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Abstract

Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use
than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions
provide the designer with the flexibility to apply any level of abstract and generalized knowledge for a new layout
design problem. Existing case-based layout learning (CBLL) systems abstract and generalize cases into single levels of
abstractions, but not into a hierarchy. In this paper, we propose a new approach, termedcustomized viewpoint—spatial
(CV–S), which supports the generalization and abstraction of spatial layouts into hierarchies along with a supporting
system, SPIDA (SPatial Intelligent Design Assistant).
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1. INTRODUCTION

The utilization of spatial layout design experience can be con-
sidered as being a key part of the spatial layout design pro-
cess in that a form of design experience is used or modified
to produce a new design solution (Foz, 1973; Akin, 1978;
Jones, 1980). Here, design experience refers tospecificpast
spatial layout design cases andabstractandgeneralized
knowledge generated from these cases by the processes of ab-
straction and generalization. Abstraction can be considered
as being a process of reducing the complexity of an object (Si-
mon, 1981; Darden, 1987; Coyne & Flemming, 1990; Ox-
man, 1990; Hoover et al., 1991). Generalization is defined as
being an inference process or learning from examples, aim-
ing to generate concepts whose descriptions are more gen-
eral than those of the examples (Cohen & Feigenbaum, 1982).
Thus, a basic distinction made in this paper is that abstrac-
tion reduces detail but can be applied to a single case, whereas
generalization generates new knowledge from more than one
case and thus represents more widely applicable knowledge.

Generalization of past spatial layout design cases intohi-
erarchical levelsof abstractions provides the designer with

the flexibility to apply any level of abstract and generalized
knowledge to a new design problem (Duffy, 1993; Duffy &
Kerr, 1993). It also supports an efficient search for the best
matched cases because it provides a reduced search space
of the cases (Oxman, 1990). That is, the search is directed
from the higher to lower levels of abstract and generalized
knowledge in the hierarchy rather than to the cases. Simi-
larly, the abstraction of a single case intohierarchical lev-
elsof abstractions provides the designer with the flexibility
to choose any level of abstraction that he or she needs for
generating a new design solution.

In the field of spatial design, existing case-based layout
learning (CBLL) systems support the abstraction and gen-
eralization of layout design cases by learning from the cases
(Coyne et al., 1989; Coyne & Postmus, 1990). However,
theydo notgeneralize design cases into a hiearchy, but rather
generalize the cases into a single abstract level. Conse-
quently, the designer is restricted to using the abstract and
generalized knowledge of only one level of abstraction of
the cases. In addition, when searching for the best matched
cases, these systems can only reduce the search space by
considering a single level of abstraction. Thus, guided search-
ing through abstract hierarchies in a top-down manner is
prohibited. The systems alsodo notabstract a single case
into a hierarchy according to the designer’s needs.

In this paper, we present a new approach, called thecus-
tomized viewpoint—spatial(CV–S), which is proposed to
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overcome the above limitations that existing CBLL sys-
tems have. It builds on the work of Duffy and Kerr, who
advocate that viewpoints should be customized to suit par-
ticular designers’ needs (Duffy & Kerr, 1993; Kerr, 1993).
Thus, the CV–S approach supports the effective utilization
of spatial layout design experience by generalizing past spa-
tial layout design cases and abstracting a single case into
hierarchical levels of abstractions according to the design-
er’s needs. In addition, the realization of this approach in a
computer system is presented.

To introduce the CV–S approach and its realization in a
computer system, the existing CBLL systems are briefly re-
viewed in Section 2. Aspects of pattern matching as a key
process of generalization of layouts are discussed briefly in
Section 3. The CV–S approach is presented in Section 4,
followed by the key descriptions of techniques used to im-
plement the approach in Section 5. The implementation of
the CV–S approach in a computer system, SPIDA, is pre-
sented in Section 6. An evaluation of the SPIDA system in
the light of dimensions of learning in design as defined by
Grecu and Brown (1996) is presented in Section 7. Finally,
a conclusion of the work presented in this paper is pre-
sented in Section 8.

2. EXISTING CBLL SYSTEMS

Systems developed by Coyne et al. (1989) and Coyne and
Postmus (1990) are examples of the existing CBLL sys-
tems. Both systems use neural networks to represent and
generalize past spatial layout design cases. In general, the
systems learn a set of patterns of design cases and acquire
general descriptions of the patterns. When presented with a
partial input pattern, the systems produce the output pattern
by completing the input pattern, using the acquired general
descriptions. Consequently, the result of this generalization
process is a single-level abstraction of the design cases in
the form of the output pattern.

In the above systems, pattern matching is involved when
matching a partial input pattern against a set of learned pat-
terns, to produce an output pattern that represents the general
descriptions of the learned patterns. Thus, pattern matching
is a key process of the generalization process and one that has
received little attention in spatial layout design.

3. OVERVIEW OF PATTERN MATCHING

Pattern matching can be defined simply as the activity of
matching patterns with the aim of finding similarities be-
tween them for the purpose of recognition and/or retrieval
of similar patterns. One field where pattern matching is in-
volved is pattern recognition (Fu, 1976). In this field, pat-
tern matching is used to decide how closely an input pattern
“fits” a class of patterns, thus classifying the input pattern
into a predetermined class. It also plays a vital role in de-
sign, where the process often is greatly assisted by identi-
fying, retrieving, and then modifying appropriate past design

cases, and generalizing the cases, with the implied benefit
of being able to utilize relevant past experience (Maher &
Zhao, 1987; Duffy & Kerr, 1993).

Anumber of approaches with their diverse techniques have
been developed in pattern matching. The three main aspects
that characterize a pattern matching technique arepattern
classes, degree of similarity, andmatching methods.These
three main aspects are addressed briefly in the following
three subsections.

3.1. Pattern classes

Pattern classesrefer to the classes of patterns that are used
in the pattern matching process. The four basic classes of
patterns aregeometric patterns, topological relations, dis-
tributed patterns, andsemantic/symbolic patterns(see Fig-
ure 1). Patterns in the class geometric patterns, for example,
point sets, dimensional graphs, and drawings, are repre-
sented in coordinate systems. The class topological rela-
tions is represented as a network or a graph made up of
vertices, edges, and faces. This network or graph represents
connections of the elements of a pattern. Patterns in the class
distributed patterns, for example,spatial patterns, spatial
relationship patterns, andgraphical patterns, are distrib-
uted across a matrix of grid units or of pixels in computer
monitors. Examples of the class semantic/symbolic pat-
terns aretextandsymbols(such as diagrams, icons, etc.).

