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We consider a system & parallel queues providing different grades of service
through each of the queues and serving a multiclass customer popueivice
differentiation is achieved by specifying different join prices to the queGes-
tomers of clas$ define a cost functiog; (c;, ;) for taking service from queuie
when the join price for queukeis ¢; and congestion in quedeis x; and join the
queue that minimizegs;(-,-). Such a queuing system will be called the “join
minimum cost queue{JMCQ) and is a generalization of the join shortest queue
(JSQ system Non-work-conservingcalled Paris Metro pricing systerand work-
conserving(called the Tirupati systepversions of the IMCQ are analyzed when
the cost to an arrival of joining a queue is a convex combination of the join price
for that queue and the expected waiting time in that queue at the arrival .epoch
Our main results are for a two-queue system
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We obtain stability conditions and performance bouidbtain the lower and
upper performance boundge propose two quasi-birth—ded®BD) processes that
are derived from the original systems by suitably truncating the state Sfiaestate
space truncation in the non-work-conserving JMCQ follows the method of van Hou-
tum and colleague$Ve then show that this method is not applicable to the work-
conserving JMCQ and provide sample-path-based proofs to show that the number
in each queue is bounded by the number in the corresponding queues of these QBD
processesThese sample-path proof techniques might also be of independent inter-
est We then show that the performance measures like mean queue length and rev-
enue rate of the system are also bounded by the corresponding quantities of these
QBD processedNumerical examples show that these bounds are fairly. tighélly,
we generalize some of these results to systems with more queues

1. INTRODUCTION

We consider a system &f parallel queues providing different grades of service in
each of the queues to a multiclass customer populationaéthssesService dif-
ferentiation is achieved by different join prices for the queues and service rates in
them A join pricec; is prescribed for service from queueCustomers also incur a
congestion cost due teay delays These two costs are reflected in the customers
of classj defining a cost functiony; (¢, x;) for service in queué when the join
price isc; and congestion ig;. Obviously ¢; (¢, X;) should be increasing ig and
X;. Letc = [cy,...,cc]T be the price vector ang(t) = [X(t),..., X (t)]T be the
gueue length vector at timteThe queue system posts batlandx(t). A customer
of clasg arriving at timet calculates its cost for service from qudaderi =1,...,K
and joins that queue for which the cost is minimurhis queuing system will be
called the “join minimum cost queugJMCQ). A customer class is determined by
the set{yy;(-,-),...,¥(-,-)}. Thus the IMCQ is a generalization of the well-
known join shortest queu@SQ system

An important motivation for this problem is to price quality of service in the Inter-
net through an access char§pecifically we target the multiclass service system as
defined by the DiffServ model of the IETF of Blake et[d]. In DiffServ, the per hop
behaviors are implemented by means of appropriate scheduling mechanisms and users
select the service class that best fits its requirements of qualisyJMCQ system
described above can be seen to be amenable to this service as fAlk»sfK ser-
vice classes is definethe total link capacity: is divided among th& queues such
that queue is serviced at ratg;, | > 0 with 3!, o, = W The price for service and
the congestion in queudc; andx;, respectivelyare postedlhe instantaneous queue
length or the unfinished work in the queues are examples of congestion information
In the extremgeach packet can calculate its cost for service from each class and take
service from the queue that minimizes the cost

The applicability of a multiclass service system to pricing quality of service in
the Internet has been recognized for quite some time Rowexample Odlyzko
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[16] argues that the pricing scheme in the Paris Metro could be extended to pricing
differential quality in the InternefThe network is partitioned into multiple logical
networks with identical resources and the service in each partition is priced differ-
ently. If occupancy information in each partition is providgulices would act as a
control to provide differential servic&his pricing model is called the Paris Metro
pricing (PMP) schemeJain Mullen, and Hausmafl0] report an analysis to model
the profitability of this pricing schem&ibbensMason and Steinber§9] describe
more resultsThe PMPas it is proposeds a non-work-conserving scheme with the
link capacity statically partitioned among the service gratteBube Borker, and
Manjunath[6], a work-conserving version of PMP called tligupati schemds
proposedIn this schemgif there are no customers in a quetiee capacity allo-
cated to it is distributed among the nonempty quetlibgs scheme takes inspiration
from the queue management scheme in Tirypatiajor pilgrimage center in south-
ern Indig where it has been operating with remarkable efficiency for quite some
time now Dube et al[6] analyzed the social optimality of the Tirupati pricing model
and showed that the difference between the social cost of the optimally priced sys-
tem and that of the Tirupati systemG@s for some constantS ande. Another more
practica) contribution of Dube et a[6] was dynamic pricing using a dynamic pro-
gramming equation and a reinforcement-learning-based online pricing algorithm
A simple learning-scheme-based pricing mechanism to dynamically determine the
join prices to provide a specified average grade of service from each queue is ana-
lyzed and described in Borkar and Manjunggh A preliminary comparative analy-
sis of the Tirupati and PMP queuing systems is presented in ManjuBa#i and
Hemachandr@l2], where it is shown numerically that the revenue rate is neither
monotonic in nor a convex function of the pricéefer to FalknerDevetsikiotis
and Lambadari§7] for a recent survey of Internet pricing

Another application of the IMCQ is in pricing service at popular websltesre
are a number of websites that now offer a faster service for a changeservice
offering is the same for the free and the priced version and the user pays for faster
access

We now show by way of a numerical example how pricing can selectively
improve the grade of service of specific classes in a multiclass environ@ent
sider customers that use a convex combination of the join price and the expected
waiting time as the codfi.e,, ;(c,x) = (1 — a)x + a;c]. Consider a work-
conserving queue with two classes of customers veith= 0.8 for a delay-
sensitive class and, = 0.3 for a price-sensitive classet the arrival rate and
mean service time of both classes be the sdma work-conserving JSQ system
both classes would get the same grade of servioeprovide a better grade of
service to the delay-sensitive classt one of the queues prescribe a join price
sayp. For an arrival rate of @ for both classes of customers and a service rate of
0.5 in both the queugs$-igure 1la shows the mean waiting time for each class and
Figure 1b shows the mean queue leng®isserve the significant decrease in mean
delays for the delay-sensitive custome®&ee[19] for more detailed numerical
results
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Ficure 1. Plots illustrating the differentiated service provided by JIMCG{PMean
waiting time of customers of different classes for the work-conserving IMCQ sys-
tem compared with that of the JSQ systdiy) Mean queue lengths for the work-
conserving JMCQ compared with the mean queue length in the JSQ system
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In this article we analyze the JMCQ applied to one link of a network or to a
web service under a static pricing reginddter describing the model assumptions
and notations in the next sectiome first derive stability conditions for the queues
under both the work-conserving Tirupati IMCQ and the non-work-conserving PMP
JMCQ in Section 3In addition to the usual performance measures of moments of
the delay and queue lengtthe revenue rate for the queue system and the social
cost are important measured/CQ is a generalization of JSQ and one can expect
that it will be hard to obtain exact result#/e focus on computable bounds for the
performance measures

