both axes of vibration, and control the whole operation of the
gyroscope. Leland2 presented controllers to tune the drive axis oscillation to a fixed frequency and
amplitude, and these drive the sense axis vibration to zero for force-to-rebalance operation. Salah
et al.3 developed a new control strategy to sense the time-varying angular rate for MEMS z-axis
gyroscopes. Generally, the adaptive controllers presented earlier are based on the assumption that
structure of the system model is known with unknown system parameters. However, not only system
parameters but also the structure of the nonlinear system dynamics may be unknown for certain
gyroscopes. It is difficult to design an appropriate adaptive control law for this kind of systems
with conventional adaptive control algorithms. Fortunately, sliding mode control (SMC) is one of
the most important approaches to deal with nonlinearities, uncertain dynamics, and bounded input
disturbances with strong robustness. The main characteristic of the sliding mode control technique
is its ability to provide strong robustness for control systems such that closed loop systems are
completely insensitive to nonlinearities, uncertain dynamics, and bounded input disturbances in the
sliding mode. In, ref. [4], Wang et al. developed the nonlinear dynamic model of a gyroscope system
and used the SMC to guarantee the stability of the whole system. Fei et al.5 incorporated the SMC
strategy into adaptive control. Ebrahimi et al.6 invoked a terminal SMC scheme to develop tracking
control of the drive and sense modes. However, the problem using the previous control schemes
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is that all the upper and the lower bounds of unknown parameters need to be obtained before the
commencement of the design of the controller and there is chattering in practical applications. The
further research for the design of sliding mode controller without requirement of the prior knowledge
of the uncertain bounds has been investigated by a number of researchers. For example, in refs. [7]
and [8], an adaptive mechanism is developed to estimate the uncertain bound parameters and the
estimates are then used as controller parameters to guarantee that effects of the system uncertainties
can be eliminated and asymptotic error convergence can be obtained. Patompark et al.9 proposed
an adaptive backstepping SMC with bound estimation for underwater robotics vehicles. Since the
neural network has the capability to approximate any nonlinear function over the compact input
space, it can be utilized for interpolation and functional modeling. Neural network’s learning ability
to approximate arbitrary nonlinear functions makes it a useful tool for adaptive application. Lewis
et al.10 developed multilayer feed-forward neural network approaches for robot manipulator. Feng11

presented a compensating scheme for robot tracking based on RBF NN. Lin et al.12 used an NN-
based robust nonlinear control for a magnetic levitation system. Man et al.13 presented an adaptive
back-propagation (BP) neural network controller. Adaptive neural sliding mode control for dynamic
system and adaptive fuzzy sliding mode control for MEMS gyroscope have been investigated in
refs. [21] and [22].

In this paper, a new robust neural network controller with sliding mode compensator using RBF
networks is proposed for z-axis MEMS gyroscopes with uncertain dynamics and bounded input
noises for achieving robustness and asymptotic tracking error convergence. An adaptive RBF NN
controller is developed to approximate and compensate the large uncertain system dynamics, and
a robust compensator is designed to eliminate the impact of NN approximating error and external
disturbances, and guarantee the asymptotic stability property. Moreover, another RBF NN is employed
to learn the upper bound of NN approximating error and external disturbances, so the prior knowledge
of the upper bound of system uncertainties is relaxed. The control strategy proposed here has the
following advantages compared to the existing ones:

1. The universal approximation property of RBF NN is adopted to approximate and cancel the
unknown MEMS gyroscope dynamics. The deleterious impact of structured or unstructured
uncertainties on tracking performance is weakened effectively. And no prior knowledge of the
structure of the MEMS gyroscope is necessary.

2. The sliding mode compensator brings in strong robustness with respect to NN modeling error
and external disturbances for the closed system. The tracking error is ensured to converge to zero
asymptotically.

3. The deployment of the other RBF NN relaxes the requirement of the upper bound of the NN
approximating error and external disturbances, which learns the upper bound of the uncertainties
on-line. Compared to conservative, off-line estimation, the on-line fashion can eliminate the
chattering phenomenon effectively and makes the control scheme easier for practical applications.

