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This paper deals with homogenization of flow in porous media with large
inhomogeneities. Classical homogenization relies on representative elementary volumes
(REV) large enough that asymptotic macroscopic parameters, e.g. effective permeabilities,
can be employed to describe the expected or mean behaviour. In this way, Darcy’s law,
which describes the relationship between macroscopic pressure gradient and volumetric
flow rate, was derived. In the presence of large features, however, the required REV size
may reach the same order as the geometric reference scale of the problem, and thus
effective permeabilities obtained from classical homogenization studies may be unsuited.
This is in particular the case for reservoirs with isolated, highly conductive fractures. To
see this, consider flow from left to right through a block of finite size. If the latter is small
enough, such that some fractures are connected to both left and right boundaries, then the
resulting flow will be larger for the same average pressure gradient than through a wider
block. In this paper, a new sub-REV continuum model to describe this pre-asymptotic
flow behaviour is presented. The model relies on a non-local multi-media description
based on coupled integral–differential equations. The only empirical information required
for calibration is the effective permeability of an infinitely large domain, e.g. as
obtained from classical homogenization. With a series of numerical studies and
comparison with Monte Carlo reference data it is demonstrated that the devised sub-REV
model accurately captures mean flow rates and pressure profiles for arbitrary domain
sizes.

Key words: porous media

1. Introduction

Fractured reservoirs play an immense role in many sub-surface flows; examples include
oil and gas reservoirs (van Santvoort & Golombok 2018), shale oil production (Chaudhary,
Ehlig-Economides & Wattenbarger 2011), enhanced geothermal systems (Tester et al.
2007), fresh water aquifers (Rudolph, Cherry & Farvolden 1991; Maclay 1995), CO2
sequestration (Fu et al. 2017), etc. Various approaches have been developed to make
numerical model predictions. The most accurate ones rely on representing individual
fractures, either resolved (Matthäi & Belayneh 2004) or as lower-dimensional manifolds
(Karimi-Fard, Durlofsky & Aziz 2004; Hajibeygi, Karvounis & Jenny 2011a,b). In the
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latter case, one refers to discrete fracture models (DFM). In the context of DFM, often
conforming, unstructured grids are used (Karimi-Fard et al. 2004; Matthai, Mezentsev &
Belayneh 2005, 2007a; Matthai et al. 2007b; Coumou et al. 2008), which simplifies the
coupling between fractures and matrix, but can result in extremely complex grids with
unfavourable cell size ratios. Further, if also geomechanics with fracture propagation is
considered, re-gridding becomes necessary, which renders simulations complicated and
very expensive. Embedded DFM (EDFM), on the other hand, rely on non-conforming
structured matrix grids with embedded fracture manifolds. Since the grid does not have
to conform to the fractures, adding new fracture segments is very simple and cheap
(Karvounis & Jenny 2016). One disadvantage is that transfer coefficients have to be
modelled for each fracture segment/grid cell interaction (Li & Lee 2008). Further, in
EDFMs there is no distinction between sub-cells being created, if a fracture intersects
with a grid cell. This is an important issue in the case of displacement discontinuities
due to shear failure and/or tensile opening and has been successfully addressed with the
extended finite element method (Moes, Dolbow & Belytschko 1999) and the extended
finite volume method (Deb & Jenny 2017a,b). In any case, simulations of detailed
fractured reservoirs can become extremely expensive. Often, however, one is rather
interested in the expected or mean flow than in that of a single realization. The brute
force way to obtain mean quantities and other statistical moments is Monte Carlo (MC),
where solutions of many independent fractured reservoir realizations are sampled. As the
statistical error scales with one over the square root of the number of realizations, a large
number of realizations is required for a proper MC study, which often is unaffordable.
Although the cost of classical MC can dramatically be reduced with multi-level MC
(Heinrich 2001; Giles 2008; Viswanathan et al. 2018), as recently shown (Müller, Jenny
& Meyer 2013; Müller, Meyer & Jenny 2014, 2016; Viswanathan et al. 2018), MC
remains a very expensive approach. To avoid detailed fracture representations at all,
homogenized and dual media descriptions have been proposed (Barenblatt, Zheltov &
Kochina 1960; Karimi-Fard, Gong & Durlofsky 2006). There also exist hierarchical
approaches with discrete representations of large fractures and homogenization of the
small ones (Clemo & Smith 1997; Lee, Lough & Jensen 2001; Karvounis & Jenny
2016). Dual media descriptions treat the fluid in pores and fractures separately and
model mass transfer with exchange terms. While very successful, they cannot properly
describe phenomena below representative elementary volume (REV) scale, which easily
can reach the same order as the problem size. However, particularly near boundaries
and wells, it is important to account for sub-REV-scale effects. It is well known that
the effective permeability of a block below REV scale with isolated fractures is a
function of its size, and none of the existing homogenized models can predict such
pre-asymptotic behaviour. For example Berre, Doster & Keilegavlen (2018) point out
that ‘compared to the standard descriptions of a porous medium, fractures introduce
intermediate length scales, but there may be no clear scale separation between the pore
scale, fracture widths, fracture lengths and the macroscale of interest. Hence, the presence
of fractures challenges the existence of a REV in porous-media modeling’. Note that
numerical upscaling (Durlofsky 1991) can be regarded as a class of homogenization
methods and faces similar issues. Recently, a non-local continuum flow model was
introduced (Delgoshaie et al. 2015; Jenny & Meyer 2017). The governing equation
contains an integral term with a permeability kernel function, which has to be determined
empirically. It was shown that in the limit of infinitely small kernel width this non-local
model converges to the standard Darcy flow equation. By comparing with pore network
results (Meyer & Gomolinski 2019) could show that non-local boundary effects can
accurately be captured by introducing a ‘geometric conductivity distribution’ which
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Homogenization of flow in fractured media 901 A20-3

