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Abstract

Drawdown (respectively, drawup) of a stochastic process, also referred as the reflected
process at its supremum (respectively, infimum), has wide applications in many areas
including financial risk management, actuarial mathematics, and statistics. In this paper,
for general time-homogeneous Markov processes, we study the joint law of the first
passage time of the drawdown (respectively, drawup) process, its overshoot, and the
maximum of the underlying process at this first passage time. By using short-time
pathwise analysis, under some mild regularity conditions, the joint law of the three
drawdown quantities is shown to be the unique solution to an integral equation which is
expressed in terms of fundamental two-sided exit quantities of the underlying process.
Explicit forms for this joint law are found when the Markov process has only one-sided
jumps or is a Lévy process (possibly with two-sided jumps). The proposed methodology
provides a unified approach to study various drawdown quantities for the general class
of time-homogeneous Markov processes.
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1. Introduction

We consider a time-homogeneous, real-valued, nonexplosive, càdlàg Markov process X =
(Xt )t≥0 with state space R defined on a filtered probability space (�,F ,F = (Ft )t≥0,P)

with a complete and right-continuous filtration. (The state space can sometimes be relaxed to
an open interval of R (e.g. (0,+∞) for geometric Brownian motions). It is also possible to
treat some general state space with complex boundary behaviors. However, for simplicity, we
choose R as the state space of X in this paper.)

Throughout, we silently assume thatX satisfies the strong Markov property (see Rogers and
Williams [33, Section III.8,9]), and exclude Markov processes with monotone paths. The first
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604 D. LANDRIAULT ET AL.

passage time of X above (below) a level x ∈ R is denoted by

T +(−)
x = inf{t ≥ 0 : Xt > (<)x},

with the common convention that inf ∅ = ∞.
The drawdown process of X (also known as the reflected process of X at its supremum) is

denoted by Y = (Yt )t≥0 with Yt = Mt − Xt , where Mt = sup0≤s≤t Xt . Let τa = inf{t >
0 : Yt > a} be the first time the magnitude of drawdowns exceeds a given threshold a > 0. Note
that (sup0≤s≤t Ys > a) = (τa ≤ t) P-almost surely (P-a.s.). Hence, the distributional study of
the maximum drawdown of X is equivalent to the study of the stopping time τa . Similarly, the
drawup process ofX is defined as Ŷt = Xt −mt for t ≥ 0, wheremt = inf0≤s≤t Xt . However,
given that the drawup of X can be investigated via the drawdown of −X, we exclusively focus
on the drawdown process Y in this paper.

Applications of drawdowns can be found in many areas. For instance, drawdowns are
widely used by mutual funds and commodity trading advisers to quantify downside risks.
Interested readers are referred to Schuhmacher and Eling [34] for a review of drawdown-based
performance measures. An extensive body of literature exists on the assessment and mitigation
of drawdown risks; see, e.g. [7], [8], [13], and [42]. Drawdowns are also closely related to many
problems in mathematical finance, actuarial science, and statistics such as the pricing of Russian
options (see, e.g. [2], [3], and [35]), De Finetti’s dividend problem (see, e.g. [4] and [26]), loss-
carry-forward taxation models (see, e.g. [22] and [25]), and change-point detection methods
(see, e.g. [31]). More specifically, in De Finetti’s dividend problem under a fixed dividend
barrier a > 0, the underlying surplus process with dividend payments is a process obtained
from reflectingX at a fixed barrier a (the reflected process’ dynamics may be different than the
drawdown process Y when the underlying process X is not spatial homogeneous). However,
the distributional study of ruin quantities in De Finetti’s dividend problem can be transformed
to the study of drawdown quantities for the underlying surplus process; see Kyprianou and
Palmowski [21] for a more detailed discussion. Similarly, ruin problems in loss-carry-forward
taxation models can also be transformed to a generalized drawdown problem for classical
models without taxation, where the generalized drawdown process is defined in the form of
Yt = γ (Mt)−Xt for some measurable function γ (·).

The distributional study of drawdown quantities is not only of theoretical interest, but also
plays a fundamental role in the aforementioned applications. Early distributional studies on
drawdowns date back to Taylor [36] on the joint Laplace transform of τa andMτa for Brownian
motions. This result was later generalized by Lehoczky [24] to time-homogeneous diffusion
processes. Douady et al. [9] and Magdon et al. [27] derived infinite series expansions for the
distribution of τa for a standard Brownian motion and a drifted Brownian motion, respectively.
For spectrally negative Lévy processes, Mijatovic and Pistorius [28] obtained a sextuple formula
for the joint Laplace transform of τa and the last reset time of the maximum prior to τa , together
with the joint distribution of the running maximum, the running minimum, and the overshoot
of Y at τa . For some studies on the joint law of drawdown and drawup of spectrally negative
Lévy processes or diffusion processes, we refer the reader to [30], [32], [40], and [41].

As mentioned above, Lévy processes (most often, one-sided Lévy processes (an exception
to this is [5] for general Lévy processes)) and time-homogeneous diffusion processes are
two main classes of Markov processes for which various drawdown problems have been
extensively studied. The treatment of these two classes of Markov processes has typically
been considered distinctly in the literature. For Lévy processes, Itô’s excursion theory is a
powerful approach to handle drawdown problems; see, e.g. [3], [28], and [30]. However, the
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excursion-theoretic approach is somewhat specific to the underlying model, and additional care
is required when a more general class of Markov processes is considered. On the other hand, for
time-homogeneous diffusion processes, Lehoczky [24] introduced an ingenious approach which
has recently been generalized by many researchers; see, e.g. [25], [40], and [43]. Here again,
Lehoczky’s approach relies on the continuity of the sample path of the underlying model, and,
hence, is not applicable for processes with upward jumps. Also, other general methodologies
(such as the martingale approach in, e.g. [2] and the occupation density approach in, e.g. [14])
are well documented in the literature but they depend strongly on the specific structure of the
underlying process. To the best of the authors’ knowledge, no unified treatment of drawdowns
(drawups) for general Markov processes has been proposed in the literature.

In this paper we propose a general and unified approach to study the joint law of (τa,Mτa ,

Yτa ) for time-homogeneous Markov processes with possibly two-sided jumps. Under mild
regularity conditions, the joint law is expressed as the solution to an integral equation which
involves two-sided exit quantities of the underlying process X. The uniqueness of the integral
equation for the joint law is also investigated. In particular, the joint law possesses explicit
forms whenX has only one-sided jumps or is a Lévy process (possibly with two-sided jumps).
In general, our main result reduces the drawdown problem to fundamental two-sided exit
quantities.

The main idea of our proposed approach is briefly summarized below. By analyzing the
evolution of sample paths over a short time period following time 0 and using renewal arguments,
we first establish tight upper and lower bounds for the joint law of (τa,Mτa , Yτa ) in terms of the
two-sided exit quantities. Then, under mild regularity conditions, we use a Fatou’s lemma with
varying measures to show that the upper and lower bounds converge when the length of the
time interval approaches 0. This leads to an integro-differential equation satisfied by the desired
joint law. Finally, we reduce the integro-differential equation to an integral equation. When X
is a spectrally negative Markov process or a general Lévy process, the integral equation can be
solved and the joint law of (τa,Mτa , Yτa ) is, hence, explicitly expressed in terms of two-sided
exit quantities.

The rest of the paper is organized as follows. In Section 2 we introduce some fundamental
two-sided exit quantities and present several preliminary results. In Section 3 we derive the
joint law of (τa, Yτa ,Mτa ) for general time-homogeneous Markov processes. Several Markov
processes for which the proposed regularity conditions are met are further discussed. Some
numerical examples are investigated in more detail in Section 4. Some technical proofs are
postponed to Appendices A–C.

