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Ocean gravity currents flow along the inclined ocean floor for long times compared to the
planet’s rotation period. Their shape and motion is governed by the gravity buoyancy,
Coriolis acceleration and friction-induced Ekman-layer spinup circulation. In order to
understand this process, we consider the flow of a dense-fluid Boussinesq gravity current
of fixed volume over an inclined bottom in a rotating system, in the framework of Cartesian
2.5-dimensional geometry (no dependency on the lateral direction y, but with a non-trivial
y-component velocity v due to Coriolis coupling with the main u along the bottom x).
After release from rest in a lock (co-rotating, with two gates creating propagation in
±x-directions), the current forms a quasi-steady geostrophic ‘vein’ of parabolic height
profile with a significant lateral velocity v. Subsequently, a spinup process, driven by the
Ekman layers on the bottom and interface, appears and prevails for many revolutions,
during which v decays and the shape of the interface changes dramatically. We investigate
the spinup motion, using an approximate model, for the case of large Rossby number,
small Ekman number and small slope γ (relevant to oceanic currents). We show that the
initial shape of the natural geostrophic vein can be calculated rigorously (not an arbitrary
parabola), and the initial lateral velocity v(x, t = 0) is counter-rotation about a fixed point
(pivot) xπ at which v(xπ, t) = 0 (at the beginning and during spinup). This point is placed
excentrically, in the upper part, and this excentre, ∝ γ , plays a significant role in the
process. The spinup in a rigid container is developed as the prototype process; an essential
component is the edge (outer wall) where the flux of the Ekman layer is arrested (and
then returned to the centre via the inviscid core). While the upper part of the vein adopts
this spinup pattern, the lower part (most of the vein, x < xπ) develops a leak (drainage)
at the edge that (a) modifies the spinup of the vein, and (b) generates a thin tail extension
downslope. The tail consists of two merged non-divergent Ekman layers, which chokes the
drainage flow rate. The present model provides clear-cut insights and some quantitative
predictions of the major spinup stage by analytical algebraic solutions. A comparison with
a previously published simple model (Wirth, Ocean Dyn., vol. 59, 2009, pp. 551–563) is
presented. We also discuss briefly stability of the initial vein.
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1. Introduction

The gravity current (GC) of fixed volume created by lock-release is of fundamental
importance in geophysical and environmental applications. Many variants of this flow,
in non-stratified and stratified ambients, have been investigated and modelled (e.g.
Simpson 1997; Huppert 2006; Ungarish 2020). The typical problem is concerned with
the propagation of a dense fluid over a horizontal bottom into a less dense large ambient
fluid, at large Reynolds number, in a fixed (non rotating) frame of reference. The flow
of such GCs in the inertial–buoyancy regime is fairly well understood as a result of
systematic efforts of laboratory experiments, numerical simulations and modelling (see
Huppert (2006), Meiburg & Nasr-Azadani (2015), Ungarish (2020) and the references
therein).

The rotation of the system of reference with angular velocity Ω , relevant to geophysical
and environmental application, introduces novel features into the motion of the GC. The
effect of rotation can be neglected if the GC process is of interest only for a time period
smaller than about 0.1/Ω; here, we focus attention on flows during many revolutions of
the system. The Coriolis acceleration competes with the inertial terms in the direction of
propagation x, and eventually stops the advance. The arrested current has a typical curved
interface, with the thicker part close to the position of release. The formation (called
geostrophic adjustment) of such geostrophic balance structures (called a lens or vortex in
cylindrical geometry, and a wedge or vein in the Cartesian geometry) has been studied by
models, experiments and numerical simulations, e.g. Griffiths (1986), Hallworth, Huppert
& Ungarish (2001), Dai & Wu (2016) and Salinas et al. (2019). After the formation, the lens
(vein) develops quickly thin Coriolis viscous Ekman layers at the bottom and interface,
and enters into a spinup process that changes dramatically the shape, usually by spreadout.
This stage of spinup has been less investigated. For the Cartesian vein, Salinas et al. (2019,
2020) presented direct numerical simulations and comparisons with a simple model for
the spinup process.

