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Following a method by Meldrum and van der Walt, near-rings of matrix maps are
defined for general near-rings, not necessarily with identity. The influence of
one-sided identities is discussed. When the base near-ring is integral and planar, the
near-ring of matrix maps is shown to be simple. Various types of primitivity of the
near-ring of matrix maps are discussed when the base near-ring is planar but not
integral. Finally, an open problem concerning bijective matrix maps is solved.

1. Introduction

For an additive group (G, +), not necessarily abelian, the set M(G) of all functions
f : G → G under pointwise addition and function composition determines a struc-
ture (M(G), +, ◦) that satisfies all the ring axioms, except perhaps that addition is
commutative and that multiplication is left distributive over addition. Abstractly,
an algebraic structure (R, +, ·) is called a (right) near-ring if:

(1) (R, +) is a (not necessarily abelian) group;

(2) (R, ·) is a semigroup; and

(3) (x + y)z = xz + yz for all x, y, z ∈ R.

Every near-ring can be embedded in an M(G) for some suitable additive group G.
For a comprehensive discussion on near-rings the reader is referred to [5, 11]. We
will recall necessary notions along the way.

A natural equivalence relation exists in a near-ring R. Namely, for a, b ∈ R,
a ≡m b if xa = xb for all x ∈ R. In this case we say that a and b are equal
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multipliers. We say that R is planar if |R/≡m| � 3 and, for any a, b, c ∈ R with
a �≡m b, there is a unique element x ∈ R such that xa = xb + c. If a planar near-
ring R is not a nearfield, then it has no (two-sided) identity. In this case it has
many right identities. A planar near-ring R is zero symmetric, which means that
0x = x0 = 0 for all x ∈ R. Given a planar near-ring R, the set of 0 multipliers,
{r ∈ R | r ≡m 0}, is of some importance. It is usually denoted by A.

Planarity has been proved to be a very good condition to pose on a near-ring.
First of all, planar near-rings have rather simple ideal structures compared with
general near-rings. Applications of planar near-rings to geometry, combinatorics,
coding theory and cryptography have been developed (see [1] for more details).

In this paper we shall study the near-ring of ‘matrices’ over planar near-rings.
With square matrices having entries taken from a ring, one obtains a ring of

matrices under the usual operations of matrix addition and multiplication. With
square matrices having entries taken from a near-ring, however, under the same
operations one obtains a near-ring of matrices only when the given near-ring is dis-
tributive, i.e. the near-ring satisfies both distributive laws. Moreover, the resulting
near-ring of matrices is also distributive [3].

In [6], Meldrum and van der Walt used a strategy of considering matrices as
mappings (rather than square arrays of elements from some near-ring) in order
to define the notion of a matrix near-ring. Certain elementary maps were used to
generate these matrix near-rings. These elementary maps imitate the well-known
elementary matrices

rEij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · r · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where r (from a ring R) occupies the (i, j)th entry of a square n × n array, and the
other entries are 0. The idea in [6] was to consider the elementary matrices rEij

as maps fr
ij : Rn → Rn; fr

ijv = ιi(rπjv), where, in this case, Rn denotes the direct
sum of n copies of the additive group of a near-ring R with identity and ιi and πj

denote the usual ith coordinate injection function and the jth coordinate projection
function, respectively. The n × n matrix near-ring over R, denoted Mn(R), is then
defined to be the subnear-ring of the near-ring M(Rn), generated by all the fr

ij .
A substantial amount of research has been done on the structure Mn(R) since its
origin in 1986. See [9] for a general account on the development of matrix near-rings
and related near-rings.

As we have in mind to study matrix near-rings over planar near-rings, we do not
require that R has an identity in the following.

Definition 1.1. Let R be a right near-ring, not necessarily with identity. For a
positive integer n, the near-ring of n×n matrix maps over R, denoted Matn(R), is
defined to be the subnear-ring of M(Rn) generated by the mappings fr

ij : Rn → Rn,
1 � i � n, 1 � j � n, and r ∈ R, where each fr

ij is defined as in our discussion
above.
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Note that if R happens to possess an identity element, then Matn(R) = Mn(R),
the n × n matrix near-ring over R, as defined in [6].

Remark 1.2. The matrix near-ring Mn(R) over a near-ring R without identity
can also be defined. It may happen that for two different elements r, s ∈ R, the
elementary matrix maps fr

ij and fs
ij are the same mapping on Rn, while the n × n

elementary matrices having r and s, respectively, as the (i, j) entries and 0 else-
where are different matrices. Therefore, special care should be taken to make an
appropriate definition of Mn(R) in this case. Interested readers are referred to [6]
for more detail on this issue.

We will need the following lemma.

Lemma 1.3. If R is zero symmetric, so is Matn(R).

Proof. This follows in exactly the same way as the proof where R is assumed to
have an identity [6].

Now, if 1l and 1′
l are left identities of R, then f1l

11 + f
1′

l
22 is a (two-sided) identity

of Mat2(R). This follows immediately since we clearly have (f1l
11 + f

1′
l

22)〈x, y〉 =
〈1lx, 1′

ly〉 = 〈x, y〉 for all 〈x, y〉 ∈ R2. The following theorem shows that the converse
is also true.

Theorem 1.4. Matn(R) has a two-sided identity element if and only if R has a
left identity element.

Proof. For simplicity we assume that n = 2. The general case follows in a similar
way.

Suppose that I ∈ Mat2(R) is an identity. Then I = U + V , where

U =
∑

i

fri
11Ai

for some ri ∈ R and Ai ∈ Mat2(R), and

V =
∑

j

f
sj

22Bj

for some sj ∈ R and Bj ∈ Mat2(R), and both sums are finite.
Each of the Ai and the Bj should be seen as an expression consisting of elementary

matrix maps and opening and closing parentheses in appropriate positions. In [8],
it was shown exactly how to determine those fr

ij in these expressions that act
‘first’ on the components of vectors in R2. For example, in A = fr1

11 (fr2
11 + fr3

12 ), the
elementary maps fr2

11 and fr3
12 act first on x and y in 〈x, y〉 ∈ R2, and then the other

elementary map fr1
11 comes into play: A〈x, y〉 = 〈r1(r2x + r3y), 0〉. The positions

of these elementary maps in the expression A that act first are denoted by the set
NA. See [8] for a detailed discussion about this.