There is considerable literature on JE@xma Koole, and Liu[4] presented
a recent survey of the results for JS@n Houtum Zijm, Adan and Wessel§20]
gave a methodology for obtaining computable bounds for performance measures of
JSQ that are related to mean rewards of the associated Markov chaiRloutum
Adan Wesselsand Zijm[21] considered a generalization of JShere jobs of a
class join the shortest of the queue that is capable of serviridhéy proposed
computable bounds for useful performance meas#@sasymptotic resuli$oley
and McDonald 8] presented a recent exampllie Section 4 we derive computable
bounds for the performance measures mentioned abovéhe non-work-conserving
PMP model we show how the methodology §20] can be adopted for obtaining
computable bounds for revenue rate and stationary mean number in each\Waeue
next observe that this methodology is not suited for the work-conserving Tirupati
model Our main result here is to show that the state space can be truncated in such
a way as to form a quasi-birth—dedt@BD) process in which the number in each
component of the QBD processes gives bounds for the number in the queues of the
JMCQ model We show this by sample-path arguments and see that these bounds
can be made fairly tightWe provide two numerical examples in Section 5 and
conclude with discussions on generalization in Section 6

2. MODEL DESCRIPTION

Without loss of generalitywe let the queue join prices be ordered such that
C; = --- = c«. Customers of clagsarrive according to a Poisson process of rgte
and these arrival streams are independBenote> A; = A, so thata is the total
customer arrival rate into the systefm arrival at timet selects the queue to join as
described in the previous sectiofies in cost are awarded to the queue with the
lowest join price

The service requirements are assumed identical among the clEsisesssump-
tion is not unreasonable in modeling web seryioghe urban transport systeimn
the Paris Metro systenor in the queue at Tirupatlt is especially not an unrea-
sonable assumption in the context of Internet bandwidttere a fixed access charge
is the most prevalent charging mechanism

The service times are independent and identically distrib(ited.) exponen-
tial with unit mean The total service capacity ig and is partitioned among the
queues as followsThe non-work-conserving system has static partitioning and
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queuei is served at ratgy, >\, = L. The work-conserving system uses the
generalized processor sharing model of Parekh and Gallagéwith weightw;
for queuei; that is at timet, queuei receives service at rajg(t), where

Wi 4

> W

j: Queug is nonempty at time

Wi (t) =

The cost of service from queudor a clasg customer; (-, -), will be assumed
to be a convex combination of the queue length and join price oftthgueue
(Because the service times are exponeptie expected waiting time from queue
i is equal to the instantaneous queue length at the arrival epblis is a simple
and effective way of capturing price and delay sensitivities for different classes of
customersThus in the following, ¢; (-,-) will be of the form

i (Ci, %) = (1—a;)c + a; x, a; € (0,1).

The a; will be called the delay sensitivity of clagswith respect to queug We
immediately simplify the model by letting; = a; for j = 1,..., J; that is the delay
sensitivities are independent of the queTieus the; (-,-) will be given by

i (ci,x) = (A—a)c +ax.

This is a reasonable assumption whiem example the service rate is the same in
both queues

In much of the rest of the articleve will consider a system with two queyes
K = 2, and two customer classe$ = 2. Without loss of generalitywe assume
a, > ayp; that is class 1 customers are more delay sensitive than the class 2 cus-
tomers who can be called price sensitivé/e indicate generalizations to systems
with K > 2 andJ > 2 in Section 6

We now introduce the concept of an attractor line which will help in a better
understanding of the systeffirst, consider the system with only one class of cus-
tomers say class 1Recall that we let; < c,. On thex;—X, plane an “attractor”
line can be defined such that an arrival to the system when it is in a state on the left
of this line will join queue 1Similarly, an arrival to the system when it is in a state
on the right of the attractor line will join queue that is arrivals tend to move the
system toward the attractor linEor;(-) as abovethe attractor line is defined by

1_ al
X2 = X1 — a (C2—cy).

1

In a IMCQ system supporting multiclass traffan attractor line is defined for each
class

3. STABILITY ANALYSIS

We consider the stability of the queuing systems in terms of the ergodicity of the
associated Markov chains
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FiGuURE 2. The transition rates fdx(t)}o, the CTMC for the non-work-conserving
queue systemPartitionsA,,...,As andF used in the stability analysis of Theo-
rem 1 are also shown

3.1. Non-Work-Conserving PMP System

Let x(t) = [x41(t), X2(t)]T be the state of the system at tirhewherex;(t) is the
number of customers in queuat timet in the non-work-conserving IMC@X (t)}=o
evolves as an irreducible continuous-time Markov ch@i@MC) over the state
spaceZ?. The transition rates fdix(t)}~o are as shown in Figure 2et {X,}n=0, N
an integerbe the jump chaiitseg e.g., Asmusseri1] or Norris[16]) derived from
{X(t)}1=0 and let{ p..,-} be its transition probabilities

Lemma 1: If A1 + A, > Wy + Yy, then both the jump chaifx, }=o and{x(t)}=c are
transient.

Proor: Defineh(x): 22 — N to beh(x) = ((Ky + Ho)/(A1 + A,)) %), When
A1+ Ay > Yy + Wy, we haveh(x) boundedh([0,0]) = 1 > h(x),x # [0,0]. Also,
for any statex € Z2\{[0,0]},

2 Pech(x) =h(x),  x#[0,0],

can be verifiedHence from Theorem 2 of Merten$Samuel-Cahyand Zamif13],
it follows that the jump chain is transierffrom Theorem 3.1 of Norris[15], the
lemma now follows u
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THEOREM 1: {X(1)}=¢ is positive recurrent if\; + A, < [y + L.