2. Preliminary

For ease of notation, we adopt the following conventions throughout the paper. We denote
by Px the law ofX givenX0 = x ∈ R and write P ≡ P0 for brevity. We writeu∧v = min{u, v},
R+ = [0,∞), and

∫ y
x

dz for an integral on the open interval z ∈ (x, y).
For q, s ≥ 0, u ≤ x ≤ v, and z > 0, we introduce the following two-sided exit quantities

of X:

B
(q)
1 (x; u, v) := Ex[e−qT +

v 1{T +
v <∞, T +

v <T
−
u ,XT+

v
=v}],

B
(q)
2 (x, dz; u, v) := Ex[e−qT +

v 1{T +
v <∞, T +

v <T
−
u ,XT+

v
−v∈dz}],

C(q,s)(x; u, v) := Ex[e−qT −
u −s(u−X

T
−
u
)

1{T −
u <∞, T −

u <T
+
v }].
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We also define the joint Laplace transform

B(q,s)(x; u, v) := Ex[e−qT +
v −s(X

T
+
v

−v)
1{T +

v <∞, T +
v <T

−
u }] = B

(q)
1 (x; u, v)+ B

(q,s)
2 (x; u, v),

(1)
where B(q,s)2 (x; u, v) := ∫ ∞

0 e−szB(q)2 (x, dz; u, v).
The following pathwise inequalities are central to the construction of tight bounds for the

joint law of the triplet (τa,Mτa , Yτa ).

Proposition 1. For q, s ≥ 0, x ∈ R, and ε ∈ (0, a), we have Px-a.s.

1{T +
x+ε<∞, T +

x+ε<T −
x+ε−a} ≤ 1{T +

x+ε<∞, T +
x+ε<τa} ≤ 1{T +

x+ε<∞, T +
x+ε<T −

x−a}, (2)

e−qτa−s(Yτa−a) 1{τa<∞, τa<T
+
x+ε} ≥ e

−qT −
x−a−s(x−a−XT−

x−a
)−sε

1{T −
x−a<∞, T −

x−a<T +
x+ε}, (3)

e−qτa−s(Yτa−a) 1{τa<∞, τa<T
+
x+ε} ≤ e

−qT −
x+ε−a−s(x−a−XT−

x+ε−a
)

1{T −
x+ε−a<∞, T −

x+ε−a<T +
x+ε} . (4)

Proof. By analyzing the sample paths of X, it is easy to see that, for any path ω ∈ (T +
x+ε <

∞), we have Px{τa ≤ T −
x−a} = 1, so Px-a.s.

(T +
x+ε < ∞, T +

x+ε < τa) = (T +
x+ε < ∞, T +

x+ε < τa ≤ T −
x−a) ⊂ (T +

x+ε < ∞, T +
x+ε < T −

x−a)

and, similarly, Px-a.s.

(T +
x+ε < ∞, T +

x+ε < T −
x+ε−a) = (T +

x+ε < ∞, T +
x+ε < T −

x+ε−a, T +
x+ε < τa)

⊂ (T +
x+ε < ∞, T +

x+ε < τa),

which immediately implies (2). On the other hand, by using the same argument, we have Px-a.s.

(T −
x−a < ∞, T −

x−a < T +
x+ε) = (T −

x−a < ∞, τa ≤ T −
x−a < T +

x+ε) ⊂ (τa < ∞, τa < T +
x+ε)

(5)
and

(τa < ∞, τa < T +
x+ε) = (τa < ∞, T −

x+ε−a ≤ τa < T +
x+ε)

⊂ (T −
x+ε−a < ∞, T −

x+ε−a < T +
x+ε). (6)

For any path ω ∈ (T −
x−a < ∞, T −

x−a < T +
x+ε), we know from (5) that ω ∈ (T −

x−a < ∞, τa ≤
T −
x−a < T +

x+ε). This implies Mτa (ω) ≤ x + ε and Xτa (ω) ≥ XT −
x−a (ω), which further entails

that Yτa (ω) = Mτa (ω) − Xτa (ω) ≤ x + ε − XT −
x−a (ω). Therefore, by the above analysis and

the second inequality of (2),

e
−qT −

x−a−s(x+ε−XT−
x−a

)
1{T −

x−a<∞, T −
x−a<T +

x+ε} ≤ e−qτa−sYτa 1{τa<∞, τa<T
+
x+ε}, Px-a.s.,

which naturally leads to (3).
Similarly, for any sample path ω ∈ (τa < ∞, τa < T +

x+ε), we know from (6) that ω ∈
(τa < ∞, T −

x+ε−a ≤ τa < T +
x+ε), which implies that x −XT −

x+ε−a (ω) ≤ YT −
x+ε−a (ω) ≤ Yτa (ω).

Therefore, by the first inequality of (2), we obtain

e−qτa−sYτa 1{τa<∞, τa<T
+
x+ε} ≤ e

−qT −
x+ε−a−s(x−XT−

x+ε−a
)

1{T −
x+ε−a<∞, T −

x+ε−a<T +
x+ε}, Px-a.s.

This implies the second inequality of (4). �
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By Proposition 1, we easily obtain the following useful estimates.

Corollary 1. For q, s ≥ 0, x ∈ R, z > 0, and ε ∈ (0, a),

B
(q)
1 (x; x + ε − a, x + ε) ≤ Ex[e−qT +

x+ε 1{T +
x+ε<∞, T +

x+ε<τa,XT+
x+ε

=x+ε}]

≤ B
(q)
1 (x; x − a, x + ε),

B
(q)
2 (x, dz; x + ε − a, x + ε) ≤ Ex[e−qT +

x+ε 1{T +
x+ε<∞, T +

x+ε<τa,XT+
x+ε

−x−ε∈dz}]

≤ B
(q)
2 (x, dz; x − a, x + ε),

e−sεC(q,s)(x; x − a, x + ε) ≤ Ex[e−qτa−s(Yτa−a) 1{τa<∞, τa<T
+
x+ε}]

≤ esεC(q,s)(x; x + ε − a, x + ε).

Remark 1. It is not difficult to check that the results of Proposition 1 and Corollary 1 still hold
if the first passage times and the drawdown times are only observed discretely or randomly
(such as the Poisson observation framework in [1] for the latter). Further, explicit relationship
between Poisson observed first passage times and Poisson observed drawdown times (similar
as for Theorem 1 below) can be found by exploiting the same approach as laid out in this paper.

The later analysis involves the weak convergence of measures which is recalled here.
Consider a metric space S with the Borel σ -algebra on it. We say a sequence of finite measures
{μn}n∈N is weakly convergent to a finite measure μ as n → ∞ if

lim
n→∞

∫
S

φ(z) dμn(z) =
∫
S

φ(z) dμ(z)

for any bounded and continuous function φ(·) on S.
In the next lemma, we show some forms of Fatou’s lemma for varying measures under weak

convergence. Similar results were proved in [10] for probability measures. For completeness,
a proof for general finite measures is provided in Appendix A.