The Cartesian vein is analysed conveniently in a 2.5-dimensional (2.5-D) formulation;
see figure 1. The propagation is along the x-coordinate, and z is the axis of rotation and also
of gravitational acceleration in the non-inclined case. The lateral direction y is considered
as a half-dimension because the variables are independent of y, but there is motion with
non-trivial velocity v in the lateral direction y. This is like an axisymmetric flow with
negligible curvature terms. In geophysical contexts, the scale of propagation of the GC is
much smaller than the radius of the planet, which justifies the omission of the curvature
effects. In the 2.5-D flow over a horizontal bottom, the propagations of the GCs in the
±x-directions are symmetric. In the 2.5-D formulation, ‘volume’ refers to volume per unit
lateral unit.

An interesting extension of the flow of rotating GCs occurs when the bottom is inclined
with respect to the horizontal plane by angle γ (typically small). This adds a constant
forcing to the geostrophic balance and affects strongly the spinup motion (Nof 1983; Ezer
& Weatherly 1990). In particular, the slope generates a dramatic difference between the
upslope and downslope halves of the 2.5-D vein. The spinup model and insights of Salinas
et al. (2019) developed for a horizontal bottom do not apply when a slope is present, hence
dedicated models and insights must be used for this extension.

A forerunner of this paper is the study Wirth (2009), referred to below as AW. AW
considered the initial stages of the spinup of a 2.5-D vein over an inclined bottom by
both numerical simulation and a ‘minimal model’. The parameters are inspired by oceanic
GCs (very small height/length aspect ratio, thin Ekman layers at both the bottom and
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope
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Figure 1. Sketch of the 2.5-D system and initial vein. Points M and N of this geometry become M0 and N0 in
the later time, but the pivot xπ is fixed. The figure exaggerates the aspect ratio z/x and the inclination angle γ

as compared with a realistic vein considered in this paper.

moving interface, long time). This posed serious accuracy challenges to the numerical
pseudo-spectral code. The published plots, although qualitatively insightful, are not sharp;
a more detailed digital reprocessing is not possible because the original data are not
available (private communication). The AW model takes into account the Ekman layer
at the bottom and the geostrophic balance in the x-direction. By assuming a simple (only
normal) displacement of the interface h(x, t) above the bottom, the process is reduced
remarkably to a ‘heat equation’ for h. The model and the simulation are in fair qualitative
agreement, but some essential components of the model (like the boundary conditions)
lack theoretical justification. More disturbing is the observation that spinup in pertinent
conditions is governed by a hyperbolic partial differential equation (PDE) (Wedemeyer
1964; Greenspan 1968), hence the governing parabolic ‘heat equation’ model is bound to
introduce some non-physical errors of unknown magnitude. The numerical simulations
indicate that a thin tail is drained out from the downslope edge of the vein, but the AW
model, while predicting the leak, cannot be applied to the tail (it will be smeared out by
diffusion). We argue that the level of understanding and the reliability of the analytical
prediction of this important flow are not satisfactory. This provided the motivation of the
present paper.

The subject of this paper is to extend the body of knowledge about the spinup motion
of the geostrophic vein over an inclined bottom. To this end, we develop a new model that
extends the previous solutions of Salinas et al. (2019) (by addition of inclination) and AW
(by addition of the lateral momentum considerations). For progress and guidance, we also
consider in some detail the solution for (a) spinup ‘from rest’ in a rigid container, and (b)
the relevant divergent and non-divergent Ekman layers. We show that this information can
be assembled into a quite simple mathematical model that predicts the motion for a fairly
significant period of time, called the major spinup stage. The results provide new insights
into the qualitative behaviour and influence of parameters, and new quantitative profiles of
the shape and propagation of the vein. We emphasize that our analysis is for flows at large
Rossby number (i.e. significant deviation from the background ‘solid body’ rotation).

The structure of the paper is as follows. In § 2, we derive the steady-state solution at the
end of the geostrophic adjustment, which we call the ‘natural vein’; it serves as the initial
conditions for the spinup flow. We discuss briefly the stability of the natural vein. We
present an example with parameters relevant to oceanic currents; this configuration is used
further in the next stages of investigation. A qualitative discussion of the expected motions
is presented in § 3. The spinup problem in a rigid container is solved in some detail in
§ 4, for useful analogies with the vein problem. Next, in § 5, we develop the new model.
We discuss the balances in the various domains and perform the matching. We illustrate
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the predictions for the parameters of the example. The previously published AW model is
re-derived and compared with the new model in § 6. Conclusions are presented in § 7. In
the Appendices we summarize the profiles of the natural lens in dimensional form, Ekman
layer solutions, the justification of the quasi-steady geostrophic balance during spinup, and
the solution of the vein for small Rossby numbers.