3.2. Degree of similarity

The degree of similarity reflects the amount of match be-
tween patterns of matched objects. There are different ap-
proaches to defining the degree of similarity that may exist
between matched objects. For example, Smith (1989) clas-
sifies the degree of similarity into five classes:resem-
blances, overall similarity, identity, part-similarity, andpart-
identity (see Figure 2). In Figure 2, each class is illustrated
with three examples, each showing the relationship be-
tween two objects in a pair. The attributes of each object in
the pair, such as the color, shape, and dimension, are used
to compare the objects.

The classresemblancesis an all-encompassing class of
similarity that includes the other four classes and is, there-
fore, similarity at its most “undisciplined”—unconstrained
and unspecified (Smith, 1989). The classesoverall similar-
ity and identityare concerned with a whole-object similar-
ity that takes into account all of an object’s characteristics
at once, and no particular attributes are emphasized. Over-
all similarity is defined for objects that are discriminably
different but also highly similar overall, while identity is
concerned with objects that are the same. The classespart-
similarity andpart-identityare concerned with the constit-
uent attributes of objects, that is, particular aspects or
attributes are emphasized in the comparison.Part-similarity
is defined for objects whose particular attributes are con-
sidered similar, whilepart-identityis defined for objects that
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Fig. 1. Four basic classes of patterns (Manfaat et al., 1996).

Fig. 2. Illustrations of classes of the degree of similarity (adapted from Smith, 1989).
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are identical in their particular attributes or share common
particular attributes.

3.3. Matching methods

The underlying methodology on which matching processes
are based can also have significant effects on the character-
istics of pattern matching techniques, and thus is an impor-
tant issue when considering adoption for specific applications.
In design, different matching methods are used. An example
is neural networksused in the CBLL systems mentioned in
Section 2. The method is used to match a partial input pattern
against a set of learned patterns of layout design cases. An-
other method issymbolic pattern matching, which is, in most
cases, used in case-based design (CBD) systems (Bareiss,
1991; Kolodner, 1993) to match design attributes. Other meth-
ods arebitmap matchingandgraph-theoretic algorithms, such
as those used in a CBD system called FABEL (Voß et al.,
1994). The former is used to match images of layout design
cases, while the latter are used to match topological relations
of the furniture of room design cases.

4. CUSTOMIZED VIEWPOINT—
SPATIAL APPROACH

In this paper, we present a new approach to abstracting
and generalizing layout design cases calledcustomized
viewpoint—spatial(CV–S). This approach is aimed to over-
come the limitations that existing CBLL systems have. It
is based on thecustomized viewpoint(CV) approach (Duf-
fy & Kerr, 1993; Kerr, 1993), which advocates the abstrac-
tion and generalization of specific experiential design
knowledge into appropriate viewpoints according to the de-
signer’s needs. That is, the designer can select particular

viewpoints for abstraction and generalization. The CV ap-
proach focuses on numerical design. Our CV–S approach
is concerned with spatial design.

The CV–S approach has two separate parts:generaliza-
tion of layouts andabstractionof a single layout into hier-
archical levels of abstractions, based on different viewpoints,
according to the designer’s needs (see Figure 3). The gen-
eralization part focuses on layouts and their different levels
of generalized knowledge, while the abstraction part fo-
cuses on a layout and its levels of abstractions. In the case
of abstracting a layout, the designer can browse over the set
of layouts and select a layout for the abstraction into a hi-
erarchy. The designer then can utilize any level of a layout’s
abstractions in the hierarchy for a new design problem.

4.1. Generalization of spatial layouts

In the synthesis stage oforiginal design, that is, design that
involves elaborating original solution principles for the de-
sign problem to form a new design product (Pahl & Beitz,
1988), the design solution generated is based on previously
defined design attributes. In spatial design, the designer of-
ten uses diagrams (e.g., “bubble diagrams”) and sketches to
help him or her generate initial layout design solutions
(Jones, 1963). In “diagramming,” the designer draws the di-
agrams of adjacencies between spaces that result in the to-
pological pattern of the layout. While in sketching the
designer draws the spaces, each with its geometric shape,
based on the diagrams of spatial adjacencies, thus combin-
ing the topological pattern and geometric shape of the lay-
out. Consequently, in a spatial layout design process that
directly utilizes past layout solutions or their abstractions
as the initial solution, there are two main advantages:

Fig. 3. CV–S approach.
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• the designer’s task of generating the solution can be
reduced; and

• the designer can be provided with a suitable topologi-
cal pattern or combination of topological pattern and
geometric layout.

As addressed in Section 2, by using neural networks, the
existing CBLL systems are able to generalize patterns of
layout designs, for example, spatial patterns and spatial ad-
jacency patterns. Given a partial input pattern, the systems
complete this pattern using the general descriptions ac-
quired from a set of learned patterns. However, the draw-
backs of neural networks are that a change to the input pattern
(e.g., due to rotation, scaling, translation, etc.) should result
in a mismatch of the output pattern (Manfaat et al., 1996),
and that they are essentially “black boxes,” in that the knowl-
edge they contain is not explicit with the same clarity, for
example, as symbolic representations (e.g., rules in an ex-
pert system) (Coyne et al., 1989).

Considering the drawbacks of neural networks and the
advantages of using past layout solutions, we present two
approaches to generalizing layouts into a hierarchy based
on two different viewpoints: topology (similarities in spa-
tial adjacencies) and a combination of topology and geom-
etry (similarities in spatial adjacencies and geometric shapes),
respectively. These two approaches, and a number ofkey
issues that should be taken into account if either of these
two approaches is to be pursued, will be discussed briefly
in the following three sections.

4.1.1. Topological generalization

In this paper, the wordtopologyrefers to adjacencies be-
tween the spaces of a layout in terms of the nature of the
spaces. The name of a space expresses the nature of the space.
Two spaces, for example,galley1andgalley2, have the same

nature, that is, a galley. In the nature of a space, there is an
inherent function that allows analogies. For example, a gal-
ley and a pantry are analogous to spaces used for the prep-
aration and cooking of food.