The paper is organized as follows. In Section 2, the dynamics of MEMS gyroscope is described and
the problem is formulated. In Section 3, a robust neural network tracking control scheme for MEMS
gyroscope is derived to guarantee the asymptotic stability of the closed loop system. In Section 4,
an adaptive sliding mode compensator using RBF networks is designed to learn the upper bound
of the uncertainties. Comparative simulation results are presented in Section 5 to demonstrate the
effectiveness of the proposed robust NN controller with sliding mode compensator. Conclusions are
given in Section 6.

2. MEMS Gyroscope Dynamics
Most MEMS gyroscopes are vibratory rate gyroscopes that have structures fabricated on polysilicon
or crystal silicon, and the mechanical main component is a two degree-of-freedom vibrating structure,
which is capable of oscillating on two orthotropic directions in a plane.23 Vibratory gyroscopes behave
like a mass attached to a rigid frame by springs, as shown in Fig. 1.

Vibratory gyroscopes provided an inertial measurement of rotation rate by sensing the effects of
the Coriolis force in a rotating system. The mass is driven to vibrate along the drive axis. When the
gyroscope is rotating about an axis perpendicular to the page, there will be a Coriolis force generated
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Fig. 1. Schematic diagram of a z-axis MEMS gyroscope.

along the sense axis, perpendicular to the drive and rotation axes. The Coriolis force causes the mass
to move along the sense axis and the vibration is measured to determine the rotation rate.

To guarantee the stability and accuracy of the measurement of angular rate, the vibration of the
proof mass must be stable, that is, keeping constant frequency and amplitude. To solve this issue, a
trajectory following approach is used. Suppose that a reference trajectory is generated by an ideal
oscillator and that the control objective is to make real trajectories of gyroscopes follow that of the
reference model.

A typical MEMS gyroscope configuration includes a proof mass suspended by spring beams,
electrostatic actuations, and sensing mechanisms for forcing an oscillatory motion and sensing the
position and velocity of the proof mass, as well as a rigid frame which is rotated along the rotation
axis. Dynamics of an MEMS gyroscope is derived from Newton’s law in the rotating frame. For
presentation simplicity, we will not describe the derivation procedure. For more details, please refer
to ref. [24].

In a z-axis gyroscope, by supposing the stiffness of spring in the z-direction much larger than
that in x, y directions, the motion of proof mass is constrained to only oscillate along the x–y
plan. Assuming that the measured angular velocity is almost constant over a sufficiently long time
interval, under typical assumptions �x ≈ �y ≈ 0, only the component of the angular rate �z causes
a dynamic coupling between the x- and y-axes. Taking fabrication imperfections into account, which
cause extra coupling between x and y axes, the motion equation of a gyroscope is simplified as
follows:

mẍ + dxxẋ + dxyẏ + kxxx + kxyy = ux + dx + 2m�zẏ,
(1)

mÿ + dxyẋ + dyyẏ + kxyx + kyyy = uy + dy − 2m�zẋ,

where x and y are the coordinates of the proof mass with respect to the gyro frame in a Cartesian
coordinate system; dxx, dyy, kxx, kyy are damping and spring coefficients; dxy, kxy called quadrature
errors, are coupled damping and spring terms, respectively. They are mainly due to the asymmetries in
suspension structure and misalignment of sensors and actuators; ux,y are the control forces, and dx,y

denote the bounded input disturbances. The last two terms in (1), 2m�zẏ, 2m�zẋ, are the Coriolis
forces and are used to reconstruct the unknown input angular rate �z.

The following mild assumptions are used in this paper:

Assumption I: the mass of proof mass is constant, that is, ṁ = 0.
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Assumption II: the coupled damping coefficient between x- and y-axes is much smaller than
x-axis-self or y-axis-self ones, that is, dxy � dxx , dxy � dyy .

Rewriting the gyroscope dynamics (1) into vector form as

M q̈ + Dq̇ + Kq = τ − 2�zq̇ + τ d, (2)

where

q =
[

x

y

]
, τ =

[
ux

uy

]
, τ d =

[
dx

dy

]
, M =

[
m 0
0 m

]
,

D =
[

dxx dxy

dxy dyy

]
, K =

[
kxx kxy

kxy kyy

]
, � =

[
0 −m�z

m�z 0

]
.