2. The initial vein

2.1. Formulation
We use Cartesian coordinates x, y, z rotating with angular velocity Ω about z; see figure 1.
The plane x, y (bottom) is inclined with respect to the gravity acceleration g by angle
γ , with x pointing upslope. The velocity is u, v, w. We assume that the GC is a thin
layer, hence the formulation is in terms of z-averaged variables; we also assume that
the variables are independent of y. Thus we are interested in the shape (thickness) of
the dense-fluid layer h(x, t), and the main longitudinal depth-averaged velocity u(x, t). To
close the balances, the lateral motion with the depth-averaged velocity v(x, t) is needed
due to Coriolis coupling. The reduced gravity g′ = �ρ g/ρ is assumed constant; here, g is
the gravitational acceleration, ρ is the density of the current, and the difference �ρ with
the ambient is due to composition (i.e. addition of salt to water) or temperature difference
between the ambient and current. The system is assumed Boussinesq (small density
difference, �ρ/ρ = g′/g � 1), hence the density difference enters only in the buoyancy
term. (For more details concerning the thin-layer or shallow-water simplification, see
Ungarish 2020.) The natural production of the GC under consideration is approximated
by a lock-release process of a volume (per unit lateral distance) 2V from rest in the
rotating frame (i.e. u = v = w = 0). For the concept, it is convenient to assume a lock
of length 2x0 and height h0 symmetric about x = 0, with z upwards from the bottom
z = 0. The slope angle γ is small (a more rigorous specification is given later). Upon
opening the gates (dam-break) at x = ±x0, the dense-fluid current starts propagating in
both upslope and downslope directions. The initial balance is inertial–buoyancy, while the
fronts xM(t), xN(t) (initially at −x0 and x0) propagate roughly as in a non-rotating channel;
however, during propagation, the influence of the Coriolis terms increases, so that at time
approximately 0.3/Ω after release, a new Coriolis–buoyancy balance is established, and
the propagation of the front stops.

2.2. Scaling and parameters
Suppose that the dense current is generated by release from a lock of length 2x0 and
height h0. The initial propagation is in the inertial–buoyancy regime with typical speed
U = (g′h0)

1/2. It is convenient to scale the variables as follows: x with x0, z and h with h0,
u with U = (g′h0)

1/2, v with Ωx0, and t with T = x0/U. The volume V (per unit lateral
length) is scaled with h0x0. We also introduce the accepted notation f = 2Ω .

The major free input parameter is

C = Ωx0

U
= Ω√

g′
x0√
h0

= 1
2

f
(g′/x0)1/2

(
x0

h0

)1/2

, (2.1)

which measures the ratio of Coriolis to inertia terms; C can be identified with (1/2)f /N
(where N is the buoyancy frequency) and is very small in geophysical applications. We can
interpret C as the inverse of a Rossby number that measures the deviation from solid-body
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope

rotation. This parameter is also associated with the ‘Rossby radius’, which is defined
as U/(2Ω) = x0/(2C) (dimensional) and 1/(2C) (dimensionless). The Rossby radius
provides an estimate of the distance of propagation over which the inertial–buoyancy
motion is arrested by Coriolis deceleration; while accurate for C > 1, this turns out to
be an overestimate for small values of C, as shown later.

Another important free parameter in our problem is the Ekman number that expresses,
among other effects, the thickness ratio of the viscous layer to that of the vein (squared).
For definiteness, we introduce here the formal definition

E0 =
(

δ

h0

)2

, δ =
( ν

Ω

)1/2
, (2.2a,b)

where ν is the kinematic viscosity. This parameter is assumed small. The Reynolds number
Uh0/ν = x0/(h0CE0) is assumed large. The coefficient ν represents molecular or eddy
viscosity, depending on the application (see Lane-Serff & Baines 1998).

The values x0, h0 are determined easily in experiments, but may be ambiguous in
applications. A simple remedy is to use x0 = h0 = √

V . In our examples, unless stated
otherwise, we apply this scaling. For further use, we also introduce the scaled time τ with
respect to the rate of rotation of the system, 1/Ω . The transformation between t scaled
with T to τ is t = (1/C)τ .