Lemma 1. Suppose that {μn}n∈N is a sequence of finite measures on S which is weakly
convergent to a finite measure μ, and {φn}n∈N is a sequence of uniformly bounded and
nonnegative functions on S. Then∫

S

lim inf
n→∞,w→z

φn(w) dμ(z) ≤ lim inf
n→∞

∫
S

φn(z) dμn(z), (7)

and ∫
S

lim sup
n→∞,w→z

φn(w) dμ(z) ≥ lim sup
n→∞

∫
S

φn(z) dμn(z). (8)

3. Main results

In this section we study the joint law of (τa,Mτa , Yτa ) for a general Markov process with
possibly two-sided jumps. The following assumptions on the two-sided exit quantities ofX are
assumed to hold, which are sufficient (but not necessary) conditions for the applicability of our
proposed methodology. Weaker assumptions might be assumed for special Markov processes;
see, for instance, Remark 4 and Corollary 2 below.
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Assumption 1. For all q, s ≥ 0, z > 0, and x > X0, we assume the following limits exist and
identities hold:

(A1) b(q)a,1(x) := lim
ε↓0

1 − B
(q)
1 (x; x − a, x + ε)

ε

= lim
ε↓0

1 − B
(q)
1 (x; x + ε − a, x + ε)

ε

= lim
ε↓0

1 − B
(q)
1 (x − ε; x − a, x)

ε

= lim
ε↓0

1 − B
(q)
1 (x − ε; x − ε − a, x)

ε
,

and
∫ y
x
b
(q)
a,1(w) dw < ∞ for any x, y ∈ R;

(A2) b(q,s)a,2 (x) := lim
ε↓0

1

ε
B
(q,s)
2 (x; x − a, x + ε)

= lim
ε↓0

1

ε
B
(q,s)
2 (x; x + ε − a, x + ε)

= lim
ε↓0

1

ε
B
(q,s)
2 (x − ε; x − a, x)

= lim
ε↓0

1

ε
B
(q,s)
2 (x − ε; x − ε − a, x),

and s �→ b
(q,s)
a,2 (x) is right continuous at s = 0;

(A3) c(q,s)a (x) := lim
ε↓0

C(q,s)(x; x − a, x + ε)

ε

= lim
ε↓0

C(q,s)(x; x + ε − a, x + ε)

ε

= lim
ε↓0

C(q,s)(x − ε; x − a, x)

ε

= lim
ε↓0

C(q,s)(x − ε; x − ε − a, x)

ε
.

Under assumptions (A1) and (A2), it follows from (1) that

b
(q,s)
a (x) := lim

ε↓0

1 − B(q,s)(x; x − a, x + ε)

ε
= b

(q)
a,1(x)− b

(q,s)
a,2 (x). (9)

Remark 2. Due to the general structure of X, it is difficult to refine assumptions (A1)–(A3)
unless a specific structure for X is given. A necessary condition for assumptions (A1)–(A3) to
hold is that

T +
x = 0 and XT +

x
= x, Px-a.s. for all x ∈ R.

In other words, X must be upward regular and creeping upward at every x; see [19, p. 142 and
p. 197] for definitions of regularity and creeping for Lévy processes.

https://doi.org/10.1017/jpr.2017.20 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.20


A unified approach for drawdown (drawup) of time-homogeneous Markov processes 609

In the latter part of this section, we provide some examples of Markov processes which
satisfy assumptions (A1)–(A3), including spectrally negative Lévy processes, linear diffusions,
piecewise exponential Markov processes, and jump diffusions.

Remark 3. By Theorem 5.22 of [16] or Proposition 7.1 of [23], we know that assumption (A2)
implies that the measures (1/ε)B(q)2 (x, dz; x− a, x+ ε), (1/ε)B(q)2 (x, dz; x+ ε− a, x+ ε),
(1/ε)B(q)2 (x − ε, dz; x − a, x), and (1/ε)B(q)2 (x − ε, dz; x − ε − a, x) weakly converge to
the same measure on R+, denoted as b(q)a,2(x, dz), such that

∫
R+e−szb(q)a,2(x, dz) = b

(q,s)
a,2 (x).

We point out that it is possible that b(q)a,2(x, {0}) > 0, though the measure B(q)2 (x, dz; u, v) is
only defined on z ∈ (0,∞).

We are now ready to present the main result of this paper related to the joint law of
(τa, Yτa ,Mτa ).

Theorem 1. Consider a general time-homogeneous Markov process X satisfying assump-
tions (A1)–(A3). For q, s ≥ 0 and K ∈ R, let

h(x) = Ex[e−qτa−s(Yτa−a) 1{τa<∞,Mτa≤K}], x ≤ K.

Then h(·) is differentiable in x < K and solves the following integral equation:

h(x) =
∫ K

x

exp

(
−

∫ y

x

b
(q)
a,1(w) dw

)

×
(
c
(q,s)
a (y)+

∫
[0,K−y)

h(y + z)b
(q)
a,2(y, dz)

)
dy, x ≤ K. (10)

Proof. By the strong Markov property of X, for any X0 = x ≤ y < K and 0 < ε <

(K − y) ∧ a, we have

h(y) = Ey[e−qτa−s(Yτa−a) 1{τa<∞, τa<T
+
y+ε}]

+ Ey[e−qT +
y+ε 1{T +

y+ε<∞, T +
y+ε<τa,XT+

y+ε
=y+ε}]h(y + ε)

+
∫ K−y−ε

0
Ey[e−qT +

y+ε 1{T +
y+ε<∞, T +

y+ε<τa,XT+
y+ε

−y−ε∈dz}]h(y + ε + z).

By Corollary 1, it follows that

h(y + ε)− h(y) ≥ −esεC(q,s)(y; y + ε − a, y + ε)

+ (1 − B
(q)
1 (y; y − a, y + ε))h(y + ε)

−
∫ K−y−ε

0
h(y + ε + z)B

(q)
2 (y, dz; y − a, y + ε), (11)

and

h(y + ε)− h(y) ≤ −e−sεC(q,s)(y; y − a, y + ε)

+ (1 − B
(q)
1 (y; y + ε − a, y + ε))h(y + ε)

−
∫ K−y−ε

0
h(y + ε + z)B

(q)
2 (y, dz; y + ε − a, y + ε). (12)
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By assumptions (A1)–(A3) and h(·) ∈ [0, 1], it is clear that both the lower bound of h(y+ ε)−
h(y) in (11) and the upper bound in (12) vanish as ε ↓ 0. Hence, h(y) is right continuous for
y ∈ [x,K). Replacing y by y − ε in (11) and (12), and using assumptions (A1)–(A3) again,
it follows that h(y) is also left continuous for y ∈ (x,K] with h(K) = 0. Therefore, h(y) is
continuous for y ∈ [x,K] (left continuous at x and right continuous at K).

To consecutively show the differentiability, we divide inequalities (11) and (12) by ε.
It follows from assumptions (A1)–(A3), Remark 3, Lemma 1, and the continuity of h that

lim inf
ε↓0

h(y + ε)− h(y)

ε

≥ −c(q,s)a (y)+ b
(q)
a,1(y)h(y)− lim sup

ε↓0

∫ K−y−ε

0
h(y + ε + z)

B
(q)
2 (y, dz; y − a, y + ε)

ε

≥ −c(q,s)a (y)+ b
(q)
a,1(y)h(y)−

∫
[0,K−y)

h(y + z)b
(q)
a,2(y, dz),

and, similarly,

lim sup
ε↓0

h(y + ε)− h(y)

ε
≤ −c(q,s)a (y)+ b

(q)
a,1(y)h(y)−

∫
[0,K−y)

h(y + z)b
(q)
a,2(y, dz).

Since the two limits coincide, one concludes that h(y) is right-differentiable for y ∈ (x,K).
Moreover, by replacing y by y − ε in (11) and (12), and using similar arguments, we can show
that h(y) is also left differentiable for y ∈ (x,K). Since the left and right derivatives coincide,
we conclude that h(y) is differentiable for any y ∈ (x,K) and solves the following ordinary
integro-differential equation:

h′(y)− b
(q)
a,1(y)h(y) = −c(q,s)a (y)−

∫
[0,K−y)

h(y + z)b
(q)
a,2(y, dz). (13)

Multiplying both sides of (13) by exp(−∫ y
x
b
(q)
a,1(w) dw), integrating the resulting equation

(with respect to y) from x to K , and using h(K) = 0 complete the proof of Theorem 1. �

When the Markov process X is spectrally negative (i.e. with no upward jumps), the upward
overshooting density b(q)a,2(x, dz) is trivially 0. Theorem 1 reduces to the following corollary.

Corollary 2. Consider a spectrally negative time-homogeneous Markov process X satisfying
assumptions (A1) and (A3). For q, s ≥ 0 and K > 0, we have

Ex[exp(−qτa − s(Yτa − a)) 1{τa<∞,Mτa≤K}]

=
∫ K

x

exp

(
−

∫ y

x

b
(q)
a,1(w) dw

)
c
(q,s)
a (y) dy, x ≤ K.