is similar to the boundary kernel in the present work. Chung et al. (2018) present a
method with integral terms, but their objective is a different one, i.e. they describe
a non-local upscaling framework in the context of multi-scale methods. In their case
‘non-local’ refers to employing oversampled regions to compute transfer functions.
The aim is to get an accurate representation with a coarse resolution and not to
compute the expected flow field as obtained from averaging over an infinite number of
samples.

In this paper, a non-local multi-media description to capture mean flow and pressure
at the sub-REV-scale is devised. This sub-REV model consists of coupled integral
differential equations. The integral terms account for interaction of non-percolated
fractures with the matrix and the boundaries, and kernel functions define the interaction
range. Shape and support of these connectivity kernels depend on fracture size, orientation
and aperture distribution. The devised model equations are very general, i.e. in principle
they can describe mean flow in multi-dimensional reservoirs with percolated and isolated
fractures of variable length and spatially varying fracture statistics. For the presented proof
of concept studies, statistically one-dimensional flow, uniform fracture number density
and a single fracture length are considered. It is shown how the model can be calibrated
and it is remarkable that the only empirical information needed is the asymptotic flow rate.
Comparisons with MC data show that the sub-REV model provides very accurate pressure
and flow solutions for the whole range of domain sizes.

The paper is structured as follows. Section 2 introduces the sub-REV model equations
for two media (isolated fractures and matrix). In § 3, to show that the model concept
can account for more than two media, a third medium is added (percolated fractures).
The numerical solution algorithms for MC and the model equations are presented in
§ 4, and results are shown and discussed in § 5. The paper closes with conclusions
in § 6.

2. Governing equations

We consider incompressible fluid with constant viscosity in a homogeneous porous
matrix with highly conductive, disconnected, embedded fractures. The goal is to derive
equations, which describe expected flow and pressure in these two connected media,
and which are also valid below REV length scales. For a single realization, Darcy’s law
together with mass conservation leads to the pressure (or flow) equation

∂φ

∂t
− ∂

∂xi

(
k
μ

∂p
∂xi

)
= 0, (2.1)

where φ, k, μ and p represent porosity, permeability, dynamic viscosity and pressure,
respectively. The independent variables xi and t denote spatial coordinates and time, and
Einstein’s summation convention is employed, wherever an index appears twice in a term.
For the sake of generality, we introduce the dimensionless quantities

x∗ = x
1
λ
, t∗ = t

Δp
μ

, p∗ = p
1

Δp
and k∗ = k

1
λ2

, (2.2a–d)

where λ is a reference length scale and Δp a reference pressure difference. From now on,
all expressions will be presented in terms of these dimensionless quantities, e.g. (2.1) is
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901 A20-4 P. Jenny

equivalent to

∂φ

∂t∗
− ∂

∂x∗
i

(
k∗ ∂p∗

∂x∗
i

)
= 0, (2.3)

while the superscript ∗ will be omitted for brevity. Mean pressure and porosity of a fracture
are defined as

pf (t) = 1
|Ωf |

∫
Ωf

p(x ′, t) dV(x ′) and φf (t) = 1
|Ωf |

∫
Ωf

φ(x ′, t) dV(x ′), (2.4a,b)

respectively, where Ωf is the fracture volume and |Ωf | its size (bold letters refer to vectors
and letters with subscripts are components). From now on, for simplicity, we assume that
φ is constant in time (incompressible media), i.e. the flow equation

∂

∂xi

(
k

∂p
∂xi

)
= 0, (2.5)

is considered. By convention, pf represents the average pressure of a fracture at its centre
x f . Clearly, mass exchange between a fracture and the matrix is strongly influenced
by the difference between pf and the matrix pressure in the vicinity. This justifies the
approximation

0 =
∫

Ω

ĝ(x, x ′)
(
p̄m(x ′, t) − p̄f (x, t)

)
dV(x ′)

+
∫

∂Ω

k̂f (x, x ′)
pb(x ′, t) − p̄f (x, t)

|x − x ′| dA(x ′) (2.6)

for the expected (average over many independent realizations) volume balance in those
fractures with their centres at x; by convention, their expected pressure is represented by

p̄f (x, t) = lim
n→∞

n∑
i=1

δ(x − x(i)
f )p(i)

f (t)

n∑
i=1

δ(x − x(i)
f )

. (2.7)