2.3. Governing equations
We use dimensionless variables. For the body of dense fluid, we use the system
of thin-layer (shallow-water) equations for volume continuity, x-momentum and
y-momentum. The derivation of these equations is discussed in the literature (e.g. Ungarish
2020). Briefly, these are depth-averaged Navier–Stokes (with neglected viscous and
turbulent stresses) balances simplified by the observation that in a thin layer, the normal
velocity and acceleration components are negligible as compared with the parallel (along
the layer) components. The interface between the dense-fluid thin layer (the current) and
the ambient is assumed to be a kinematic discontinuity. The ambient fluid is assumed to be
a large domain that is little affected by the motion of the current, and can be approximated
as a hydrostatic (in the rotating frame) domain. In this formulation the velocity components
u and v are depth-averaged and hence depend only on x and t.

The equations of continuity, x-momentum and y-momentum in the rotating frame
(figure 1), in scaled form, are

ht + uhx + hux = 0, (2.3)

ut + uux + hx = 2C2v −
(

x0

h0

)
γ, (2.4)

vt + uvx = −2u. (2.5)

We emphasize that these equations are approximations for systems with small C and
small γ (we made the approximations cos γ = 1, tan γ = γ ; the error is bounded by
0.5γ 2). In various set-ups (like laboratory rotating tanks), the axis of rotation z and
the gravity acceleration are aligned, while here z is perpendicular to the inclined plane.
A careful inspection (i.e. by explicit calculation of the Coriolis terms contributed by the
Ωγ x̂ component) shows that when γ and C are both small, as assumed here, the slightly
tilted axis of rotation makes a negligible dynamic difference. In other words, the present
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formulation is a good approximation for systems in which the axis of rotation and the
gravity acceleration are aligned (i.e. the bottom is inclined also with respect to the axis
of rotation). The physical reason is that gravity provides the driving buoyancy, hence the
along-plane component (the last term in (2.4)) is important even for a small slope. The
rotation provides the Coriolis accelerations, proportional to Ω , hence a small change of
this variable (due to the inclination component) is negligible.

A manipulation of the continuity and y-momentum equations produces the potential
vorticity (PV) conservation equation

D
Dt

(
2 + vx

h

)
= 0, (2.6)

where D/Dt = ∂/∂t + u ∂/∂x. In the lock-release flow, assuming absence of internal
jumps, the PV is conserved from the initial h = 1, v = 0 in the domain −1 � x � 1 to
the later situation in the expanded domain xM � x � xN . This can be expressed as

h(x, t) = 1 + 1
2vx(x, t). (2.7)

In addition, conservation of volume yields

2 =
∫ xN

xM

h(x, t) dx = (xN − vN/2) − (xM − vM/2), (2.8)

where M and N are the lower and upper edge points of the dense fluid GC.

2.4. h(x) and v(x) results for small C
The geostrophic adjustment ends with a steady-state structure, u = 0, vt = 0, but
non-trivial h(x), v(x). The objective here is to calculate these variables, and the position of
the endpoints xM, xN , in explicit form, for small C. We work with dimensionless quantities
that facilitate the needed approximations. We combine (2.7) with (2.4) (in steady state)
into

vxx − 4C2v = −2γ, h = 1 + 1
2vx. (2.9a,b)

(Hereafter, we set x0/h0 = 1 but we keep in mind that in general, the influence of the slope
is affected by the scaling.) The boundary conditions are that h = 0 at the endpoints xM, xN ,
and that the volume under h(x) equals 2.

The solution of (2.9a,b) is a combination of exp(±2Cx) plus a constant. Here, we
consider the small C case (the large C case is discussed in Appendix D). Various
manipulations show that when C � 1, the solution is well reproduced by the first terms
in a Taylor expansion of the exponent function. In this approximation (the relative error is
estimated as C2/3), we obtain the results

xN = −xM =
(

3
4

)1/3
C−2/3, (2.10)

h = 2C2(x2
N − x2), (2.11)

v = −2x + 1
2C

−2γ. (2.12)

(The next term for (2.12) reads 4C2(x2
Nx − x3/3). This is needed for the verification of the

approximate solution by substitution into (2.9a,b).) We note that xN is different, in both
magnitude and parameter dependency, from the Rossby radius 1/(2C). The concept that
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope

the Rossby radius represents the initial spreadout of the vein is correct only for flows with
non-small C.