All the MEMS gyroscope parameters in Eq. (2) cannot be known precisely. The model contains
large uncertainties, slowly time-varying parameters, and even some nonlinearities.

Based on these previous assumptions, we have the following properties of the gyroscope system:
Property I: M is a constant symmetric positive-definite matrix.
Property II: The damping matrix D is a symmetric positive-definite matrix, and we suppose D is

bounded.
Property III: The input disturbance is bounded by ‖τ d‖ ≤ bd .
The control problem is to find a control law so that the proof mass position q(t) can track

the desired trajectory qd (t) = [xd, yd ]T. To achieve this control objective, define the tracking error
e(t) = qd (t) − q(t). Meanwhile, define a sliding surface as

s(t) = ė(t) + �e(t), (3)

where � = �T > 0 is a design parameter matrix. Differentiating s and using Eq. (3), the MEMS
gyroscope dynamics may be rewritten in terms of the sliding surface as

M ṡ = −Ds − τ + f (x) − τ d, (4)

where f (x) denotes the unknown or uncertain gyroscope system dynamics

f (x) = M(q̈d + �ė) + D(q̇d + �e) + Kq + 2�q̇ (5)

and x ∈ �10 is the measurable signal vector

x = [
eT ėT qT

d q̇T
d q̈T

d

]T
. (6)

To eliminate the effects of uncertain dynamics and external disturbances so that the output tracking
error asymptotically converges to zero, a robust neural sliding mode tracking control system, which
comprises an adaptive RBF NN controller and a variable structure compensator, is developed in the
following section.

3. Robust Neural Network Control
Because of the great advantages of neural networks in dealing with approximation problems, an
NN controller is developed in this section to approximate the unknown gyroscope system dynamics
f (x) online and the output of the NN is used to compensate the impact of system uncertainties on
tracking performance. A variable structure controller is designed to curb the NN modeling error and
the bounded input disturbances for ensuring robustness and asymptotical tracking error convergence.
The block diagram of the proposed RNSM control system is shown in Fig. 2. In our controller design,
Eq. (4) is considered as the system model and the assumptions mentioned earlier are used.
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Fig. 2. Block diagram of RNSM control for MEMS gyroscope.

The following RBF NN is used to approximate system uncertainties f (x):

u = f̂ (x) = ŴTφ(x), (7)

where x ∈ �10 is the input of the RBF NN, defined in the last section; u ∈ �2 is the output of the
NN; W ∈ �n∗×2 is the NN weight matrix, in which n∗ represents the hidden layer nodes; the vector
φ(x) ∈ �n∗

is Gaussian type of active functions defined element-wise as

φi(x) = exp

(
−‖x − ci‖2

σ 2
i

)
, i = 1, 2, · · · , n∗. (8)

Remark I: ci ∈ �10 and σi ∈ �1, denoting the center and width of the ith hidden node, respectively, are
predetermined and the local training technique in refs. [13] and 14] can be used to choose appropriate
ci and σi . Therefore, the adjustable NN weights Ŵ appear linearly with respect to the known nonlinear
function φ(x).

According to the universal approximation properties of the RBF NN16, we may make the following
assumption:

Assumption III: On a compact set S, there exists an optimal constant NN weight matrix W such
that the output of the optimal RBF NN with enough hidden nodes satisfies:

‖ε(x)‖ = ∥∥ f (x) − WTφ(x)
∥∥ ≤ εN, (9)

where ε(x) is the reconstruction error due to the use of RBF NN and it is bounded by εN .

Remark II: The suitable optimal weight matrix may not be unique.17 The “best” weights may then
be defined as those which minimize the supremum norm over S of ε(x). The issue is not of major
concern here, as we only need to know that such optimal weight exists; their actual values are not
required. As to the modeling error ε(x), the more hidden nodes, the smaller value we shall expect,
even zero.

