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We consider a system ofK parallel queues providing different grades of service
through each of the queues and serving a multiclass customer population+ Service
differentiation is achieved by specifying different join prices to the queues+ Cus-
tomers of classj define a cost functioncij ~ci , xi ! for taking service from queuei
when the join price for queuei is ci and congestion in queuei is xi and join the
queue that minimizescij ~{,{!+ Such a queuing system will be called the “join
minimum cost queue”~JMCQ! and is a generalization of the join shortest queue
~JSQ! system+ Non-work-conserving~called Paris Metro pricing system! and work-
conserving~called the Tirupati system! versions of the JMCQ are analyzed when
the cost to an arrival of joining a queue is a convex combination of the join price
for that queue and the expected waiting time in that queue at the arrival epoch+
Our main results are for a two-queue system+
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We obtain stability conditions and performance bounds+To obtain the lower and
upper performance bounds,we propose two quasi-birth–death~QBD! processes that
are derived from the original systems by suitably truncating the state space+The state
space truncation in the non-work-conserving JMCQ follows the method of van Hou-
tum and colleagues+We then show that this method is not applicable to the work-
conserving JMCQ and provide sample-path-based proofs to show that the number
in each queue is bounded by the number in the corresponding queues of these QBD
processes+ These sample-path proof techniques might also be of independent inter-
est+We then show that the performance measures like mean queue length and rev-
enue rate of the system are also bounded by the corresponding quantities of these
QBD processes+Numerical examples show that these bounds are fairly tight+Finally,
we generalize some of these results to systems with more queues+

1. INTRODUCTION

We consider a system ofK parallel queues providing different grades of service in
each of the queues to a multiclass customer population withJ classes+ Service dif-
ferentiation is achieved by different join prices for the queues and service rates in
them+ A join price ci is prescribed for service from queuei + Customers also incur a
congestion cost due to, say, delays+ These two costs are reflected in the customers
of classj defining a cost functioncij ~ci , xi ! for service in queuei when the join
price isci and congestion isxi + Obviously, cij ~ci , xi ! should be increasing inci and
xi + Let c 5 @c1, + + + ,cK # T be the price vector andx~t ! 5 @x1~t !, + + + , xK~t !# T be the
queue length vector at timet+ The queue system posts bothc andx~t !+ A customer
of classj arriving at timet calculates its cost for service from queuei for i 51, + + + ,K
and joins that queue for which the cost is minimum+ This queuing system will be
called the “join minimum cost queue”~JMCQ!+ A customer class is determined by
the set$c1j ~{,{!, + + + ,cKj ~{,{!% + Thus, the JMCQ is a generalization of the well-
known join shortest queue~JSQ! system+

An important motivation for this problem is to price quality of service in the Inter-
net through an access charge+Specifically,we target the multiclass service system as
defined by the DiffServ model of the IETF of Blake et al+ @2#+ In DiffServ, the per hop
behaviors are implemented by means of appropriate scheduling mechanisms and users
select the service class that best fits its requirements of quality+ The JMCQ system
described above can be seen to be amenable to this service as follows+A set ofK ser-
vice classes is defined+ The total link capacitym is divided among theK queues such
that queuei is serviced at rateµi , µi . 0 with (i51

K µi 5 µ+ The price for service and
the congestion in queuei ~ci andxi , respectively! are posted+The instantaneous queue
length or the unfinished work in the queues are examples of congestion information+
In the extreme, each packet can calculate its cost for service from each class and take
service from the queue that minimizes the cost+

The applicability of a multiclass service system to pricing quality of service in
the Internet has been recognized for quite some time now+ For example, Odlyzko

446 R. Tandra, N. Hemachandra, and D. Manjunath

https://doi.org/10.1017/S0269964804184027 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804184027


@16# argues that the pricing scheme in the Paris Metro could be extended to pricing
differential quality in the Internet+ The network is partitioned into multiple logical
networks with identical resources and the service in each partition is priced differ-
ently+ If occupancy information in each partition is provided, prices would act as a
control to provide differential service+ This pricing model is called the Paris Metro
pricing ~PMP! scheme+ Jain,Mullen, and Hausman@10# report an analysis to model
the profitability of this pricing scheme+Gibbens,Mason, and Steinberg@9# describe
more results+ The PMP, as it is proposed, is a non-work-conserving scheme with the
link capacity statically partitioned among the service grades+ In Dube, Borker, and
Manjunath@6# , a work-conserving version of PMP called theTirupati schemeis
proposed+ In this scheme, if there are no customers in a queue, the capacity allo-
cated to it is distributed among the nonempty queues+ This scheme takes inspiration
from the queue management scheme in Tirupati, a major pilgrimage center in south-
ern India, where it has been operating with remarkable efficiency for quite some
time now+Dube et al+ @6# analyzed the social optimality of the Tirupati pricing model
and showed that the difference between the social cost of the optimally priced sys-
tem and that of the Tirupati system isCe for some constantsC ande+Another,more
practical, contribution of Dube et al+ @6# was dynamic pricing using a dynamic pro-
gramming equation and a reinforcement-learning-based online pricing algorithm+
A simple learning-scheme-based pricing mechanism to dynamically determine the
join prices to provide a specified average grade of service from each queue is ana-
lyzed and described in Borkar and Manjunath@3# +A preliminary comparative analy-
sis of the Tirupati and PMP queuing systems is presented in Manjunath, Goel, and
Hemachandra@12# , where it is shown numerically that the revenue rate is neither
monotonic in nor a convex function of the prices+ Refer to Falkner, Devetsikiotis,
and Lambadaris@7# for a recent survey of Internet pricing+

Another application of the JMCQ is in pricing service at popular websites+There
are a number of websites that now offer a faster service for a charge+ The service
offering is the same for the free and the priced version and the user pays for faster
access+

We now show by way of a numerical example how pricing can selectively
improve the grade of service of specific classes in a multiclass environment+ Con-
sider customers that use a convex combination of the join price and the expected
waiting time as the cost@i+e+, ci ~c, x! 5 ~1 2 ai !x 1 ai c# + Consider a work-
conserving queue with two classes of customers witha1 5 0+8 for a delay-
sensitive class anda2 5 0+3 for a price-sensitive class+ Let the arrival rate and
mean service time of both classes be the same+ In a work-conserving JSQ system,
both classes would get the same grade of service+ To provide a better grade of
service to the delay-sensitive class, let one of the queues prescribe a join price,
sayp+ For an arrival rate of 0+4 for both classes of customers and a service rate of
0+5 in both the queues, Figure 1a shows the mean waiting time for each class and
Figure 1b shows the mean queue lengths+ Observe the significant decrease in mean
delays for the delay-sensitive customers+ See @19# for more detailed numerical
results+
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Figure 1. Plots illustrating the differentiated service provided by JMCQ+ ~a! Mean
waiting time of customers of different classes for the work-conserving JMCQ sys-
tem compared with that of the JSQ system+ ~b! Mean queue lengths for the work-
conserving JMCQ compared with the mean queue length in the JSQ system+
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In this article, we analyze the JMCQ applied to one link of a network or to a
web service under a static pricing regime+ After describing the model assumptions
and notations in the next section, we first derive stability conditions for the queues
under both the work-conserving Tirupati JMCQ and the non-work-conserving PMP
JMCQ in Section 3+ In addition to the usual performance measures of moments of
the delay and queue length, the revenue rate for the queue system and the social
cost are important measures+ JMCQ is a generalization of JSQ and one can expect
that it will be hard to obtain exact results+We focus on computable bounds for the
performance measures+