Note that n denotes the number of samples and the superscript (i) a random realization.
It is important to notice that pf is defined at one point (of one realization) and that p̄f is a
field quantity. More precisely, p̄f (x) is the expectation of pf , if a fracture has its centre at x.
Computational domain and its surface are denoted as Ω and ∂Ω , respectively, and dA is an
infinitesimal surface element. The spatial integrals are crucial in order to honour that not
only the local matrix pressure p̄m(x, t) affects flow into and out of these fractures. More
concretely, the first right-hand-side term accounts for non-local fluid exchange between
fractures and matrix and the last term for direct connections between fractures and the
domain boundary; pb denotes boundary pressure values. Note that ĝ(x, x ′) and k̂f (x, x ′)
are kernel functions, which depend on fracture size, orientation and aperture distribution
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Homogenization of flow in fractured media 901 A20-5

Ω

Ωb

FIGURE 1. Sketch of a porous domain Ω (light grey) with isolated embedded fractures. The
fuzzy dots indicate the fracture centres. The ghost boundary domain Ωb is shown in dark grey.

and have to be determined. Volume balance in the matrix is consistently described as

0 =
∫

Ω

ĝ(x ′, x)
(
p̄f (x ′, t) − p̄m(x, t)

)
dV(x ′)

+
∫

Ωb

ĝ(x ′, x)
(

pb(x ′, t) − p̄m(x, t)
)

dV(x ′)

+ ∂

∂xi

(
k̄m

∂ p̄m(x, t)
∂xi

)
, (2.8)

where k̄m is the effective matrix permeability. The first two right-hand-side terms
describe non-local fluid exchange with the embedded fractures. Purpose of the
second right-hand-side term is to also account for fractures, which intersect with the
computational domain, but whose centres lie in the ghost boundary domain Ωb outside of
Ω; see figure 1. Note that pb(x, t) has to be specified as part of the boundary conditions.
The last term in (2.8) accounts for Darcy flow. For simplicity, but without loss of
generality, we now focus on one-dimensional problems, which can be described by the
system

0 =
∫ xr

xl

ĝ(x, x ′)
(
p̄m(x ′, t) − p̄f (x, t)

)
dx ′

+
∑

x ′∈{xl,xr}
k̂f (x, x ′)

pb(x ′, t) − p̄f (x, t)
|x − x ′| (2.9)

and

0 =
∫ xr

xl

ĝ(x ′, x)
(
p̄f (x ′, t) − p̄m(x, t)

)
dx ′

+
∫ xl

−∞
ĝ(x ′, x) (pb(xl, t) − p̄m(x, t)) dx ′

+
∫ ∞

xr

ĝ(x ′, x) (pb(xr, t) − p̄m(x, t)) dx ′

+ ∂

∂x

(
k̄m

∂ p̄m(x, t)
∂x

)
. (2.10)
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Hx Hx

Hy

Hz

If

FIGURE 2. Illustration of statistically homogeneous rock samples with embedded fractures.
The fuzzy dots mark the fracture centres.

Note that, in principle, ĝ(x, x ′) can be spatially dependent, but it is not in the cases
presented and discussed in this paper. The first right-hand-side term of (2.10) accounts
for fluid exchange between matrix and those fractures with their centres within the
domain. The second and third right-hand-side terms account for exchange between matrix
and all other fractures which intersect with the domain, but whose centres lie outside
(corresponding to the second right-hand-side term in (2.8)). Note that these boundary
terms do not appear in the fracture fluid balance equations (2.6) and (2.9), since only
fractures with their centres inside the domain are considered there. On the other hand,
the second terms in (2.6) and (2.9) account for direct connections of fracture centres
with the boundary (in the case of fractures intersecting with the boundary), which are
inversely proportional to the distance |x − x ′|. The sketch in figure 2 illustrates statistically
homogeneous rock samples with embedded fractures, in which mean flow from left to right
is considered. Note that in the thin slice some fractures connect with both the left and
right boundaries, which is not the case for the thick slice. This effect is accounted for in a
statistical sense by the last term in (2.9). Integrating over the whole domain Ω = [xl, xr]
leads to

0 = u′(xl) − u′(xr) (2.11)

with

u′(xl) = − k̄m
∂ p̄m(x, t)

∂x

∣∣∣∣
xl

+
∫ xr

xl

(∫ xl

−∞
ĝ(x ′, x)( pb(xl, t) − p̄m(x, t)) dx ′ + k̂f (x, xl)

pb(xl, t) − p̄f (x, t)
x − xl

)
dx

(2.12)

and

u′(xr) = −k̄m
∂ p̄m(x, t)

∂x

∣∣∣∣
xr

+
∫ xr

xl

(∫ ∞

xr

ĝ(x ′, x)(p̄m(x, t) − pb(xr, t)) dx ′ + k̂f (x, xr)
p̄f (x, t) − pb(xr, t)

xr − x

)
dx .

(2.13)
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Homogenization of flow in fractured media 901 A20-7

Note that the total contributions of the first right-hand-side terms in (2.9) and (2.10)
cancel out and that the expected volumetric flows per unit area across the left and right
boundaries, i.e.