We call this solution a ‘natural vein’ because it connects the steady-state results with the
initial conditions without any forcing. It is interesting that the shape of vein is symmetric
in the ±x directions, as for a horizontal γ = 0 bottom case (Salinas et al. 2019). However,
the lateral (geostrophic) velocity is shifted. The zero of v is now at the point

xπ = 1
4C

−2γ (v(xπ) = 0). (2.13)

This position, which we call a pivot, is upslope. We assume that the pivot is inside the vein,
i.e. xπ/xN < 1. This introduces the mild restriction γ < 4(3/4)1/3C4/3. In this context we
note the relation

xπ

xN
= γ

2α
, (2.14)

where α is the aspect ratio h(0)/xN = (6C1/4)1/3 of the steady vein. The condition α > 2γ

is reasonable.
We show below that this pivot point is very significant in the spinup process. In

particular, we emphasize that v is a linear function of (x − xπ) with intercept 0:

v(X) = −2X, X = x − xπ (xM − xπ � X � xN − xπ). (2.15a,b)

The linear v about the pivot with vx = −2 (−2Ω in dimensional form) facilitates the
similarity with the spinup flow in the rigid container solved in § 4. The local angular
velocity (1/2)vx = −1 (−Ω in dimensional form) indicates that the vein is in full
counter-rotation, and vindicates the claim that the small C implies a large Rossby number.

We define the volume of the upper and lower domains as

Vu =
∫ xN

xπ

h(x) dx = 1 − 1
2

xπ

xN

[
3 −

(
xπ

xN

)2
]

, Vl = 2 − Vu. (2.16a,b)

The careful reader will ask: given an observed vein, i.e. the shape h(x), how do we know
if it is of small C type? This question is justified, because this parameter measures the
magnitude of Coriolis effects relative to inertia effects (the inverse of the Rossby number).
The answer requires some information about the time of creation of the observed body of
dense fluid. Before significant spinup influence, the elongated parabolic shape is expected
to be a reliable mark of the small C (large Rossby number, with significant counter-rotation
lateral motion). When C is large, the natural vein is a rectangle with rounded edges; see
Appendix D.

The dimensional forms of the initial vein results are given in Appendix A.

2.5. Stability
The interface of the steady vein is prone to instability because it sustains a jump of velocity
v (i.e. significant shear) and density stratification (represented by g′). Since the speed
and thickness of the dense layer (i.e. the shear) vary with x, we estimate the ratio of
the stabilizing g′ (stratification effect) to the destabilizing shear effect by the local bulk
Richardson number

Ri = Ri(x) = g′h
v2 , (2.17)

where h and v are the dimensional thickness and speed. We use the results for the initial
vein, (2.11)–(2.15a,b), and after rescaling and some algebra obtain the dimensionless
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estimate

Ri(x) = 1
2

1 − (x/xN)2

(x/xN − xπ/xN)2 . (2.18)

This represents two effects: the numerator decreases with |x| because the layer becomes
thinner at the edges, and the denominator increases with distance from xπ because of the
behaviour of the velocity (2.15a,b). We calculate the domain of instability Ri < 1/4 to
obtain

x/xN > 1
3 [λ+

√
6 − 2λ2] (upper part), (2.19)

x/xM < 1
3 [−λ+

√
6 − 2λ2] (lower part), (2.20)

where λ = xπ/xN . Typically, the main body of the initial vein is stable (Ri > 1/4), but the
domains near the edges xM and xN are prone to mixing instabilities. The slope, represented
by λ, shifts the stable domain upwards.

We note in passing that interfacial instabilities pose a major difficulty in experimental
observations of the vein under consideration. This seems consistent with the present
estimate: the typical natural vein created by lock-release displays significant domains of
Ri < 1/4 adjacent to both the upper and lower edges.

2.6. Example
The values used in this example are typical for oceanic GCs discussed in the literature, and
in particular correspond to the case G15 of AW. The angular velocity Ω corresponds to
the mid-latitude, the reduced gravity g′ corresponds to a temperature difference of dense
to ambient fluids of 1.25 K, the total initial spreadout is about 20 km, and the peak height
is about 200 m above the bottom of slope 1◦.

To be precise, we use the following initial set-up (mks units):

g′ = 0.245 × 10−2, Ω = 0.515 × 10−4, V = 0.133 × 107,

γ = 0.017, ν = 1.0 × 10−3.

}
(2.21)

We use the length scales x0 = h0 = V1/2 = 1.15 km. The dimensionless parameters are

C = 3.53 × 10−2, E0 = 1.5 × 10−5. (2.22a,b)

In this case, for the natural vein we obtain −xM = xN = 9.74 km, h(x = 0) = 205 m and
xπ = 3.94 km. Note that xπ/xN = 0.40 and Vu/Vl = 0.27. The aspect ratio is α = 0.021.
According to (2.19), instabilities are expected in the lower part for x/xM ∈ (0.66, 1) and in
the upper part for x/xN ∈ (0.92, 1).