The topology of a layout can be represented as an adja-
cency graph. As an example, consider a set of eight spatial
layouts of the catering decks of passenger ships given in
Figure 4. When generalizing this set based on topology, the
hierarchy of adjacency graphs given in Figure 5 may rep-
resent the result of this generalization. The grouping of the
layouts and their abstractions, respectively, are based on sim-
ilarities in these graphs, that is, the number of the same ad-
jacency relations that preserve the corresponding nodes
(spaces) between the graphs. For example, at the lowest level
of the hierarchy, ships 6, 7, and 8 share the maximum num-
ber of adjacency relations that preserve the corresponding
nodes, as compared to the graphs of the other ship layouts.
Therefore, the graphs of these three ships are generalized
into a generalized graph,gg1, one level above them. The
process of generalization continues to the higher levels un-
til the overall hierarchy of adjacency graph abstractions is
generated.

4.1.2. Combined topological and
geometric generalization

When generalizing spatial layouts based on the combina-
tion of the topological patterns and geometric shapes of the
layouts, topological pattern matching between the layouts
is initially carried out. This is because, as discussed previ-
ously, in the spatial design process the designer often gen-
erates the initial solution based on “bubble diagrams” and
sketches. The diagrams represent patterns of connectivity
(topology) between spaces. In sketching the layout the to-
pology is also represented, in addition to other features, such
as shapes, sizes, and so on. Thus, topology is one of the

Fig. 4. A set of eight spatial layouts of the catering decks of passenger ships.
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main features of a layout that initially should be taken into
account when generating the solution. Once the correspond-
ing spaces of each of the matching layouts have been de-
fined, geometric shape matching then is applied to each of
these corresponding spaces. The result of the matching of
each of these corresponding spaces gives a measure of the
similarity between the spaces. Accumulating the measures
of similarity of all of the corresponding spaces gives an over-
all measure of the similarity between the matched layouts.
The clustering of the layouts and their abstractions, respec-
tively, is based on their measures of similarity.

As an example, when generalizing the set of layouts in
Figure 4 based on the combination of topological patterns
and geometric shapes of layouts, we may have a hierarchy
of generalized layouts as shown in Figure 6. In this figure,
in terms of adjacency graphs, the layouts of ships 6, 7, and
8 are similar (see Figure 5). However, in terms of geometric
shapes, the layouts of ships 6 and 7 are more similar than if
each of these layouts is compared to the layout of ship 8.
That is, all of the shapes in ships 6 and 7 are the same, but
in ship 8 the restaurant (R) and shop (S) are different. There-
fore, the layouts of ships 6 and 7 are generalized into a gen-
eralized layout,gl1, one level above them. The generalization
process continues to the higher levels until the overall hi-
erarchy of layout abstractions is generated.

4.1.3. Key issues

Realizing these two approaches to learning from past de-
signs, within a computer support environment, gives rise to
a number ofkey issues:

• How to represent the layouts?Representations of the
layouts should support the processes involved, such as
pattern matching, clustering, generalization, and re-
trieval of the layouts and their abstractions. For exam-
ple, closed polygons may be used to represent the
geometric shape or pattern of a layout. These polygons
may be transformed into a different representation in
order for a process, for example, pattern matching, to
be carried out.

• How to pattern-match the layouts?To generalize the
layouts, we need to cluster them into groups. To clus-
ter them, we need to pattern-match one layout to an-
other. For example, given two geometric patterns to
match, the pattern-matching process should be carried
out in such a way that the result of matching is as ac-
curate as possible. Further, if there is a change to ei-
ther or both of the patterns (e.g., due to rotation, scaling,
translation, etc.), the accuracy of matching should not
be affected. That is, the matching process should be
robust.

Fig. 5. Generalization of graphs of spatial adjacencies of the layouts in Figure 4.
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• How to measure similarities between the layouts?
Matching layouts results in a degree of similarity, such
as an overall or a part similarity, between them. It is
carried out by comparing the parts and/or attributes of
one layout with those of another. For example, in match-
ing two graphs representing two topological patterns
of layouts, the measuring of similarities between the
graphs is carried out by finding the correspondences
between the nodes of one graph and those of another
graph, which preserve the correspondences between the
links of the graphs.

• How to cluster similar layouts?Based on the measures
of similarities between the layouts, the layouts can be
clustered into groups. The clustering should be done in
such a way that the layouts that have a higher degree
of similarity should be clustered in the same group. The
groups of the layouts should further be able to be clus-
tered into higher level groups representing abstrac-
tions of the layouts.

• How to generalize the layouts into a hierarchy?Given
clusters of layouts or abstractions, it should be possible

to generalize the layouts or abstractions in each cluster
to generate the abstract and generalized (i.e., learned)
knowledge. This leads to the generalization of layouts
into a hierarchy. In each level of generalization, the gen-
eralization process is carried out by preserving the com-
mon parts and/or attributes of the layouts or abstractions
and neglecting the other parts and/or attributes that are
significantlydifferent.Forexample, inabstracting thead-
jacency graphs of layouts, the corresponding nodes
(spaces) that have the correspondences of adjacency re-
lations are preserved, while the other nodes are dropped.
It also should be noted that different hierarchies can be
generated. This is because when matching the topolog-
ical patterns of two layouts in both kinds of generaliza-
tions, for example, there can be different sets of
corresponding spaces that have the same number of ad-
jacency relationsbetween thespaces.Thismeans thatdif-
ferent clusters and hence different generalizations may
be generated.

• How to search, match, and retrieve similar layouts given
an input layout?To retrieve layouts similar to a given

Fig. 6. Generalization of spatial layouts based on the combination of their topological patterns and geometric shapes.
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input layout, we need to search the layouts and their
abstractions and match the input against them. The in-
put given by the designer should be represented in such
a way that these searching and matching processes can
be carried out. Once the matching layouts or abstrac-
tions are found, it should be possible to retrieve the
layouts and/or abstractions.

• How to update the hierarchical abstractions of layouts
when new layouts are added?This involves augment-
ing the hierarchical abstractions of layouts by adding
new layouts. Will the added layouts be accommodated
into particular clusters of layouts/abstractions as the new
instances of these clusters? Or will these hierarchical
abstractions be regenerated by including the added lay-
outs?

By addressing such issues, a resulting system will be able
to learn, and make explicit, previously implicit knowledge
through the generation of abstract hierarchies and general-
ized topological and shape knowledge.