When X is a general Lévy process (possibly with two-sided jumps), we have the following
result for the joint Laplace transform of the triplet (τa, Yτa ,Mτa ). Note that Corollary 3 should
be compared to Theorem 4.1 of [5], in which, under the Lévy framework, the resolvent density
of Y is expressed in terms of the resolvent density of X using excursion theory.
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Corollary 3. Consider a Lévy process X satisfying assumptions (A1)–(A3). For q, s, δ ≥ 0,
we have (for Lévy processes P{τa < ∞} = 1 as long as X is not monotone)

E[e−qτa−s(Yτa−a)−δMτa ] = c
(q,s)
a (0)

δ + b
(q,δ)
a (0)

. (14)

Proof. By the spatial homogeneity of the Lévy process X, (10) at x = 0 reduces to

h(0) = c
(q,s)
a (0)

b
(q)
a,1(0)

(1 − e−b(q)a,1(0)K)+
∫ K

0
e−b(q)a,1(0)y

∫
[0,K−y)

h(y + z)b
(q)
a,2(0, dz) dy. (15)

Let
ĥ(0) := E[e−qτa−s(Yτa−a)−δMτa ] = E[e−qτa−s(Yτa−a) 1{Mτa≤eδ}],

where eδ is an independent exponential random variable with finite mean 1/δ > 0. Multiplying
both sides of (15) by δe−δK , integrating the resulting equation (with respect toK) from 0 to ∞,
and using integration by parts, we obtain

ĥ(0) = c
(q,s)
a (0)

δ + b
(q)
a,1(0)

+
∫ ∞

0
δe−δK

∫ K

0
e−b(q)a,1(0)y

∫
[0,K−y)

h(y + z)b
(q)
a,2(0, dz) dy dK

= c
(q,s)
a (0)

δ + b
(q)
a,1(0)

+
∫ ∞

0
e−b(q)a,1(0)y dy

∫
R+
b
(q)
a,2(0, dz)

∫ ∞

z+y
δe−δK

E[e−qτa−s(Yτa−a) 1{Mτa≤K−y−z}] dK

= c
(q,s)
a (0)

δ + b
(q)
a,1(0)

+ ĥ(0)

∫
R+ e−δzb(q)a,2(0, dz)

δ + b
(q)
a,1(0)

.

Solving for ĥ(0) and using (9), it follows that

ĥ(0) = c
(q,s)
a (0)

δ + b
(q)
a,1(0)− ∫

R+ e−δzb(q)a,2(0, dz)
= c

(q,s)
a (0)

δ + b
(q,δ)
a (0)

.

It follows from the monotone convergence theorem that (14) also holds for δ = 0. �
Remark 4. We point out that assumptions (A1)–(A3) are not necessary to yield (14) in the
Lévy framework. In fact, by the spatial homogeneity of X, similar to (11) and (12), we have

e−(s+δ)εC(q,s)(0; −a, ε)
1 − e−δεB(q,δ)(0; ε − a, ε)

≤ E[e−qτa−s(Yτa−a)−δMτa ] ≤ esεC(q,s)(0; ε − a, ε)

1 − e−δεB(q,δ)(0; −a, ε)
for any ε ∈ (0, a). Suppose that the following condition holds:

lim
ε↓0

C(q,s)(0; −a, ε)
1 − e−δεB(q,δ)(0; ε − a, ε)

= lim
ε↓0

C(q,s)(0; ε − a, ε)

1 − e−δεB(q,δ)(0; −a, ε) := D
(q,s,δ)
a .

Then E[e−qτa−s(Yτa−a)−δMτa ] = D
(q,s,δ)
a .

Theorem 1 shows that the joint law Ex[e−qτa−s(Yτa−a) 1{Mτa≤K}] is a solution to (10). Further,
the following theorem shows that (10) admits a unique solution.
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Theorem 2. Suppose that assumptions (A1)–(A3) hold. For q, s ≥ 0 and K > 0, (10) admits
a unique solution.

Proof. From Theorem 1, we know that h(x) := Ex[e−qτa−s(Yτa−a) 1{τa<∞,Mτa≤K}] is
a solution of (10). We also note that any continuous solution to (10) must vanish when
x ↑ K . For any fixed L ∈ (−∞,K), we define a metric space (AL, dL), where AL = {f ∈
C[L,K], f (K) = 0} and the metric dL(f, g) = supx∈[L,K] |f (x)− g(x)| for f, g ∈ AL. We
then define a mapping L on AL by

Lf (x) =
∫ K

x

exp

(
−

∫ y

x

b
(q)
a,1(w) dw

)

×
(
c
(q,s)
a (y)+

∫
[0,K−y)

f (y + z)b
(q)
a,2(y, dz)

)
dy, x ∈ [L,K],

where f ∈ AL. It is clear that L(AL) ⊂ AL.
Next we show that L : AL → AL is a contraction mapping. By the definitions of the

two-sided exit quantities, for any y ∈ R, it follows that

C(q,s)(y; y − a, y + ε)+
∫

R+
B
(q)
2 (y, dz; y − a, y + ε) ≤ 1 − B

(q)
1 (y; y − a, y + ε). (16)

Dividing each term in (16) by ε ∈ (0, a) and letting ε ↓ 0, it follows from assumptions (A1)–
(A3) that

0 ≤ c
(q,s)
a (y)+

∫
R+
b
(q)
a,2(y, dz) ≤ b

(q)
a,1(y), y ∈ R. (17)

By (17), we have, for any f, g ∈ AL,

dL(Lf,Lg) ≤ sup
t∈[L,K]

|f (t)− g(t)| sup
x∈[L,K]

∫ K

x

exp

(
−

∫ y

x

b
(q)
a,1(w) dw

) ∫
R+
b
(q)
a,2(y, dz) dy

≤ dL(f, g) sup
L≤x≤K

∫ K

x

exp

(
−

∫ y

x

b
(q)
a,1(w) dw

)
b
(q)
a,1(y) dy

≤ dL(f, g)

(
1 − exp

(
−

∫ K

L

b
(q)
a,1(w) dw

))
.

Since
∫ K
L
b
(q)
a,1(w) dw < ∞ by assumption (A1), we conclude that L : AL → AL is a contraction

mapping. By the Banach fixed point theorem, there exists a unique fixed point in AL. By a
restriction of domain, it is easy to see that AL1 ⊂ AL2 for −∞ < L1 < L2 < K . By the
arbitrariness ofL, the uniqueness holds for the space ∩L<KAL. This completes the proof. �

For the remainder of this section, we state several examples of Markov processes satisfying
assumptions (A1)–(A3). Note that the joint law of drawdown estimates for Examples 1 and 3
were solved by Mijatovic and Pistorius [28] and Lehoczky [24], respectively (using different
approaches). Assumption verifications for Examples 4 and 5 are postponed to Appendices B
and C, respectively.

Example 1. (Spectrally negative Lévy processes.) Consider a spectrally negative Lévy pro-
cess X. Let ψ(s) := (1/t) log E[esXt ](s ≥ 0) be the Laplace exponent of X. Further, let
W(q) : R → [0,∞) be the well-known q-scale function ofX; see, for instance, [19, Chapter 8].
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The second scale function is defined as Z(q)(x) = 1 + q
∫ x

0 W
(q)(y) dy. Under some mild

conditions (see, e.g. Lemma 2.4 of [18]), the scale functions are continuously differentiable
which further implies that assumptions (A1) and (A3) hold with

b
(q)
a,1(0) = W(q)′(a)

W(q)(a)
and c

(q,s)
a (0) = esa

Z
(p)
s (a)W

(p)′
s (a)− Z

(p)′
s (a)W

(p)
s (a)

W
(p)
s (a)

, (18)

wherep = q−ψ(s) andW(p)
s (Z(p)s ) is the (second) scale function ofX under a new probability

measure P
s defined by the Radon–Nikodym derivative process dP

s/dP|Ft = esXt−ψ(s)t for
t ≥ 0. Therefore, by Corollary 3 and (18), we have

E[e−qτa−s(Yτa−a)−δMτa ] = esaW(q)(a)

δW(q)(a)+W(q)′(a)

Z
(p)
s (a)W

(p)′
s (a)− pW

(p)
s (a)2

W
(p)
s (a)

,

which is consistent with Theorem 3.1 of [23] and Theorem 1 of [28].