There is considerable literature on JSQ+ Boxma, Koole, and Liu @4# presented
a recent survey of the results for JSQ+ van Houtum, Zijm, Adan, and Wessels@20#
gave a methodology for obtaining computable bounds for performance measures of
JSQ that are related to mean rewards of the associated Markov chain+ van Houtum,
Adan,Wessels, and Zijm @21# considered a generalization of JSQ, where jobs of a
class join the shortest of the queue that is capable of serving it+ They proposed
computable bounds for useful performance measures+ For asymptotic results, Foley
and McDonald@8# presented a recent example+ In Section 4, we derive computable
bounds for the performance measures mentioned above+ For the non-work-conserving
PMP model, we show how the methodology of@20# can be adopted for obtaining
computable bounds for revenue rate and stationary mean number in each queue+We
next observe that this methodology is not suited for the work-conserving Tirupati
model+ Our main result here is to show that the state space can be truncated in such
a way as to form a quasi-birth–death~QBD! process in which the number in each
component of the QBD processes gives bounds for the number in the queues of the
JMCQ model+ We show this by sample-path arguments and see that these bounds
can be made fairly tight+ We provide two numerical examples in Section 5 and
conclude with discussions on generalization in Section 6+

2. MODEL DESCRIPTION

Without loss of generality, we let the queue join prices be ordered such thatc1 #
c2 # {{{ # cK + Customers of classj arrive according to a Poisson process of ratel j

and these arrival streams are independent+ Denote(i
J l i 5 l, so thatl is the total

customer arrival rate into the system+An arrival at timet selects the queue to join as
described in the previous section+ Ties in cost are awarded to the queue with the
lowest join price+

The service requirements are assumed identical among the classes+This assump-
tion is not unreasonable in modeling web service, in the urban transport system, in
the Paris Metro system, or in the queue at Tirupati+ It is especially not an unrea-
sonable assumption in the context of Internet bandwidth,where a fixed access charge
is the most prevalent charging mechanism+

The service times are independent and identically distributed~i+i+d+! exponen-
tial with unit mean+ The total service capacity ism and is partitioned among the
queues as follows+ The non-work-conserving system has static partitioning and
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queuei is served at rateµi , (i51
K µi 5 µ+ The work-conserving system uses the

generalized processor sharing model of Parekh and Gallager@17# with weight wi

for queuei ; that is, at timet, queuei receives service at rateµi ~t !, where

µi ~t ! 5
wi µ

(
j: Queuej is nonempty at timet

wj

+

The cost of service from queuei for a classj customer, cij ~{,{!,will be assumed
to be a convex combination of the queue length and join price of thei th queue+
~Because the service times are exponential, the expected waiting time from queue
i is equal to the instantaneous queue length at the arrival epoch+! This is a simple
and effective way of capturing price and delay sensitivities for different classes of
customers+ Thus, in the following, cij ~{,{! will be of the form

cij ~ci , xi ! 5 ~12 aij !ci 1 aij xi , aij [ ~0,1!+

The aij will be called the delay sensitivity of classi with respect to queuej+ We
immediately simplify the model by lettingaij 5 ai for j 51, + + + , J; that is, the delay
sensitivities are independent of the queue+ Thus, thecij ~{,{! will be given by

cij ~ci , xi ! 5 ~12 aj !ci 1 aj xi +

This is a reasonable assumption when, for example, the service rate is the same in
both queues+

In much of the rest of the article, we will consider a system with two queues,
K 5 2, and two customer classes, J 5 2+ Without loss of generality, we assume
a1 . a2; that is, class 1 customers are more delay sensitive than the class 2 cus-
tomers, who can be called price sensitive+ We indicate generalizations to systems
with K . 2 andJ . 2 in Section 6+

We now introduce the concept of an attractor line which will help in a better
understanding of the system+ First, consider the system with only one class of cus-
tomers, say class 1+ Recall that we letc1 , c2+ On thex1–x2 plane, an “attractor”
line can be defined such that an arrival to the system when it is in a state on the left
of this line will join queue 1+ Similarly, an arrival to the system when it is in a state
on the right of the attractor line will join queue 2; that is, arrivals tend to move the
system toward the attractor line+ For cj ~{! as above, the attractor line is defined by

x2 5 x1 2 S12 a1

a1
D~c2 2 c1!+

In a JMCQ system supporting multiclass traffic, an attractor line is defined for each
class+

3. STABILITY ANALYSIS

We consider the stability of the queuing systems in terms of the ergodicity of the
associated Markov chains+
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3.1. Non-Work-Conserving PMP System

Let x~t ! 5 @x1~t !, x2~t !# T be the state of the system at timet, wherexi ~t ! is the
number of customers in queuei at timet in the non-work-conserving JMCQ+ $x~t !%t$0

evolves as an irreducible continuous-time Markov chain~CTMC! over the state
spaceZ1

2 + The transition rates for$x~t !%t$0 are as shown in Figure 2+ Let $xn%n$0, n
an integer, be the jump chain~see, e+g+, Asmussen@1# or Norris@16#! derived from
$x~t !%t$0 and let$ px:x' % be its transition probabilities+

Lemma 1: If l1 1 l2 . µ1 1 µ2, then both the jump chain$xn%n$0 and$x~t !%t$0 are
transient.

Proof: Define h~x! :Z1
2 r R to beh~x! 5 ~~µ1 1 µ2!0~l1 1 l2!!~x11x2! + When

l1 1 l2 . µ1 1 µ2, we haveh~x! bounded, h~ @0,0# ! 5 1 . h~x!,x Þ @0,0# + Also,
for any statex [ Z1

2 \$@0,0#% ,

(
x'

px:x' h~x' ! # h~x!, x Þ @0,0# ,

can be verified+ Hence, from Theorem 2 of Mertens, Samuel-Cahn, and Zamir@13# ,
it follows that the jump chain is transient+ From Theorem 3+4+1 of Norris @15# , the
lemma now follows+ n

Figure 2. The transition rates for$x~t !%t$0, the CTMC for the non-work-conserving
queue system+ PartitionsA1, + + + ,A5 and F used in the stability analysis of Theo-
rem 1 are also shown+
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Theorem 1: $x~t !%t$0 is positive recurrent ifl1 1 l2 , µ1 1 µ2.

Proof: For uniformizable CTMCs, Kingman@11# showed that Foster’s criteria can
be stated as follows+ An irreducible CTMC is positive recurrent if and only if there
exist nonnegativeyx such that

(
xÞx'

qxx' yx' , ` for all statesx, (1)

(
xÞx'

qxx' ~ yx 2 yx' ! $ 1 for all but a finite number of statesx+ (2)

As in Kingman@11# , we use a quadratic Lyapunov functionyx :5 x1
2 1 x2

2+ As
with a typical queuing system, it can be easily verified that~1! holds whenl1 1
l2 , µ1 1 µ2+ The finite number of states referred to in~2! will include setF ~see
Fig+ 2! and some more states identified below+

In regionA1 of the state space, ~2! reduces to requiring2l 1 2x2µ2 2 µ2 $ 1,
which holds for all sufficiently largex2+ A similar relation is satisfied inA2 for all
but finitely manyx1+ In regionA3, ~2! simplifies to

2x1~2l2 1 µ1! 1 2x2~2l1 1 µ2! 2 d $ 1+ (3)

Let e1 :5 µ1 2 l2 ande2 :5 µ2 2 l1+ If ei . 0, i 5 1,2, then~3! is true for all large
x1 andx2+ Supposee1 . 0 ande2 , 0 such thate1 1 e2 5 µ2 l 5: d . 0+ l andm
are as defined earlier+ Then, ~3! reduces to

2e1~x1 2 x2! 1 2x2d 2 d $ 1, (4)

whered :5 l1 5 l2 1 µ1 1 µ2+ Since the attractor lines have positivex1 intercepts,
we havex1 . x2 and, hence, ~4! is valid for all largex1 andx2+ Finally, suppose
e1 , 0 ande2 . 0+ As in the previous case, ~3! reduces to

2x1d 2 2e2~x1 2 x2! 2 d $ 1+ (5)