E[u](xl) = u′(xl) + pb(xl, t) − pb(xr, t)
xr − xl

(∫ xl

−∞
k̂f (x, xr) dx +

∫ ∞

xr

k̂f (x, xl) dx

)
(2.14)

and

E[u](xr) = u′(xr) + pb(xl, t) − pb(xr, t)
xr − xl

(∫ xl

−∞
k̂f (x, xr) dx +

∫ ∞

xr

k̂f (x, xl) dx

)
, (2.15)

have to match. The operator E[·] denotes expectation and u is the volumetric flow per
unit area. The last terms in (2.14) and (2.15) account for the flows through fractures which
intersect with both boundaries, but whose centres lie outside of Ω . Note that the second
right-hand-side terms of (2.14) and (2.15) quantify the flow through the fractures which are
directly connected to both left and right boundaries. Obviously, they account for a large
part of the increased overall flow rate in the case of short domains.

3. Multiple media

So far, only cases with isolated embedded fractures have been discussed, but the model
can easily be extended for more than two media, e.g. for a porous matrix with embedded
isolated fractures and an embedded connected fracture network (percolated fractures).
Note that, opposed to average flow through porous media with isolated fractures, average
flow sampled from connected fracture networks can be described by a Darcy formulation
with extra terms accounting for local exchange with the matrix. Similar as for dual media,
one obtains averaged volume balance equations for the isolated fractures, the matrix and
the fracture network; they read

0 =
∫

Ω

ĝ(x, x ′)
(
p̄m(x ′, t) − p̄f (x, t)

)
dV(x ′)

+
∫

∂Ω

k̂f (x, x ′)
pb(x ′, t) − p̄f (x, t)

|x − x ′| dA(x ′), (3.1)

0 =
∫

Ω

ĝ(x ′, x)
(
p̄f (x ′, t) − p̄m(x, t)

)
dV(x ′)

+
∫

Ωb

ĝ(x ′, x)
(

pb(x ′, t) − p̄m(x, t)
)

dV(x ′)

+ ∂

∂xi

(
k̄m

∂ p̄m(x, t)
∂xi

)
+ ĉ(x) (p̄n(x, t) − p̄m(x, t)) , (3.2)

and

0 = ∂

∂xi

(
k̄n

∂ p̄n(x, t)
∂xi

)
+ ĉ(x) (p̄m(x, t) − p̄n(x, t)) , (3.3)

respectively. Note that p̄n is the expected pressure inside the connected fracture network, k̄n

the effective mean permeability and ĉ is a coefficient to quantify the exchange rate between
matrix and fracture network. An illustration of such a medium is shown in figure 3.
Note that it is straightforward to generalize the model for an arbitrary number of media,
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Ω

FIGURE 3. Sketch of a porous domain with isolated fractures and an embedded fracture
network.

e.g. with networks of different scales, which are only weakly connected with each other
and the matrix.

4. Numerical schemes and solution algorithms

In this section, for completeness, the numerical solution algorithms to solve the
one-dimensional model equations and the two-dimensional flow equation (2.5) are
outlined. In both cases finite-volume methods were employed, and the latter was used
for Monte Carlo studies of fully resolved flow with random fractures, which then served
to calibrate and test the model. Note that statistically one-dimensional, incompressible
flow through rigid porous media with embedded isolated fractures is considered. It is
important to mention that no claims are made regarding numerical accuracy or efficiency
of the schemes presented in this section; they simply serve the purpose of this paper, i.e.
to demonstrate how the model can be calibrated and how it performs.

4.1. Model equations
To solve the model equations (2.9) and (2.10), the domain Ω = [0, Hx ] is discretized by an
equidistant grid with N cells of size hx = Hx/N. A finite-volume method was employed
where for each cell ΩI = [(I − 1)hx , Ihx ] (I ∈ {1, . . . , N}) the conditions

AfI PfI =
N∑

J=1

{
GmIJ PmJ

}+ BlI Pl + BrI Pr (4.1a)

and

AmI PmI =
N∑

J=1

{
GmJI PfJ

}+ ClI Pl + CrI Pr + Km
(
PmI+1 + PmI−1

)
(4.1b)

with

Km = k̄m

h2
x

, (4.2)

BlI = k̂f (xI, xl)

xI − xl
, (4.3)
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Homogenization of flow in fractured media 901 A20-9

BrI = k̂f (xI, xr)

xr − xI
, (4.4)

ClI =
∫ xl

−∞
ĝ(x, xI) dx, (4.5)

CrI =
∫ ∞

xr

ĝ(x, xI) dx, (4.6)

GmIJ = ĝ(xI, xJ)hx , (4.7)

AfI =
N∑

J=1

{GmIJ } + BlI + BrI , (4.8)

AmI =
N∑

J=1

{GmJI } + ClI + CrI + 2Km, (4.9)

Pm0 = Pl and PmN+1 = Pr (4.10a,b)

are enforced. The Gauss Seidel algorithm is used as a linear solver, i.e. one obtains the
solution from the iteration equations

Pν+1
fI = 1

AfI

(
I−1∑
J=1

{
GmIJ P

ν+1
mJ

}+
N∑

J=I

{
GmIJ P

ν
mJ

}+ BlI Pl + BrI Pr

)
(4.11)

and

Pν+1
mI

= 1
AmI

(
I∑

J=1

{
GmJI P

ν+1
fJ

}+
N∑

J=I+1

{
GmJI P

ν
fJ

}+ ClI Pl + CrI Pr

+ Km
(
Pν+1

mI−1
+ Pν

mI+1

))
, (4.12)

where Pl = pb(0) and Pr = pb(Hx) are left and right boundary pressures. During each
iteration ν + 1 the new pressure values Pν+1

mI
and Pν+1

fI are computed in each cell in the
order of the index I, and eventually, for ν → ∞, the solutions converge.

