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Abstract. This note shows that the permutation instructions presented by Zardini (2011) for
eliminating cuts on universally quantified formulas in the sequent calculus for the noncontractive
theory of truth IKTω are inadequate. To that purpose the note presents a derivation in the sequent
calculus for IKTω ending with an application of cut on a universally quantified formula which
the permutation instructions cannot deal with. The counterexample is of the kind that leaves open
the question whether cut can be shown to be eliminable in the sequent calculus for IKTω with an
alternative strategy.

§1. Introduction. Following the results by Da Ré & Rosenblatt (2018) and Fjellstad
(2018), it is argued by Fjellstad (2018) that we have good reasons to assume that there is
an error in the cut-elimination proof for the sequent calculus defining the noncontractive
theory of truth IKTω presented by Zardini (2011). This note confirms that conjecture by
presenting a derivation in the sequent calculus for IKTω ending with an application of cut
on a universally quantified formula which cannot be eliminated through the permutation
instructions for that case proposed by Zardini (2011). An important feature of the coun-
terexample is that the application of cut therein is clearly eliminable in practice, though
not through the permutation instructions presented by Zardini (2011), and it doesn’t show
that IKTω is inconsistent. Instead, it leaves open the question whether cut can be shown to
be eliminable in the sequent calculus for IKTω with an alternative strategy.

§2. The sequent calculus for IKTω. The theory of truth IKTω is presented by Zar-
dini (2011) for a first-order language L without a designated equality-symbol, but with a
designated predicate T , and with the connectives →, ¬, ∃ and ∀ in addition to ⊗ as symbol
for conjunction and ⊕ as symbol for disjunction. We shall in this note restrict L to ∀, →
and ¬. The other connectives are anyway definable in terms of our selection.

Regarding names for formulas, we “pick designated individual constants to serve as
canonical names of all sentences in the language” such that “if an individual constant is
the canonical name of a sentence A” then �A� or a lower-case letter “will refer to that
individual constant” (Zardini, 2011, p. 506).

To show that IKTω is consistent, Zardini (2011, p. 524) defines a sequent calculus
for IKTω based on sequents as multisets of L-formulas, where both the antecedent and
succedent multiset of a sequent can contain ω many formulas. For simplicity we shall
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depart from the nomenclature in Zardini (2011) by referring to the sequent calculus in
question as C. Moreover, we use upper-case Latin letters such as A and B as meta-linguistic
variables for formulas of L, and upper-case Greek letters such as � and � as meta-linguistic
variables for multisets of formulas.

We thus let C be the sequent calculus with sequents as multisets of L-formulas obtained
with the initial sequents

A, � ⇒ �, A

and the rules
� ⇒ �, A A, �′ ⇒ �′

cut
�, �′ ⇒ �, �′

� ⇒ �, A ¬L¬A, � ⇒ �

A, � ⇒ � ¬R
� ⇒ �, ¬A

A, � ⇒ �
TL

T�A�, � ⇒ �

� ⇒ �, A
TR

� ⇒ �, T�A�

� ⇒ �, A B, �′ ⇒ �′
→L

A → B, �, �′ ⇒ �, �′
A, � ⇒ �, B →R

� ⇒ �, A → B

A(t0/x), A(t1/x), A(t2/x), . . . � ⇒ � ∀Lω∀xA, � ⇒ �

�0 ⇒ �0, A(t0/x) �1 ⇒ �1, A(t1/x) �2 ⇒ �2, A(t2/x) . . . ∀Rω
�0, �1, �2, . . . ⇒ �0, �1, �2, . . . , ∀xA

where t0, t1, t2, . . . represent a complete enumeration of the closed terms of L. Our exten-
sive use of the . . .-notation in the presentation of the rules for the quantifiers is hopefully
excusable, and the dissatisfied reader may refer to Zardini (2011) for a less perspicuous but
more precise presentation which still involves some use of “. . .”.

Based on how the theory of truth IKTω is defined by Zardini (2011), it follows that �
implies � in IKTω if and only if � ⇒ � is derivable in C. To show that IKTω is consistent,
then it suffices to show that cut is eliminable for C.

§3. The cut-elimination proof. The main ingredient for a Gentzen-style
cut-elimination proof are the permutation instructions on subderivations containing an
application of cut only at its final step through which (one of the) the measure(s) for
induction is reduced. For the case in which the cut-formula is of the form T�A� and is
principal in both premise-sequents, the to-be-permuted subderivation D takes the form

...
� ⇒ �, A

TR
� ⇒ �, T�A�

...

A, �′ ⇒ �′
TL

T�A�, �′ ⇒ �′
cut

�, �′ ⇒ �, �′

and is to be permuted into a derivation D′ of the form:

...
� ⇒ �, A

...

A, �′ ⇒ �′
cut

�, �′ ⇒ �, �′
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The issue now is that a cut-elimination proof based on the strategy going back to Gentzen
(1934) employs as main measure the complexity of the cut-formula, but that measure might
not be reduced through these permutations. A cut-elimination proof for a sequent calculus
containing the rules TL and TR requires thus an alternative measure.

The proof by Zardini (2011) follows here the strategy of Petersen (2000) by performing
the induction on the number of nodes in a derivation, however in a way that ensures that
this number remains finite despite the infinitary rules. The finer details of the measure do
not matter for our purposes here. Instead, we will focus on the proposal by Zardini (2011)
for how to deal with the case in which the cut-formula is of the form ∀xA and is principal in
both premise-sequents for the application of cut, i.e., subderivations of the following form:

...