For a givenx2, we have thatx2 # x1 # x2 1 k2, wherek2 is the intercept of the
class 2 attractor line and, hence, ~5! can be written as

2x1d 2 2e2~x1 2 x2! 2 d $ 2x1d 2 ~2e2k2 1 d! $ 1,

which is true for all largex1+
In region A4, ~2! becomes 2x1~µ1 2 l1 2 l2! 1 2x2µ2 2 d $ 1+ Now, let

e :5 µ1 2 ~l1 1 l2! ande 1 µ2 5 ~µ1 1 µ2! 2 ~l1 1 l2! 5: d . 0+ If e $ 0, then
~2! holds for all largex1 andx2+ Supposee , 0; then, ~2! reduces to

2x1d 1 2µ2~x2 2 x1! 2 d $ 1+ (6)

For that part ofA4 with x2 $ x1, ~6! holds for large values ofx1 andx2+ If x1 . x2

in A4, we havex1 2 x2 , k1, wherek1 is thex1 intercept of the class 1 attractor line+
In this case, ~6! can be reduced to

2x1d 1 2µ2~x2 2 x1! 2 d $ 2x1d 2 2µ2k1 2 d $ 1,

which holds for all large values ofx1 and, hence, ~2! is true inA4 also+
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In region A5, ~2! reduces to 2x1µ1 1 2x2~µ2 2 l1 2 l2! 2 d $ 1+ If µ2 $
l1 1 l2, we have the desired inequality for all but finitely many states ofA5+ On
the other hand, if µ2 , l1 1 l2, let e :5 l1 1 l2 2 µ2 andµ1 5 e 1 d for some
d . 0+ In this case, ~2! can be written as

2µ1~x1 2 x2! 1 2x2d 2 d $ 1

and~2! follows from the fact thatx1 . x2+ n

3.2. Work-Conserving Tirupati System

Recall that in the work-conserving system the capacity of an empty queue is dis-
tributed among the nonempty queues+ Let Ix~t ! 5 @ Ix1~t !, Ix2~t !# T be the state of the
system at timet, where Ixi ~t ! is the number of customers in queuei at time t+
Under the model assumptions, $ Ix~t !%t$0 evolves as an irreducible CTMC over the
state spaceZ1

2 , also denoted byS+ The transition rates for$ Ix~t !%t$0 is as shown
in Figure 3+

Consider a process$ EY ~t !%t$0 on $0,1,2, + + + % such that EY ~t ! 5 n iff Ix1~t ! 1
Ix2~t ! 5 n+ EY ~t ! satisfies the conditions for Theorem 2+4 of Bremaud@5, Chap+ 9#

and is, hence, identical to anM0M01 queue with arrival ratel11 l2 and service rate
µ1 1 µ2+ Thus, from the stability conditions of theM0M01 queue, we can state the
following theorem+

Figure 3. The transition rates for$ Ix~t !%t$0, the CTMC for the evolution of the
work-conserving JMCQ+ Observe that the departure rates for states on the axes are
µ 5 µ1 1 µ2+

JOIN MINIMUM COST QUEUE 453

https://doi.org/10.1017/S0269964804184027 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804184027


Theorem 2: $ Ix~t !%t$0 is

1. transient iffl1 1 l2 . µ1 1 µ2,
2. positive recurrent iffl1 1 l2 , µ1 1 µ2,
3. null recurrent only iffl1 1 l2 5 µ1 1 µ2.

4. PERFORMANCE BOUNDS

We first define the performance measures of interest+ Consider the non-work-
conserving system+ Let nj ~t ! be the number of classj arrivals in~0, t ! andn~t ! :5
n1~t ! 1 n2~t !+ Let thekth arrival join queuedk, dk [ $1,2% + The revenue rate, R, of
the system is defined as

R 5 lim
tr`

1

t (
k50

n~t !

@c1 I ~dk 5 1! 1 c2 I ~dk 5 2!# +

Here, I ~{! is the indicator function, with the usual meaning of taking a value one if
the argument is true and zero otherwise+

An arriving customer of classj joining queuei when queuei hasxi customers
incurs a cost ofcj ~ci , xi !+ The rate of social costDj for classj is defined below+ Let
kj be thekth arrival of classj and let its arrival time betkj

+ Then,

Dj 5 lim
tr`

1

t (
kj50

nj ~t !

I ~dkj
5 1!cj ~c1, x1~tkj

!! 1 I ~dkj
5 2!cj ~c2, x2~tkj

!!+

The social cost for the systemD can be similarly defined+ Also, Sxi will denote the
mean queue length in queuei and Sx the mean number in the system obtained as time
averages+ Similarly, we will denote the mean waiting time of a classj customer by
Uwj , which is obtained as a customer average+

The corresponding measures for the work-conserving system will beER, EDj , ED,
SIxi , SIx, and U Kwj +

4.1. Non-Work-Conserving System

Consider the PMP system first+ Define dx
j to be the queue that an arriving classj

customer to statex will join + For example, when the system is in statex 5 @x1, x2# ,
dx

1 5 1 if cj ~c1, x1! # cj ~c2, x2! anddx
1 5 2 otherwise+ The transition rate matrix

Qx 5 $qx:x' % is easily determined+ The previous section contains sufficient condi-
tions for the ergodicity of this Markov chain, and in the following, we assume that
they hold+ Let tp 5 $px% be the stationary distribution of this Markov chain+ The
revenue rateR and the per class rate of social cost are obtained from the Law of
Large Numbers~see Serfozo@18# ! as follows:
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R 5 (
x

px @l1c1 I ~dx
1 5 1! 1 l1c2 I ~dx

1 5 2!

1 l2c1 I ~dx
2 5 1! 1 l2c2 I ~dx

2 5 2!# , (7)

Dj 5 (
x

px l j @I ~dx
j 5 1!~~12 aj !c1 1 aj x1!

1 I ~dx
j 5 2!~~12 aj !c2 1 aj x2!# + (8)

Closed-form expressions forR, Dj , and Sxj are difficult to obtain and we look
for approximate results in the form of computable bounds+ First, consider the rev-
enue rate,R+We use the framework of van Houtum et al+ @20# to obtain computable
bounds by considering systems on a truncated state space+

Denote the original non-work-conserving JMCQ system defined over the state
spaceZ1

2 by J and let$x~t !%t$0 be the CTMC of this system+ Further, let $xn%n$0 be
the corresponding uniformized jump chain of theJ system obtained from a uni-
formizing Poisson process of rated :5 µ1 1 µ2 1 l1 1 l2 ~see Bremaud@5# !+ Since
the steady state distribution is the same both in the CTMC and its corresponding
uniformized chain, we work with $xn%n$0 in the rest of this section+

Let Zdi be the indicator variable which captures the queue from whichi th cus-
tomer has departed and let[n~t ! be the number of departures from the system up to
time t+ Let ZR be the revenue rate accrued if each customer is charged while depart-
ing from the system~instead of charging while entering the system!+We claim that
R5 ZR almost surely+We first note that the following two limits exist almost surely:

R 5 lim
tr`

1

t (
k50

n~t !

@c1 I ~dk 5 1! 1 c2 I ~dk 5 2!# ,

ZR :5 lim
tr`

1

t (
k50

[n~t !

@c1 I ~ Zdk 5 1! 1 c2 I ~ Zdk 5 2!# +

Let $tn%n$0 F ` be the sequence of the end of busy periods of the stable system
~i+e+, return times to0!+ Then, for the system that starts empty,

(
k50

n~tn!

@c1 I ~dk 5 1! 1 c2 I ~dk 5 2!# 5 (
k50

[n~tn!