4.2. Darcy and continuity equations
To solve (2.5), the two-dimensional domain Ω = [0, Hx ] × [0, Hy] is discretized by an
equidistant, Cartesian grid with N × M cells ΩI,J = [(I − 1)hx , Ihx ] × [(J − 1)hy, Jhy],
where hx = Hx/N and hy = Hy/M. A finite-volume method is applied, which leads to the
constraints

AI,JPI,J = AI−1,JPI−1,J + AI+1,JPI+1,J + AI,J−1PI,J−1 + AI,J+1PI,J+1. (4.13)

For the coefficients, harmonic averaging of the adjacent cell permeability values is
employed, i.e. they read

AI−1,J = 2KI,JKI−1,J

KI,J + KI−1,J

1
h2

x

, (4.14)
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AI+1,J = 2KI,JKI+1,J

KI,J + KI+1,J

1
h2

x

, (4.15)

AI,J−1 = 2KI,JKI,J−1

KI,J + KI,J−1

1
h2

y

, (4.16)

AI,J+1 = 2KI,JKI,J+1

KI,J + KI,J+1

1
h2

y

(4.17)

and
AI,J = AI−1,J + AI+1,J + AI,J−1 + AI,J+1. (4.18)

Note that for all Monte Carlo studies presented in this paper fractures are represented as
horizontal pixel lines with numerical permeabilities of knumerical

f = kf af /hy , where kf and
af are fracture permeability and aperture, respectively. Periodic boundary conditions are
applied in the direction of the second index (in the y-direction), i.e.

(PI,0, PI,M+1) = (PI,M, PI,1) (4.19)

and
(KI,0, KI,M+1) = (KI,M, KI,1). (4.20)

In the direction of the first index (x-direction), either Dirichlet boundary conditions are
applied, i.e.

(P0,J, PN+1,J) = (2Pl − P1,J, 2Pr − PN,J) (4.21)

and
(K0,J, KN+1,J) = (K1,J, KN,J), (4.22)

or periodic boundary conditions with an imposed mean pressure gradient of −H−1
x , i.e.

(P0,J, PN+1,J) = (PN,J + 1, P1,J − 1) (4.23)

and
(K0,J, KN+1,J) = (KN,J, K1,J). (4.24)

As for the model equations, the Gauss Seidel algorithm is used as a linear solver, i.e. the
iteration equation

Pν+1
I,J = 1

AI,J

(
AI−1,JPν+1

I−1,J + AI+1,JPν
I+1,J + AI,J−1Pν+1

I,J−1 + AI,J+1Pν
I,J+1

)
(4.25)

is applied for all cells (of the order I = 1 → N and J = 1 → M), until all pressure values
Pν+1

I,J converge.

5. Numerical experiments

First in this section, it is shown how the model coefficients, namely k̄m and the kernel
functions k̂f and ĝ, are obtained. It is remarkable that the only empirical data needed for
tuning are the asymptotic effective permeabilities, which here were obtained from Monte
Carlo simulations. Then the calibrated model is applied to predict average pressure profiles
and flow rates through fractured rock samples of variable size. Comparisons show that
the model solutions are in very close agreement with the corresponding Monte Carlo
data, which are composed of many solutions of (2.5) with independent realizations of
the permeability field k(x).
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5.1. Test case
Statistically homogeneous fractured rock samples are considered, whereas all quantities
are assumed to be constant in the z-direction. Thus, for all the following Monte Carlo
studies, the two-dimensional (2-D) domain Ω = [0, Hx ] × [0, Hy] is used in place of the
3-D domain Ω3D = [0, Hx ] × [0, Hy] × [0, Hz = 1]. Further, all fractures are isolated,
aligned with the mean flow (in the x-direction) and have the same length lf = 0.25.
Stochasticity enters through the random fracture centre locations, i.e. for each Monte
Carlo realization they were sampled from a uniform distribution with the specified density
within a domain much larger than the one used for the computations. Fracture and matrix
permeability are kf = 2/af and km = 1, respectively, where af is the fracture aperture.
The latter is assumed to be smaller than the grid resolution. Note that this implies that
a single fracture is equally conductive as a pure matrix domain with Hy = 2. Further,
the mean fracture number density ρf in the x–y-plane is 50. An illustration of the test
case is shown in figure 2. The fracture centres are marked with fuzzy dots, and from
the right figure, it becomes apparent that also some fractures with their centres outside
of the domain have to be taken into account. To generate independent samples, 10(Hx +
lf )Hyρf fracture centres x f are randomly placed (uniform distribution) in the sampling
domain Ω sample = [−Hx − lf /2, Hx + lf /2] × [0, 10Hy]. Note that Ω sample is much larger
than Ω , which is to properly account for fluctuations of the local fracture density. If
periodic boundary conditions are applied in the x-direction, all fractures with xf /∈ Ω