4.2. Abstraction of a spatial layout

A hierarchical approachto layout design problems has been
suggested by various design researchers and used in design
practice (Eastman, 1973; Pfefferkorn, 1975; Carlson & Fire-
man, 1987; Cort & Hills, 1987). In this approach, a layout
is generated hierarchically from groups of spaces (abstract)
to smaller groups (more specific) and so on until the layout
is completely determined. In other words, the design pro-
cess proceeds from an abstract to a more detailed layout,
forming hierarchical levels of layout abstractions. With such
hierarchical levels of abstractions, design can be carried out
at each level of abstraction. For example, in designing a
building layout, design can be carried out at the levels of
floors, groups of functional spaces, individual spaces, and
furniture within the spaces. Abstraction of a past spatial lay-
out into a hierarchy therefore provides the designer with lay-
out abstractions with which he or she can carry out his or
her design at any level.

In the abstraction of a layout, learning is involved when
generalizing parts of the layout that have common aspects
or attributes. For example, when abstracting a building lay-
out from the level of individual spaces to that of the groups
of functional spaces, individual spaces with the same func-
tions are generalized, forming groups of functional spaces.

Based on the importance of abstraction in design as ad-
dressed above, in the CV–S approach, the abstraction of a
layout into a hierarchy based on the designer’s needs is pre-
sented. That is, the abstraction is based on particular as-
pects or viewpoints that the designer wishes to focus on. In
the spatial design process, when generating the design so-
lution, the designer applies some design features, for exam-
ple, the functions, sizes, shapes of and degree of importance
of adjacencies between the spaces, and considerations, for
example, the grouping of spaces based on their functions.

To provide the designer with different perspectives of the
abstraction, four viewpoints have been defined in the CV–S
approach:area(the areas of spaces),function(the functions
of spaces, e.g.,food preparation, store, shop), type(the class
of spaces, e.g.,private, public, andcirculation), andclose-
ness rating(the degree of importance of adjacencies be-
tween spaces). Figure 7 illustrates the abstraction of a layout
based on these four viewpoints. The initial layout has spaces
denoted with letters from a to s.

In Figure 7, in the area viewpoint where the abstraction
starts, for example, with spaces whose area are minimum,
on the first level of abstraction spaces e, f, and g, and h, i, j,
k, l, and m have been abstracted into two abstract spaces:
(e f g) and (h i j k l m),respectively. On the next level of ab-
straction, spaces n and o, and p, q, r, and s have been ab-
stracted into two more abstract spaces: (n o) and (p q r s),
respectively.

In the function viewpoint, the abstraction of the layout is
based on the adjacent spaces whose functions are the same.
For example, spaces h, i, j, k, l, and m have the same func-
tion: 1. Therefore, on the first level of abstraction they are
abstracted into an abstract space whose function is 1.

In the type viewpoint, the adjacent spaces are abstracted
into classes to which the spaces belong. These classes may
be termed with different names, such as private, public, and
circulation areas. For example, in a house the types of the
bedroom and dining room may be called, say, private areas;
thus, if they are adjacent, they can be abstracted into one
larger space, private area. In Figure 7, spaces 2, 3, 4, and 5,
for example, have the same space type, that is, B. Conse-
quently, when abstracting these spaces, an abstract space
whose type is B is generated.

In the closeness rating viewpoint, the abstraction of the
layout is based on the degree of closeness (the importance
of adjacencies) between the spaces based on a particular as-
pect, for example, ease of movement, visual communica-
tion, aural communication. The higher the degree, the more
important the adjacency between them. Therefore, the ab-
straction starts from the spaces with the highest degree of
closeness. For example, in Figure 7, on the first level of
abstraction, spaces h, i, j, k, l, and m, and p, q, r, and s have
been abstracted into two abstract spaces based on the high-
est degree of closeness.

Like the generalization of layouts, the abstraction of a
layout gives rise to severalkeyissues that need to be taken
into account. These key issues are outlined briefly as follows:

• How to represent the layout?Representations of the
layout should support the abstraction processes based
on four viewpoints:area, function, type, andcloseness
rating. For example, for the abstraction based onarea,
each space of the layout should be geometrically rep-
resented, including its coordinate points, dimensions,
and area.

• How to abstract the layout?This involves determining
themethods tobeused for theabstractionprocessesbased
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on the four viewpoints and how the processes are to be
carried out.

• How to generate hierarchical abstractions of the lay-
out?It should be possible for hierarchical abstractions
of the layout to be generated, so that the designer can
utilize any level of abstraction that he or she wishes.

5. IMPLEMENTATION TECHNIQUES
FOR THE CV–S APPROACH

In this section, techniques used to implement the CV–S ap-
proach within a computer support environment are briefly
described. They are divided into two parts, following the
two parts of the CV–S approach: the generalization of lay-
outs and the abstraction of a layout.

5.1. Generalization of layouts

The techniques used to generalize layouts consist of those
for pattern-matching and clustering and generalizing lay-
outs.As for pattern-matching, the use of thesymbolicmethod
does not directly support the generalization of the topolog-
ical patterns and the combination of the topological pat-
terns and geometric shapes of layouts. This method currently
is used to match symbolic representations of layouts, that
is, design attributes, rather than layout solutions in the form

of layout drawings. The use ofneural networkshas draw-
backs, as addressed in Section 4.1.

Considering the above drawbacks, we adopt techniques
of topological and geometric pattern-matching, that is, the
“association graph technique” (Ballard & Brown, 1982) and
“planar shape matching” (Leu & Huang, 1988), respec-
tively. We recognize that there are more recent techniques
of these kinds of pattern-matching (see, for example, Hanyu
et al., 1992; DellaCroce & Tadei, 1994; Corno et al., 1995
for topological pattern-matching, and Niblack & Yin, 1995;
Cohen & Guibas, 1997 for geometric pattern-matching).
However, some of the techniques are application-specific
and some others have similar properties as, but do not nec-
essarily improve, the techniques we adopt. The techniques
we adopt are more generic, more basic, and thus more ap-
plicable to different problems of these kinds of pattern-
matching. In addition, in the implementation of the pattern-
matching parts of the CV–S approach, these techniques work
appropriately, in that there are no significant problems with
time complexity of the pattern-matching process and the
techniques are capable of producing good results.

The application of the adopted techniques provides an ac-
curate matching result, since they can define the minimum
measure of the difference between topological and geomet-
ric patterns. In other words, the maximum preservation of the
complete information regarding matching topological or geo-
metric patterns can be achieved.The “association graph tech-

Fig. 7. An illustration of abstraction of a spatial layout in four different viewpoints.
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nique” is used as part of the techniques for topological
generalization.Thecombinationof this techniqueand the “pla-
nar shape matching” is used as part of the techniques for com-
bined topological and geometric generalization. These two
techniques are briefly described in Sections 5.1.1 and 5.1.2.