Now, if the prior knowledge of the uncertain bound which includes the bound of the external
disturbances and the NN modeling error is available, or it could be derived from some off-line

https://doi.org/10.1017/S026357471400160X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471400160X


502 Robust neural network control of MEMS gyroscope

estimating methods,17 we design the following robust compensator:

v = (εN + bd )sgn(s), (10)

where sgn() is a sign function and v is some switching control law.
The whole control law is taken as

τ = Kvs + WTφ(x) + (εN + bd )sgn(s) (11)

where gain matrix Kv = KT
v > 0 and Kvs = Kv(ė + �e) is a standard proportional-plus-derivative

(PD) term.

Theorem I: Consider the MEMS gyroscope system dynamics represented by Eq. (4) with
Assumption I-III, if the RNSM control law is designed as Eq. (11), in which the adaptive algorithm
of the RBF NN weights is designed as

˙̂W = Fφ(x)sT (12)

with arbitrary symmetric positive-definite matrix F , then the asymptotical stability of the closed
system can be guaranteed and the output tracking error e(t) can asymptotically converge to zero.

Proof: Define the following Lyapunov function candidate for the RNSM control system

L = 1

2
sTMs + 1

2
tr{W̃TF−1W̃ }, (13)

where tr() denotes the matrix trace operator, and W̃ = W − Ŵ .
Differentiating L with respect to time gives

L̇ = sTM ṡ + tr{W̃TF−1 ˙̃W }. (14)

Substituting Eq. (4) and Eq. (11) into Eq. (14) yields

L̇ = −sT(Kv + D)s + sTW̃ T φ(x) + sT(ε − τ d ) − sT(εN + bd ) sgn (s) + tr{W̃TF−1 ˙̃W }. (15)

Substituting the adaptive algorithm (12) into Eq. (15) and using the fact that ˙̃W = − ˙̂W , we can
obtain the following expression:

L̇ = −sT(Kv + D)s + sT(ε − τ d ) − sT(εN + bd )sgn(s). (16)

Next, we use some knowledge about vector norm

sT(ε − τ d ) − sT(εN + bd )sgn(s) ≤ ‖s‖ · ‖ε − τ d‖ − (εN + bd ) ‖s‖
≤ ‖s‖ · (‖ε‖ + ‖τ d‖) − (εN + bd ) ‖s‖ ≤ 0. (17)

Using Eq. (17), Eq. (16) becomes:

L̇ ≤ −sT(Kv + D)s ≤ −sTKvs ≤ −λmin(Kv) ‖s‖2 ≤ 0, (18)

where λmin(Kv) is the minimum eigenvalue of Kv and satisfies λmin > 0.
L̇ is negative definite implies that s converges to zero. L̇ is negative semidefinite ensures that L,

s, and W̃ are all bounded. It can be concluded from Eqs. (4) and (11) that ṡ is also bounded. The
inequality (18) implies that s is integrable as

∫ t

0 ‖s‖2dt ≤ 1
λmin

[L(0) − L(t)]. Since L(0) is bounded

and L(t) is nonincreasing and bounded, it can be concluded that limt→∞
∫ t

0 ‖s‖2dt is bounded.
Since limt→∞

∫ t

0 ‖s‖2dt , s and ṡ are all bounded, according to Barbalat’s lemma,19 limt→∞ s(t) = 0,
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that is s(t) will asymptotically converge to zero. As seen from Eq. (3), e(t) also converges to zero
asymptotically.

Remark III: It can be seen from Theorem I that the prior knowledge of the upper bound of the
uncertainties is required in the robust compensator design (10). Although there are some methods
for off-line estimating the bound parameters in expression (10), the estimates of the uncertain bound
parameters are very conservative, and the control input signals using the conservative estimates as
the controller parameter are then very large. Therefore, implementation of the robust control scheme
presented earlier in a practical situation might generate serious chattering phenomenon.

4. Adaptive Sliding Compensator Using RBF NN
To relax the requirement of the upper bound of system uncertainties in the design of a robust
compensator (10), an adaptive sliding mode control scheme is investigated in this section, in
which another RBF NN is adopted to adjust the sliding mode gain in a switching control
law on-line to satisfy the sliding mode condition and guarantee the convergence of tracking
error.