are rejected, and for each accepted fracture a pixel line of length lf /hx with permeability
knumerical

f = kf af /hy is created, whereas periodicity is assumed for all pixels outside of
Ω . If Dirichlet boundary conditions are applied, the accepted fractures are those with
x f ∈ [−lf /2, Hx + lf /2] × [0, Hy]; see figure 4. Regarding resolution and domain size, it
was found that hx = hy = 0.01 and Hy = 0.5 are sufficient. Further, converged average
flow rates with periodic boundary conditions (in the x-direction with a unit pressure
drop) were achieved with Hx = 1.5; convergence studies were performed for lengths up
to Hx = 2.5 and widths up to Hy = 1. The applied grid resolution also ensures that the
fractures of length lf = 0.25 can exactly be represented by lines of 25 cells. Pressure
surface plots of two realizations with Hx = 1.5 and Hy = 0.5 with periodic (plus imposed
pressure drop of Δp = p(0, y) − p(Hx , y) = 1) and Dirichlet boundary conditions in the
x-direction are shown in figures 5(a) and 5(b), respectively.

To solve the 1-D model equations (2.9) and (2.10), the same grid resolution in the
x-direction was used. Next, it is explained how the model coefficients are obtained.

5.2. Model calibration
The proposed model relies on two kernel functions ĝ(x, x ′) and k̂f (x, x ′), which reflect
the size, orientation and aperture distribution of the fractures, and on the effective matrix
permeability k̄m(x). Here, for cases with constant fracture length lf , the simple ansatz

ĝ(x, x ′)
ḡ

= k̂f (x, x ′)

k̄f
=
{

1, if |x − x ′| < lf /2
0, else

(5.1)

is used for the kernel functions; see figure 6. This leaves us with three model constants, i.e.
k̄m, k̄f and ḡ have to be determined in order to close the model equations (2.9) and (2.10).
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Hy

Hx

Hz

Hx + lf 

FIGURE 4. Sketch of a slice. All fractures with centres in [−lf /2, Hx + lf /2] × [0, Hy]
intersect with either the left or right boundary.

x x
y y0 0

1.5 1.5

0.5
–0.5

0.5

0.5

0.5
0

1.0

0
p p

(b)(a)

FIGURE 5. Pressure surface plots of two realizations with (a) periodic and (b) Dirichlet
boundary conditions in the x-direction (with an imposed pressure drop of Δp = 1). In both
cases periodic boundary conditions were applied in the y-direction.

5.2.1. Effective matrix permeability
The effective matrix permeability k̄m can be derived from the expression

E[um](x) = − km

Hy
E

[∫ Hy

0

(
(k(x, y) = km)

∂p
∂x

)
dy

]

= −(1 − ρf lf af )km
∂ p̄m

∂x
(5.2)

for the mean flow per unit area through the matrix at any location x . From (2.10) it becomes
apparent that this flow has to match that predicted by the model, i.e.

E[um](x) = −k̄m
∂ p̄m

∂x
, (5.3)
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–1.0

0

0.2

0.4

0.6

0.8

1.0

–0.5 0.5

(x–xf)/If

0 1.0

ĝ
(x

f, 
x)

/g–  =
 k

f(
x f, 

x)
/k– f

ˆ

FIGURE 6. Normalized kernel functions ĝ(xf , x)/ḡ = k̂f (xf , x)/k̄f .

and one obtains

k̄m = (1 − ρf lf af )km (5.4)

for the effective matrix permeability. Note that the effective matrix permeability k̄m is
smaller than km, since some of the volume is occupied by fractures (here each fracture has
a volume of lf af ). For the following studies it was assumed that af is extremely small such
that ρf lf af � 1, and thus k̄m was set to km.

5.2.2. Effective fracture conductivity
To find the effective fracture conductivity k̄f , flow through fractures in a very thin slice of

thickness Hx � lf is considered; see figure 7. The average number of fractures connecting
both the left and right boundaries is ρf (lf − Hx)Hy , and therefore one can write

E[uf ] ≈ (lf − Hx)ρf af kf
pb(0) − pb(Hx)

Hx
(5.5)

for the expected volumetric flow per unit area through the fractures. The model, on the
other hand, predicts

E[uf ] ≈ pb(0) − pb(Hx)

Hx

(∫ 0

Hx −lf /2
k̂f (x, Hx) dx +

∫ lf /2

0
k̂f (x, 0) dx

)

= (lf − Hx)k̄f
pb(0) − pb(Hx)

Hx
, (5.6)

where the boundary conditions pb(x) = pb(0) and pb(x) = pb(Hx) were applied for all
x ≤ 0 and x ≥ Hx , respectively. Finally, one obtains the simple relation

k̄f = ρf af kf . (5.7)
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Hy

Hz

lf  – Hx 

FIGURE 7. Sketch of a very thin slice. All fractures with their centres in
[Hx − lf /2, lf /2] × [0, Hy] intersect with both the left and right boundaries.