The free parameters in the ‘natural’ vein solution are C and γ . For given slope, Ω , V and
g′, the result is unique. In the example above, a change of g′ will produce a different vein.
Qualitatively, as g′ increases, C decreases; a larger g′ will produce a longer xN because the
gravity spreadout tendency becomes larger, while the Coriolis restriction (expressed by
Ω) remains the same. Some parametric discussion in the literature (e.g. Ezer & Weatherly
(1990), and examples G00–G17 of AW) fix the parabolic geometry and Ω , while changing
g′. We argue that this is problematic because the natural vein of given volume displays
different spreadout [xM, xN] and peak h(x = 0) when g′ varies. The set-up of a forced (not
natural) vein is easy in numerical simulations and feasible in the laboratory. In any case,
we emphasize that the present spinup study is concerned with the natural vein only, and
its relevance to the forced vein initial conditions is undetermined. By inspection, we found
that example G15 of AW is close to a natural vein, and this inspired the present example.
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M0

N0

M

N
x

gz

y

v = 0 v = 0

γ Pivot xπ

Ω

O

Figure 2. Sketch of the speculated h profile of the vein after spinup to u = v = w = 0. The dashed line
marks the initial profile.

3. The motion: some qualitative estimates

We consider the case of small C, γ, E0. The process begins at t = 0 with a geostrophic
natural vein given by (2.10)–(2.16a,b). We denote by M0 and N0 the initial positions of
the lower and upper edges of the dense fluid. In the subsequent analysis, we assume a
stable motion, i.e. we assume that the instabilities indicated in § 2.5 affect only a small
volume of fluid close to the interface. Under this assumption, the first deviation from the
initial conditions is the viscous adjustment of the v discrepancy between the dense fluid
and v = 0 at the bottom and interface with the ambient. This produces, in the typical time
1/Ω , Ekman layers of typical thickness δ = (ν/Ω)1/2. These layers, while attempting to
reduce v of the entire body of dense fluid to zero, induce also an internal circulation in
the ‘core’ outside the Ekman layers with small but non-trivial u, w. This so-called spinup
motion prevails for many revolutions of the system; see Greenspan (1968).

We argue that the pivot is a special point. Since v(xπ) is zero from the beginning,
the Ekman fluxes move away from this point, hence this is a fixed point during the
process under consideration. Moreover, we expect that there is no interaction between the
upper and the lower domains with respect to xπ (at least for some significant part of the
process).

Let us skip the spinup process and speculate that the end state is a new quasi-equilibrium
situation u = v = w = 0 governed by the geostrophic balance (2.4) and volume
conservation. For v = 0, (2.4) yields hx = −γ , i.e. a simple triangle; see figure 2. We see
that there is a sharp difference between the profile near the nose xN and the back ≈ xM .

We argue that the triangular domain xπ < x < xN is reasonable. The volume in this
domain is Vu = (xN − xπ)2γ /2. Using (2.13) and (2.16a,b), we obtain the estimate

xN

xN0
=

(
2

3λ

)1/2 [
1 − λ

2
(3 − λ2)

]1/2

+ λ, (3.1)

where λ = xπ/xN0 (see 2.14). This expression is plotted in figure 3. Here, λ is a measure
of the slope, and hence for very small values (below 0.1 say) there is significant spreadout,
as in the horizontal vein. However, for λ > 0.2, during spinup the elongation of xN from
the initial position is less than 75 %. For our example, λ = 0.4 and hence the expected
spreadout of xN is about 25 %. This observation projects on the entire x > xπ domain: in
typical cases, the volume Vu will tend to spread out a little, while forming a less-curved
interface – but nothing dramatic. On the other hand, it is important to mention that this
upslope propagation of the vein is small not because of the arrest of the Ekman layer, as
sometimes suggested (Garret et al. 1993). The propagation is small because in the x > xπ
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Figure 3. Estimated expansion of xN during spinup as a function of λ = xπ/xN0.

domain, the change of the slope of the interface between the geostrophic situation and the
spunup situation is small; in both situations, hx < 0.