Proor: For uniformizable CTMCsKingman[11] showed that Foster’s criteria can
be stated as follow#\n irreducible CTMC is positive recurrent if and only if there
exist nonnegativg, such that

> G Y <o for all states, @

x#X'

> G (Vs — Vi) =1 for all but a finite number of states (2)
X#X'

As in Kingman[11], we use a quadratic Lyapunov functign:= x? + x3. As
with a typical queuing systenit can be easily verified thatl) holds whenA; +
Ay < Ui + M. The finite number of states referred to(@) will include setF (see
Fig. 2) and some more states identified below

In regionA; of the state spac€2) reduces to requiring-A + 2Xoly — Mo =1,
which holds for all sufficiently large,. A similar relation is satisfied i\, for all
but finitely manyx;. In regionAs, (2) simplifies to

2% (= Ao+ Hy) + 2X(— A+ ) —d =1 3)
Lete, = Hy — Ay, ande, := Y, — A4 If ¢ > 0,i = 1,2, then(3) is true for all large

X1 andx,. Suppose, > 0 ande, < 0 suchthat, +e;,=pu—A=:6>0.xandu
are as defined earliefhen (3) reduces to

261(X1_X2)+2X25_d2 1, (4)
whered := A, = A, + 1 + Ho. Since the attractor lines have positixgintercepts

we havex; > x, and hence (4) is valid for all largex; andx,. Finally, suppose
€, < 0 ande, > 0. As in the previous casé3) reduces to

2X16 - 262(X1 - Xz) - d = l. (5)
For a givenx,, we have thak, = x; = X, + k,, wherek, is the intercept of the
class 2 attractor line antience (5) can be written as
2X16 - 262()(1 - Xz) —-d= 2X16 - (262'(2 + d) = 1,
which is true for all largex;.
In region A4, (2) becomes 2,(1y — A1 — As) + 2%, — d = 1. Now, let

€= p.l—()\1+/\2)and6+p.2=(p.l+p.2)—()\1+)\2) =:6>0. IfEZO,then
(2) holds for all largex; andx,. Suppose < 0; then (2) reduces to

2%16 + 2Uy(Xo — X1) —d = 1. (6)

For that part ofA, with x, = x4, (6) holds for large values of, andx,. If x; > x,
in A4, we havex; — X, < kq, wherek, is thex, intercept of the class 1 attractor line
In this case(6) can be reduced to

2X18 + 2“2()(2 - Xl) - d = 2X15 - 2u2k1 - d = 1,

which holds for all large values of, and hence (2) is true inA, alsa
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In regionAs, (2) reduces to i1 + 2Xo(Hp — A1 — Ap) —d =1 If g, =
A1+ Ay, we have the desired inequality for all but finitely many state&efOn
the other handif p, < A1 + Ay, lete := Ay + A, — Wy andp, = € + & for some
8 > 0. In this case(2) can be written as

2U(X; — X)) +2%,6 —d =1

and(2) follows from the fact thak; > x,. n

3.2. Work-Conserving Tirupati System

Recall that in the work-conserving system the capacity of an empty queue is dis-
tributed among the nonempty queukst X(t) = [X4(t), X,(t)] T be the state of the
system at time, where %;(t) is the number of customers in queuat timet.
Under the model assumptian(t)}.~o evolves as an irreducible CTMC over the
state spaceZ?, also denoted bys. The transition rates fof%(t)}~o is as shown
in Figure 3

Consider a procesgY (t)}=o on {0,1,2,...} such that¥Y (t) = niff .(t) +
%,(t) = n. Y (1) satisfies the conditions for Theorerf Bremaud5, Chap 9]
and is henceidentical to arM/M/1 queue with arrival raté, + A, and service rate
M1 + M. Thus from the stability conditions of thi1/M/1 queuewe can state the
following theorem

S
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FIGURE 3. The transition rates fofX(t)}~o, the CTMC for the evolution of the
work-conserving JIMCQObserve that the departure rates for states on the axes are

M= My + Ho.
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THEOREM 2: {X(t)}i=¢ iS

1. transient iffA; + Ay > Yy + Uy,
2. positive recurrent ifit; + A, < g + Wy,
3. null recurrent only iffA; + Ay = dy + Wo.

4. PERFORMANCE BOUNDS

We first define the performance measures of inter€sinsider the non-work-
conserving systemniet n;(t) be the number of clagsarrivals in(0,t) andn(t) :=
n.(t) + ny(t). Let thekth arrival join queud,, 5, € {1,2}. The revenue rater, of
the system is defined as

n(t)
R = tIim i S [el(8e=1) + ol (6= 2)].
k=0

—>C0

Here | (+) is the indicator functiopwith the usual meaning of taking a value one if
the argument is true and zero otherwise

An arriving customer of clagsjoining queud when queue hasx; customers
incurs a cost ofj;(c;, x;). The rate of social cos®; for class] is defined belowLet
ki be thekth arrival of clasg and let its arrival time bé, . Then

n; (t)

kEO | (8kj =1 j(cy, Xl(tkj)) +1 (5kj = 2)i(c,, Xz(tkj))-

|

t—oo

The social cost for the systefd can be similarly definedAlso, x; will denote the
mean queue length in queuiandx the mean number in the system obtained as time
averagesSimilarly, we will denote the mean waiting time of a clgssustomer by
W;, which is obtained as a customer average

The corresponding measures for the work-conserving system wil lig;, D,
X, X, andWw,.

4.1. Non-Work-Conserving System

Consider the PMP system firdDefine 8} to be the queue that an arriving clgss
customer to state will join . For examplewhen the system is in stake= [ x4, X»],

8% = L if ¢j(cy, X1) = ¢(cp, X2) @and S = 2 otherwise The transition rate matrix

Q, = {g,.«'} is easily determinedThe previous section contains sufficient condi-
tions for the ergodicity of this Markov chaiand in the following we assume that
they hold Let = = {m,} be the stationary distribution of this Markov chathe
revenue raték and the per class rate of social cost are obtained from the Law of
Large Numbergsee Serfoz$18]) as follows
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R = 2 e [A1C 1 (8L =1) + A cyl (8L =2)

+ 2,01 (82=1) + A,c,1 (82 =2)], (7

D= 2 m A8 =1((1-aj)c; + &%)

+1(81=2)((1—a))c, + aXp)]. (8)

Closed-form expressions f@&, D;, andx; are difficult to obtain and we look
for approximate results in the form of computable bourkdsst, consider the rev-
enue rateR. We use the framework of van Houtum et[&@0] to obtain computable
bounds by considering systems on a truncated state space

Denote the original non-work-conserving JIMCQ system defined over the state
spacez? by J and let{x(t)}~o be the CTMC of this systenfurther let {x, },,=o be
the corresponding uniformized jump chain of theystem obtained from a uni-
formizing Poisson process of rade= p; + Py + A1 + A, (See Bremaugb]). Since
the steady state distribution is the same both in the CTMC and its corresponding
uniformized chainwe work with{x,},=o in the rest of this sectian