Example 2. (Refracted Lévy processes.) Consider a refracted spectrally negative Lévy pro-
cess X of the form

Xt = Ut − λ

∫ t

0
1{Xs>b} ds, (19)

where λ ≥ 0, b > 0, and U is a spectrally negative Lévy process; see [20]. Let W(q)

(Z(q)) be the (second) q-scale function of U , and W
(q) be the q-scale function of the process

{Ut − λt}t≥0. Similar to Example 1, all the scale functions are continuously differentiable
under mild conditions.

For simplicity, we only consider the quantity Ex[e−qτa 1{τa<∞,Mτa≤K}] with b > x − a

(otherwise the problem reduces to Example 1 for Xt = Ut − λt). By Theorem 4 of [20], we
can verify that assumptions (A1) and (A3) hold. For b > x, from (18) with s = 0, we have

b
(q)
a,1(x) = W(q)′(a)

W(q)(a)
and c

(q,0)
a (x) = Z(q)(a)W(q)′(a)− Z(q)

′
(a)W(q)(a)

W(q)(a)
.

For x > b > x − a,

b
(q)
a,1(x) = (1 + λW(q)(0))W(q)′(a)+ λ

∫ a
b−x+a W

(q)′(a − y)W(q)′(y) dy

W(q)(a)+ λ
∫ a
b−x+a W(q)(a − y)W(q)′(y) dy

and

c
(q,0)
a (x) = k

(q)
a (x)

W(q)(a)+ λ
∫ a
b−x+a W(q)(a − y)W(q)′(y) dy

,

where

k
(q)
a (x) = (1 + λW(q)(0))(Z(q)(a)W(q)′(a)− qW(q)(a)2)

+ λq(1 + λW(q)(0))

×
∫ a

b−x+a
W
(q)(a − y)(W(q)′(a)W(q)(y)−W(q)(a)W(q)′(y)) dy
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− λq

[
W(q)(a)

+ λ

∫ a

b−x+a
W
(q)(a − y)W(q)′(y) dy

] ∫ a

b−x+a
W
(q)′(a − y)W(q)(y) dy

+ λ

[
Z(q)(a)

+ λq

∫ a

b−x+a
W
(q)(a − y)W(q)(y) dy

] ∫ a

b−x+a
W
(q)′(a − y)W(q)′(y) dy.

By Corollary 2, we obtain

Ex[exp(−qτa) 1{Mτa≤K}] =
∫ K

x

exp

(
−

∫ y

x

b
(q)
a,1(w) dw

)
c
(q,0)
a (y) dy, x ≤ K,

which is a new result for the refracted Lévy process (19).

Example 3. (Linear diffusion processes.) Consider a linear diffusion process X of the form

dXt = μ(Xt) dt + σ(Xt ) dWt,

where (Wt )t≥0 is a standard Brownian motion, and the drift term μ(·) and local volatility
σ(·) > 0 satisfy the usual Lipschitz continuity and linear growth conditions. As a special
case of the jump diffusion process of Example 5, it will be shown later that assumptions (A1)
and (A3) hold for linear diffusion processes. By Corollary 2, we obtain

Ex[exp(−qτa) 1{τa<∞,Mτa≤K}] =
∫ K

x

exp

(
−

∫ y

x

b
(q)
a,1(w) dw

)
c
(q,0)
a (y) dy, x ≤ K,

which is consistent with Equation (4) of [24].

Example 4. (Piecewise exponential Markov processes.) Consider a piecewise exponential
Markov process (PEMP) X of the form

dXt = μXt dt + dZt , (20)

where μ > 0 is the drift coefficient and Z = (Zt )t≥0 is a compound Poisson process given
by Zt = ∑Nt

i=1Ji . Here, (Nt )t≥0 is a Poisson process with intensity λ > 0 and the Ji
are independent and identically distributed copies of a real-valued random variable J with
cumulative distribution function F . We also assume the initial value X0 ≥ a which ensures
that Xt ≥ 0 for all t < τa . In this case, as discussed in Remark 2, X is upward regular and
creeps upward before τa . The first passage times of X have been extensively studied in area of
applied probability; see, e.g. [17] and [37]. For the PEMP (20), semiexplicit expressions for
the two-sided exit quantities B(q)1 (·), B(q)2 (·, ·), and C(q,s)(·) are given in [15, Section 6]. As
will be shown in Appendix B, assumptions (A1)–(A3) and Theorem 1 hold for the PEMP X
with a continuous jump size distribution F .

Example 5. (Jump diffusion.) Consider a jump diffusion process X of the form

dXt = μ(Xt) dt + σ(Xt ) dWt +
∫ ∞

−∞
γ (Xt−, z)N(dt, dz), (21)
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where μ(·) and σ(·) > 0 are functions on R, (Wt )t≥0 is a standard Brownian motion, γ (·, ·) is
a real-valued function on R

2 modeling the jump size, andN(dt, dz) is an independent Poisson
random measure on R+×R with a finite intensity measure dt×ν(dz). For specificμ(·) andσ(·),
the jump diffusion (21) can be used to model the surplus process of an insurer with investment
in risky assets; see, e.g. [12] and [39]. We assume the same conditions as Theorem 1.19 of [29]
so that (21) admits a unique càdlàg adapted solution. Under this setup, we show in Appendix C
that assumptions (A1)–(A3) and, thus, Theorem 1 hold for the jump diffusion (21).

4. Numerical examples

The main results of Section 3 rely on the analytic tractability of the two-sided exit quantities.
To further illustrate their applicability, we now consider the numerical evaluation of the joint
law of (Yτa ,Mτa ) for two particular spatial-inhomogeneous Markov processes with (positive)
jumps through Theorem 1. For simplicity, we assume that the discount rate q = 0 throughout
this section.

4.1. PEMP

In this section, we consider the PEMP X in Example 4 with μ = 1, λ = 3, and the generic
jump size J with density

p(x) =
{

1
3 e−x, x > 0,
1
3 (e

x + 2e2x), x < 0.
(22)

We follow Jacobsen and Jensen [15, Section 6] to first solve for the two-sided exit quantities.
Define the integral kernel

ψ0(z) := 1

z(z+ 1)(z− 1)(z− 2)
, z ∈ C,

and the linearly independent functions

g1(x) := 1

2π
√−1

∫
�1

ψ0(z)e
−xz dz = 1

6
e−2x,

g2(x) := 1

2π
√−1

∫
�2

ψ0(z)e
−xz dz = −1

2
e−x,

g3(x) := 1

2π
√−1

∫
�3

ψ0(z)e
−xz dz = 1

2
,

g4(x) := 1

2π
√−1

∫
�4

ψ0(z)e
−xz dz = −1

6
ex,

for x > 0, where �i (i = 1, 2, 3, 4) is a small counterclockwise circle centered at the pole
μi = 3 − i of ψ0(z). Moreover, for 0 < u < v, we consider the matrix-valued function

(Mi,k(u, v))1≤i, k≤4 :=

⎛
⎜⎜⎜⎜⎜⎝

− 1
3 e−2u

(
u+ 11

6

) 1
6 e−2u 1

18 e−2v g1(v)

e−u 1
2 e−u(u+ 1

2

) − 1
4 e−v g2(v)

− 1
2 − 1

2
1
2 g3(v)

1
9 eu 1

12 eu 1
6 ev

(
v − 11

6

)
g4(v)

⎞
⎟⎟⎟⎟⎟⎠ ,
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where the matrix M entries are chosen according to

Mi,k(u, v) = μk

2π
√−1

∫
�i

ψ0(z)

z− μk
e−uz dz, 1 ≤ i ≤ 4, k = 1, 2,

Mi,3(u, v) = |μ4|
2π

√−1

∫
�i

ψ0(z)

z− μ4
e−vz dz, 1 ≤ i ≤ 4.