As for clustering and generalizing layouts, we are cur-
rently investigating, developing, and attempting to imple-
mentexisting techniqueswithinacomputersystemtoevaluate
the CV–S approach.

5.1.1. Association graph technique–based
topological pattern matching

The “association graph technique” employs a data struc-
ture called an “association graph” and a “clique-finding al-
gorithm” (Ballard & Brown, 1982). The technique is able
to find all of the isomorphisms (similarities) between the
subgraphsof a graph and thesubgraphsof another graph.
Thus it allows the “best match” between two graphs to be
defined, as compared to techniques for defining graph iso-
morphism between two graphs that aim to find an exact sim-
ilarity between the graphs where nodes or arcs must not be
missing from one or the other graph.

An “association graph” is a graph whose nodes are pairs
of nodes of two graphs of matched layouts, which have sim-
ilar properties, and edges connect the graph’s nodes that rep-
resentcompatibleassignments. The “best match” between
the two graphs can be defined from the “association graph.”
This is achieved by finding the largest set of node corre-
spondences in the association graph that are all mutually
compatible under the relations. This means finding the larg-
est totally connected set of nodes, which is termed aclique.
The “clique-finding algorithm” can find cliques with the larg-
est number of nodes.

5.1.2. Planar shape matching

The “planar shape matching” technique combined with
the “association graph” is used for the combined topologi-
cal and geometric pattern matching. In this combined form
of matching, the “association graph technique” described
above initially is applied to match the topological patterns
of layouts. The “planar shape matching” technique then is
applied to match the shapes of any corresponding nodes
(spaces) in the largest clique of nodes resulting from the
topological pattern matching. The result of shape matching
of each of the corresponding nodes is accumulated to give a
measure of the overall shape similarity between layouts.

The “planar shape matching” technique developed by Leu
and Huang (1988) is adopted, since it allows the shape rep-
resentation and matching to be view-independent. That is,
they do not depend on the locations from which the shape is
viewed. In the shape representation, the shape is converted
into a different representation, which is view-independent.
The shape matching or recognition is also view-independent,
since the technique allows viewing transformations be-
tween shapes to be matched, which make the shape match-

ing or recognition invariant to shape rotation, scaling,
translation, and skewing.

In the above shape matching technique, it is assumed that
shapes are planar, their boundaries are closed, and they are
without self-crossings. For shape matching, a shape is rep-
resented in abinary treestructure whose nodes represent
triangles resulting from the partition of the shape. A binary
tree is a tree in which every node has two other nodes as its
children. A simple example is given in Figure 8. The solid
lines of the shape in Figure 8a are the boundary of the shape.
The shape is partitioned into triangles, aiming to simplify
the shape into a quadrilateral. In the first step of the parti-
tion, three triangles (C, D, and E) are formed. Merging the
sides of each of these triangles and replacing them with their
base lines (the broken lines excluding line S) simplifies the
shape into a quadrilateral. The next step of the shape parti-
tion is to divide the quadrilateral by line S into two trian-
gles: A and B.

Having partitioned the shape in Figure 8a into triangles,
a binary tree is constructed (see Figure 8b). The root node
of the tree is the dividing line S and the children of S are
triangles A and B. Triangles C and D attach to the left and
right sides of triangle A, respectively. Therefore, in the tree
the two triangles are the left and right children of triangle
A. Similarly, triangle E attaches to the left side of triangle
B, while there is no triangle on the right side of triangle B.
Therefore, in the tree triangle, E is the left child of triangle
B, while the right side of triangle B is empty. The “1” and
“2” signs indicate whether a triangle lies inside or outside
its parent triangle. In addition to these signs, the following
three attributes are recorded in each node:

• The area of the triangle.

• The ratio between the height of the triangle,h, and the
base of the triangle,a (i.e., h/a!.

• The ratio between the projection of the left side of the
triangle on the base,b, and the base (i.e.,b/a!.

Matching two shapes is realized by comparing the two cor-
responding binary tree representations. In this case, the two
trees are compared in a top-down fashion, that is, they are
compared node by node from the root nodes through to the
internal nodes to the leaf nodes. The process of comparing
the two trees is carried out according to thebreadth-first

Fig. 8. Shape partition: (a) a shape partitioned into triangles; (b) the re-
sulting binary tree of shape partition in (a) (Leu & Huang, 1988).
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search sequence(Leu & Huang, 1988). In each node com-
parison the node (shape) difference with regard to the four
attributes of each node is recorded and added to the cumu-
lative node difference obtained so far. Thus the result of
matching the two trees (shapes) is the final cumulative shape
difference, which indicates the value of dissimilarity be-
tween the two shapes. This value is numerical, but it can be
transformed into a qualitative measure representing a cer-
tain degree of similarity. Classes of the degree of similarity
between objects as defined by Smith (1989) (see Sec-
tion 3.2) can be used for this purpose.

Having matched the shapes of all of the corresponding
spaces, the resulting dissimilarity measures are summed up
to give a measure of the overall shape dissimilarity between
layouts.

5.2. Abstraction of a layout

The abstraction of a layout is realized by merging some or
all of the adjacent spaces into merged spaces. In the CV–S
approach, spaces are represented in a coordinate system and
only rectangular spaces, and polygonal spaces that can be
represented as a collection of rectangles, are of concern to
us. Consequently, the abstraction based on the above four
viewpoints also represents the geometrical abstraction of a
layout. For merging spaces and measuring the area of the
merged space, we adopt methods of the “geometry of rect-
angles” (Preparata & Shamos, 1985), namely, thecontour
and measure of a union of rectangles.We recognize that
there are a few number of more recent techniques for mea-
suring the area of and defining the contour of the union of
rectangles (see, for example, Widmayer & Wood, 1987; Wu
et al., 1988; Datta, 1997). However, they have similar prop-
erties as the methods we adopted. In the implementation of
the abstraction part of the CV–S approach, the methods we
adopt work well. That is, they provide the accurate result of
merging spaces in that the contour and area of the merged
space can be accurately produced. The use of these meth-
ods is combined with the use of a data structure called the
segment tree(Preparata & Shamos, 1985), a rooted binary
tree that represents intervals of integers. This tree is used to
represent the ordinates of the vertical sides of rectangles
that represent spaces to be merged.