Let §; be the indicator variable which captures the queue from whickus-
tomer has departed and lett) be the number of departures from the system up to
timet. Let R be the revenue rate accrued if each customer is charged while depart-
ing from the systenfinstead of charging while entering the sysjeWve claim that
R = R almost surelyWe first note that the following two limits exist almost surely

n(t)
= “m E[Cll(ak_l)_l'CQI(Sk_z)]

A(t)

R:= lim = Z[cll(ak—l)Jrczl(b‘k—Z)]

t—o0 k=0

Let {m}h=0 T oo be the sequence of the end of busy periods of the stable system
(i.e, return times td)). Then for the system that starts empty

n(r,) A(7,)
20 [Ccil(8k=1) +cl(6=2)]= I;O [Cil (B =1) + o1 (8 = 2)]

for eachn. SinceR andR exist we can divide the above by and take limits along
this subsequencéo haveR = R almost surelySq, (7) can be written asalmost
surely

D Tixy 1L M1 Cilx=0) + HaCalx,=0) - %)

[x1,%2]
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We rewrite(9) as

R =D c(x)7(x), (10)

wherec(x) is the revenue rate in staxegiven by

CiMy + Gy if X; > 0andx, >0

( N Ci if X, >0andx,=0

c([Xq, = )

Xl X2 C2 l.lz |f X2 > 0 andxl - 0
0 if x; =0 andx, = 0.

Following[20], we now establish precedences between statpg hf o. These
precedences are defined on the basis ofrtiperiod revenue,(x), which denote
the expected revenue in the first= 0 periods when starting from stateWe say
that the staten € S has precedence over state= S, if m andn satisfy the pre-
cedence relation

va(m) =wv,(n) foralln=0,12,.... (12)

Denote the unit vectorfd,0] and[0,1] by e; ande,, respectivelyWe claim that
statem has precedence over its neighboring states- e; andm + e, for all
m € S. Also, note that the= operation is transitive

Let P be the set of all ordered pair of states,m + e;) and(m,m + e,),
m € S. We want to prove for alh=0,1,2,...,

va(m) =v,(n), O(m,n) € P. (12)
We use induction oven to prove(12). Takingn = 1 in (12) leads to
c(m)=c(n), O(m,n) € P. (13)

We can easily verify thatl3) holds Assume that12) holds forn and we prove it
from n + 1. To establish12) for n + 1, we have to show for eadim,n) € P,

vnea(m) = c(m) + > p(m,i)o,(i)

= c(n) + X p(n,j)va(j)
]

= Un+l(n)7 (14)

wherep(m, n) denotes the corresponding transition probabilitie§x@f,~o. From
(13), it suffices to show that

S p(m,Don(i) = 3 p(n,j)a())- (15)
i j
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In the non-work-conserving systemve can check15) for all (m,n) € P. A con-
venient method of checking is by grouping terms corresponding to the same event
(such as an arrival or departyr&he attractor lines of the different customer classes
divide the state space into many regipasd the transition probabilities depend on
the region in which the state is locatethus we will have to verify(15) for the
various regionsWe illustrate this for the regioAz in Figure 2 Letn =m + ey in

(15). The left-hand side of15) is

A A
El va(m+e,) + 52 va(m+e) + %l va(m—ep) + %2 va(m—ey,)

and the right-hand side is

A A
El va(Mm+e, +6)+ EZ va(m + 2e) + %vn(m) + %vn(m +e —e).

Therefore proving (15) implies proving
A Az
g Ln(m +€) —va(m+ e, + &)l + ~vn(m + ey)vn(m + 2€,)]

+ %l [vn(m —e)— %l vn(m)] + % [vn(M — &) —va(Mm + e, — &) = 0.

This is true because each term in the above inequality is nonnegative from the induc-
tion hypothesisSimilarly, we can verify(15) for the remaining regions

Now, we propose two truncated systems and prove that the revenue rates in
these systems act as bounds for the revenue rate ih shstem To motivate the
truncation we argue thatr, becomes very small for statesway from the attractor
lines hencemost of the probability mass ¢fr,} is concentrated between the attrac-
tor lines and close to it and a state space truncated at some distance from the attrac-
tors will provide a good approximate solutidn the following we show that if the
truncation is done such that the transition from the states on the threshold lines are
suitably modifiedwe can obtain bounds on the performance measures defined ear-
lier, which can be made fairly tighSpecifically we will consider the state space of
the IMCQ truncated to contain only those states for whjchx; — x, = T,, where
T, andT, are integers witd; = 0 andT, = ((1 — az)/az)(cz —¢;) > 0. T, andT, will
be called the left and right truncation thresholdsspectively Denote byS’ the
state space obtained after truncatidlso, let Sy, be the states on the left threshold
line (x, — x; = T)), except the statg0,|T[]. Further let S;. be states on the right
threshold line(x; — x, = T,), except the stat¢T,,0], and S/ := S'\S; \Sx.
Figure 4 shows this truncation

Denote the original work-conserving JMCQ system defined over the state space
Z2 by J. We define system3™ andJ" overS’ as follows For systemy¥, let
QW = {qg\"} be its transition rate matrix obtained frofas follows
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Left Truncation Class 1 ¢ Class2 v
Threshold Attractor 7 Attractor /
/ /
/ / . .
7 7 Right Truncation

[0.7;]
Hy
[0,0] [0,7,]
(a)
Left Truncation Class 1 ¢ Class2 ’
Threshold Attractor 7 Attractor /
4 7/
4 7/
Vi V] Right Truncation

Threshold

(b)

FIGURE 4. The truncated state spaSéfor theJ™ andJ!") systemsThe modified
transitions rates for states & and Sy, are shownThe transition rates for the
states between the truncation lines are the same as thatystem shown in Fig-
ure 2 (a) Transition rates for tha'") system For states irSt, (St,), transitions due
to departures from queue(2) are disallowed(b) Transition rates for the() sys-
tem For statesSy, (St), there is a diagonal transition with a rate ().

https://doi.org/10.1017/50269964804184027 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804184027

JOIN MINIMUM COST QUEUE 459

Ox:x' forx,x’ € &’ andx # x’

q(U)y _
hax — D O forx=x€8.

x,x" # x

From the abovgfor x € S’ an arrival will moveJ“) toward the attractor line of its
class(the attractor lines of all the classes are included in the truncated state space
and will not cause the system to go out%f Forx € Sy, a departure from queue 1
is disallowed whereas fox € St a departure from queue 2 is disallowed to keep
the system irS’. Other transition rates are the same as thalt in

The transition rate matriQ"’ = {q.,} for systemJ(" is obtained fronQ as
follows. As with J¥, the transition rates from statgs= S/ are the same as that in
J. The departures from the states on the threshold lines are modified such that a
departure from one queue that might lead to a state oW ofill take away one
more customer from the other queue also,drehce keep the system state &1.