Using the fact that U is a first-row matrix, i.e. it satisfies ι1π1U = U , we have
U〈a, b〉 = 〈a, 0〉 = U〈a, 0〉 for all a, b ∈ R. If we replace each occurrence in Ai of fr

k2
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positioned by NAi by fr·0
k2 and denote the new expression by A′

i, we would have( ∑
i

fri
11A

′
i

)
〈a, 0〉 =

( ∑
i

fri
11Ai

)
〈a, 0〉 = 〈a, 0〉 for all a ∈ R.

But ( ∑
i

fri
11A

′
i

)
〈a, 0〉 =

〈 ∑
i

riwi, 0
〉

,

where each wi is either ζ1,i = sia + ti0 for some si, ti ∈ R, or a finite sum

ζ2,i =
∑

j

x2,jζ1,j ,

or a finite sum

ζ3,i =
∑

k

x3,kζ2,k,

etc. Moreover, we observe that, for all a ∈ R, sia + ti0 = sia + ti0a = (si + ti0)a.
Thus,

a =
∑

i

riwi = ea

for some e ∈ R (independent of a), showing that e is a left identity of R.

2. Near-rings of matrix maps over integral planar near-rings

Let R be a near-ring. An additive normal subgroup I of R is a right ideal if IR ⊆ I,
and is a left ideal if r(s + i) − rs ∈ I for all r, s ∈ R and i ∈ I. We say that I is a
(two-sided) ideal if I is both a right and a left ideal. The near-ring R is said to be
simple if {0} and R are the only ideals in R. Note that when R is zero symmetric
and I a left ideal it holds that RI ⊆ I.

First, we consider zero-symmetric near-rings R such that R has a right identity 1r,
and for each a ∈ R there exists an �a ∈ R such that �aa = a. The main goal is to
show that if such an R is simple, then Matn(R) is simple. This is known to be true
in the case of near-rings with identity [6, proposition 4.9].

We start with a few lemmas. Let A be a two-sided ideal of Matn(R), and denote
the subset {πj(Av) | 1 � j � n, A ∈ A, v ∈ Rn} of R by A∗.

Lemma 2.1. For a ∈ R, we have that a ∈ A∗ if and only if fa
11 ∈ A.

Proof. Let a ∈ A∗. Then a = πj(Av) for some 1 � j � n, A ∈ A and v ∈ Rn.
We may assume that j = 1 since f �a

1j A ∈ A by lemma 1.3. Let v = 〈a1, a2, . . . , ar〉,
a1 = a. Then f

�a1
11 Av = 〈a, 0, . . . , 0〉, and so

f
�a1
11 A(fa1

11 + fa2
21 + · · · + fan

n1 )〈1r, 0, . . . , 0〉 = 〈a, 0, . . . , 0〉,

where
f

�a1
11 A(fa1

11 + fa2
21 + · · · + fan

n1 ) = fx
11 ∈ A for some x ∈ R.

But fx
11〈1r, 0, . . . , 0〉 = 〈a, 0, . . . , 0〉, which implies that x = a, and so fa

11 ∈ A.
Conversely, if fa

11 ∈ A, then fa
11〈1r, 0, . . . , 0〉 = 〈a, 0, . . . , 0〉. Hence, a ∈ A∗.
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Lemma 2.2. A∗ is a two-sided ideal of R.

Proof. If a, b ∈ A∗, then fa
11, f

b
11 ∈ A by lemma 2.1. So fa

11 − f b
11 = fa−b

11 ∈ A.
This puts a − b ∈ A∗. Now, for r ∈ R, far

11 = fa
11f

r
11 ∈ A. Thus, ar ∈ A∗. Also, for

r, s ∈ R,
f

r(a+s)−rs
11 = fr

11(f
a
11 + fs

11) − fr
11f

s
11 ∈ A.

This puts r(a + s) − rs ∈ A∗. Finally, fr+a−r
11 = fr

11 + fa
11 − fr

11 ∈ A, and so
r + a − r ∈ A∗.

Lemma 2.3. Let I be a two-sided ideal of R. Then I = (I∗)∗, where I∗ denotes the
ideal (In : Rn) = {U ∈ Matn(R) | U(Rn) ⊆ In} of Matn(R).

Proof. Let a ∈ I. Then fa
11 ∈ I∗ since fa

11〈r1, . . . , rn〉 = 〈ar1, 0, . . . , 0〉 for any
〈r1, . . . , rn〉 ∈ Rn, and ar1 ∈ I. Thus, a ∈ (I∗)∗ by lemma 2.1.

Conversely, let a ∈ (I∗)∗. Then fa
11 ∈ I∗ by lemma 2.1. Since fa

11〈1r, 0, . . . , 0〉 =
〈a, 0, . . . , 0〉 ∈ In, we have a ∈ I, and the result follows.

This brings us to one of the main results of this section.

Theorem 2.4. Let R be a zero-symmetric near-ring with a right identity 1r, and
for each a ∈ R there exists an �a ∈ R such that �aa = a. Then R is simple if and
only if Matn(R) is simple.

Proof. Assume that R is simple and let A be a non-zero ideal of Matn(R). Take a
non-zero element A ∈ A. Then for some v ∈ Rn, Av = 〈a1, a2, . . . , an〉 with, say,
a1 �= 0. Thus, a1 ∈ A∗. Since A∗ is an ideal of R by lemma 2.2, we have A∗ = R.
Hence, fr

11 ∈ A for all r ∈ R by lemma 2.1, and so

fr
ij = f �r

i1 fr
11f

1r
1j = f �r

i1 (fr
11f

1r
1j + 0) − f �r

i1 · 0 ∈ A for all r ∈ R and 1 � i, j � n.