Let ρ represent the lumped RBF NN reconstruction error and external disturbances

ρ(t) = ε(t) − τ d (t). (19)

Due to the bound of ε(t) and τ d (t), we suppose ρ(t) is bounded by ‖ρ(t)‖ < ρ̄(t). If the upper bound
value ρ̄(t) cannot be measured, the following RBF NN is used to adaptively lean the upper bound of
ρ:

ˆ̄ρ(x, θ) = θ̂
T
φ2(x), (20)

where x is the input of the RBF NN, as described in the second section; θ ∈ 
m is the weight
vector of the RBF NN, and m is the number of hidden nodes. Vector φ2(x) ∈ 
m is also a Gaussian
type of function. As seen from Eqs. (7) and (20), the two RBF neural networks have the similar
structure, but their hidden nodes may be different and they play different roles in the control
system.

For further analysis, we make the following assumptions:

Assumption IV: Given an arbitrary small positive constant ε∗ and a continuous function ρ̄(t) on
a compact set U , there exists an optimal weight vector θ such that the output of the optimal neural
network with enough nodes satisfies

|ε2(x)| = ∣∣θTφ2(x) − ρ̄(t)
∣∣ < ε∗. (21)

Assumption V: The norm of the system uncertainties and its upper bound satisfy the following
inequality on the compact set U :

ρ̄(t) − ‖ρ(t)‖ > ε0 > ε∗. (22)

Using the second RBF NN, we modify the control law as

τ = Kvs + WTφ(x) + θ̂
T
φ2(x)sgn(s). (23)

This new control law gives the following closed loop equation:

M ṡ = −(Kv + D)s + W̃Tφ(x) + (ε − τ d ) − θ̂
T
φ2(x)sgn(s). (24)

Here, we propose two RBF neural networks. One of them is used to approximate and compensate
the unknown MEMS gyroscope dynamics and it is described in the last section. The other is adopted
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to learn the upper bound of NN modeling error and external disturbances. And we have the following
theorem:

Theorem II: Consider the MEMS gyroscope represented by Eq. (4) with Assumption I–II.
Let the control input for (4) be given by (23), in which Assumptions III, IV, and V about the
two RBF NNs are satisfied. If the weight adaptive laws of the two RBF NNs are designed as
Eqs. (12) and (25), respectively, then the output tracking error e(t) can asymptotically converge to
zero

˙̂
θ = η · ‖s‖ · φ2(x), (25)

where η is a arbitrary positive value.

Proof: Define the following Lyapunov function candidate for the closed loop system (24):

L = 1

2
sTMs + 1

2
tr{W̃TF−1W̃ } + 1

2
η−1θ̃Tθ̃ , (26)

where θ̃ = θ − θ̂ .
Differentiate L with respect to time along the trajectory defined by Eq. (24)

L̇ = sTM ṡ + tr{W̃TF−1 ˙̃W } + η−1θ̃T ˙̃θ

= −sT(Kv + D)s + sTW̃Tφ(x) + sTρ − sTθ̂Tφ2(x) sgn (s) + tr{W̃TF−1 ˙̃W } − η−1θ̃T ˙̂
θ . (27)

Substituting adaptive law (12) into Eq. (27), one can get

L̇ = −sT(Kv + D)s + sTρ − sTθ̂Tφ2(x)sgn(s) − η−1θ̃T ˙̂
θ

= −sT(Kv + D)s + sTρ − ‖s‖ [
θ̂Tφ2(x) − ρ̄(t) + ρ̄(t)

] − η−1θ̃T ˙̂
θ

≤ −sT(Kv + D)s − ‖s‖ [
θ̂Tφ2(x) − ρ̄(t)

] − ‖s‖ [ρ̄(t) − ‖ρ‖] − η−1θ̃T ˙̂
θ . (28)

Substituting adaptive law (25) into Eq. (28) yields

L̇ ≤ −sT(Kv + D)s − ‖s‖ [
θ̂Tφ2(x) − θTφ2(x) + ε2(x)