Let 7{) and " be the stationary distributions df* andJ", respectively
For the following we will assume that both of these systems are stablghemnte
that their stationary distributions exidde will discuss the stability of these sys-
tems in Section 5

Let {x\“},=o and{x{’} -, be the uniformized jump chains of th& andJ"
systems obtained from a uniformizing Poisson process ofdate y, + W, +
A1+ A,. For these systemsve can write the revenue rate as

RO = e,

X

RO =D c(x)m. (16)

In our truncation modelwe observe thafx("},_, is obtained by redirecting
transitions to preceding states amd’} -, is obtained by redirecting transitions to
succeeding state$hus from Theorem 1 irf20], we have the following result

THEOREM 3: If systems)V, J, andJ“ start empty at t= 0, we have
RW=R=R".

Now, consider the bounds on the mean queue lenghsosingc(x) = X, in
(10), we get the expression for the mean number in quete. Bimilarly, choosing
c(x) = X, gives the expression for the mean number in queus.2Using induc-
tion, we can again prove that precedesn + e, andm + e,. Letx'"’ andx"’ be the
mean queue lengths in queutor theJ™ andJ systemsrespectivelyThus we
have the following result

TueoreM 4: Letx;, X, andx" exist for i=1,2. Then,

)_(i(l) = )_(i = )—(i(U> fOI’ | = 1, 2
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Further if we takec(x) = 1 for x, > M and zero otherwisevhereM € A,
then X, c(x)m, is the tail probability that the total number of customers in
queue 1 exceedd. As a resultthe stationary number in queue 1 in theystem
is stochastically bounded between the stationary number in queue 18P tlaed
JI systemsWe have a similar result for the stationary number in queue 2 in the
J system In fact we can show that if all systems start in the same feasible, state
say (0,0), then at any jump epoglthe number in a queue of thesystem is sto-
chastically bounded by the number in the corresponding queues afthand
JI systems

Remark 1:We can also show that the number in each queugofindJ’ almost
surely bound the number in thlesystem at every jump epochhe proof technique
is similar to that used to show such bounds for the work-conserving systieich
we discuss next

4.2. Work-Conserving System

We now obtain results similar to those in the previous subsection for the work-
conserving systeme will use the same notation for the parameters and perfor-
mance measures as in the previous subsection except that they will have a tilde to
differentiate them from the corresponding variables of the non-work-conserving
system For exampleX;  will be the queue occupancy in queuat ty.

We first show that for the work-conserving systeme cannot obtain the bounds
for the performance measures by proceeding exactly as in the previous section and
applying the method d®0]. To see thisconsider bounds for the revenue raes in
the non-work-conserving systeme can write the revenue rate for theystem as

R =2 [#[ A1 (8F=1) + A1l (83 =2) + A, ¢ 1 (82 =1) + A,C,1 (82 = 2)]].
XES

17

This can be written in terms qf as
R =2 c(R)7 (%), (18)

wherec(X) represents the cost per period in statgiven by

Cily + Gy if Xy > 0andkX, >0

Ci M if x,>0andx,=0
C([Ry, X)) = . _
G U if X, >0andg, =0

In the work-conserving systenthe cost function on the axes is forced todg,
wherep = Wy + Ho. For our truncation model to yield bounds for the revenue, rate
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the precedence relation mentioned in the previous subsection must hold here also
that is the statem must precede the stat@s + & andm + &, for all m € S.
Suppose that the above-mentioned precedence relationd levRlbe the set of all
(m,m+ &) and(m,m + &,). Thenforallt=0,12,...,

5,(mM) < 5,(A) forall (M, ) € P. (19)
Specifically this must hold fort = 1. Takingt = 1 in (19) leads to
c(m) =c(n) forall (M,n) €P. (20)
However
c([0,=T]) = u>cils + oW = c([L =T ]),

contradicting(20). Thus the assumed precedence relations are false and the pro-
posed truncation model will not yield bounds using the techniqugath We take
an alternate approach to prove the bounds for the revenue rate HEjfstem

4.3. Sample-Path Approach

Let {X(t)} =0, X (t)}=0, and{x"(t)}=o be the CTMC of theJ, J, andJ") sys-
tems respectivelyLet {X,}n=0, (X¥} =0, and{X,}"2, be the corresponding uni-
formized jump chains of thé, J, andJ!") systemsrespectivelyobtained from a
uniformizing Poisson process of rade= p; + W, + A1 + A, (se€[5]). Now, con-
sider the uniformized systerdsJ, andJ(" evolving in parallel and driven by the
same event sequence determined by the Poisson prédesew present a forward
induction type of proofsee Walrand22, Chap 8]) to show that system") (resp
J) componentwise dominatas(resp J) for all n.

Lett; <t, <tz < --- be the event epochs of the uniformizing Poisson pro-
cess Every jump of this Poisson process corresponds to either an arrival of class
j, ] = 1,2 with probability A;/d, or a potential service completion from queue
with probability p; /d. An arrival will join the queue that minimizes its cost
possibly different queues in different systembe work-conserving property leads
to the following queue dynamics at potential service completion instArgeten-
tial service completion time from queueis an actual service completion from
that queue if it is nonemptyand it is an actual service completion in the “other”
queue if queud is empty and the other is nonemp®ecause the service and
interarrival times are exponentially distributede just disallow departures when
actual departures are not possible at potential departure.tlree®,, be the state
of {X,}n=0 “just after” t, and letX,X,,...,Xy be the sample path ofk,}.=o
up to timety. Referencd22] has more details on the development of the sample

paths Denote the evolution paths &, WO LW in the JW system and by

g %P, ,~(') in theJ® system and lex, = [5(1 ko X2 W, % = [%4%, %5%], and

~(|) (|) (|)
[Xl k’
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THEOREM 5: If the system starts empty atk0, then for any k= 0,