Consequently, A = Matn(R). Therefore, Matn(R) is simple.
Conversely, suppose that Matn(R) is simple. Let I be a non-zero ideal of R and

let a be a non-zero element of I. Then fa
11 �= 0 since fa

11〈1r, 0, . . . , 0〉 = 〈a, 0, . . . , 0〉.
Thus, fa

11 is a non-zero element in I∗. As a non-zero ideal of Matn(R), I∗ =
Matn(R). Since fr

11 ∈ I∗ for all r ∈ R by lemma 2.1, we conclude that R ⊆ (I∗)∗ = I
by lemma 2.3. Therefore, I = R, and R is simple.

If R is an integral planar near-ring (so that, for a, b ∈ R, ab = 0 if and only
if a = 0 or b = 0), then it satisfies all the required conditions for this section.
Therefore, we have the following corollary.

Corollary 2.5. Let R be an integral planar near-ring. Then Matn(R) is simple.

Note that when R is an integral planar near-ring, R is simple. Later we will
show that if R is a finite simple planar near-ring, then Matn(R) is simple (see
corollary 3.6).

Actually, corollary 2.5 is true for a much wider class of near-rings. We say that
a near-ring R is regular if, for all r ∈ R, there exists x ∈ R such that rxr = r. For
example, an integral planar near-ring is regular [11, examples 9.154]. We introduce
further terminology before we continue.
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A group Γ is said to be an R-group if there is a function from R×Γ to Γ sending
(r, γ) ∈ R × Γ to rγ ∈ Γ such that, for all γ ∈ Γ and r, r′ ∈ R, (r + r′)γ = rγ + r′γ
and (rr′)γ = r(r′γ). The additive group (R, +) is naturally an R-group induced
by the near-ring multiplication, and is usually denoted by RR when necessary. A
subgroup ∆ of an R-group Γ is said to be an R-subgroup of Γ if R∆ ⊆ ∆.

For any subsets S, T of Γ we set (S : T ) = {r ∈ R | rT ⊆ S}. When S and/or
T consists of just one element, we shall omit the brackets for sets. For example,
(0 : T ), (S : γ) or (0 : γ) may be used. An R-group Γ is said to be faithful if
(0 : Γ ) = {0}. In this case R can be embedded into M(Γ ) (i.e. R can be viewed as
a subnear-ring of M(Γ )).

Corollary 2.6. Let R be a zero-symmetric regular near-ring with descending
chain condition on the R-subgroups of RR. Suppose that there is an r ∈ R with
(0 : r) = {0}. Then R is simple if and only if Matn(R) is simple.

Proof. We notice that, for each r ∈ R, there is an �r ∈ R such that �rr = r since
R is regular. Thus, we only have to show that R contains a right identity 1r. Then
the result would follow from theorem 2.4.

In case R is finite, R has a right identity by [11, remark 1.112]. The argument
there could be carried over to when R is not finite but has the descending chain
condition on R-subgroups of R [13, theorem 2.4].

As we have seen, the simplicity of a planar near-ring R carries over to Matn(R).
It is not the case with planarity of R.

Proposition 2.7. Let R be a planar near-ring. Then Matn(R) is not a planar
near-ring if n > 1.

Proof. Let 1r be a right identity of R. From f1r
11 = f1r

11 f1r
11 �= f1r

11 f1r
21 = 0, we

know that f1r
11 �≡m f1r

21 . Now 0 and f1r
11 + f1r

12 are two distinct solutions to the
equation Xf1r

11 = Xf1r
21 since (f1r

11 + f1r
12 )f1r

11 = f1r
11 = (f1r

11 + f1r
12 )f1r

21 and 0f1r
11 =

0 = 0f1r
21 .

But Matn(R) still has a right identity.

Proposition 2.8. Let R be a planar near-ring and let r1, . . . , rn ∈ R be right
identities. Then fr1

11 + fr2
22 + · · · + frn

nn is a right identity in Matn(R).

Proof. Again, we assume that n = 2 for simplicity, and note that the general
case follows in a similar manner. We shall prove the result by induction on the
weight of the elements of Mat2(R). The weight of a matrix map A is basically the
minimum number of elementary matrix maps needed to construct A. See [8] for a
more detailed account of the notion of weight.

First of all, for all r ∈ R and 〈x, y〉 ∈ R2, we have

fr
11(f

r1
11 + fr2

22 )〈x, y〉 = fr
11〈r1x, r2y〉 = 〈rr1x, 0〉 = 〈rx, 0〉 = fr

11〈x, y〉.

Hence,
fr
11(f

r1
11 + fr2

22 ) = fr
11.
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Similarly, we have

fr
ij(f

r1
11 + fr2

22 ) = fr
ij for all 1 � i, j � 2.

Now, if U, V ∈ Mat2(R) are such that U(fr1
11 + fr2

22 ) = U and V (fr1
11 + fr2

22 ) = V ,
then

(U + V )(fr1
11 + fr2

22 ) = U(fr1
11 + fr2

22 ) + V (fr1
11 + fr2

22 ) = U + V

and

(UV )(fr1
11 + fr2

22 ) = U(V (fr1
11 + fr2

22 )) = UV.

Hence, fr1
11 + fr2

22 is a right identity as claimed.

3. Primitivity and ideals of near-rings of matrix maps over
planar near-rings

In this section, we will study how the primitivity conditions on a planar near-ring
affect that of the near-rings of matrix maps. We will see that the near-ring of
matrix maps Matn(R) would be primitive when R is primitive and planar. Note
that R has no identity element. This gives us the possibility of constructing various
1- and 2-primitive near-rings without identity. Hence, these will be primitive near-
rings that are not isomorphic to the well-known primitive centralizer near-rings [11,
theorem 4.52].