5.2.3. Effective exchange coefficient
The effective exchange coefficient ḡ can be determined based on the mean flow per unit

area through the fractures in an infinitely large sample, which according to the model reads

E[u∞
f ] =

∫ 0

−∞

∫ ∞

0
ĝ(x, x ′)

(
p̄f (x) − p̄m(x ′)

)
dx ′ dx

+
∫ ∞

0

∫ 0

−∞
ĝ(x, x ′)

(
p̄m(x ′) − p̄f (x)

)
dx ′ dx . (5.8)

Note that due to the absence of Dirichlet boundaries the term with k̂f is zero. With the
ansatz (5.1) for the kernel function (depicted in figure 6) this expression simplifies to

E[u∞
f ] = 2ḡ

∫ 0

−lf /2

∫ x+lf /2

0

(
p̄f (x) − p̄m(x ′)

)
dx ′ dx (5.9)

and with ∂ p̄m/∂x = ∇∞
x p one obtains

E[u∞
f ] = −2ḡ∇∞

x p
∫ 0

−lf /2

∫ x+lf /2

0

(
x ′ − x

)
dx ′ dx

= −ḡ
l3
f ∇∞

x p

12
. (5.10)

Thus, the effective exchange coefficient can be calculated as

ḡ = 12
l3
f

|E[u∞
f ]|

|∇∞
x p| . (5.11)
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To obtain E[u∞
f ], a Monte Carlo study with periodic boundary conditions plus imposed

mean pressure gradient of ∇∞
x p = −H−1

x in the x-direction was performed. Domain
size and grid resolution were chosen as described in § 5.1, i.e. Hx = 1.5, Hy = 0.5 and
hx = hy = 0.01. Numerical results of 1000 independent realizations were sampled, which
resulted in |E[u∞

f ]|/|∇∞
x p| ≈ 4.285 with a statistical standard error of 0.1 %.

As a result, the model coefficients used for the following comparative validation study
are k̄m = 1, k̄f = 100 and ḡ = 3290.88.

5.3. Model validation
In order to obtain reference data for the model validation, Monte Carlo studies with
Dirichlet boundary conditions at x = 0 and x = Hx , that is, with pb(0, y) = 1 and
pb(Hx , y) = 0, and periodic boundary conditions in the y-direction were performed. Note
that for the individual realizations of the Monte Carlo studies the permeability in the cells
along the horizontal pixel lines representing fractures was set to knumerical

f = kf af /hy = 200
and in the cells representing the porous matrix it was knumerical

m = 1. However, the way
the homogenized equations were derived is independent of the ratio knumerical

f /knumerical
m

and the model is not limited to high contrast or low contrast cases. Pressure solutions
were computed for 5000 independent permeability fields, where each realization was
generated as described in § 5.1. In all cases the agreement between model solutions
and Monte Carlo is excellent. Note that the sharp steps in p̄f at a distance of lf /2
from the boundaries are characteristic for cases with a single fracture length, since
all fractures within that distance are directly connected to the boundaries, while for
all others the boundary pressure signal first has to bass through the matrix. Figure 8
shows profiles of expected matrix pressure p̄m(x) (a,c,e) and expected fracture pressure
p̄f (x) (b,d, f ) for domains with Hx ∈ {0.3, 0.6, 0.9}; symbols refer to Monte Carlo data
and the solid lines to model solutions; the dotted lines will be addressed later. Note
that p̄f (x) refers to the expected pressure of fractures with their centres at location x .
Figure 9(a) shows the normalized flows E[u](Hx)Hx obtained from Monte Carlo and
the non-local model as functions of the slice thickness Hx . As expected, the effective
conductance decreases with larger Hx ; a similar behaviour was observed at a smaller
scale for pore networks (Meyer & Gomolinski 2019). Note, however, that they do not
distinguish between different media, but applied the same framework as Delgoshaie et al.
(2015) and demonstrate how the parameters can be extracted from pore network data. For
each Hx ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5}, 1000 independent solutions
were sampled; the statistical standard error of the normalized flows obtained from Monte
Carlo is shown in figure 10. It can be observed that for very small and large Hx -values
the model predictions compare very well with the Monte Carlo data. The discrepancies
for Hx ≈ lf can be attributed to the use of a constant ḡ, the ansatz with piecewise constant
kernel functions and of course the intrinsic simplifications made for the model derivation.
Next, the effect of the former is investigated. It is argued that fluid exchange between
fractures and matrix near the Dirichlet boundaries is underestimated (in comparison to
the domain centre), which suggests using higher ḡ values in the vicinity of such domain
boundaries. Similar non-local effects were observed in pore network studies Meyer &
Gomolinski (2019). The approach followed here to correct boundary effects not accounted
for by the second right-hand-side term in (2.8) is inspired by elliptic relaxation models
used to describe turbulent flows. There, the goal is a similar one, i.e. to distinguish between
the flow dynamics near walls and in free shear flow regions; mainly due to wall blocking
effects. Elliptic relaxation models can account for such non-local wall effects in a very
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FIGURE 8. (a,c,e) Profiles of expected matrix pressure p̄m(x); (b,d, f ) expected fracture pressure
p̄f (x) (representing the pressures of fractures with their centres at location x) for Hx ∈
{0.3, 0.6, 0.6}. Lines represent model predictions and symbols Monte Carlo data.