@c1 I ~ Zdk 5 1! 1 c2 I ~ Zdk 5 2!#

for eachn+ SinceR and ZR exist, we can divide the above bytn and take limits along
this subsequence, to haveR 5 ZR almost surely+ So, ~7! can be written as, almost
surely,

R 5 (
@x1, x2#

p@x1, x2# @µ1c1 I~x1.0! 1 µ2c2 I~x2.0! # + (9)
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We rewrite~9! as

R 5 (
x

c~x!p~x!, (10)

wherec~x! is the revenue rate in statex given by

c~ @x1, x2# ! 5 5
c1µ1 1 c2 µ2 if x1 . 0 andx2 . 0

c1µ1 if x1 . 0 andx2 5 0

c2 µ2 if x2 . 0 andx1 5 0

0 if x1 5 0 andx2 5 0+

Following@20# ,we now establish precedences between states of$xn%n$0+ These
precedences are defined on the basis of then-period revenuevn~x!, which denote
the expected revenue in the firstn $ 0 periods when starting from statex+We say
that the statem [ S has precedence over staten [ S, if m andn satisfy the pre-
cedence relation

vn~m! # vn~n! for all n 5 0,1,2, + + + + (11)

Denote the unit vectors@1,0# and@0,1# by e1 ande2, respectively+We claim that
statem has precedence over its neighboring statesm 1 e1 and m 1 e2 for all
m [ S+ Also, note that the# operation is transitive+

Let P be the set of all ordered pair of states~m,m 1 e1! and ~m,m 1 e2!,
m [ S+We want to prove for alln 5 0,1,2, + + + ,

vn~m! # vn~n!, ∀~m,n! [ P+ (12)

We use induction overn to prove~12!+ Takingn 5 1 in ~12! leads to

c~m! # c~n!, ∀~m,n! [ P+ (13)

We can easily verify that~13! holds+ Assume that~12! holds forn and we prove it
from n 1 1+ To establish~12! for n 1 1, we have to show for each~m,n! [ P,

vn11~m! 5 c~m! 1 (
i

p~m, i!vn~i!

# c~n! 1 (
j

p~n, j !vn~j !

5 vn11~n!, (14)

wherep~m,n! denotes the corresponding transition probabilities of$xn%n$0+ From
~13!, it suffices to show that

(
i

p~m, i!vn~i! # (
j

p~n, j !vn~j !+ (15)
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In the non-work-conserving system, we can check~15! for all ~m,n! [ P+ A con-
venient method of checking is by grouping terms corresponding to the same event
~such as an arrival or departure!+ The attractor lines of the different customer classes
divide the state space into many regions, and the transition probabilities depend on
the region in which the state is located+ Thus, we will have to verify~15! for the
various regions+We illustrate this for the regionA3 in Figure 2+ Let n 5 m 1 e1 in
~15!+ The left-hand side of~15! is

l1

d
vn~m 1 e2! 1

l2

d
vn~m 1 e1! 1

µ1

d
vn~m 2 e1! 1

µ2

d
vn~m 2 e2!

and the right-hand side is

l1

d
vn~m 1 e1 1 e2! 1

l2

d
vn~m 1 2e1! 1

µ1

d
vn~m! 1

µ2

d
vn~m 1 e1 2 e2!+

Therefore, proving ~15! implies proving

l1

d
@vn~m 1 e2! 2 vn~m 1 e1 1 e2!# 1

l2

d
@vn~m 1 e1!vn~m 1 2e1!#

1
µ1

d Fvn~m 2 e1! 2
µ1

d
vn~m!G1

µ2

d
@vn~m 2 e2! 2 vn~m 1 e1 2 e2!# # 0+

This is true because each term in the above inequality is nonnegative from the induc-
tion hypothesis+ Similarly, we can verify~15! for the remaining regions+

Now, we propose two truncated systems and prove that the revenue rates in
these systems act as bounds for the revenue rate in theJ system+ To motivate the
truncation,we argue thatpx becomes very small for statesx away from the attractor
lines; hence,most of the probability mass of$px% is concentrated between the attrac-
tor lines and close to it and a state space truncated at some distance from the attrac-
tors will provide a good approximate solution+ In the following, we show that if the
truncation is done such that the transition from the states on the threshold lines are
suitably modified, we can obtain bounds on the performance measures defined ear-
lier, which can be made fairly tight+ Specifically, we will consider the state space of
the JMCQ truncated to contain only those states for whichTl # x1 2 x2 # Tr , where
Tl andTr are integers withTl # 0 andTr $ ~~12 a2!0a2!~c2 2 c1! . 0+ Tl andTr will
be called the left and right truncation thresholds, respectively+ Denote byS ' the
state space obtained after truncation+ Also, let STl

' be the states on the left threshold
line ~x1 2 x2 5 Tl !, except the state@0,6Tl 6# + Further, let STr

' be states on the right
threshold line~x1 2 x2 5 Tr !, except the state@Tr ,0# , and SI

' :5 S ' \STr

' \STl

' +
Figure 4 shows this truncation+

Denote the original work-conserving JMCQ system defined over the state space
Z1

2 by J+ We define systemsJ~u! andJ~l ! overS ' as follows+ For systemJ~u! , let
Q~u! 5 $qx:x'

~u! % be its transition rate matrix obtained fromQ as follows:
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Figure 4. The truncated state spaceS ' for theJ~u! andJ~l ! systems+ The modified
transitions rates for states onSTr

' andSTl

' are shown+ The transition rates for the
states between the truncation lines are the same as that ofJ system shown in Fig-
ure 2+ ~a! Transition rates for theJ~u! system+ For states inSTl

' ~STr

' !, transitions due
to departures from queue 1~2! are disallowed+ ~b! Transition rates for theJ~l ! sys-
tem+ For statesSTl

' ~STr

' !, there is a diagonal transition with a rateµ1 ~µ2!+
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qx:x'
~u! 5 Hqx:x' for x,x' [ S ' andx Þ x'

2 (
x',x' Þ x

qx:x' for x 5 x' [ S '+

From the above, for x [ S ' an arrival will moveJ~u! toward the attractor line of its
class~the attractor lines of all the classes are included in the truncated state space!
and will not cause the system to go out ofS ' + Forx [ STl

' , a departure from queue 1
is disallowed, whereas forx [ STr

' a departure from queue 2 is disallowed to keep
the system inS ' + Other transition rates are the same as that inJ+

The transition rate matrixQ~l ! 5 $qx:x'
~l ! % for systemJ~l ! is obtained fromQ as

follows+ As with J~u! , the transition rates from statesx [ SI
' are the same as that in

J+ The departures from the states on the threshold lines are modified such that a
departure from one queue that might lead to a state out ofS ' will take away one
more customer from the other queue also and, hence, keep the system state inS ' +

Let px
~u! andpx

~l ! be the stationary distributions ofJ~u! andJ~l ! , respectively+
For the following, we will assume that both of these systems are stable and, hence,
that their stationary distributions exist+ We will discuss the stability of these sys-
tems in Section 5+

Let $xn
~u! %n$0 and$xn

~l ! %n$0 be the uniformized jump chains of theJ~u! andJ~l !

systems obtained from a uniformizing Poisson process of rated :5 µ1 1 µ2 1
l1 1 l2+ For these systems, we can write the revenue rate as

R~u! 5 (
x

c~x!px
~u! ,

R~l ! 5 (
x

c~x!px
~l ! + (16)

In our truncation model, we observe that$xn
~u! %n$0 is obtained by redirecting

transitions to preceding states and$xn
~l ! %n$0 is obtained by redirecting transitions to

succeeding states+ Thus, from Theorem 1 in@20# , we have the following result+

Theorem 3: If systemsJ~l !, J, andJ~u! start empty at t5 0, we have

R~u! $ R $ R~l !+

Now, consider the bounds on the mean queue lengths+ Choosingc~x! 5 x1 in
~10!, we get the expression for the mean number in queue 1: Sx1+ Similarly, choosing
c~x! 5 x2 gives the expression for the mean number in queue 2: Sx2+ Using induc-
tion,we can again prove thatm precedesm 1 e1 andm 1 e2+ Let Sxi

~u! and Sxi
~l ! be the

mean queue lengths in queuei for theJ~u! andJ~l ! systems, respectively+ Thus, we
have the following result+

Theorem 4: Let Sxi, Sxi
~u! , and Sxi

~l ! exist for i5 1,2. Then,

Sxi
~l !