6. SPIDA SYSTEM

To evaluate the CV–S approach, a computer system called
SPIDAhas been developed.This system is implemented using
Harlequin LispWorks (Common Lisp and CLOS) (The Har-
lequin Group Limited, 1994) running on a Silicon Graphics
or Sun Sparc workstation. For the processes of generalizing
spatial layouts, tools for matching topological patterns of lay-
outs and the combined topological patterns and geometric
shapes of layouts have been developed. Tools for clustering
and generalizing layouts currently are under development.
Tools for the processes of abstracting a spatial layout based

on thearea, function, type, andcloseness ratingalso have been
developed. In this section, we present some experimental re-
sults of evaluating the tools that have been developed.

6.1. Topological pattern-matching of layouts

The pattern-matching operation involved in the topological
generalization of layout design cases is topological pattern-
matching between the cases, aiming to define the similarity
in the topological pattern between one design case and an-
other. Thus, the operation does not involve matching the
cases against an input layout. However, for the purpose of
evaluating the “association graph technique” adopted for the
topological pattern-matching, in this section we present and
briefly discuss some experimental results on matching de-
sign cases against input layouts. For the experiment, a set
of seven ship layout cases, based on existing designs (see
Figure 9), have been stored in the system. A set of three
ship layout templates (see Figure 10) also has been set as
the input to the pattern-matching process. The term “tem-
plate” is commonly used in the field of pattern recognition
to mean an input pattern to the pattern-matching process
(Hall & Matias, 1993).

Each space of layout design cases and templates in Fig-
ures 9 and 10, respectively, is labeled with the nature of the
space. The results of topological pattern-matching between
each of the templates and the layout cases are presented in
Table 1. In this table, for each template, the layout cases are
ordered from the most (on the top) to the least (at the bot-
tom) similar to the template. This order of layout cases is
based on the resulting number of corresponding spaces. In
this case, the higher the number of the corresponding spaces,
the more similar is the layout case to the template. If there
is more than one layout case that has the same number of
the corresponding spaces, they have the same rank. For ex-
ample, in Table 1, for ship layout template 1, ships 3 and 6
are placed in the same box and on the top of the order of
ship layout cases, since they have the same, highest number
(7) of corresponding spaces. The nature of the space of each
of the corresponding spaces is also included in the table.

From the above experimental results (see Table 1) it can
be observed that the number of corresponding spaces be-
tween a layout case and template represents the degree of
similarity between them. The degree of similarity may be
classified into classes defined by the designer, where each
class may have more than one different number of corre-
sponding spaces. Classes of degree of similarity as defined
by Smith (1989) (see Section 3.2), for example, may be used
for this purpose, by assigning a particular class, for exam-
ple, the overall similarity, part similarity, and so on, to one
or more than one different number of corresponding spaces.
Alternatively, each number of corresponding spaces may rep-
resent a class of degree of similarity.

For the topological generalization, layout design cases are
clustered based on classes of degree of similarity between
them. For the purpose of showing how the clustering of the
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cases can be carried out, the clustering of the cases based
on the experimental results given in Table 1 may be consid-
ered. The clustering is based not only on the similarity in
the number of corresponding spaces between each of the
layout cases and a template, but also on the similarity in
their corresponding spaces. Thus, in relation to the tem-

plate, a case with a certain number of corresponding spaces
that is the same as that of another case, but with different
corresponding spaces, cannot be clustered with the latter case.
For example, in the results of matching layout cases against
ship layout template 2, ships 3 and 6 can be grouped into a
cluster since they have the same corresponding spaces in

Fig. 9. A set of seven ship layout cases.
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relation to the template. On the other hand, although ship 2
has the same number of corresponding spaces as that of the
cluster, this ship is not grouped into the cluster, since it has
different corresponding spaces from those of the cluster.

Clustering the cases can lead to the generalization of the
cases. That is, a cluster is created based on what are com-
mon between the cases as its elements. A concept that rep-
resents the commonalities between the cases then can be
generated. This concept consequently represents the gener-
alization of the cases.

6.2. Combined topological pattern and geometric
shape matching of layouts

For the combined topological and geometric generalization
of layout design cases, the pattern-matching operation in-
volved is the combination of topological pattern and geo-
metric shape matching between the cases. However, as with
the topological pattern-matching discussed in Section 6.1,
for the purpose of evaluating the combination of the “asso-
ciation graph technique” and the “planar shape matching”

Fig. 10. A set of three ship layout templates.

Table 1. Results of topological pattern-matching between each of the layout templates in Figure 10
and the layout cases in Figure 9

Layout templates Ordered ships
Number of

corresponding spaces Corresponding spaces

Ship layout template 1 Ship 3
7

(Shop, Disco, Bar, Library, Conference-room,
Ship 6 Cabin, Alleyway)

Ship 2 6 (Shop, Disco, Bar, Library, Conference-room,
Alleyway) (Note: Shop1 of Ship2)

Ship 4
4

(Disco, Bar, Cabin, Alleyway)
Ship 7

Ship 1 3 (Shop, Cabin, Alleyway)

Ship 5 2 (Bar, Alleyway)

Ship layout template 2 Ship 2

7

(Disco, Bar, Library, Conference-room,
Restaurant, Galley, Pantry) (Note: Rest.1 of
Ship2)

Ship 3
Ship 6

J J (Disco, Bar, Library, Conference-room,
Restaurant, Pantry, Alleyway)

Ship 1

4

(Restaurant, Galley, Pantry, Alleyway)
Ship 4 (Disco, Bar, Galley, Alleyway)
Ship 5 (Disco, Bar, Restaurant, Pantry)
Ship 7 (Disco, Bar, Galley, Alleyway)

Ship layout template 3 Ship 4
7

(Pantry, Galley, Games, Disco, Bar, Lounge,
Ship 7 Alleyway)

Ship 2
5

(Pantry, Galley, Shop, Disco, Bar)
Ship 5 (Pantry, Galley, Bar, Lounge, Alleyway)

Ship 3
4

(Shop, Disco, Bar, Alleyway)
Ship 6

Ship 1 3 (Galley, Shop, Alleyway)
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technique for this operation, in this section we present and
briefly discuss some experimental results on matching lay-
out design cases against layout templates. For the experi-
ment, the layout cases and templates used in topological
pattern-matching (see Figures 9 and 10) are used. The re-
sults of matching each of the layout templates against lay-
out cases are presented in Table 2. In this table, the layout
cases first are ordered based on the number of resulting cor-
responding spaces. They then are ordered based on shape
dissimilarity measures. The higher the measure, the more
dissimilar (less similar) the layout case to the template. The
resulting corresponding spaces are the same as those in to-
pological pattern-matching (see Table 1).