A brief review of some definitions seems appropriate.
Let R be a zero-symmetric near-ring and let Γ be an R-group. A normal subgroup

∆ of Γ is called an ideal of Γ if r(γ + δ) − rγ for all γ ∈ Γ , δ ∈ ∆, r ∈ R. We say
that Γ is simple if 0 and Γ are the only ideals in Γ . This is not to be confused with
Γ being R-simple, which means that Γ has no R-subgroups other than {0} and Γ
itself.

Next, Γ is said to be monogenic if there is some γ ∈ Γ such that Rγ = Γ , and is
said to be strongly monogenic if, for all γ ∈ Γ , either Rγ = Γ or Rγ = {0}. When
Γ �= {0} and is monogenic, it is of type 0 if it is simple, of type 1 if it is simple and
strongly monogenic and of type 2 if it is R-simple.

Let i ∈ {0, 1, 2}. The i-radical of R, denoted by Ji(R), is the intersection of all
(0 : Γ ) of R-groups Γ of type i. It is known that J1(R) contains all nilpotent left
ideals of R and J2(R) contains all nilpotent R-subgroups of R [11, corollary 5.10].
To say that R is i-primitive on the R-group Γ means that Γ is faithful and is of
type i, and to say the R is i-primitive means that there exists some R-group Γ
such that R is i-primitive on Γ . Lastly, R is said to be i-semisimple if Ji(R) = {0}
and i-radical if Ji(R) = R.

We assume that R is a planar near-ring in the following discussions, and recall
that A is the set of 0 multipliers.

Our first goal is to show that Matn(R) is 2-primitive if R is integral, and how it is
related to the centralizer near-ring MD(Rn), where D is the group of all Matn(R)-
automorphisms of (Rn, +). Then we will show that the primitivity of Matn(R)
follows from that of R. Finally, we discuss what happens when R is not primitive.

For r ∈ R, r �≡m 0, define ρr : Rn → Rn by 〈a1, a2, . . . , an〉 	→ 〈a1r, a2r, . . . , anr〉.
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Proposition 3.1. AutMatn(R)R
n = {ρr | r ∈ R, r �≡m 0}.

Proof. Assume that n = 2 for simplicity.
First, let r ∈ R with r �≡m 0. For 〈a1, b1〉, 〈a2, b2〉 ∈ R2, we have

ρr(〈a1, b1〉 + 〈a2, b2〉) = ρr〈a1 + a2, b1 + b2〉
= 〈(a1 + a2)r, (b1 + b2)r〉
= ρr(〈a1, b1〉) + ρr(〈a2, b2〉).

If U ∈ Mat2(R) and U〈a, b〉 = 〈c, d〉, then

ρr(U〈a, b〉) = 〈cr, dr〉 = U〈ar, br〉 = U(ρr(〈a, b〉)).

Thus, ρ is a Mat2(R)-endomorphism of R2.
Let ρr(〈a, b〉) = 〈ar, br〉 = 〈0, 0〉. Thus, ar = 0 and br = 0. As r �≡m 0, this is only

possible when a = b = 0, since R is a planar near-ring and the right multiplication
induced by r is an automorphism of (R, +). This shows that ρr is injective.

Now, let 〈c, d〉 ∈ R2. To find 〈x, y〉 ∈ R2 such that ρr(〈x, y〉) = 〈c, d〉 we need to
solve the equations xr = x0+c and yr = y0+d. Since r �≡m 0 and R is a planar near-
ring, these equations have (unique) solutions in R. Thus, ρr is surjective. Therefore,
ρr is a Mat2(R)-automorphism of R2.

Conversely, let ϕ ∈ AutMatn(R)R
n. Let ϕ〈1r, 0〉 = 〈c, d〉. Then

〈c, d〉 = ϕ〈1r, 0〉 = ϕ(f1r
11 〈1r, 0〉) = f1r

11 ϕ〈1r, 0〉 = f1r
11 〈c, d〉 = 〈c, 0〉.

Thus, d = 0. Since ϕ is a bijection, ϕ〈1r, 0〉 �= 〈0, 0〉, and so c �= 0.
Now, for an arbitrary element 〈x, y〉 ∈ R2, set Ux,y = fx

11+fy
21. Then Ux,y〈1r, 0〉 =

〈x, y〉, and we have

ϕ〈x, y〉 = ϕ(Ux,y〈1r, 0〉) = Ux,y(ϕ〈1r, 0〉)
= Ux,y〈c, d〉 = (fx

11 + fy
21)〈c, d〉

= 〈xc, yc〉 = ρc〈x, y〉.

This shows that ϕ = ρc, and obviously, c �≡m 0.

Lemma 3.2. Let x, y ∈ R. Then x ≡m y if and only if fx
ij ≡m fy

ij for any i and j.

Proof. As before, let n = 2 for simplicity. So we need to show that Afx
ij = Afy

ij for
all A ∈ Mat2(R). We will proceed by induction on the weight of A.

Assume first that x ≡m y in R. Then fr
klf

x
ij = fr

klf
y
ij for all k and l. Thus,

Ufx
ij = Ufy

ij for all U ∈ Mat2(R) with weight 1.
If now U, V ∈ Mat2(R) satisfy Ufx

ij = Ufy
ij and V fx

ij = V fy
ij , then surely

(U + V )fx
ij = (U + V )fy

ij and (UV )fx
ij = (UV )fy

ij .

Thus, by induction, fx
ij ≡m fy

ij .
Conversely, assume that fx

ij ≡m fy
ij . Then for any s ∈ R, we have

sx = πif
sx
ij 〈1r, 1r〉 = πif

s
iif

x
ij〈1r, 1r〉 = πif

s
iif

y
ij〈1r, 1r〉 = πif

sy
ij 〈1r, 1r〉 = sy.

Since s is arbitrary, x ≡m y as required.
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We are now ready for the following theorem.

Theorem 3.3. Let R be a planar near-ring. Then Rn is a strongly monogenic
Matn(R)-group. If R is integral planar, then Matn(R) is 2-primitive.