# Sxi # Sxi
~u! for i 5 1,2+
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Further, if we takec~x! 5 1 for x1 . M and zero otherwise, whereM [ N,
then (x c~x!px is the tail probability that the total number of customers in
queue 1 exceedsM+ As a result, the stationary number in queue 1 in theJ system
is stochastically bounded between the stationary number in queue 1 of theJ~u! and
J~l ! systems+ We have a similar result for the stationary number in queue 2 in the
J system+ In fact, we can show that if all systems start in the same feasible state,
say ~0,0!, then at any jump epoch, the number in a queue of theJ system is sto-
chastically bounded by the number in the corresponding queues of theJ~u! and
J~l ! systems+

Remark 1:We can also show that the number in each queue ofJ~u! andJ~l ! almost
surely bound the number in theJ system at every jump epoch+ The proof technique
is similar to that used to show such bounds for the work-conserving system, which
we discuss next+

4.2. Work-Conserving System

We now obtain results similar to those in the previous subsection for the work-
conserving system+ We will use the same notation for the parameters and perfor-
mance measures as in the previous subsection except that they will have a tilde to
differentiate them from the corresponding variables of the non-work-conserving
system+ For example, Ixi, k will be the queue occupancy in queuei at tk+

We first show that for the work-conserving system,we cannot obtain the bounds
for the performance measures by proceeding exactly as in the previous section and
applying the method of@20# + To see this, consider bounds for the revenue rate+As in
the non-work-conserving system, we can write the revenue rate for theDJ system as

ER 5 (
Ix[S

@ Jp Ix @l1c1 I ~d Ix
1 5 1! 1 l1c2 I ~d Ix

1 5 2! 1 l2c1 I ~d Ix
2 5 1! 1 l2c2 I ~d Ix

2 5 2!## +

(17)

This can be written in terms ofm as

ER 5 (
Ix

c~ Ix!p~ Ix!, (18)

wherec~ Ix! represents the cost per period in stateIx given by

c~ @ Ix1, Ix2# ! 5 5
c1µ1 1 c2 µ2 if Ix1 . 0 and Ix2 . 0

c1µ if Ix1 . 0 and Ix2 5 0

c2 µ if Ix2 . 0 and Ix1 5 0

0 if Ix1 5 0 and Ix2 5 0+

In the work-conserving system, the cost function on the axes is forced to beci µ,
whereµ 5 µ1 1 µ2+ For our truncation model to yield bounds for the revenue rate,
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the precedence relation mentioned in the previous subsection must hold here also;
that is, the state Km must precede the statesKm 1 Ie1 and Km 1 Ie2 for all Km [ S+
Suppose that the above-mentioned precedence relations hold+ Let EP be the set of all
~ Km, Km 1 Ie1! and~ Km, Km 1 Ie2!+ Then, for all t 5 0,1,2, + + + ,

Ivt ~ Km! # Ivt ~ In! for all ~ Km, In! [ EP+ (19)

Specifically, this must hold fort 5 1+ Taking t 5 1 in ~19! leads to

c~ Km! # c~ In! for all ~ Km, In! [ EP+ (20)

However,

c~ @0,2Tl # ! 5 c2 µ . c1µ1 1 c2 µ2 5 c~ @1,2Tl # !,

contradicting~20!+ Thus, the assumed precedence relations are false and the pro-
posed truncation model will not yield bounds using the techniques in@20# +We take
an alternate approach to prove the bounds for the revenue rate of theDJ system+

4.3. Sample-Path Approach

Let $ Ix~t !%t$0, $x~u!~t !%t$0, and$x~l !~t !%t$0 be the CTMC of theDJ, DJ~u! , and DJ~l ! sys-
tems, respectively+ Let $ Ixn%n$0, $ Ixn

~u! %n$0, and $ Ixn%n$0
~l ! be the corresponding uni-

formized jump chains of theDJ, DJ~u! , and DJ~l ! systems, respectively, obtained from a
uniformizing Poisson process of rated :5 µ1 1 µ2 1 l1 1 l2 ~see@5# !+ Now, con-
sider the uniformized systemsDJ, DJ~u! , and DJ~l ! evolving in parallel and driven by the
same event sequence determined by the Poisson process+We now present a forward
induction type of proof~see Walrand@22, Chap+ 8# ! to show that systemDJ~u! ~resp+
DJ! componentwise dominatesDJ ~resp+ DJ~l ! ! for all n+

Let t1 , t2 , t3 , {{{ be the event epochs of the uniformizing Poisson pro-
cess+ Every jump of this Poisson process corresponds to either an arrival of class
j, j 5 1,2 with probability l j 0d, or a potential service completion from queuei ,
with probability µi 0d+ An arrival will join the queue that minimizes its cost,
possibly different queues in different systems+ The work-conserving property leads
to the following queue dynamics at potential service completion instants+ A poten-
tial service completion time from queuei is an actual service completion from
that queue if it is nonempty, and it is an actual service completion in the “other”
queue if queuei is empty and the other is nonempty+ Because the service and
interarrival times are exponentially distributed, we just disallow departures when
actual departures are not possible at potential departure times+ Let Ixn be the state
of $ Ixn%n$0 “just after” tn and let Ix1, Ix2, + + + , IxN be the sample path of$ Ixn%n$0

up to timetN
1+ Reference@22# has more details on the development of the sample

paths+ Denote the evolution paths byIx1
~u! , Ix2

~u! , + + + , IxN
~u! in the DJ~u! system and by

Ix1
~l! , Ix2

~l! , + + + , IxN
~l! in the DJ~l ! system and letIxk 5 @ Ix1, k, Ix2, k# , Ixk

~u! 5 @ Ix1, k
~u! , Ix2, k

~u! # , and
Ixk
~l! 5 @ Ix1, k

~l ! , Ix2, k
~l ! # +
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Theorem 5: If the system starts empty at k5 0, then for any k$ 0,

(a) Ix1, k # Ix1, k
~u!

(b) Ix2, k # Ix2, k
~u!

(c) Ix1, k
~l !

# Ix1, k

(d) Ix2, k
~l !

# Ix2, k+

Proof: Assume that~a! and~b! have not failed tilltk+ Both ~a! and~b! cannot fail
for the first time simultaneously and we consider the events that might lead to them
failing separately+We will consider~a! alone first+ For ~a! to fail before~b! at tk'11,
we require thatIx1, k' 5 Ix1, k'

~u! and Ix2, k' # Ix2, k'
~u! +We consider the possible events attk'

with this condition+ If the event attk' is a potential departure, the following sub-
cases arise:

1+ Potential departure from queue 1: Because Ix1, k' 5 Ix1, k'
~u! , DJ and DJ~u! will

behave identically with respect to queue 1 when@ Ix1, k'
~u! , Ix2, k'

~u! # Ó STl

' + If
@ Ix1, k'

~u! , Ix2, k'
~u! # [ STl

' , a departure from queue 1 is disallowed inDJ~u! and
allowed in DJ, and ~a! is maintained+

2+ Potential departure from queue 2: Ix2, k'
~u! 5 0 is necessary to cause an actual

departure from queue 1+ By assumption that~b! has not failed untiltk' ,
Ix2, k'
~u!