Let (Nk,j (u, v))1≤k, j≤4 be the inverse of (Mi,k(u, v))1≤i, k≤4. Combining Equation (46) and
a generalized Equation (48) of [15] (with ζ = s ≥ 0 and ρ ≥ 0), we obtain the linear system
of equations

(c1, c2, c3, c4)(Mi,k) =
(

− 2C

s + 2
,− C

s + 1
,
C

ρ + 1
, f (v)

)
, (23)

where C and C are constants specified later, and f (x) could stand for any of B(0)1 (x; u, v),
B
(0,ρ)
2 (x; u, v), orC(0,s)(x; u, v) and has the representation f (x) = ∑4

i=1cigi(x), x ∈ [u, v].
To solve for B(0)1 (x; u, v), B(0,ρ)2 (x; u, v), or C(0,s)(x; u, v), we only need to solve (23)

with different assigned values of C, C, and f (v) according to Equation (45) of [15]. By letting
C = C = 0 and f (v) = 1, we obtain

B
(0)
1 (x; u, v) =

4∑
i=1

N4,i (u, v)gi(x).

Similarly, by letting C = f (v) = 0 and C = 1, for ρ ≥ 0, we obtain

B
(0,ρ)
2 (x; u, v) = 1

1 + ρ

4∑
i=1

N3,i (u, v)gi(x).

A Laplace inversion with respect to ρ yields, for z > 0,

B
(0)
2 (x, dz; u, v) = e−z

4∑
i=1

N3,i (u, v)gi(x) dz.

By letting C = 1 and C = f (v) = 0, for s ≥ 0, we obtain

C(0,s)(x; u, v) =
4∑
i=1

( −2

s + 2
N1,i (u, v)+ −1

s + 1
N2,i (u, v)

)
gi(x).

By the definitions, we have

b
(0)
a,1(x) = −

4∑
i=1

D4,i (x − a, x)gi(x), b
(0)
a,2(x, dz) = e−z

( 4∑
i=1

D3,i (x − a, x)gi(x)

)
dz,

c(0,s)a (x) =
4∑
i=1

( −2

s + 2
D1,i (x − a, x)+ −1

s + 1
D2,i (x − a, x)

)
gi(x),

where we denote Dk,j (u, v) := (∂/∂v)Nk,j (u, v).
In Figure 1, we use MATHEMATICA® to numerically solve the integral equation (10).
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Figure 1: Plot of the probability h(x) = Px{Mτa ≤ K} for PEMP (20) with q = 0, μ = 1, λ = 3, a = 1,
K = 20, and jump size distribution given in (22).

4.2. A jump diffusion model

In this section we consider a generalized PEMP (Xt )t≥0 with diffusion whose dynamics are
governed by

dXt = Xt dt + √
2 dWt + dZt , t > 0, (24)

where the initial value X0 = x ∈ R, (Wt )t≥0 is a standard Brownian motion, and (Zt )t≥0 is an
independent compound Poisson process with a unit jump intensity and a unit mean exponential
jump distribution. The two-sided exit quantities of this generalized PEMP can also be solved
using the approach described in [15, Sections 6 and 7].

We define an integral kernel

ψ1(z) = ez
2/2

z(z+ 1)
, z ∈ C.

Let �i (i = 1, 2) be small counterclockwise circles around the simple poles μ1 = 0 and
μ2 = −1, respectively, and define the linearly independent functions

g1(x) := 1

2π
√−1

∫
�1

ψ1(z)e
−xz dz = 1,

g2(x) := 1

2π
√−1

∫
�2

ψ1(z)e
−xz dz = −ex+1/2,

for x ∈ R. To find another linearly independent partial eigenfunction, we consider the vertical
line �3 = {1 + t

√−1, t ∈ R} and define

g3(x) := 1

2π
√−1

∫
�3

ψ1(z)e
−xz dz. (25)

Next we derive an explicit expression for g3(x). We know from (25) that limx→∞ g3(x) = 0
and g3 is continuously differentiable with

g′
3(x) = − 1

2π
√−1

∫
�3

ez
2/2

z+ 1
e−xz dz. (26)
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Note that the bilateral Laplace transform functions (see, e.g. [38, Chapter VI]) of a standard
normal random variable U1 and an independent unit mean exponential random variable U2 are
given respectively by∫ ∞

−∞
e−zy 1√

2π
e−y2/2 dy = ez

2/2,

∫ ∞

0
e−zye−y dy = 1

z+ 1
,

for all complex z such that Re(z) ≥ 0. Hence, the bilateral Laplace transform of the density
function of U1 + U2, i.e. ∫ ∞

0

1√
2π

e−(x−y)2/2e−y dy

is given by ez
2/2/(z+1) for all complex z such that Re(z) ≥ 0. Since the right-hand side of (26)

is just the Bromwich integral for the inversion of the bilateral Laplace transform −ez
2/2/(z+1),

evaluated at −x, we deduce that

g′
3(x) = −

∫ ∞

0

1√
2π

e−(x+y)2/2e−y dy.

It follows that

g3(x) = −
∫ ∞

x

g′
3(y) dy = 1 −

∫ ∞

0
N(x + y)e−y dy,

where N(·) is the cumulative distribution function of standard normal distribution.
For any fixed −∞ < u < v < ∞, we define a matrix-valued function

(Mi,k(u, v))1≤i, k≤3 :=

⎛
⎜⎜⎝

1 g1(v) g1(u)

vev+1/2 g2(v) g2(u)

1 −
∫ ∞

0
N(v + y)ye−y dy g3(v) g3(u)

⎞
⎟⎟⎠ ,

where the first row is computed according to

Mi,1(u, v) = 1

2π
√−1

∫
�i

ψ0(z)

z+ 1
e−vz dz.

Note that M3,1(u, v) can be calculated in the same way as g3(x). We also denote the inverse
of (Mi,k(u, v))1≤i, k≤3 by (Nk,j (u, v))1≤k, j≤3.

By Equation (46) and a generalized Equation (48) of [15] (with ζ = s = 0 and ρ ≥ 0), we
obtain the linear system of equations

(c1, c2, c3)(Mi,k) =
(

C

ρ + 1
, f (v), f (u)

)
, (27)

where C is a constant to be specified later, and f (x) could stand for any of B(0)1 (x; u, v),
B
(0,ρ)
2 (x; u, v), orC(0,0)(x; u, v) and has the representationf (x) = ∑3

i=1 cigi(x), x ∈ [u, v].
By letting

• C = f (u) = 0 and f (v) = 1,

• C = 1 and f (v) = f (u) = 0,

• C = f (v) = 0 and f (u) = 1,
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Figure 2: Plot of the probability h(x) = Px{Mτa ≤ K} for the jump diffusion in (24) with K = 6
and a = 1.

for any ρ ≥ 0 and z > 0, and solving the linear system (27), we respectively obtain

B
(0)
1 (x; u, v) =

3∑
i=1

N2,i (u, v)gi(x), B
(0,ρ)
2 (x; u, v) = 1

1 + ρ

3∑
i=1

N1,i (u, v)gi(x),

B
(0)
2 (x, dz; u, v) = e−z

3∑
i=1

N1,i (u, v)gi(x) dz, C(0,0)(x; u, v) =
3∑
i=1

N3,i (u, v)gi(x).

Further, this implies that

b
(0)
a,1(x) = −

3∑
i=1

D2,1(x − a, x)gi(x), b
(0)
a,2(x, dz) = e−z

( 3∑
i=1

D1,i (x − a, x)gi(x)

)
,

c(0,0)a (x) =
3∑
i=1

D3,i (x − a, x)gi(x),

where we denote Dk,j (u, v) = (∂/∂v)Nk,j (u, v).
In Figure 2, we plot h(x) = Px{Mτa ≤ K} by numerically solving the integral equation (10)

using MATHEMATICA.