A very different behaviour is expected at the lower edge, M. For the triangular shape
of figure 2, volume conservation h2

M/(2γ ) = 2V indicates a quite abrupt front hM ,
significantly larger than the initial peak h(0, 0). More intriguing is the observation that
point M is displaced upslope from the initial M0, and the overall span M–N shrinks
compared to M0–N0. This does not make sense; spinup is expected to spread out the vein,
not to shrink it. The conclusion is that the spinup adjustment of the lower part of the vein,
x < xπ, must be different from that of the upper part. Keeping in mind that the lower part
contains the majority of the fluid (73 % in the example), it becomes necessary to consider
the spinup process in detail, at least for the lower part of the vein.

We make a digression with a prototype spinup problem, which will facilitate our solution
of the more complex process in the vein.

4. Rigid container spinup model

We use dimensional variables unless stated otherwise. Consider, in the rotating 2.5-D
system, a container of −L � x � L and height 2H whose boundaries provide the
conditions u = v = w = 0; see figure 4. Initially, the fluid of constant density ρ inside
moves with v(x, t = 0) = −2Ωx, u = 0, w = 0. We analyse the spinup behaviour due
to v = 0 conditions applied at the boundaries at t = 0. Note that the transformation
v′ = v + 2Ωx to an inertial frame of reference renders the fluid initially ‘at rest’ and the
walls as forcing the motion; this bears similarity with the ‘spinup from rest’ problem in a
cylinder solved by Wedemeyer (1964).

We assume that the flow field is composed of a core (inviscid) and thin viscous layers at
the boundaries. When H � L (as assumed here), the most significant are the Ekman layers
on the plates z = 0, 2H (Greenspan (1968) and Appendix B). Here, the gravity is passive
because there is no density variation. For simplicity, we analyse the lower half z � H of
the container (the upper half is symmetric). There is one Ekman layer at the bottom z = 0,
of approximate thickness 3δ = 3(ν/Ω)1/2, which transports volume in the x-direction at
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope

–L 0

2H

L Lv = 0

v(x, t)v = –2Ω x v = 0

y

z

z Spinup front(a) (b)

xS(t)
x x

Ω

Figure 4. Spinup in a rigid container, 2.5-D unbounded in the y-direction. Sketches of (a) the system, and
(b) the flow. The arrows indicated the ‘suction’ (and ejection) interaction of the Ekman layer with the core.

the rate
Q(x, t) = −1

2δ v(x, t). (4.1)

The axial velocity component at the ‘edge’ of the Ekman layer is provided by

w̃ = −∂Q
∂x

= 1
2

δ
∂v

∂x
. (4.2)

(The effects given by (4.1) and (4.2) are called Ekman-layer flux and suction/ejection.) We
define the Ekman number E = (δ/H)2, and assume E � 1.

The task is the calculation of the time-dependent flow in the core, in particular of v. The
continuity equation is

ux + wz = 0. (4.3)

The matching of the flow in the core with that in the Ekman layer, using an expansion of
the variables in powers of E1/2, shows that in the core, the dominant momentum balances
are

0 = −px/ρ + 2Ωv, (4.4a)

vt + uvx = −2Ωu, (4.4b)

0 = pz. (4.4c)

The balances (4.4) do not contain viscous terms, hence the core flow is referred to as
inviscid. An inspection of the equations shows that px, u, v are independent of z. This
simplifies the solution as follows.

By volume continuity, in the core we obtain

u(x, t) = −Q
H

= 1
2

δ

H
v(x, t) = 1

2
E1/2 v(x, t). (4.5)

The y-momentum balance (4.4b) can now be expressed as

vt +
(

1
2 E1/2v

)
vx = −ΩE1/2v, (4.6)

with given initial condition v(x, 0) = −2Ωx and boundary condition v = 0, at the x = ±L
walls. The latter condition expresses the fact that the Ekman-layer flux is arrested at the
edges.
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Initial condition

–v/(2 Ω L)

0 1
x/L

1

T3

T2

T1

Figure 5. Spinup in a rigid container: predicted v for times T1 < T2 < T3. The blue and red lines meet at
x/L = e−Ti , i = 1, 2, 3.