(@) %y = X%

(b) %o = %%

ORES
|

(d) %% = %o

Proor: Assume thata) and(b) have not failed tillt,. Both (a) and(b) cannot fail

for the first time simultaneously and we consider the events that might lead to them
failing separatelyWe will consider(a) alone first For (a) to fail before(b) att,, 4,

we require thag, ,» = X, and%, ., = %5-%. We consider the possible eventsat

with this condition If the event att,. is a potential departuréhe following sub-

cases arise

1. Potential departure from queue BecauseX, . = X', J and J© will
behave identically with respect to queue 1 wHen, %3'%] & S. If
[%:'%. %o%] € S, a departure from queue 1 is disallowed J# and
allowed inJ, and(a) is maintained

2. Potential departure from queue)éf‘), = 0 is necessary to cause an actual
departure from queue. By assumption thatb) has not failed untik,,
%5 = %o, implying %, ,» = 0. J® and J will behave identically with
respect to queue.1

Now, consider the case when the event,at, is an arrival For (a) to fail, the
arrival must join queue 1 id and queue 2 id“). For this to happer{%;'v, %5
must be on the right-hand side of the attractor line for the class of the amival
[X1w, X2 ] Must be on its left-hand sid&@his is clearly not possible because
R = Xi'w, %o = %5 and the attractor line has a positive slope

Similar arguments show théb) cannot fail beforda) att, ;.

Now, consider(c) and(d). Once againthey cannot fail for the first time simul-
taneouslyWe proceed as above and look at eventg.at whenx, ,» = X and
%2« = X5 s, Which is required fofc) to fail for the first time and befor&d) att, ;.

As previously first consider a potential departuretat

1. Potential departure from queue Becausex, , = %41, J andJ" will
behave identically with respect to queue 1 wHen i, %5 ] & S If
[%1}, %5 1] € St, an actual departure takes place from both the queues in
the J system and the inequality is maintained

2. Potential departure from queue® ,» = 0 is necessary to cause an actual
departure from queue 1 th However by assumption thatl) had not failed
until t, %, = X5 . and hence 3\ = 0. J andJ") will behave identically
with respect to queue. 1

For an arrival of clasgatt, ., arguments identical to that from the first part
are used to show thét) does not fail at, ;.

https://doi.org/10.1017/50269964804184027 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804184027

JOIN MINIMUM COST QUEUE 463

Similar arguments are constructed to show that < X(') could not have
happened ai. and hence (d) could not have failed beforg) for the first time at

te 1. "

Let % andX"’ be the mean queue lengths in quéuer the J andJ"
systems respectivelyAlso, let ®, ®", and @'’ be the mean waiting times in
queuei of theJ, J, and theJ") systemsrespectively

THEOREM 6: Let%;, &, and&" exist for i= 1,2. Then,

(@ & =g =x"“
(b) ii(l)/;\i =W = ii(u)//_\i

for i = 1,2, whereA; is the long-run arrival rate into queue i in thésystem.

Proor: From Wolff[23], J, J, andJ(’ systems are regenerative aheéncethe
mean queue lengths are also time averagesice

1 (t 1 (t
3 :nm—f xl(u)dusnm—f % (u) du= %,
t tJg t tJo

Similarly we can prove the left half ).
From Little’s law we write (b) as

Xi( ) < )_\iWi = Xi(U)
Dividing throughout byA;, we get(b). L

Now, we find the bounds on the revenue rdtethis casewe choosel; = 0
and hence the left truncation threshold is the lifg = %X, in Z2. The revenue
processes il andJ" are modified as followsThe J andJ(") systems will
earn revenue exactly like thiesystem except for the following case¥Ve stipulate
that when the system is in a stateSh, J* will “gain revenue”(c, — ¢;) andJ"
will “lose revenue”c, according to the ratg,. When the systemis in a state§y,
only JO will “lose revenue”c, according to the ratg,. Let R andR"" be the
revenue rates so earned in systeiftsandJ", respectivelyThen from the Law of
Large Numbers

R = 3 [#[A101 (88 =1) + A1G1 (88 =2) + A,0 1 (82 =1) + A,C,1 (82 = 2)]]

XES'

+ E ~(u>|~12(cz C1),

XEST,

RO = > [#[A101 (8 =1) + A1l (8F=2) + 1,01 (82 =1) + A,C,1 (82 = 2)]]

xeS’

- 2 77'(')“102 2 ~(I)I~1201 (21)

XESY, XEST,
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Observe that the expressions ff¥ andR " are similar to that fofR in (17)
except that they are defined on the corresponditiyand J() systemsrespec-
tively, and the “revenue earnings” are modified for the states on the threshold line
as discussed in the previous paragrdpst Ry, R\’, andRY’ denote the cumula-
tive revenue inj, J, andJ", respectivelyuntil time ty.

THEOREM 7: If the J andJV systems start empty at time=t0, then for all N= 0,

PrOOF: LetR, ;. (Rt(k“lm) be the revenue “earned” in the transitiort,at, from

[ Rak Rok] 10 [Ryqkr1)s Kok ([%4, %3] to [X](.?li+l)’ 2(k+1)]) in theJ (JV) sys-
tem We can write the left-hand S|de of E(R2) as

N-1
ﬁf\:) - ﬁN = 2 (Ifél(l,)twl - Rk,lkﬂ)‘ (23)
k=1

We will show that the following holds for ali,, the epochs of the uniformizing
process

(1 = | I I
Rik,)tkﬂ “Rty.,.= [Cl(xl(k+l) 11) + Cz(xé&ﬂ) — %3]
— [Ci(Riksn — K) + Co(Koer ) — Kaw)]- (24)

For an arrival at,, R, = ci(Xiike1) — %4k) + Co( R 1) — %3i)- A similar
expression is written faR, ., . and(24) is satisfiedNow, consider potential depar-
tures We consider four cases corresponding to the state of the queUés in

Case 1: Both queues are emptlyrespective of the state df the first term on the
right-hand side of24) is zerqg the second term is nonnegatjtke left-hand side is
zerq and(24) is satisfied

Case 2:Queue 1 is empty and queue 2 is nonemptyis cannot happen because
we choosel;, = 0 in our truncation of the state space

Case 3: Queue 1 is nonempty and queue 2 is empy a potential departure from
queue 1queue 1 inJ is also nonempty and there is an actual departure from queue 1
in bothJ andJ" and(24) is satisfied For a potential departure from queugtize
following subcases need to be considered

1. Queue 2 inJ is empty By Theorem 5queue 1 inJ is necessarily nonempty
There will be an actual departure from queu®écause of work-conserving
servic in bothJ andJ) and(24) is satisfied