$ Ix2, k' implying Ix2, k' 5 0+ DJ~u! and DJ will behave identically with
respect to queue 1+

Now, consider the case when the event attk'11 is an arrival+ For ~a! to fail, the
arrival must join queue 1 inDJ and queue 2 inDJ~u! + For this to happen, @ Ix1, k'

~u! , Ix2, k'
~u! #

must be on the right-hand side of the attractor line for the class of the arrival, and
@ Ix1, k' , Ix2, k' # must be on its left-hand side+ This is clearly not possible because
Ix1, k' 5 Ix1, k'

~u! , Ix2, k' # Ix2, k'
~u! and the attractor line has a positive slope+

Similar arguments show that~b! cannot fail before~a! at tk'11+
Now, consider~c! and~d!+ Once again, they cannot fail for the first time simul-

taneously+ We proceed as above and look at events attk'11 when Ix1, k' 5 Ix1, k'
~l ! and

Ix2, k' $ Ix2, k'
~l ! , which is required for~c! to fail for the first time and before~d! at tk'11+

As previously, first consider a potential departure attk' :

1+ Potential departure from queue 1: Because Ix1, k' 5 Ix1, k'
~l ! , DJ and DJ~l ! will

behave identically with respect to queue 1 when@ Ix1, k'
~l ! , Ix2, k'

~l ! # Ó STl

' + If
@ Ix1, k'

~l ! , Ix2, k'
~l ! # [ STl

' , an actual departure takes place from both the queues in
the DJ~l ! system and the inequality is maintained+

2+ Potential departure from queue 2: Ix2, k' 5 0 is necessary to cause an actual
departure from queue 1 inDJ+ However, by assumption that~d! had not failed
until tk' , Ix2, k' $ Ix2, k'

~l ! and, hence, Ix2, k'
~l ! 5 0+ DJ and DJ~l ! will behave identically

with respect to queue 1+

For an arrival of classj at tk'11, arguments identical to that from the first part
are used to show that~c! does not fail attk'11+
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Similar arguments are constructed to show thatIx2, k' , Ix2, k'
~l ! could not have

happened attk' and, hence, ~d! could not have failed before~c! for the first time at
tk'11+ n

Let SIxi
~u! and SIxi

~l ! be the mean queue lengths in queuei for the DJ~u! and DJ~l !

systems, respectively+ Also, let U Kwi , U Kwi
~u! , and U Kwi

~l ! be the mean waiting times in
queuei of the DJ, DJ~u! , and the DJ~l ! systems, respectively+

Theorem 6: Let SIxi, SIxi
~u! , and SIxi

~l ! exist for i5 1,2. Then,

(a) SIxi
~l !

# SIxi # SIxi
~u!

(b) SIxi
~l !0 Nl i # U Kwi # SIxi

~u!0 Nl i

for i 5 1,2, where Nl i is the long-run arrival rate into queue i in theDJ system.

Proof: From Wolff @23# , DJ, DJ~u! , and DJ~l ! systems are regenerative and, hence, the
mean queue lengths are also time averages+ Hence,

SIxi 5 lim
t

1

t
E

0

t

Ix1~u! du# lim
t

1

t
E

0

t

Ix1
~u!~u! du5 Ixi

~u! +

Similarly we can prove the left half of~a!+
From Little’s law, we write ~b! as

SIxi
~l !

# Nl i U Kwi # SIxi
~u! +

Dividing throughout by Nl i , we get~b!+ n

Now, we find the bounds on the revenue rate+ In this case, we chooseTl 5 0
and, hence, the left truncation threshold is the lineIx1 5 Ix2 in Z1

2 + The revenue
processes inDJ~u! and DJ~l ! are modified as follows+ The DJ~u! and DJ~l ! systems will
earn revenue exactly like theDJ system, except for the following cases+We stipulate
that when the system is in a state inSTr

' , DJ~u! will “gain revenue”~c2 2 c1! and DJ~l !

will “lose revenue”c1 according to the rateµ2+When the system is in a state inSTl

' ,
only DJ~l ! will “lose revenue”c2 according to the rateµ1+ Let ER~u! and ER~l ! be the
revenue rates so earned in systemsDJ~u! and DJ~l ! , respectively+ Then, from the Law of
Large Numbers,

ER~u! 5 (
Ix[S '

@ Jp Ix
~u! @l1c1 I ~d Ix

1 5 1! 1 l1c2 I ~d Ix
1 5 2! 1 l2c1 I ~d Ix

2 5 1! 1 l2c2 I ~d Ix
2 5 2!##

1 (
Ix[STr

'

Jp Ix
~u! µ2~c2 2 c1!,

ER~l ! 5 (
Ix[S '

@ Jp Ix
~l ! @l1c1 I ~d Ix

1 5 1! 1 l1c2 I ~d Ix
1 5 2! 1 l2c1 I ~d Ix

2 5 1! 1 l2c2 I ~d Ix
2 5 2!##

2 (
Ix[STl

'

Jp Ix
~l ! µ1c2 2 (

Ix[STr
'

Jp Ix
~l ! µ2c1+ (21)
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Observe that the expressions forR~u! andR~l ! are similar to that forR in ~17!
except that they are defined on the correspondingDJ~u! and DJ~l ! systems, respec-
tively, and the “revenue earnings” are modified for the states on the threshold line
as discussed in the previous paragraph+ Let ERN , ERN

~u! , and ERN
~l ! denote the cumula-

tive revenue in DJ, DJ~u! , and DJ~l ! , respectively, until time tN +

Theorem 7: If the DJ and DJ~l ! systems start empty at time t5 0, then for all N$ 0,

ERN
~l ! 2 ERN # c1~ Ix1N

~l ! 2 Ix1N ! 1 c2~ Ix2N
~l ! 2 Ix2N ! # 0+ (22)

Proof: Let ERtk, tk11
~ ERtk, tk11

~u! ! be the revenue “earned” in the transition attk11 from
@ Ix1k, Ix2k# to @ Ix1~k11!, Ix2~k11!# ~ @ Ix1k

~u! , Ix2k
~u! # to @ Ix1~k11!

~u! , Ix2~k11!
~u! # ! in the DJ ~ DJ~u! ! sys-

tem+We can write the left-hand side of Eq+ ~22! as

ERN
~l ! 2 ERN 5 (

k51

N21

~ ERtk, tk11

~l ! 2 ERtk, tk11
!+ (23)

We will show that the following holds for alltk, the epochs of the uniformizing
process:

ERtk, tk11

~l ! 2 ERtk, tk11
# @c1~ Ix1~k11!

~l ! 2 Ix1k
~l ! ! 1 c2~ Ix2~k11!

~l ! 2 Ix2k
~l !!#

2 @c1~ Ix1~k11! 2 Ix1k! 1 c2~ Ix2~k11! 2 Ix2k!# + (24)

For an arrival attk, ERtk, tk11

~l ! 5 c1~ Ix1~k11!
~l ! 2 Ix1k

~l !! 1 c2~ Ix2~k11!
~l ! 2 Ix2k

~l !!+ A similar
expression is written forERtk, tk11

and~24! is satisfied+Now, consider potential depar-
tures+We consider four cases corresponding to the state of the queues inDJ~l ! +

Case 1: Both queues are empty+ Irrespective of the state ofDJ, the first term on the
right-hand side of~24! is zero, the second term is nonnegative, the left-hand side is
zero, and~24! is satisfied+

Case 2: Queue 1 is empty and queue 2 is nonempty+ This cannot happen because
we chooseTl 5 0 in our truncation of the state space+

Case 3: Queue 1 is nonempty and queue 2 is empty+ For a potential departure from
queue 1, queue 1 in DJ is also nonempty and there is an actual departure from queue 1
in both DJ and DJ~l ! and~24! is satisfied+ For a potential departure from queue 2, the
following subcases need to be considered:

1+ Queue 2 in DJ is empty+ By Theorem 5, queue 1 in DJ is necessarily nonempty+
There will be an actual departure from queue 1~because of work-conserving
service! in both DJ and DJ~l ! and~24! is satisfied+