As with topological pattern-matching, in this kind of
pattern-matching, layout cases can be clustered using classes
of degree of similarity. One or more than one different num-
ber of corresponding spaces can be used as a class of degree
of similarity. Classes of degree of similarity as defined by
Smith (1989) may be used for clustering the cases. The dif-
ference between this kind of pattern-matching and the to-
pological pattern-matching is that the clustering is not only
based on the same corresponding spaces, but also on the
overall shape dissimilarity measures between the spaces. In
this case, the clustering may be based on particular ranges
of these measures. For the purpose of showing how the clus-
tering of the cases can be carried out, the clustering of the

cases based on the experimental results given in Table 2 may
be considered. For example, in the results of matching lay-
out cases against ship layout template 2, ships 3 and 6, which
have the same corresponding spaces, may be clustered to-
gether because the difference between their shape dissimi-
larity measures is within the range, for example, 75%. Using
clusters of the cases resulting from this kind of pattern-
matching, generalization of the cases based on their com-
bined topological patterns and geometric shapes can be
carried out.

6.3. Abstraction of a spatial layout

As was mentioned in Section 4.2, the abstraction of a spa-
tial layout is based on four viewpoints:area, function, type,
andcloseness rating.The implementation of each of the ab-
stractions in the SPIDA system is presented in this section.
For all of these abstractions the layout of Ship 5 in Figure 9
is used for the example.

6.3.1. Abstraction based on area

The abstraction of a layout based onareauses the area of
each space of the layout as the aspect for the space merging
process. In the abstraction process, the system initially finds
a space with the minimum area. It then finds any other space
whose area is within an area range with respect to the found
minimum area. The area range is input by the user. Next,
the system merges each of the spaces whose areas are within
the area range with its adjacent spaces whose weights (area
differences with this space) are minimum. The process con-
tinues, resulting in the different levels of abstraction until a
layout of a single merged space is achieved. Alternatively,
the user can input any number of levels of abstraction ac-
cording to his or her needs.

As an example, Figure 11 illustrates the abstraction of
the layout of Ship 5 based onarea.The original layout of
Ship 5 is at the bottom of the figure. The area range that the
user input for this abstraction is 100%. The abstraction pro-
cess results in four levels of abstractions. It can be seen that
on the first level of abstraction spaces 6 and 7 are merged
into a merged space labeled MS-177-1, and spaces 9, 10,
and 11 are merged into MS-178-1. The label of a merged
space is automatically generated by the system, and the last
number of the label shows the level of abstraction. At the
top level of abstraction (level 4), a single space (MS-183-4)
is achieved and displayed at the top of the figure.

6.3.2. Abstraction based on function

In the abstraction of a layout based onfunction, the layout
is abstracted by merging the adjacent spaces whose func-
tions are the same. Figure 12 illustrates the abstraction of the
layout of Ship 5 based on the functions of the layout spaces.
The original layout is at the bottom of the figure. In this lay-
out abstraction, spaces MS-129-1 and MS-131-1, for exam-

Table 2. Results of combined topological pattern and geometric
shape matching between each of the layout templates in
Figure 10 and the layout cases in Figure 9

Layout templates
Ordered

ships

Number of
corresponding

spaces

Shape
dissimilarity

measures

Ship layout template 1 Ship 3 7 4.960
Ship 6 7 6.317
Ship 2 6 3.784
Ship 4 4 3.376
Ship 7 4 3.482
Ship 1 3 4.587
Ship 5 2 2.473

Ship layout template 2 Ship 2 7 2.345
Ship 3 7 4.774
Ship 6 7 6.328
Ship 5 4 0.747
Ship 4 4 2.976
Ship 7 4 3.336
Ship 1 4 5.589

Ship layout template 3 Ship 4 7 2.798
Ship 7 7 4.453
Ship 2 5 1.311
Ship 5 5 2.084
Ship 3 4 3.868
Ship 6 4 3.868
Ship 1 3 4.724
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ple, are the results of merging spaces 5 (the disco), 6 (the bar),
8 (the lounge), 12 (the dance hall), and 13 (the cinema), re-
spectively, since they have the same function:leisure.Sim-
ilarly, spaces 2 (the pantry) and 3 (the galley) are merged into
a merged space, MS-130-1, since their functions are the same:
food preparation.Furthermore, a number of levels of ab-
straction also may be generated by abstracting the layout par-
tially. In this case, the user can control the abstraction by
inputting parts of the layout (i.e., particular spaces) whose
functions are the same. This process can be repeated with the
other parts until all of the spaces with the same functions have
been merged.

6.3.3. Abstraction based on space type

In the abstraction of a layout based ontype, the layout is
abstracted by merging the adjacent spaces whose types or
groups are the same. Figure 13 illustrates the abstraction of
the layout of Ship 5 based on the types or groups of spaces.
The original layout is at the bottom of the figure. In this
layout abstraction, spaces 1 (the restaurant), 4 (the tax free
shop), 5 (the disco), 6 (the bar), and 8 (the lounge), for ex-
ample, have been merged into a merged space, MS-136-1,
since they can be grouped as thepublic area.Consequently,
the abstraction based ontypecan be applied to the abstract
layout resulting from the abstraction process based on the
functions of the spaces. In addition, as in the abstraction of
a layout based on the functions of spaces, the abstraction
based on space type can be carried out partially and repeat-
edly, resulting in abstractions at different levels.

6.3.4. Abstraction based on closeness rating

In the abstraction of a layout based oncloseness rating,
the layout is abstracted in different levels of abstractions by
merging the adjacent spaces starting from the highest close-Fig. 11. Abstraction of the layout of Ship 5 based on area.

Fig. 12. Abstraction of the layout of Ship 5 based on space
function.
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ness ratings between them. For this abstraction, seven grades
of closeness ratings are defined. Of these seven grades, six
grades are represented in numbers ranging from 0 to 5, with
0 beingnot adjacentand 5 beingessential.Thus, the higher
the grade, the more important the adjacency between spaces.
Another grade is denoted with the letter E (exception). This
grade is meant here to be the grade of the adjacency be-
tween a space for a particular activity, for example, the gal-
ley, pantry, and so on, and a space for circulation, for
example, the alleyway. In this abstraction, it is assumed that
adjacent spaces with the grade E will not be merged, since
they are used for different purposes, that is, activities and
circulation. However, adjacent spaces whose functions are
for circulation will be merged.