2. Queue 2 inJ is nonemptyThis means that there will be an actual departure
from queue 1 i) and an actual departure from queue 2.iin this case
the left-hand side iri24) is zero and the right-hand sideds — ¢, and the
inequality is satisfied
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Case 4: Both queues are nonempty this caseboth queues of will be nonempty
by Theorem 5First, consider a potential departure from queueekp queue 2. If
J® is not on the left(resp right) truncation thresholdthen in both the systems
there is an actual departure from queug@elsp queue 2 and(24) is satisfied If it
is on the left(resp right) thresholdleft-hand and right-hand sides will both bec,
(resp —c,) and the inequality of24) is satisfied

Thus the inequality of(24) holds and substituting24) in the right-hand side
of (23), we get(22) if we start from an empty system u

To obtain upper bounds on the cumulative reveraamsider theJ and J“
systems togethek et R(k“)tk § (resp Rtk 4.,) be the revenue earned in the transition
from [%;, X3%] to [Xiuﬁﬂ, R ka1 ] (r€SP [Re i, Ro, k] 10 [Re kv 1, Ko,k 1]) in the J©
(resp J) system at timé ;. For an event of the uniformizing process at titpehe
difference in the behavior between thandJ“ systems depends on the slope of
the line joining the point§x;‘y, %3'%] (state ofJ™ att,) and[Xl w %21 ] (state of]
att,). To capture the dependence on this sldper, 1= [(Xs% — %) — (Xi% —
%1 )]. The slope of the line joining the poinft&{", %3] and[XL w %2 ] is less than
(resp greater or equal joone if 1, < 0 (resp 7, = 0).

A sequencer, ...,y can be associated with a joint sample patl it andJ
for epochdy,...,ty. LetG = (V, E) be the directed graph induced by this sequence
where the vertex sét is obtained from{ 7} (7, takes values ii£) and the directed
edge sek = {e = (7, 7«+1)}. In the following our discussion will be based on a
graph so obtained from a sample pbr everye, € E, definel, := 7,1 — 7 and

= Rt(kU)tm Rtk 4., We will call I the length ofg, and callw its weight w is
the excess revenue earned By overJ due to the event at timg. Also, define
Snn = {& € E|7¢= m 71 = n}; that is S, , is the set of all directed edges from
mton, mn € Z. Figure 5 shows an example of the directed graph induced by the
7 from a sample path of théandJ systems

Now, consider the possible combination of events andJ“ at epocht,. They
are listed in Table 1 along with the signfandr,. ; and the values df andw,. From
Table 1 we see that, € {—2,—1,0,1, 2}, wy is negative only due to events of type 2
(an arrival chooses queue 13t and queue 2 id), and ifw is negativethenr, > 0
andl, = —2. Further I, > 0 andr,,, > 0 are possible only from two eventiose
of type 3 and 12A type 3 event is an arrival joining queue 2JA’ and queue 1 in
J. Atype 12 event is a potential departure from queue 2 wH&nis on the right
threshold and ishencedisallowed and an actual departure from queueX in this
casew, = ¢, — ¢; andl, = 1. We are now ready to state the following theorem

THEOREM 8: If J andJ“ start empty at time & 0, then for all N= 0,
Ry = RY.
Proor: We can write

(u) Z W= > > W (25)

(MmN EVXV gESy,
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w =0
10

w=(c,~¢p)
SH={65,6”} S—],lz{elo} S0,1:{el} Su:{e_;} S3Y1:{e4}

Ficure 5. Example sequence af from a sample path represented as a directed
graph For clarity in the illustrationself loops are not showas these do not have neg-
ative weightsThe remaining edges are renumbered such that their initial order is
maintainedin the example showm =1 andm= 3 have edges with negative weights
Observe that the terms {25) corresponding to these states are “canceled” as fol-

lows: Yo es, Wit Zges ,, Wi+ ees o W= 0andXqes,, Wi+ 2ees, ;Wi = 0.

We will use the sample-path graph obtained as described earlido prove
the theoremwe show that thos&,, , containinge, for whichw, = (¢; — ¢;) <0
are offset by edges witty, > 0 in (25). From Table 1these sets will be of the
form S, m—2, with m > 0. Consider one such vertegsay m, and let there be
edges{e,&,,...,& }, from mto m — 2 with negative weightsThis means that
EeKesﬂ,MWk = r(c, — C,). Without loss of generalitywe can assume th&y <
k, < ... < k,. Consider the two possibilities that arise

Case 1: m= 1. Observe that; = 0 andr,, = 1. This guarantees that there must be
aright-directed edge,, an edgeg, with |, > 0, with 0 < k < k; into vertex 1 Now,
consider the edge, from 1to—1 with| > 1. Sincer, ,; = —1 andr,_ =1, there
must be a right-directed edgginto vertex 1 withk, < k < k4. The right-directed
edges obtained above are due to transitions at different time epochseaiug are
distinct This shows the existence of at leastight-directed edges into vertex 1
There are two types of right-directed edge into vertexedges due to events of
types 3 and 12each of which havey, = ¢, — c¢,. See Table 1Thus

> oW+ > W+ > we=0. (26)

&ES 1 &ES 11 &ES1 o

Case 2: m> 1. Arguing as in Case,we can show that there areight-directed
edges into verter. The only possible right-directed edges into vemexn > 1, is
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TasLE 1. Combinations of Possible EventsJft’ andJ at Epocht,.., and the Corresponding, 7i; 1, lx, andw

No. Description of event at epodh Tk Tia1 I Wi

1 Arrival joins same queue in botH¥ andJ * * 0 0

2 Arrival joins queue 1 i and queue 2 il >0 * -2 —(c;—¢y)

3 Arrival joins queue 2 i and queue 1 i <0 * 2 (co—¢y)

4 Actual departure from same queueli¥ andJ * 0 0

5 Actual departures from queue 1Jf" and queue 2 ig <-1 =0 2 0

6 Actual departure from queue 1Y; J is empty <0 =0 1 0

7 Actual departure from queue 2 ”; J is empty <0 <0 -1 0

8 Potential departure from queue 1 whiH is on the left threshotdactual departure from * * -1 0
queue 1 inJ

9 Potential departure from queue 1 whiH is on the left thresholdactual departure from <0 =0 1 0
queue 2 inJ

10 Potential departure from queue 1 whEM is on the left threshotdl is empty([0,0]) 0 0 0 0

11 Actual departures from queue 2Jf" and queue 1 id * * -2 0

12 Potential departure from queue 2 whEY is on the right thresholdactual departure from * * 1 C—Cp
queue 2 inJ

13 Potential departure from queue 2 whEM is on the right thresholdactual departure from * * -1 C—Cp
queue 1inJ

14 Potential departure from queue 2 whEt is on the right threshold) is empty <0 <0 0 C—C

15 Potential departure from either queue when ibthandJ are empty 0 0 0

Note: The asterisk denotes that these quantities can take either negative or positive values