Proof. Since Matn(R) is a subnear-ring of M0(Rn), it acts on Rn faithfully.
Let 〈a1, a2, . . . , an〉 and 〈b1, b2, . . . , bn〉 be two arbitrary elements of Rn. If ai �≡m 0

for some i, then there exist x1, . . . , xn ∈ R such that xjai = bj for j = 1, 2, . . . , n
(by the planarity of R). But then

(fx1
1i + fx2

2i + · · · + +fxn
ni )〈a1, a2, . . . , an〉 = 〈x1ai, x2ai, . . . , xnai〉 = 〈b1, b2, . . . , bn〉,

and so Matn(R)〈a1, a2, . . . , an〉 = Rn. On the other hand, if ai ≡m 0 for all i, then
fx

kl〈a1, a2, . . . , an〉 = 〈0, 0, . . . , 0〉, i.e. fx
kl ∈ (0 : 〈a1, . . . , an〉), for all x ∈ R and

k, l ∈ {1, . . . , n}. Therefore, Matn(R) ⊆ (0 : 〈a1, . . . , an〉) ⊆ Matn(R), and we have

Matn(R)〈a1, a2, . . . , an〉 = {0}.

This shows that Rn is strongly monogenic.
Now, suppose that R is integral planar. Then a �≡m 0 if and only if a �= 0.

Thus, from the above argument, we know that every non-zero element of Rn is a
monogenic generator of Rn, and so Rn contains no non-trivial Matn(R)-subgroup.
This says that Matn(R) is 2-primitive.

We have the following corollary as a direct consequence of theorem 3.3 and [5,
theorem 3.35].

Corollary 3.4. If R is a planar nearfield, then D = AutMatn(R)(Rn) is fixed-point
free, and either Matn(R) is a primitive ring on the faithful simple Matn(R)-module
Rn or Matn(R) is not a ring and is a dense subnear-ring of MD(Rn). Here, MD(Rn)
denotes the centralizer near-ring

MD(Rn) = {f : Rn → Rn | f ◦ δ = δ ◦ f for all δ ∈ D}.

We shall discuss further the primitivity of Matn(R) when R is not integral.
First of all, as a planar near-ring, if R is 0-primitive, then it is 1-primitive [12,

theorem 2.5.2]. So we assume that R is 1-primitive; hence J1(R) = {0}. In this
case, R is simple. Indeed, let U be a proper ideal of R. Then U is contained in A,
the set of all zero multipliers, and so U2 = {0}. This puts U ⊆ J1(R) = {0}, and so
U = {0}. Therefore, R is a simple near-ring. It follows that R has no non-trivial left
ideals, as the sum of all proper left ideals is a proper ideal in a planar near-ring [2].
This means that RR has no non-trivial R-ideals.

Next, we argue that Matn(R) is 1-primitive on Rn. Let S be a Matn(R)-ideal of
Rn with S �= Rn. We want to show that S = {0}. For any i ∈ {1, 2, . . . , n}, it is
easy to see that the set Ti = {πi(v) | v ∈ S} is an R-ideal of RR. Since R is simple,
each Ti is either {0} or R.

As Matn(R) is zero-symmetric, we have θ · 〈0, . . . , 0〉 = 〈0, . . . , 0〉 for all θ ∈
Matn(R). Therefore, Matn(R) ·S ⊆ S. Since Matn(R) is strongly monogenic on Rn,
we have Matn(R)·S = {0}. Now, for all r ∈ R, 〈a1, . . . , an〉 ∈ S and i ∈ {1, 2, . . . , n},
it holds that ιi(rai) = fr

ii〈a1, . . . , an〉 = 〈0, . . . , 0〉. Thus, R · Ti = {0} for all
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i ∈ {1, 2, . . . , n}. As an R-group, RR is strongly monogenic, and so Ti cannot be R.
This puts Ti = {0} for all i ∈ {1, 2, . . . , n}. Thus, S = {0} as desired.

Moreover, Rn is a faithful, strongly monogenic Matn(R)-group. Thus, Matn(R)
is 1-primitive. Hence, we have just shown the following theorem.

Theorem 3.5. Let R be a 1-primitive planar near-ring. Then Matn(R) is 1-primi-
tive.

Corollary 3.6. Let R be a simple planar near-ring. Then Matn(R) is 1-primitive.
Consequently, if R is finite, then Matn(R) is simple.

Proof. As we have seen, R has no non-trivial left ideals since it is simple. By pla-
narity, RR is a faithful, strongly monogenic R-group. The absence of non-trivial
left ideals in R implies that RR is of type 1. Hence, R is a 1-primitive near-ring,
and so Matn(R) is 1-primitive. In the case that R is finite, Matn(R) is simple
by [11, theorem 4.46].

Suppose now that R is 2-primitive. This is equivalent to saying that the set
of zero multipliers, A = {x ∈ R | x ≡m 0}, contains no non-zero subgroup of
R [12, theorem 2.5.4].

Theorem 3.7. Let R be a 2-primitive planar near-ring. Then, Matn(R) is a 2-
primitive near-ring.

Proof. Let U ⊆ Rn be a proper Matn(R)-subgroup of Rn and let u = (u1, . . . , un) ∈
U . Since Rn is a strongly monogenic Matn(R)-group and U is a proper subgroup
of Rn, we must have ui ∈ A for each i ∈ {1, . . . , n}. Since (U,+) is a subgroup of
(Rn, +) we must have 〈u, +〉 ⊆ (U,+), where 〈u, +〉 is the cyclic subgroup generated
by u. Therefore, each coordinate of the vectors additively generated by u must be
contained in A. In other words, for each i ∈ {1, . . . , n}, the cyclic group 〈ui, +〉
generated by the ith coordinate ui of u must be contained in A. By the 2-primitivity
of R, there is no non-zero subgroup contained in A. Thus, for each i ∈ {1, . . . , n},
ui = 0. Consequently, U = {0}. This shows that there are no proper Matn(R)-
subgroups in Rn. From the fact that Rn is a faithful, strongly monogenic Matn(R)-
group, we see that Matn(R) is 2-primitive.