Figure 14 illustrates the abstraction of the layout of Ship
5 based oncloseness rating.The original layout is at the
bottom of the figure. The abstraction process results in five
levels of layout abstractions. In the first level of abstrac-
tion, for example, spaces 7, 10 (the lobbies), and 14 (the
alleyway), and 1 (the restaurant), 2 (the pantry), and 3 (the
galley), are merged into two merged spaces, MS-144-1 and
MS-145-1, respectively, since the grade of the closeness rat-
ing between each of these spaces and another is the highest
(5), compared to the other closeness ratings.

7. DIMENSIONS OF LEARNING

In this section, we evaluate the work we presented in the
previous sections in the light of dimensions of learning in
design defined by Grecu and Brown (1996).

7.1. What can trigger learning?

The motivation behind the development of the SPIDA sys-
tem is to improve the ability of layout design learning sys-

tems. Existing CBLL systems generalize layout design cases
into single levels of abstractions. They are not able to gen-
eralize design cases into a hierarchy. In addition, they do
not abstract a layout into a hierarchy. The SPIDA system is
able to carry out such generalization and abstraction, thus
improving the abilities of the existing CBLL systems. With
such improvements, the abstract and generalized knowl-
edge of layout designs can be provided in the different lev-
els for a new design session.

In the CV–S approach, learning is triggered by the de-
signer’s need to learn about the domain, domain explora-
tion (Duffy et al., 1995), or acquire knowledge for a new
design problem. The approach presented in this paper sup-
ports a number of viewpoints for learning, controlled and
triggered by the designer.

7.2. What are the elements supporting learning?

Since in the SPIDA system layouts are abstracted and gen-
eralized into different levels, there are two forms of layout de-
sign knowledge that are elements which support learning.The
first form is layout design cases stored in the system, and the
second form is abstract and generalized knowledge in differ-
ent levels, resulting from dynamically abstracting and gen-
eralizing the knowledge.

7.3. What might be learned?

In the generalization of layouts, structural descriptions of
layouts in the form of topological patterns and combined
topological patterns and geometric shapes are learned. In
the abstraction of a layout where learning is involved, when
generalizing parts of the layout based on the above four view-
points, numerical and symbolic attributes of these parts are
learned. New abstract concepts are created which reflect four

Fig. 13. Abstraction of the layout of Ship 5 based on space
type.
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particular aspects of spatial knowledge: the area, space func-
tion, space type, and closeness rating.

7.4. Availability of knowledge for learning

Repositories of layout design cases are available within the
SPIDA system as specific design knowledge for learning.
They are dynamically updated to also store abstract and gen-
eralized knowledge resulting from the learning process. The
knowledge is in different levels of abstraction, following
the learning process, which is carried out incrementally. Thus,
knowledge in one level is available for learning to produce
more abstract knowledge on the level above it.

7.5. Methods of learning

Methods of learning used in the SPIDA systems are induc-
tion, abstraction, and acquisition.Induction is used when
the system infers the general description from layout design

instances, that is, generalizing layouts.Abstractionis used
to abstract specific layout design knowledge into hierarchi-
cal levels of layout abstract knowledge.Acquisitionis used
to acquire new knowledge generated from the processes of
abstraction and generalization.

7.6. Local versus global learning

Since learning processes occur in one system, that is, the
SPIDA system, learning is done locally. This means that the
learned knowledge, that is, abstract and generalized layout
knowledge, is used locally within the system for subsequent
learning to generate a hierarchy of layout knowledge.

7.7. Consequences of learning

SPIDA generates new knowledge that can be used to im-
prove new design problem solving. In particular, the new
knowledge that can be acquired by SPIDA is abstract and

Fig. 14. Abstraction of the layout of Ship 5 based on closeness rating.
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generalized knowledge of topological patterns and of the
combined topological patterns and geometric shapes of lay-
outs, and layout abstract knowledge resulting from the ab-
straction of a layout based on the above four viewpoints.
With the new knowledge, the quality of designs can be im-
proved, since the knowledge is more widely applicable for
a new design session. That is, using the new knowledge, the
designer can explore a potentially larger number of design
solutions.

8. CONCLUSION

In this paper, we have presented an approach to abstracting
and generalizing layout design cases. We have shown that
this approach (customized viewpoint—spatial) overcomes
the limitations that existing CBLL systems have. That is, it
supports the generalization of layouts and the abstraction of
a layout into hierarchical levels of abstractions. Further-
more, in the generalization of layouts, techniques for topo-
logical pattern and geometric shape matching have been
presented. Using these techniques, this part of the approach
supports graphic information retrieval of past spatial layout
design cases and their abstractions, which is not supported
by existing CBLL systems. Provided with such informa-
tion, the designer will have topological patterns and geo-
metric shapes of specific and abstract spatial layouts that
can be used as starting solutions for a new design problem.

We also have presented the SPIDA system to evaluate the
CV–S approach. What we have demonstrated is the basic
parts of the generalization of spatial layouts and the com-
pletion of the abstraction of a layout. As the starting steps
of the generalization, we have finished developing the tools
for topological pattern-matching and the combined topolog-
ical pattern and geometric shape matching of layouts. The
next steps are to develop the tools for clustering and gener-
alizing layouts based on both topology and the combined
topology and geometry.

As for the abstraction of a layout, the SPIDA system al-
lows the user to select a particular layout according to the
user’s needs. We have defined four different viewpoints:area,
function, type, andcloseness rating, on which the abstrac-
tion may be based. The number of levels resulting from the
abstraction process of a layout may be generated automat-
ically by the system or set by the user. The system can save
all or a number of the levels of the layout abstraction, ac-
cording to the user’s needs. They can be retrieved and sub-
sequently used for a new design problem.

Finally, with its state of development, we believe that the
SPIDA system supports learning from design cases, since
to generalize the design cases we need to pattern-match them
in order to define their similarities. The system also sup-
ports learning a layout design case, in that it generalizes
parts of the layout based on particular viewpoints and gen-
erates a hierarchy of layout abstractions. Further work, that
is, clustering and generalizing layouts, however is still re-

quired to fully implement the CV–S approach in the SPIDA
system.
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