3N3N0 LSO INNININIW NIOr
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due to an event of type 135q, Eekesnflmwk =r(c, — c;) and

aKESnn72 €1<€Smfln

See Figure 5 for an illustration of both cases
For both of the case&25) can be written uniquely split into sums ag#6) and
(27) and the theorem follows u

The stationary revenue rafe defined in(17) becomesby the Law of Large
Numbers

and from Theorems 7 and ®e can now state the following theorem

THeoreM 9: If systemsl", J, andJ start empty at t= 0, we have
ﬁ(u) = ’fé > ’ﬁ/“)_

5. NUMERICAL EXAMPLES AND DISCUSSION

The primary motivation for the truncation method that we adopted was to allow us
to numerically calculate the performance parameters fodtheJ ™, JO, andJ®
systemswhich, in turn, allows us to obtain the bounds for thend theJ systems

As has been described in van Houtum et{al], the truncated model is a quasi-
birth—death(QBD) processThe necessary and sufficient conditions for the stabil-
ity of the truncated systems can be numerically computed from Theork &
Neuts[14]. Further by a proper choice of the thresho)dse bounds can be made
fairly tight. The steady state distribution of the truncated system can be calculated
using the method described in Theorer. B of [14].

We present numerical results to show the tightness of the bo&odshe non-
work-conserving systemwe considen,; = A, = 0.2 andy;, = 4, = 0.5, a; = 0.8,
a,=0.3,T)=0,andT, =[[(1—a,)/a,](c, — c;)| + 2. We compute the steady state
distributions7{* andz{’ and obtain the revenue rat&"“ andR"’ using(16).

We also perform long-run simulations to obtain the steady state distribtt{iand

R for theJ system Figure 6a show®R ", R, andR" as a function ot,, the join

price of the costly queyevith ¢; = 0. Similarly, for the work-conserving system

we plotR, R, andR") as a function of, for Ay = A, = 0.4. g, = 4, = 0.5, a; =
0.8,a,=0.3, T, =0,andT, = [[(1 — a,)/a,](c, — ¢;)] + 2 in Figure 6b Observe

that the bounds are very good for both the work-conserving and non-work-conserving
systemsespecially forc, in the medium and high ranges

An important observation is that the revenue is not an increasing or a convex
function of the prices
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FiGuURE 6. Bounds on the revenue rates for the PMP and the Tirupati systems com-
pared with results from a simulation modéh) Revenue rates for th&Y, J, and

JU systems for different values of with ¢, =0, A; = A, = 0.2, iy = I, = 0.5, 8, =

0.8, anda, = 0.3. (b) Revenue rates for th&¥, J, andJ’ systems for different
values ofc, with ¢; = 0, A, = A, = 0.4, 4, = Y, = 0.5, a; = 0.8, anda, = 0.3.
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6. EXTENSIONS AND CONCLUSION

We now discuss some possible extensions of the results in the previous sections to
K,J > 2. Consider the queue join process for an arriving customer of an arbitrary
class say classx. For any two queues andj, the surface — x; = [(1 — a,)/
a,](c — ¢) decides the preference among the quewsesl] for classa customers
that is if the state is on the “right” of this surfacthen the cost of joining queye
is less than that of joining quelugotherwise the cost for is lower For any two
queuesthere exists such a surface and it will be denotedSPy wherei andj
are the queues andis the customer clas&or any customer clasenly K — 1 of
Sis are independent in the sense that they determine the remaining one
{Sk1,-..,Skk-1} Will be the outermosK — 1 surfaces and these wilin turn,
determine the other surfacédso, all of these surfaces will be concurrent on a line
given by
(1—ay) (1—-ay)
Xp— = (Ck —C) = -+ =X¢1— ——— (Ck = Ck_1) = Xk-
a a
This set of surfaces will together be called the attractors for customerel&ss
J customer classes there will Besuch parallel systems of surfac&ge first con-
sider generalizing the stability results of Section 3JoK > 2.

6.1. Stability

First, consider the work-conserving systefine aggregated procefé(t)} defined
earlier is a birth—death proceggguing as earligrit is stable if and only i} A; <

> and transient if and only iB5 A; > 5 W. For the non-work-conserving
JMCQ, the proof will require us to consider many cases and we conjecture that a
similar result can be proved using quadratic Lyapunov functions

6.2. Performance Bounds

As in Section 41, for aK-queue non-work-conserving JMCQ systeme consider
the uniformized jump chaifx,}.=o. The revenue rate is given by

R = > c(x)m(x),
wherec(x) is

c(x) = > KG.

j:x;#0

We can verify that the entire state space has a precedence ptapeiaten € ZK
precedes state + e fori =1,...,K, where as previouslye; is a vector with 1 in
theith coordinate and 0 elsewhe#e use a truncated state space to obtain com-
putable bounds for the revenue rate and other performance meachedsincated
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state spacé’ is the set of alk(t) = [X4,..., Xk ] such thafl;, = x; — xx = T, for
i=12,...,K—=1andTy = minegp. . [(1 — a)/al(ck — ¢) and T, =
maxe o, .. (1 —a)/a;](ck — G). Let St be the surface — x« = T and letSt
be the surfacg; — xx = T;;. These are the “left” truncation surfaces and the “right”
truncation surfacesespectivelyThe upper and lower bounding systems liKe,
JO W andJ® are defined over this truncated state space as eatlépartures
that cause the system to leave $ieare disallowed i andJ", whereas inj"
andJ", they cause an additional simultaneous departure from gkieBg Theo-
rem 1 of[21], R can be bounded by the revenue rates@fandJ!"’ systemsWe
can also verify that the functions that capture the number in the system have the
precedence property anfftence we can find upper and lower bounds for the mean
number in each queue

The proof technique of obtaining performance bounds for the work-conserving
JMCQ of Section 4 critically uses the fact that the state spac€fs We believe
that this methodology might not extend to models with more than two servers in a
straightforward manner

In conclusionwe have presented a generalization of the JSQ queuing system
by allowing queues to prescribe join costs and customers to define cost functions in
terms of the queue lengths seen on arrival and the join price stability results
are discussedVe have also presented a technique to define truncated systems that
will bound the original systems from above and below and are amenable to numer-
ical calculations of the relevant performance measures using matrix geometric tech-
niques developed for quasi-birth—death processes
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