Remark 3.8. When R is integral planar, R is 2-primitive, with RR being a faith-
ful, simple, strongly monogenic R-group. Therefore, theorem 3.7 also infers that
Matn(R) is 2-primitive (cf. theorem 3.3).

It may be of some interest to note a close connection between minimal left ideals
of 2-primitive near-rings and planar near-rings. A Ferrero pair is a pair of groups
(N, Φ) such that Φ � Aut(N) is a fixed-point free automorphism group of N with
more than one element, and each φ ∈ Φ \ {1} has the property that −1 + φ is
surjective. Note that the property being surjective is naturally fulfilled if N is
finite, because φ is fixed-point free and so −1 + φ is always injective.

Proposition 3.9 (Wendt [14, theorem 5.4]). Let L be a minimal left ideal of a 2-
primitive near-ring N . Let Φ = AutNL. If (L, Φ) is a Ferrero pair, then L is a
planar near-ring.
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Now, let R be an integral planar near-ring, let L be a minimal left ideal of
Matn(R) and let Φ = AutMatn(R)L. By the above proposition, if (L, Φ) is a Ferrero
pair, then L, as a near-ring itself, is planar. We note that the assumption of (L, Φ)
being a Ferrero pair is not a very strong one. By primitivity of Matn(R) we naturally
have that Φ acts without fixed points on L (see [14, proposition 5.1 and lemma 5.2]).
Thus, when L is finite, one only needs to be sure that Φ contains more than one
element to have (L, Φ) a Ferrero pair and L a planar near-ring. We record this
observation with the following theorem.

Theorem 3.10. Let R be an integral planar near-ring. Let L be a minimal left ideal
of Matn(R) and Φ = AutMatn(R)(L). If (L, Φ) is a Ferrero pair, then L is a planar
near-ring. When L is finite, and Φ contains more than one element, then (L, Φ) is
a Ferrero pair.

We next look at when R is 1-primitive but not 2-primitive. There is just one
situation left for discussion, as the next general theorem shows.

Proposition 3.11. Suppose that R is a 1-primitive planar near-ring. Then R is
either 2-primitive or 2-radical.

Proof. Since R is 1-primitive, R is simple. Therefore, either J2(R) = {0} or J2(R) =
R. Now, every proper R-subgroup of RR is contained in A, and so is nilpotent and
contained in J2(R) by [11, corollary 5.45]. Suppose that R is not 2-radical. Then
J2(R) = {0}, and so RR has no non-trivial proper R-subgroups. This means that
RR is a faithful, strongly monogenic R-group of type 2, so that R is 2-primitive.

As R is planar, Matn(R) is 1-primitive if R is 1-primitive, and is 2-primitive if
R is 2-primitive according to theorems 3.5 and 3.7. For a finite planar near-ring R
that is 1-primitive and 2-radical, we have the following theorem.

Theorem 3.12. Let R be a 1-primitive finite planar near-ring. If J2(R) = R, then
J2(Matn(R)) = Matn(R).

Proof. By theorem 3.5, Matn(R) acts 1-primitively on Rn. Thus, by [11, theo-
rem 4.46], Matn(R) is a simple near-ring. This shows that J2(Matn(R)) is either
{0} or Matn(R). We have to show that J2(Matn(R)) = {0} is not the case.

Assume that J2(Matn(R)) = {0}. Then Matn(R) is a direct sum of ideals, each
of them being a 2-primitive near-ring (see [11, theorem 5.31]). The simplicity of
Matn(R) now forces Matn(R) to be 2-primitive. Thus, there exists a Matn(R)-group
of type 2. Since Matn(R) is 1-primitive on Rn, it follows from [11, theorem 4.46]
that Rn is itself an Matn(R)-group of type 2.

Since R is planar, RR is a faithful R-group. Consequently, RR cannot be of type 2
under the assumption that J2(R) = R. So, there exists a non-zero R-subgroup U
in R. Also, Un is a subgroup of Rn. As a consequence of planarity, U ⊆ A, and
so RU = {0}. Therefore, for i, j ∈ {1, . . . , n} and r ∈ R, we have fr

ij ∈ (0 : Un).
Consequently, Matn(R) ⊆ (0 : Un) ⊆ Matn(R), and so Matn(R)Un = {0}. This
shows that Un is a Matn(R)-subgroup of Rn. Since Matn(R) is 2-primitive on Rn,
we have Un = {0}. It follows that U = {0}, and a contradiction is reached.

Therefore, we conclude that J2(Matn(R)) = Matn(R), as desired.
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In general, R may not be primitive. Yet we have seen that Matn(R) is zero
symmetric having Rn as a faithful, strongly monogenic Matn(R)-group. We can
still obtain some information about the ideal structure of Matn(R) if R is not
simple.

Theorem 3.13. Let R be a planar near-ring and let

I = J1(Matn(R)).

Then Matn(R)/I is a 1-primitive near-ring and I2 = {0}.

The theorem will follow from a more general result. Let N be a near-ring and Γ
be an N -group. A result of [4, lemma 2.1] says that if Γ is a strongly monogenic
N -group and N is zero symmetric, then Γ contains a greatest proper N -ideal. In
this case, we denote by ∆ this greatest proper N -ideal of Γ . Note that Γ/∆ is again
an N -group by defining n(g + ∆) = ng + ∆ for all n ∈ N and g ∈ Γ . Now, if N is
strongly monogenic, then, for any g ∈ Γ , either Ng = Γ or Ng = {0}. Thus, Γ/∆
is also strongly monogenic. As ∆ is the greatest proper N -ideal of Γ , it makes Γ/∆
a simple N -group. Namely, Γ/∆ is an N -group of type 1.

Proposition 3.14. Let N be a zero-symmetric near-ring that has a faithful strongly
monogenic N -group Γ , and let I = J1(N). Then N/I is a 1-primitive near-ring
and I2 = {0}.