Appendix A. Proof of Lemma 1

We define ψn(z) = infm≥n φm(z) for z ∈ S. Further, we define ψ
n
(z) = lim infw→z ψn(w)

which is lower semicontinuous; see, e.g. Lemma 5.13.4 of [6]. Note that ψ
n

is increasing in n,
and by the definition of ψ

n
, we have

lim
n→∞ψn(z) = lim

n→∞ lim
r↓0

inf
w∈(z−r,z+r) inf

m≥n φm(w)

= lim
n→∞ lim

r↓0
inf

m≥n,w∈(z−r,z+r) φm(w)

≡ lim inf
n→∞,w→z

φn(w),
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where the second equality is because there is no ambiguity in switching the order of two
infimums. By the monotone convergence theorem, we have∫

S

lim inf
n→∞,w→z

φn(w) dμ(z) = lim
n→∞

∫
S

ψ
n
(z) dμ(z). (A.28)

By the Portmanteau theorem of weak convergence and the fact that ψ
n
(z) is nonnegative and

lower semicontinuous, it follows that∫
S

ψ
n
(z) dμ(z) ≤ lim inf

m→∞

∫
S

ψ
n
(z) dμm(z) for any n ∈ N. (A.29)

Moreover, since ψn(z) is monotone increasing in n, we have

lim inf
m→∞

∫
S

ψ
n
(z) dμm(z) ≤ lim inf

m→∞

∫
S

ψ
m
(z) dμm(z). (A.30)

By (A.28)–(A.30),∫
S

lim inf
n→∞,w→z

φn(w) dμ(z) ≤ lim inf
m→∞

∫
S

ψ
m
(z) dμm(z) ≤ lim inf

m→∞

∫
S

φm(z) dμm(z),

where the last inequality is due to ψ
m
(z) ≤ ψm(z) ≤ φm(z).

Suppose that {φn}n∈N is uniformly bounded byK > 0, by applying (7) to {K − φn}n∈N, we
obtain

Kμ(S)−
∫
S

lim sup
n→∞,w→z

φn(w) dμ(z) =
∫
S

lim inf
n→∞,w→z

(K − φn(w)) dμ(z)

≤ lim inf
n→∞

∫
S

(K − φn(z)) dμn(z)

= K lim inf
n→∞ μn(S)− lim sup

n→∞

∫
S

φn(z) dμn(z).

Therefore, (8) follows immediately by the weak convergence of μn and μ(S) < ∞.

Appendix B. Assumption verification for Example 4

Lemma B.1. Consider the PMEP (20) with a continuous jump size distribution F(·). For
q, s ≥ 0 and 0 < u0 < x0 < v0, we have

lim
(u,v)↓(u0,v0)

g(x0; u, v) = lim
(x,u)↑(x0,u0)

g(x; u, v0) = g(x0, u0, v0),

where the function g(x; u, v) is any of the following three functions:

B
(q)
1 (x; u, v), B

(q,s)
2 (x; u, v), C(q,s)(x; u, v).

Proof. Note that the condition 0 < u0 < x0 < v0 is to ensure the process X remains
positive before exiting these finite intervals, which further implies X is upward regular and
creeps upward. We limit our proof to

lim
(u,v)↓(u0,v0)

B
(q)
1 (x0; u, v) = B

(q)
1 (x0; u0, v0). (B.1)
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The other results can be proved in a similar manner. By the relationship v > v0 > u > u0, we
have

|B(q)1 (x0; u0, v0)− B
(q)
1 (x0; u, v)|

≤ |Ex0 [e−qT +
v0 1{T +

v0<T
−
u0 , XT+

v0
=v0}] − Ex0 [e−qT +

v 1{T +
v <T

−
u ,XT+

v
=v,X

T
+
v0

=v0}]|
+ Px0{v0 < XT +

v0
≤ v}. (B.2)

It is clear that the last term of (B.2) vanishes as v ↓ v0 by the right-continuity of the distribution
function of XT +

v0
. Also,

|Ex0 [e−qT +
v0 1{T +

v0<T
−
u0 , XT+

v0
=v0}] − Ex0 [e−qT +

v 1{T +
v <T

−
u ,XT+

v
=v,X

T
+
v0

=v0}]|

= Ex0 [e−qT +
v0 1{T +

v0<T
−
u ,XT+

v0
=v0}] − Ex0 [e−qT +

v 1{T +
v <T

−
u ,XT+

v
=v,X

T
+
v0

=v0}]

+ Ex0 [e−qT +
v0 1{T −

u <T
+
v0<T

−
u0 , XT+

v0
=v0}]

≤ 1 − Ev0 [e−qT +
v 1{T +

v <T
−
u ,XT+

v
=v}] + Px0{T −

u < T +
v0
< T −

u0
}. (B.3)

Let ζ be the time of the first jump of the compound Poisson process Z with jump rate λ > 0.
Note thatX will increase continuously up to time ζ as long as the initial value is positive. Since
v > v0 > 0, we have

1 − Ev0 [e−qT +
v 1{T +

v <T
−
u ,XT+

v
=v}] ≤ 1 − Ev0 [e−qT +

v 1{ζ>T +
v }] = 1 −

(
v

v0

)−(q+λ)/μ
. (B.4)

By conditioning on XT −
u −, we obtain

Px0{T −
u < T +

v0
< T −

u0
} ≤

∫ v0

u

Px0{XT −
u − ∈ dy}P{y − u < J ≤ y − u0}

≤ max
u0≤y≤v0

(F (y − u0)− F(y − u)). (B.5)

Since F(·) is continuous, and, hence, uniformly continuous for y ∈ [0, v0 − u0], it follows
that the right-hand side of (B.5) vanishes as u ↓ u0. From (B.2)–(B.5), we conclude that (B.1)
holds.

Note that although (B.5) only uses the continuity ofF on [0,∞), the proof forC(q,s)(x; u, v)
will use the continuity of F on (−∞, 0]. �

Proposition B.1. Assumptions (A1)–(A3) hold for the piecewise exponential Markov pro-
cess (20) with a continuous jump size distribution F(·) and initial value X0 ≥ a.

Proof. For 0 < u < x < v, by the strong Markov property, we have

B
(q)
1 (x; u, v) = Ex[e−qT +

v 1{T +
v <T

−
u ,XT+

v
=v, ζ>T +

v }] + Ex[e−qT +
v 1{T +

v <T
−
u ,XT+

v
=v, ζ<T +

v }]

=
(
v

x

)−(q+λ)/μ

+ λ

∫ (1/μ) ln v/x

0
e−(q+λ)t dt

∫ v−xeμt

u−xeμt
B
(q)
1 (xeμt + w; u, v)F (dw). (B.6)
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By Lemma B.1, (B.6), and the dominated convergence theorem, it is straightforward to verify
that assumption (A1) holds and, for x > a,

b
(q)
a,1(x) = q + λ

μx
− λ

μx

∫ 0

−a
B
(q)
1 (x + w; x − a, x)F (dw).

Note that we require x > a as otherwise x + w in the above equation could be negative for
w ∈ (−a, 0), and then Lemma B.1 does not apply. Obviously,

∫ y
x
b
(q)
a,1(w) dw < ∞ for all

0 < x < y < ∞. Similarly, by conditioning on the first jump of Z, for 0 < u < x < v,

B
(q)
2 (x, dz; u, v) = λ

∫ (1/μ) ln v/x

0
e−(q+λ)tF (v − xeμt + dz) dt

+ λ

∫ (1/μ) ln v/x

0
e−(q+λ)t dt

∫ v−xeμt

u−xeμt
B
(q)
2 (xeμt + w, dz; u, v)F (dw)

and

C(q,s)(x; u, v) = λ

∫ (1/μ) ln v/x

0
e−(q+λ)t dt

∫ v−xeμt

−∞
C(q,s)(xeμt + w; u, v)F (dw),

where it is understood that C(q,s)(xeμt +w; u, v) = exp(s(xeμt +w− u)) for w < u− xeμt .
One can verify from Lemma B.1 and the dominated convergence theorem that assumptions (A2)
and (A3) hold, and, for x > a,

b
(q)
a,2(x, dz) = λ

μx
F(dz)+ λ

μx

∫ 0

−a
B
(q)
2 (x + w, dz; x − a, x)F (dw)

and

c
(q,s)
a (x) = λ

μx

∫ 0

−∞
C(q,s)(x + w; x − a, x)F (dw).