] − ‖s‖ [ρ̄(t) − ‖ρ‖] − (θT − θ̂T) ‖s‖ φ2(x)

= −sT(Kv + D)s − ‖s‖ ε2(x) − ‖s‖ [ρ̄(t) − ‖ρ‖]

≤ −sT(Kv + D)s + ‖s‖ |ε2(x)| − ‖s‖ [ρ̄(t) − ‖ρ‖]

= −sT(Kv + D)s + ‖s‖ [|ε2(x)| − (ρ̄(t) − ‖ρ‖)] ≤ −sT(Kv + D)s + ‖s‖ (ε∗ − ε0)

< −sT(Kv + D)s ≤ −sTKvs ≤ 0. (29)

From Eq. (29), we can conclude

L̇ < 0. (30)

Equation (30) is the reaching condition for the sliding variable vector s to reach the sliding mode in
a finite time

s = ė + �e = 0. (31)

On the sliding mode, error dynamics of the closed loop system has the following form:

ė = −�e. (32)

Therefore, the proposed control system is asymptotically stable, and the tracking error e(t)
asymptotically converges to zero.
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Table I. Parameters of the gyroscope.

Parameter Value

m 1.8 × 10−7kg
kxx 63.955N

/
m

kyy 95.92N
/

m
kxy 12.779N

/
m

dxx 1.8 × 10−6N · s
/

m
dyy 1.8 × 10−6N · s

/
m

dxy 3.6 × 10−7N · s
/

m

Remark IV: Unlike the fixed gain compensator designed in the last section, the prior knowledge
of the upper bound of the NN modeling error and external disturbances is not required here. Instead,
another adaptive RBF NN is introduced to estimate the upper bound of system uncertainties on-line
and its output is used as compensator parameter to guarantee that impacts of the NN modeling error and
external disturbances can be eliminated. Asymptotic error convergence can be obtained. Compared
with the off-line, conservative and large estimates of the upper bound, the proposed adaptive sliding
mode compensator using RBF NN can restrain the chattering phenomenon of control force effectively.
So, it will be easily implemented for practical application. For any MEMS gyroscope, only a Gaussian
network is needed to learn the upper bound of system uncertainties adaptively, which can guarantee
the good tracking performance and strong robustness.

Remark V: It can be seen from the previous theorems that the weights of the two RBF NNs are
updated based on Lyapunov stability theory. However, the guaranteed convergence of tracking error
does not simply imply convergence of the weight estimates to their optimal values. The persistent
excitation condition20 should be satisfied for the estimates to converge to their optimal values. But it
is not the concern for our tracking control purpose.

5. Simulation Analysis
A simulation example with a z-axis vibratory MEMS gyroscope is utilized in this section for the
purpose of evaluating the performance of the proposed control scheme. The parameters of the MEMS
gyroscope1 are given in Table I.

The unknown angular velocity is assumed to be �z = 100 rad
/

s. The desired trajectory is defined
as

qd = [0.1 cos(ω1t), 0.1 cos(ω2t)]
Tμm. (33)

where ω1 = 6.17 rad
/

s, ω2 = 5.11rad
/

s. Unless specified, all the units for displacements are micron
(μm), and micro-Newton (μN) for forces, which include control inputs, unknown dynamics, and
their estimates, and external disturbances. We consider the following external disturbances:

τ d = [(sin(6.17t))2 + cos(5.11t), (sin(5.11t))2 + cos(6.17t)]TμN. (34)

In our numerical simulations, we took the PD term gain matrix as Kv = 100I with I representing
the identity matrix. The tracking response under the sole PD controller with MEMS gyroscope being
zero initial condition is shown in Figs. 3 and 4.

It can be seen obviously from Figs. 3 and 4 that the tracking performance is not acceptable under
the sole PD controller, though the whole system is still stable. The unknown MEMS gyroscope
dynamics f (x) and external disturbances τ d degrade the tracking performance and their deleterious
effect should be canceled by our proposed RNSM control scheme. An adaptive RBF NN is used to
approximate the unknown dynamics f (x) and a fixed-gain robust compensator is adopted to eliminate
the impact of NN modeling error and external disturbances.