Proof. Since Γ/∆ is an N -group of type 1, we have I ⊆ (0 : Γ/∆). So Γ/∆ is an
N/I-group of type 1 with (n + I)(g + ∆) = ng + ∆ for n ∈ N and g ∈ Γ [11,
proposition 3.14].

Let B̄ = {n + I ∈ N/I | nΓ/∆ = {∆}} (the annihilator of Γ/∆ in N/I). Since
B̄ is an ideal in N/I, there is an ideal B of N with I ⊆ B and B̄ = B/I. This
means that BΓ ⊆ ∆ ⊆ {g ∈ Γ | Ng = {0}}. Consequently, B2Γ = {0}. Since Γ is
faithful, B2 = {0} and therefore B ⊆ I by [11, theorem 5.37 and proposition 5.3].
This means that Γ/∆ is a faithful N/I-group of type 1. Hence, N/I is a 1-primitive
near-ring.

It is clear that theorem 3.13 follows directly from proposition 3.14. When R is
finite, we can say more.

Theorem 3.15. Let R be a finite planar near-ring. Then J1(Matn(R)) is the great-
est proper ideal in Matn(R).

Again, this theorem is a consequence of a more general result.

Proposition 3.16. Let N be a zero-symmetric near-ring with descending chain
condition on the N -subgroups of N , and let I = J1(N). Suppose that N has a
faithful, strongly monogenic N -group Γ . Then

(i) NI = {0} and I is a proper ideal,

(ii) if N has a multiplicative right identity, then I is the greatest proper ideal in
N . Consequently, NJ = {0} for all proper ideals J of N .
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Proof. From I ⊆ (0 : Γ/∆), we have IΓ ⊆ ∆, and so NIΓ = {0}. As Γ is strongly
monogenic, we see that N �= I. By the faithfulness of Γ we also have that NI = {0}.

Now, N/I satisfies the descending chain condition on N/I-subgroups of N/I
by [11, theorem 2.35], and is 1-primitive by proposition 3.14. Thus, N/I is a simple
near-ring by [11, theorem 4.46]. Consequently, I is a maximal ideal. Let J be an
ideal of N . Then

for all n ∈ N, a ∈ I and b ∈ J, n(a + b) − na = n(a + b) ∈ J. (3.1)

Therefore, if J �⊆ I, then J +I = N by the maximality of I, and so N2 ⊆ J by (3.1).
Suppose that N has a right identity. Then N = N2 ⊆ J . In this case, each proper

ideal of N must be contained in I. This completes the proof.

Proof of theorem 3.15. Since R has a right identity, Matn(R) has one as well, by
proposition 2.8. The result follows from proposition 3.16.

Next we shall describe the J1-radical of Matn(R) for a finite planar near-ring R
that is not 1-primitive. In this case, J = J1(R) �= {0} [12, theorem 2.5.3], and R is
not a simple near-ring. As an ideal of Matn(R), (Jn : Rn) is contained in the largest
ideal J1(Matn(R)). Whether the equality always holds is an open question. On the
other hand, it is not hard to see that J1(Matn(R)) is contained in (An : Rn), which
is just a subset of Matn(R).

Lemma 3.17. Let R be a finite planar near-ring that is not 1-primitive. Let N =
Matn(R), I = J1(Matn(R)) and J = J1(R). Then (Jn : Rn) ⊆ I ⊆ (An : Rn).
Consequently, if A = J , then I = (An : Rn).

Proof. Let v ∈ Rn. Then Iv is an N -subgroup of Rn. Since NI = {0} by proposi-
tion 3.16(i), and Rn is a strongly monogenic N -group, we conclude that Iv ⊆ An.
The last statement is clear.

We close this section with a discussion of the case when R is neither 1-primitive
nor 2-radical, and remark that we have no further information for J2(Matn(R))
when R is 2-radical but not 1-primitive.

Theorem 3.18. Let R be a planar near-ring with J1(R) �= {0} and J2(R) �= R.
Then J1(Matn(R)) = (J1(R)n : Rn). Moreover, if R satisfies the descending chain
condition on R-subgroups of R and J2(Matn(R)) �= Matn(R), then J2(Matn(R)) =
J1(Matn(R)).

Proof. Again, set N = Matn(R), I1 = J1(Matn(R)) and I2 = J2(Matn(R)). Also,
let J1 = J1(R) and J2 = J2(R).

First of all, J2 is a proper ideal of R by assumption. Therefore, J2 ⊆ A, and so
J2

2 = {0}. This implies that J2 ⊆ J1 [11, corollary 5.10], and so J1 = J2.
Now, from lemma 3.17, we know that (Jn

1 : Rn) ⊆ I. Let v ∈ Rn. Then, U = I1v
is an N -subgroup of Rn. Since Rn is a strongly monogenic N -group and NI1 = {0}
by proposition 3.16, there is no vector w ∈ I1v with Nw = Rn. Thus, U is a
proper N -subgroup of Rn. Take an arbitrary u = (u1, . . . , un) ∈ U . As we have
seen in the proof of theorem 3.7, for each i = 1, . . . , n, the cyclic group 〈ui, +〉 is
contained in A, and so is a nilpotent R-subgroup of R. By [11, corollary 5.45], we
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have 〈ui, +〉 ⊆ J2. From J1 = J2 we obtain that u ∈ Jn
1 , and so I1v = U ⊆ Jn

1 .
Consequently, IRn ⊆ Jn

1 , and equivalently, I1 ⊆ (Jn
1 : Rn).

Suppose I2 �= N and R satisfies the descending chain condition on R-subgroups.
Then NI2 = {0} by proposition 3.16, and so I2 is nilpotent. This implies that
I2 ⊆ I1; hence, I1 = I2. This completes the proof.

4. Bijective matrix maps

In this section we solve a problem that was posed in [7]. The question is whether
the inverse U−1 of a bijective matrix map U : Rn → Rn, where R is a near-ring, is
again a matrix map. We answer this in the affirmative in the case when R is finite,
but in the infinite case the answer is in general negative, even if R is a nearfield.