2+ Queue 2 in DJ is nonempty+ This means that there will be an actual departure
from queue 1 in DJ~l ! and an actual departure from queue 2 inDJ+ In this case,
the left-hand side in~24! is zero and the right-hand side isc2 2 c1 and the
inequality is satisfied+
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Case 4: Both queues are nonempty+ In this case, both queues ofDJ will be nonempty
by Theorem 5+ First, consider a potential departure from queue 1~resp+ queue 2!+ If
DJ~l ! is not on the left~resp+ right! truncation threshold, then in both the systems,

there is an actual departure from queue 1~resp+ queue 2! and~24! is satisfied+ If it
is on the left~resp+ right! threshold, left-hand and right-hand sides will both be2c2

~resp+ 2c1! and the inequality of~24! is satisfied+

Thus, the inequality of~24! holds, and substituting~24! in the right-hand side
of ~23!, we get~22! if we start from an empty system+ n

To obtain upper bounds on the cumulative revenue, consider the DJ and DJ~u!

systems together+ Let ERtk, tk11

~u! ~resp+ ERtk, tk11
! be the revenue earned in the transition

from @ Ix1, k
~u! , Ix2, k

~u! # to @ Ix1, k11
~u! , Ix2, k11

~u! # ~resp+ @ Ix1, k, Ix2, k# to @ Ix1, k11, Ix2, k11# ! in the DJ~u!

~resp+ DJ! system at timetk11+ For an event of the uniformizing process at timetk, the
difference in the behavior between theDJ and DJ~u! systems depends on the slope of
the line joining the points@ Ix1, k

~u! , Ix2, k
~u! # ~state of DJ~u! at tk! and@ Ix1, k, Ix2, k# ~state of DJ

at tk!+ To capture the dependence on this slope, let tk :5 @~ Ix2, k
~u! 2 Ix2, k! 2 ~ Ix1, k

~u! 2
Ix1, k!# + The slope of the line joining the points@ Ix1, k

~u! , Ix2, k
~u! # and@ Ix1, k, Ix2, k# is less than

~resp+ greater or equal to! one if tk , 0 ~resp+ tk $ 0!+
A sequencet1, + + + ,tN can be associated with a joint sample path inDJ~u! and DJ

for epochst1, + + + , tN + Let G5 ~V,E! be the directed graph induced by this sequence,
where the vertex setV is obtained from$tk% ~tk takes values inZ ! and the directed
edge setE 5 $ek 5 ~tk,tk11!% + In the following, our discussion will be based on a
graph so obtained from a sample path+ For everyek [ E, definel k :5 tk11 2 tk and
wk :5 ERtk, tk11

~u! 2 ERtk, tk11
+We will call l k the length ofek and callwk its weight+ wk is

the excess revenue earned byDJ~u! over DJ due to the event at timetk+ Also, define
Sm, n :5 $ek [ E6tk 5 m,tk11 5 n% ; that is, Sm, n is the set of all directed edges from
m to n, m, n [ Z+ Figure 5 shows an example of the directed graph induced by the
tk from a sample path of theDJ and DJ~u! systems+

Now, consider the possible combination of events inDJ and DJ~u! at epochtk+ They
are listed in Table 1 along with the sign oftk andtk11 and the values ofl k andwk+From
Table 1, we see thatl k [ $22,21,0,1,2% , wk is negative only due to events of type 2
~an arrival chooses queue 1 inDJ~u! and queue 2 inDJ!, and ifwk is negative, thentk . 0
andl k 5 22+ Further, l k . 0 andtk11 . 0 are possible only from two events, those
of type 3 and 12+ A type 3 event is an arrival joining queue 2 inDJ~u! and queue 1 in
DJ+ A type 12 event is a potential departure from queue 2 whenDJ~u! is on the right

threshold and is, hence, disallowed and an actual departure from queue 2 inDJ+ In this
case, wk 5 c2 2 c1 andl k 5 1+We are now ready to state the following theorem+

Theorem 8: If DJ and DJ~u! start empty at time t5 0, then for all N$ 0,

ERN # ERN
~u! +

Proof: We can write

ERN
~u! 2 ERN 5 (

k51

N

wk 5 (
~m, n![V3V

(
ek[Sm, n

wk+ (25)
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We will use the sample-path graphG obtained as described earlier+ To prove
the theorem, we show that thoseSm, n containingek for which wk 5 ~c1 2 c2! , 0
are offset by edges withwk . 0 in ~25!+ From Table 1, these sets will be of the
form Sm,m22, with m . 0+ Consider one such vertex, say m, and let there ber
edges, $ek1

,ek2
, + + + ,ekr

% , from m to m 2 2 with negative weights+ This means that

(ek[Sm,m22
wk $ r ~c1 2 c2!+ Without loss of generality, we can assume thatk1 ,

k2 , {{{ , kr + Consider the two possibilities that arise+

Case 1: m51+ Observe thatt1 5 0 andtk1
51+ This guarantees that there must be

a right-directed edgeek, an edgeek with l k . 0, with 0 , k , k1 into vertex 1+ Now,
consider the edgeekl

from 1 to21 with l . 1+ Sincetkl11 5 21 andtkl11
51, there

must be a right-directed edgeek into vertex 1 withkl , k , kl11+ The right-directed
edges obtained above are due to transitions at different time epochs and, hence, are
distinct+ This shows the existence of at leastr right-directed edges into vertex 1+
There are two types of right-directed edge into vertex 1, edges due to events of
types 3 and 12, each of which havewk 5 c2 2 c1+ See Table 1+ Thus,

(
ek[S1,21

wk 1 (
ek[S21,1

wk 1 (
ek[S1,0

wk $ 0+ (26)

Case 2: m. 1+ Arguing as in Case 1, we can show that there arer right-directed
edges into vertexm+ The only possible right-directed edges into vertexm,m. 1, is

Figure 5. Example sequence oftk from a sample path represented as a directed
graph+For clarity in the illustration, self loops are not shown, as these do not have neg-
ative weights+ The remaining edges are renumbered such that their initial order is
maintained+ In the example shown,m51 andm53 have edges with negative weights+
Observe that the terms in~25! corresponding to these states are “canceled” as fol-
lows:(ek[S1,21

wk 1 (ek[S21,1
wk 1 (ek[S1,0

wk 5 0 and(ek[S3,1
wk 1 (ek[S2,3

wk 5 0+

466 R. Tandra, N. Hemachandra, and D. Manjunath

https://doi.org/10.1017/S0269964804184027 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804184027


Table 1. Combinations of Possible Events inDJ~u! and DJ at Epochtk11 and the Correspondingtk, tk11, l k, andwk

No+ Description of event at epochtk tk tk11 l k wk

1 Arrival joins same queue in bothDJ~u! and DJ * * 0 0
2 Arrival joins queue 1 in DJ~u! and queue 2 inDJ .0 * 22 2~c2 2 c1!
3 Arrival joins queue 2 in DJ~u! and queue 1 inDJ ,0 * 2 ~c2 2 c1!
4 Actual departure from same queue inDJ~u! and DJ * * 0 0
5 Actual departures from queue 1 inDJ~u! and queue 2 inDJ ,21 #0 2 0
6 Actual departure from queue 1 inDJ~u! ; DJ is empty ,0 #0 1 0
7 Actual departure from queue 2 inDJ~u! ; DJ is empty ,0 ,0 21 0
8 Potential departure from queue 1 whenDJ~u! is on the left threshold; actual departure from

queue 1 in DJ
* * 21 0

9 Potential departure from queue 1 whenDJ~u! is on the left threshold; actual departure from
queue 2 in DJ

,0 #0 1 0

10 Potential departure from queue 1 whenDJ~u! is on the left threshold; DJ is empty~ @0,0# ! 0 0 0 0
11 Actual departures from queue 2 inDJ~u! and queue 1 inDJ * * 22 0
12 Potential departure from queue 2 whenDJ~u! is on the right threshold; actual departure from

queue 2 in DJ
* * 1 c2 2 c1

13 Potential departure from queue 2 whenDJ~u! is on the right threshold; actual departure from
queue 1 in DJ

* * 21 c2 2 c1

14 Potential departure from queue 2 whenDJ~u! is on the right threshold; DJ is empty ,0 ,0 0 c2 2 c1

15 Potential departure from either queue when bothDJ~u! and DJ are empty 0 0 0 0

Note:The asterisk denotes that these quantities can take either negative or positive values+
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due to an event of type 12+ So, (ek[Sm21,m
wk $ r ~c2 2 c1! and