It can also be observed from Figs. 3 and 4 that the tracking error e(t) belongs to a compact in
the error vector space e with center at origin and each side length about 0.05. We will constrain our
attention on that compact set when designing the RBF NN approximator. We selected 45 hidden
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Fig. 3. Position tracking for x-axis under the sole PD controller.
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Fig. 4. Position tracking for y-axis under the sole PD controller.

0 1 2 3 4 5 6 7

−0.1

−0.05

0

0.05

0.1

Time(s)

P
os

iti
on

 tr
ac

ki
ng

 o
f X

 a
xi

s 
(m

ic
ro

n)

 

 
Actual
Desired

Fig. 5. Position tracking for x-axis under the RNSM controller.
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Fig. 6. Position tracking for y-axis under the RNSM controller.
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Fig. 7. NN approximation for x-axis component of f (x).

layer nodes and took width σ = 2. The adaptive law gain was chosen as F = diag{500, 500}; Sliding
surface parameter � = diag{5, 5}; Kv = 100I remained unchanged. We took εN = 1 and bd = 2 for
the design of fixed-gain robust compensator.

Figs. 5, 6, 7, and 8 show the simulation results under the proposed RNSM controller. Zero initial
condition is chosen for the states of the MEMS gyroscope. Figs. 5 and 6 demonstrate the good tracking
performance of the proof mass trajectories along x-axis and y-axis, respectively. Figs. 7 and 8 show
the impressive approximation of RBF NN to unknown dynamics f (x). As shown in the two figures,
RBF NN is able to approximate the unknown gyroscope dynamics quickly using the measurable
signals x throughout the whole compact set. Though there exists NN modeling error, the tracking
error asymptotically converges to zero.
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Fig. 8. NN approximation for y-axis component of f (x).
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Fig. 9. Position tracking for x-axis under ASMC.
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Fig. 10. Position tracking for y-axis under ASMC.
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Fig. 11. Position tracking for x-axis under the RNSM controller.
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Fig. 12. Position tracking for y-axis under the RNSM controller.

Next, another RBF NN is adopted to replace the fixed estimate of the upper bound of the NN
modeling error and external disturbances in the design of robust compensator. We also took 45
hidden nodes in the second RBF NN and the learning rate in the adaptive algorithm of θ̂ is designed
as η = 5. Figs. 9 and 10 show the tracking performance under the adaptive sliding mode compensator
(ASMC).

Now, let the external disturbance multiply 100 times and it becomes τ d = 100[(sin(6.17t))2 +
cos(5.11t), (sin(5.11t))2 + cos(6.17t)]T. Under fixed RNSM control, the results of position tracking
and control inputs are shown in Figs. 11–13; Under the adaptive sliding mode compensator, the results
are depicted in Figs. 14–16.
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Fig. 13. Control inputs of the RNSM controller.
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Fig. 14. Position tracking for the x-axis under ASMC.

As seen from the previous figures, although external disturbances become 100 times larger, the
tracking error still converges to zero under both the fixed and the adjustable gain compensators, but
their control inputs are remarkably different. Comparing Figs. 16 with 13, we can conclude that the
adaptive sliding mode compensator can eliminate the chattering effectively.
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Fig. 15. Position tracking for y-axis under ASMC.
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Fig. 16. Control inputs of ASMC.

6. Conclusion
A new robust neural sliding mode tracking control scheme using RBF NNs for vibratory angular
velocity sensor has been developed in this paper. Several advantages of the proposed tracking control
scheme have been summarized. These include a strong robustness property with respect to large
system uncertainties and external disturbances, fast convergence of the tracking error to zero, and
easy implementation for practical application. In the proposed control scheme, all the system dynamics
can be unknown and the prior knowledge on the uncertain bound is not required. All adaptive learning
algorithms were derived in the sense of Lyapunov stability analysis, so the stability of the closed-loop
system can be guaranteed. A simulation example with a z-axis MEMS gyroscope is investigated to
verify the effectiveness of the proposed control schemes.
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