Lemma 4.1. Let R be a finite near-ring. Let θ : R ↪→ M(G) be an embedding, where
G is a finite additive group. If r ∈ R is such that θ(r) : G → G is bijective, then
there is an s ∈ R such that θ(s) = θ(r)−1. As a consequence, R is a near-ring with
identity.

Proof. Denote by SymG the symmetric group on G as a set. Since θ(r) ∈ Sym G ⊆
M(G) and SymG has finite order, we see that θ(r)−1 = θ(r)k = θ(rk) for some
positive integer k. Now take s = rk. Then θ(s) = θ(r)−1. It follows that rs is the
identity of R.

Since the near-ring of matrix maps Matn(R), n > 1, is a subnear-ring of M(Rn),
we have

Corollary 4.2. Let R be a finite near-ring. Let U ∈ Matn(R), n > 1. If U :
Rn → Rn is a bijective map, then the inverse map U−1 : Rn → Rn also belongs
to Matn(R). Consequently, Matn(R) has an identity and R has a left identity by
theorem 1.4.

Corollary 4.3. Let R be a finite planar near-ring. Then Matn(R) contains no
bijective maps.

We conclude by giving an example that shows that corollary 4.2 is not necessarily
true in the case when R is infinite. We adopt the notation ∂p = ∂p(x) for the degree
of a non-zero polynomial p(x) ∈ Q[x], and ∂F = ∂F (x) = ∂p−∂q denotes the degree
of the (non-zero) rational form F (x) = p(x)/q(x).

Example 4.4. Consider the right nearfield (R, +, ◦), where R = Q(x) (the rational
forms over Q), + is defined in the standard way and ◦ is defined by

p(x)
q(x)

◦ s(x)
t(x)

=

⎧⎪⎨
⎪⎩

p(x + ∂s − ∂t)
q(x + ∂s − ∂t)

· s(x)
t(x)

if
s(x)
t(x)

�= 0;

0 otherwise.

Here, · denotes the standard multiplication in the field (Q(x), +, ·). See [11, example
8.29] for further details on this nearfield. Also, we simply write f(x) for f(x)/1, etc.

Consider the matrix
U = fx

11 + f1
12 + f1

21 + fx
22
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in M2(R). In order to show that U : R2 → R2 is bijective, it suffices to show that,
for every 〈F, G〉 ∈ R2, there exists a unique 〈S, T 〉 ∈ R2 such that U〈S, T 〉 = 〈F, G〉.
This implies that the system

x ◦ S + T = F, S + x ◦ T = G

must have a unique solution for each pair 〈F, G〉 ∈ R2.
After a rather tedious, but relatively simple, computation, it is found that 〈S, T 〉

is given as follows:

1. if F �= 0, G �= 0, ∂F � ∂G and F �= x ◦ G, then

〈S, T 〉 =
〈

(x + λ2)F − G

(x + λ1)(x + λ2) − 1
,

(x + λ1)G − F

(x + λ1)(x + λ2) − 1

〉
;

2. if F �= 0, G �= 0, ∂F � ∂G and F = x ◦ G, then 〈S, T 〉 = 〈G, 0〉;

3. if F �= 0, G �= 0, ∂F < ∂G and G �= x ◦ F , then

〈S, T 〉 =
〈

(x + µ2)F − G

(x + µ1)(x + µ2) − 1
,

(x + µ1)G − F

(x + µ1)(x + µ2) − 1

〉
;

4. if F �= 0, G �= 0, ∂F < ∂G, and G = x ◦ F , then 〈S, T 〉 = 〈0, F 〉;

5. if F = 0 and G �= 0, then

〈S, T 〉 =
〈

−G

(x + µ2)(x + µ2 − 1) − 1
,

(x + µ2 − 1)G
(x + µ2)(x + µ2 − 1) − 1

〉
;

6. if F �= 0 and G = 0, then

〈S, T 〉 =
〈

(x + λ1 − 1)F
(x + λ1)(x + λ1 − 1) − 1

,
−F

(x + λ1)(x + λ1 − 1) − 1

〉
;

7. if F = 0 and G = 0, then 〈S, T 〉 = 〈0, 0〉,

where

λ1 = ∂F − 1,

λ2 = ∂[(x + ∂F − 1) · G − F ] − 2,

µ1 = ∂[(x + ∂G − 1) · F − G] − 2,

µ2 = ∂G − 1.

We proceed to show that the map U−1 is not a matrix map. Take F = 1 and
Gi = xi for i � −2. Then, λ1 = −1 and λ2 = −2. Now, if U−1 is assumed to be a
matrix map, then f1

12U
−1 is a first-row matrix, and

f1
12U

−1〈F, Gi〉 =
〈

(x − 1)xi − 1
(x − 1)(x − 2) − 1

, 0
〉

.
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But on the other hand, by [10, lemma 3], there exists a positive integer m such
that, for all i � −m,

f1
12U

−1〈F, Gi〉 = 〈P (x) + Qi(x + i)xi, 0〉,

where P (x), Qi(x) ∈ Q(x) and the set {∂Qi}i is bounded from above. If we solve
for Qi(x + i) from

(x − 1)xi − 1
(x − 1)(x − 2) − 1

= P (x) + Qi(x + i)xi,

we find that

Qi(x + i) =
x − 1 − x−i − ((x − 1)(x − 2) − 1)P (x)x−i

(x − 1)(x − 2) − 1
for all i � −m.

If P (x) = 0, then ∂Qi(x + i) = −i − 2, which could be made arbitrarily large, since
i � −m is arbitrary. If P (x) �= 0, then ∂Qi(x + i) = −i + max{−2, ∂P}, which
is again a number that could be made arbitrarily large. In both cases we obtain
a contradiction to the fact that {∂Qi}i is bounded from above. We conclude that
U−1 is not a matrix map.

In the above example we notice that (R, +, ◦) is not a planar nearfield. Therefore,
it would be interesting to know what happens in the case when R is an infinite planar
near-ring.
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