(
ek[Sm, n22

wk 1 (
ek[Sm21, n

wk $ 0+ (27)

See Figure 5 for an illustration of both cases+
For both of the cases, ~25! can be written uniquely split into sums as in~26! and

~27! and the theorem follows+ n

The stationary revenue rateER defined in~17! becomes, by the Law of Large
Numbers,

ER 5 lim
Nr`

ERN

N
,

and from Theorems 7 and 8, we can now state the following theorem+

Theorem 9: If systems DJ~l !, DJ, and DJ~u! start empty at t5 0, we have

ER~u! $ ER $ ER~l !+

5. NUMERICAL EXAMPLES AND DISCUSSION

The primary motivation for the truncation method that we adopted was to allow us
to numerically calculate the performance parameters for theJ~u! , DJ~u! , J~l ! , and DJ~l !

systems, which, in turn, allows us to obtain the bounds for theJ and the DJ systems+
As has been described in van Houtum et al+ @21# , the truncated model is a quasi-
birth–death~QBD! process+ The necessary and sufficient conditions for the stabil-
ity of the truncated systems can be numerically computed from Theorem 3+1+1 of
Neuts@14# + Further, by a proper choice of the thresholds, the bounds can be made
fairly tight+ The steady state distribution of the truncated system can be calculated
using the method described in Theorem 3+1+1 of @14# +

We present numerical results to show the tightness of the bounds+ For the non-
work-conserving system, we considerl1 5 l2 5 0+2 andµ1 5 µ2 5 0+5, a1 5 0+8,
a2 5 0+3, Tl 5 0, andTr 5 [@~12 a2!0a2# ~c2 2 c1!]1 2+We compute the steady state
distributionspx

~u! andpx
~l ! and obtain the revenue ratesR~u! andR~l ! using~16!+

We also perform long-run simulations to obtain the steady state distributionpx and
R for theJ system+ Figure 6a showsR~u! , R, andR~l ! as a function ofc2, the join
price of the costly queue, with c1 5 0+ Similarly, for the work-conserving system,
we plot ER, ER~u! , and ER~l ! as a function ofc2 for l1 5 l2 5 0+4+ µ1 5 µ2 5 0+5, a1 5
0+8, a2 5 0+3, Tl 5 0, andTr 5 [@~12 a2!0a2# ~c2 2 c1!] 1 2 in Figure 6b+ Observe
that the bounds are very good for both the work-conserving and non-work-conserving
systems, especially forc2 in the medium and high ranges+

An important observation is that the revenue is not an increasing or a convex
function of the prices+
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Figure 6. Bounds on the revenue rates for the PMP and the Tirupati systems com-
pared with results from a simulation model+ ~a! Revenue rates for theJ~u! , J, and
J~l ! systems for different values ofc2 with c15 0, l15 l25 0+2, µ15 µ25 0+5, a15
0+8, anda2 5 0+3+ ~b! Revenue rates for theJ~u! , DJ, and DJ~l ! systems for different
values ofc2 with c1 5 0, l1 5 l2 5 0+4, µ1 5 µ2 5 0+5, a1 5 0+8, anda2 5 0+3+
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6. EXTENSIONS AND CONCLUSION

We now discuss some possible extensions of the results in the previous sections to
K, J . 2+ Consider the queue join process for an arriving customer of an arbitrary
class, say classa+ For any two queuesi and j, the surfacexj 2 xi 5 @~1 2 aa!0
aa# ~ci 2 cj ! decides the preference among the queuesi andj for classa customers;
that is, if the state is on the “right” of this surface, then the cost of joining queuej
is less than that of joining queuei , otherwise the cost fori is lower+ For any two
queues, there exists such a surface and it will be denoted bySij

a , where i and j
are the queues anda is the customer class+ For any customer class, only K 2 1 of
Sij

l s are independent in the sense that they determine the remaining one+
$SK1

1 , + + + ,SK~K21!
1 % will be the outermostK 2 1 surfaces and these will, in turn,

determine the other surfaces+Also, all of these surfaces will be concurrent on a line
given by

x1 2
~12 a1!

a1

~cK 2 c1! 5 {{{ 5 xK21 2
~12 a1!

a1

~cK 2 cK21! 5 xK +

This set of surfaces will together be called the attractors for customer classa+ For
J customer classes there will beJ such parallel systems of surfaces+ We first con-
sider generalizing the stability results of Section 3 forJ,K . 2+

6.1. Stability

First, consider the work-conserving system+ The aggregated process$ EY~t !% defined
earlier is a birth–death process+Arguing as earlier, it is stable if and only if(1

K l i ,

(1
K µi and transient if and only if(1

K l i . (1
K µi + For the non-work-conserving

JMCQ, the proof will require us to consider many cases and we conjecture that a
similar result can be proved using quadratic Lyapunov functions+

6.2. Performance Bounds

As in Section 4+1, for a K-queue non-work-conserving JMCQ system, we consider
the uniformized jump chain$xn%n$0+ The revenue rate is given by

R 5 (
x

c~x!p~x!,

wherec~x! is

c~x! 5 (
j :xjÞ0

µj cj +

We can verify that the entire state space has a precedence property; the statem [ ZK

precedes statem 1 ei for i 5 1, + + + ,K, where, as previously, ei is a vector with 1 in
the i th coordinate and 0 elsewhere+ We use a truncated state space to obtain com-
putable bounds for the revenue rate and other performance measures+ The truncated
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state spaceS ' is the set of allx~t ! 5 @x1, + + + , xK # such thatTil # xi 2 xK # Tir for
i 5 1,2, + + + ,K 2 1 and Til # minj[$1,2, + + + , j %@~1 2 aj !0aj #~cK 2 ci ! and Tir $
maxj[$1,2, + + + , j %@~12 aj !0aj #~cK 2 ci !+ Let STil

' be the surfacexi 2 xK 5 Til and letSTir

'

be the surfacexi 2 xK 5 Tir + These are the “left” truncation surfaces and the “right”
truncation surfaces, respectively+ The upper and lower bounding systems likeDJ~u! ,
DJ~l ! , J~u! , andJ~l ! are defined over this truncated state space as earlier; departures

that cause the system to leave theS ' are disallowed inDJ~u! andJ~u! , whereas in DJ~l !

andJ~l ! , they cause an additional simultaneous departure from queueK+ By Theo-
rem 1 of@21# , R can be bounded by the revenue rates ofJ~u! andJ~l ! systems+We
can also verify that the functions that capture the number in the system have the
precedence property and, hence, we can find upper and lower bounds for the mean
number in each queue+

The proof technique of obtaining performance bounds for the work-conserving
JMCQ of Section 4+3 critically uses the fact that the state space isZ1

2 +We believe
that this methodology might not extend to models with more than two servers in a
straightforward manner+

In conclusion, we have presented a generalization of the JSQ queuing system
by allowing queues to prescribe join costs and customers to define cost functions in
terms of the queue lengths seen on arrival and the join price+ The stability results
are discussed+We have also presented a technique to define truncated systems that
will bound the original systems from above and below and are amenable to numer-
ical calculations of the relevant performance measures using matrix geometric tech-
niques developed for quasi-birth–death processes+
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