This completes the proof. �

Appendix C. Assumption verification for Example 5

Let U be the continuous component of X, which is a linear diffusion process with the
infinitesimal generator

LU = 1

2
σ 2(y)

d2

dy2 + μ(y)
d

dy
.

It is well known that, for any q > 0, there exist two independent and positive solutions, denoted
as φ±

q (y), to the Sturm–Liouville equation

LUφ
±
q (y) = qφ±

q (y), (C.1)

where φ+
q (·) is strictly increasing and φ−

q (·) is strictly decreasing. By the Lipschitz assumption
on μ(·) and σ(·), it follows from the Schauder estimates (see, e.g. Theorem 6.14 of [11]) of
(C.1) that φ±

q (·) ∈ C2,α(�̄) for any α ∈ (0, 1] and any compact set �̄ ⊂ R. We refer the
interested reader to [11, Section 4.1] for more detail on the Hölder space C2,α(�̄).
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We denote the first hitting time of U to level z ∈ R by Hz = inf{t > 0 : Ut = z}. It is well
known that, for u ≤ x ≤ v,

Ex[e−qHu 1{Hu<Hv}] = fq(x, v)

fq(u, v)
and Ex[e−qHv 1{Hv<Hu}] = fq(u, x)

fq(u, v)
, (C.2)

where fq(x, y) := φ+
q (x)φ

−
q (y)− φ+

q (y)φ
−
q (x). Note that fq(x, y) is strictly decreasing in x

and strictly increasing in y with fq(x, x) = 0. In particular, for u ≤ x ≤ v, we have

Ex[e−qHu ] = φ−
q (x)

φ−
q (u)

and Ex[e−qHv ] = φ+
q (x)

φ+
q (v)

. (C.3)

For eq an independent exponential random variable with mean 1/q < ∞, the q-potential
measure of U is given by

rq(x, y) := (1/q)Px{Ueq ∈ dy}
dy

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

qσ 2(y)

φ+
q (x)φ

−
q (y)

fq,1(y, y)
, x ≤ y,

2

qσ 2(y)

φ+
q (y)φ

−
q (x)

fq,1(y, y)
, x > y,

where fq,1(x, y) := (∂/∂x)fq(x, y). Further, the q-potential measure of U killed on exiting
the interval [u, v], for u ≤ x, y ≤ v, is given by

θ(q)(x, y; u, v) := (1/q)Px{Ueq ∈ dy, eq < Hu ∧Hv}
dy

= rq(x, y)− fq(x, v)

fq(u, v)
rq(u, y)− fq(u, x)

fq(u, v)
rq(v, y). (C.4)

The next lemma is an analogy of Lemma B.1. Thanks to the diffusion term in the jump
diffusion model (21), we now allow for the presence of atoms in the jump intensity measure ν(·).
Lemma C.1. Consider the jump diffusion model (21). For q, s ≥ 0 and u0 < x0 < v0, we
have

lim
(u,v)↓(u0,v0)

g(x0; u, v) = lim
(x,u)↑(x0,u0)

g(x; u, v0) = g(x0, u0, v0),

where g(x; u, v) is any of the following functions:

B
(q)
1 (x; u, v), B

(q,s)
2 (x; u, v), C(q,s)(x; u, v).

Proof. We can follow the same proof as Lemma B.1 with the exception that the probability
term Px0{T −

u < T +
v0
< T −

u0
} in (B.5), which will be handled distinctly here. We have Xt = Ut

a.s. for t < ζ , where ζ is the first time a jump occurs which follows an exponential distribution
with mean 1/λ = 1/ν(R) > 0. For any u0 < u < x0 < v0, by (C.2) and (C.3), we have

Px0{T −
u < T +

v0
< T −

u0
} ≤ Pu{T +

v0
< T −

u0
}

= Pu{T +
v0
< T −

u0
, ξ > T +

v0
} + Pu{ξ ≤ T +

v0
< T −

u0
}

≤ Eu[e−λHv0 1{Hv0<Hu0 }] + 1 − Eu[e−λHu0 ]

= fq(u0, u)

fq(u0, v0)
+ 1 − φ−

q (u)

φ−
q (u0)

.

Therefore, it follows that limu↓u0 Px0{T −
u < T +

v0
< T −

u0
} = 0 by fq(u0, u0) = 0. �
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Proposition C.1. Assumptions (A1)–(A3) hold for the jump diffusion model (21).

Proof. By the strong Markov property, (C.2), and (C.4), for u < x < v, it follows that

B
(q)
1 (x; u, v) = Ex[e−qT +

v 1{T +
v <T

−
u , T

+
v =v, ζ>T +

v }] + Ex[e−qT +
v 1{T +

v <T
−
u , T

+
v =v, ζ<T +

v }]
= Ex[e−(q+λ)Hv 1{Hv<Hu}]

+
∫ v

u

Ex[e−qζ 1{ζ<Hu∧Hv,Uζ∈dy}]
∫

R

B
(q)
1 (y + γ (y,w); u, v)ν(dw)

λ

= fq+λ(u, x)
fq+λ(u, v)

+
∫ v

u

θ(q+λ)(x, y; u, v) dy
∫

R

B
(q)
1 (y + γ (y,w); u, v)ν(dw),

where it is understood that B(q)1 (y + γ (y,w); u, v) = 0 if γ (y,w) > v − y or γ (y,w) <
u − y. By Lemma C.1, the dominated convergence theorem, and the identity fq+λ(u, v) =
−fq+λ(v, u), we can verify that assumption (A1) holds with

b
(q)
a,1(x) = −fq+λ,1(x − a, x)

fq+λ(x − a, x)
−

∫ x

x−a
θ̃
(q+λ)
a (x, y) dy

∫
R

B
(q)
1 (y + γ (y,w); x − a, x)ν(dw),

where we write

θ̃
(q+λ)
a (x, y)

:= −fq+λ,1(x − a, x)

fq+λ(x − a, x)
rq+λ(x, y)− rq+λ,1(x, y)+ fq+λ,1(x, x)

fq+λ(x − a, x)
rq+λ(x − a, y)

and rq+λ,1(x, y) := (∂/∂x)rq+λ(x, y). The integrability of b(q)a,1(·) follows from the continuity
of the φ+

q (·) and φ−
q (·).

Similarly, by the strong Markov property of X, (C.2), and (C.4), we have

B
(q)
2 (x, dz; u, v) =

∫ v

u

θ(q+λ)(x, y; u, v) dy
∫

R

B
(q)
2 (y + γ (y,w), dz; u, v)ν(dw),

C(q,s)(x; u, v) = fq+λ(x, v)
fq+λ(u, v)

+
∫ v

u

θ(q+λ)(x, y; u, v) dy
∫

R

C(q,s)(y+γ (y,w); u, v)ν(dw).
One can verify from Lemma C.1 that assumptions (A2) and (A3) hold with

b
(q)
2,a(x, dz) =

∫ x

x−a
θ̃
(q+λ)
a (x, y) dy

∫
R

B
(q)
2 (y + γ (y,w), dz; x − a, x)ν(dw),

c
(q,s)
a (x) = −fq+λ,1(x, x)

fq+λ(x − a, x)
+

∫ x

x−a
θ̃ (q+λ)(x, y) dy

∫
R

C(q,s)(y + γ (y, z); x − a, x)ν(dw).

This completes the proof. �
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