elegant way. In the case considered here, the constant ḡ value is replaced by g̃(x), which
is the solution of the elliptic differential equation(

1 −
(

lf

2

)2
∂2

∂x∂x

)
g̃ = ḡ, (5.12)

with the Dirichlet boundary condition g̃(0) = g̃(Hx) = g̃boundary . In the statistically
one-dimensional case, its analytic solution is

g̃(x) = ḡ + (g̃boundary − ḡ)
(
exp(2x/lf ) + exp(2(Hx − x)/lf )

)
1 + exp(2Hx/lf )

, (5.13)
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FIGURE 9. Normalized flow E[u]Hx computed with the non-local model for different domain
sizes in comparison with the Monte Carlo data. Left without and right with elliptic relaxation of
g̃(x).
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FIGURE 10. Statistical standard error of the normalized flow E[u]Hx obtained from Monte
Carlo with 1000 realizations for each Hx -value.

but in general, e.g. for most 2-D and 3-D problems, (5.12) has to be solved numerically.
Note that (5.12) ensures that g̃(x) relaxes towards ḡ away from the boundaries, whereas
the spatial correlation length scale is of the order of lf /2, which seems to be an obvious
choice. The elliptic equation (5.12) also reflects the elliptic nature of the flow problem
(see (2.5)). For the cases investigated so far, it was empirically found that the best match
with Monte Carlo data is obtained with g̃boundary = 1.25ḡ. Figure 9(b) shows the obtained
normalized flow rates as a function of Hx , and it can be observed that the match with the
Monte Carlo reference data is excellent. One can also see that the corresponding pressure
profiles shown in figure 8 (dashed lines) are in slightly better agreement with the Monte
Carlo reference than those obtained without elliptic relaxation. Note, however, that elliptic
relaxation only leads to a noticeable improvement if Hx ≈ lf ; otherwise, the agreement is
already very good without elliptic relaxation.

Regarding the cost of solving the homogenized equations, one has to distinguish
between preprocessing and the actual simulations; the former is necessary to obtain closed
expressions for ĝ, k̂f and k̄m, and the latter to obtain p̄m and p̄f . Compared to Monte Carlo
solving the homogenized integral equations with a known parameter set is very cheap, that
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is, only one realization has to be computed and only mean variations need to be spatially
resolved. The only extra cost results from the discretization of the integral terms, which
leads to a broader stencil and a linear system with a fuller matrix. The preprocessing
step typically required Monte Carlo with a stationary (statistically homogeneous) setting,
but once determined the same kernels can be used for any non-stationary setting with
the same statistical fracture distribution. For the cases discussed in the paper the kernel
shape (for both ĝ and k̂f ) is very simple; as shown in figure 6. This shape will change,
however, if more complicated fracture length, aperture and orientation distributions are
to be considered, which is a subject of future research. Here, the magnitude of k̂f , i.e. k̄f
is analytically determined according to (5.7). The magnitude of ĝ, i.e. ḡ, is determined
based on (5.11), which requires us to empirically determine E[u∞

f ]. Therefore, a Monte
Carlo study (consisting of 1000 realizations) with an imposed mean pressure gradient in
the x-direction of ∇∞

x p = −H−1
x was performed.

6. Conclusions

A sub-REV continuum model to compute expected pressure and flow rates in porous
media with embedded, isolated fractures was devised. Different than other multi-media
formulations, non-local fracture/matrix interactions and boundary effects are taken into
account via integral terms. One of the key ideas is to collapse isolated fractures to a
point at their centre and to account for the fracture length distribution by a spatial kernel
function with corresponding support. Similarly, kernel functions account for connections
of such fractures to the domain boundaries. In principle, the derived model equations
can describe multi-dimensional problems with arbitrary, spatially varying fracture size
distributions. Moreover, an extension has been presented, which accounts for three media,
that is, besides matrix and isolated fractures, also a connected network of percolated
fractures is considered. It is straight forward to extend this formulation for an arbitrary
number of media, e.g. to distinguish between fracture families of different scales, which
are only weakly connected with each other and the matrix. For a proof of concept study,
statistically one-dimensional numerical studies with uniformly distributed fractures of the
same length were conducted. It is remarkable that the only empirical information needed
for calibration is the mean asymptotic flow rate, which here was obtained from Monte
Carlo of resolved flow computations through very large domains. The sub-REV model
predictions of fracture and matrix pressure profiles, and most importantly, the flow rates
as functions of the domain size, are in excellent agreement with the corresponding Monte
Carlo data. The small discrepancies in the flow rates for domain sizes of the order of a
fracture length can be corrected with an elliptic relaxation (motivated by boundary effects
not taken into account otherwise) of the fracture/matrix exchange coefficient. Future steps
will include validation studies with more complex reservoirs involving wells and realistic
fracture size and aperture distributions; there calibration will be much more difficult.
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