�0
0 ⇒ �0

0, At0

...

�1
0 ⇒ �1

0, At1 . . .
∀Rω

�0
0, �1

0, . . . ⇒ �0
0,�1

0, . . . , ∀xA

...

At0, At1, . . . �1 ⇒ �1 ∀Lω∀xA, �1 ⇒ �1
cut

�0
0, �1

0, . . . , �1 ⇒ �0
0,�1

0, . . . , �1

To deal with this case, we are according to Zardini (2011) supposed to distinguish
between whether the denumerable submultiset of formulas required for ∀Lω has been
introduced through an initial sequent or through an application of the rule ∀Rω. For the
case where a denumerable submultiset of the formulas required for the application of ∀Lω

has been introduced through ∀Rω, we are according to Zardini (2011, p. 529) supposed to
permute a derivation of the following form

D0
0

�0
0 ⇒ �0

0, At0

D1
0

�1
0 ⇒ �1

0, At1 . . .
∀Rω

�0
0, �1

0, . . . ⇒ �0
0,�1

0, . . . , ∀xAx

D0
1

Ati, �
0
1 ⇒ �0

1

D1
1

Ati+1, �1
1 ⇒ �1

1 . . .

Ati, Ati+1, . . . , �∗
1 ⇒ �∗

1

D∗
1

At0, At1, . . . , Ati, Ati+1, . . . , �1 ⇒ �1 ∀Lω∀xAx, �1 ⇒ �1
cut

�0
0, �1

0, . . . , �1 ⇒ �0
0,�1

0, . . . , �1

into a derivation of the following form where Di$
0 and Di$

1 are obtained from Di
0 and Di

1
by “fiddling with” (Zardini, 2011, p. 529) the initial sequents, D∗£

1 is obtained from D∗
1 by

substituting Ati for Ati, Ati+1, . . ., and the choice of i is arbitrary:

Di−1
0

�i−1
0 ⇒ �i−1

0 , Ati−1

Di$
0

�i
0, �i+1

0 , . . . ⇒ �i
0,�i+1

0 , . . . , Ati

Di$
1

Ati, �
∗
1 ⇒ �∗

1

D∗£
1

At0, At1, . . . , Ati, �1 ⇒ �1
cut

At0, At1, . . . , Ati−1, �i
0, �i+1

0 , . . . , �1 ⇒ �i
0,�i+1

0 , . . . , �1
cut

At0, At1, . . . , Ati−2, �i−1
0 , �i

0, �i+1
0 , . . . , �1 ⇒ �i−1

0 ,�i
0,�i+1

0 , . . . , �1

...D0
0

�0
0 ⇒ �0

0, At0 At0, �1
0, �2

0, . . . , �1 ⇒ �1
0,�2

0, . . . , �1
cut

�0
0, �1

0, . . . , �1 ⇒ �0
0,�1

0, . . . , �1

However, these permutation instructions do not work.
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§4. A counterexample. Consider the following application of cut which we assume
is the topmost application of cut:

�0 ⇒ �0, At0 �1 ⇒ �1, At1 . . . ∀Rω
� ⇒ �,∀xAx

At0 ⇒ At0 At1 ⇒ At1 . . . ∀Rω
At0, At1, . . . ⇒ ∀xAx ¬L

At0, At1, . . . , ¬∀xAx ⇒ ∀Lω∀xAx, ¬∀xAx ⇒
cut¬∀xAx, � ⇒ �

On the face of it, this application of cut is straightforwardly eliminable by applying ¬L
on � ⇒ �, ∀xAx. For the permutation instructions provided by Zardini (2011), however,
things are not that straightforward.

In our case, a denumerable subset of At0, At1, . . . is introduced through an application of
∀Rω, and it is fairly evident that our case is of the above form: D∗

1 is our application of ¬L
and D0

1 is our initial sequent At0 ⇒ At0. In fact, the denumerable subset of At0, At1, . . .
introduced through an application of ∀Rω is At0, At1, . . . itself. Following the instructions,
we pick the derivation of the sequent containing the first element of that subset, i.e., the
derivation ending with At0 ⇒ At0. By fiddling with the initial sequent(s) of the derivation
of that sequent, namely, At0 ⇒ At0 itself, we should obtain a sequent from which we obtain
with one application of ¬L the sequent ¬∀xAx, At0 ⇒. We are thus supposed to permute
the above derivation into something along the following lines:

�0, �1, . . . ⇒ �0, �1, . . . , At0

At0 ⇒ At0, ∀xAx ¬L¬∀xAx, At0 ⇒
cut¬∀xAx, � ⇒ �

However, the copy of At0 in succedent position of At0 ⇒ At0, ∀xAx has now mysteriously
disappeared. As far as the instructions provided by Zardini (2011) go, then, the above cut
is not eliminable.

It follows that the permutation instructions provided by Zardini (2011) cannot be em-
ployed to show that cut is eliminable in C, and thus cannot be employed to show that IKTω

is consistent. Of course, the counterexample doesn’t show that IKTω is inconsistent, and
it doesn’t exclude cut from being eliminable through some other strategy with alternative
permutation instructions for cuts on universally quantified formulas. For all we know cut
might still be eliminable in C, but we do not have a proof thereof.
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