We solve for 0 � x � L; the extension to the other side is straightforward. The solution
is obtained by the method of characteristics. At the corner x = L, t = 0, a fan of
characteristics develops that carries the condition v ∈ [−2ΩL, 0]. This fan propagates
into the interior (x < L). The fastest inward characteristic, xS = L exp(−T ), where T =
E1/2Ωt, can be defined as the spinup front. To the left of the front, the original v(x, 0)

prevails.
After some manipulations we obtain the results

v =

⎧⎪⎨
⎪⎩

−2ΩL(1 − x/L)
e−T

1 − e−T (e−T � x/L � 1),

−2Ωx (0 � x/L � e−T ),

(4.7)

w̃ =

⎧⎪⎨
⎪⎩

Ωδ
e−T

1 − e−T (e−T � x/L � 1),

−Ωδ (0 � x/L � e−T );
(4.8)

see figure 5. At a fixed time Tj, the velocity v(x, Tj) is given by two lines that meet at
the spinup front position x/L = e−Tj . The blue line shows v in the non-spunup domain:
linear decrease from the centre, as in the initial state. The red lines show v in the spunup
domain: linear increase to zero at x/L = 1. The variable w̃ confirms that there is ejection
of spunup fluid from the Ekman layer in the affected domain e−T � x/L � 1, and suction
(absorption) into the Ekman layer of the initial fluid in the non-affected domain, as
sketched in figure 4. The ‘end’ time of the spinup process lacks a clear-cut definition.
A plausible candidate is T = 2, when the maximum |v|/(ΩL) in the container is smaller
than e−2. The contribution of the sidewall x = L to the spinup is negligible, because the
inviscid core solution (4.7) satisfies the no-slip condition v(x = L) = 0, hence no strong
shear layer appears on this boundary to assist the shear effect of the thin Ekman layers on
the z = 0 plate. Finally, we verify and confirm that the resulting u, v, w flow of the core
is compatible with the use of the Ekman-layer formulas (4.1) and (4.2): v is the dominant
component, the x and z variations are on scales much larger than δ, and the time-variation
scale is much larger than 1/Ω (see § B.3).

We emphasize that the spinup is governed by a hyperbolic PDE for v(x, t), namely
(4.6). Another useful observation is that the other variables in the core are by-products of
the result v(x, t). Using (4.5), we obtain u(x, t); then w(x, t) = w̃(1 − z/H) in the core.
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope

Lower

spinup front

xSl

xπ

xSu

Viscous tail

hx =
 0 N0

M0
M

y

N
x

gz
Upper

spinup front
Ω

γ

O

Figure 6. Sketch of the expected behaviour of the vein during spinup. The red arrows indicate the Ekman-layer
flux; the green arrows indicate the suction/ejection interaction with the core. The spinup fronts xSl(t), xSu(t)
propagate from the edges M0, N0 towards the pivot xπ. In the domain [xSl(t), xSu(t)], the initial v = −2Ω(x −
xπ) (not spunup) prevails.

The circulation velocities u, w are O(E1/2v). We also note that the side −L � x � 0 has
an identical spinup process, the fact that the initial v = −2Ωx is positive notwithstanding.
What is important is that initially vx = −2Ω < 0 in both sides, i.e. the Ekman layer
absorbs fluid near the centre, and ejects fluid with v = 0 at the periphery x ≈ −L. The
spinup front propagates from the sidewall to the centre.

It is evident that the spinup is an outside-in process. The spinup fronts propagate
from the edges x = ±L into the interior. The spinup is a result of the Ekman-produced
circulation: fluid is transported along the bottom from the centre (pivot) to the edge,
then returns to the centre in the core. We observe that the spinup time is 2H/(νΩ)1/2

(dimensional, corresponding to T = 2) and does not depend on the length L. This is
because the speed of the spinup front is ∝ L/H.

The spinup of the vein is expected to occur along a similar pattern. The initial v

(z-averaged) varies linearly with X (measured from the pivot x = xπ). The process is
complicated by several factors, in particular the following. (1) The height of the ‘container’
changes with x and t, and hence the relationship (4.5) involves more variables. (2) The
upper Ekman layer is in contact with a fluid (not a solid boundary), and consequently
the transport Q there is weaker (about half) than at the bottom. (3) Finally, in the lower
(downslope) part, the Ekman layer is not fully arrested. Some of the flux arriving at the
edge (x = −L in this analogy) is returned towards the pivot, and some drains out.

5. The new model

The concept of the present model is sketched in figure 6. We use dimensional variables
unless stated otherwise. The dense-fluid domain is modelled as a combination of thin
Ekman layers and (almost) inviscid cores. The main novel features of the present model
are: we incorporate the Ekman layer on the interface in addition to that on the bottom; we
incorporate the spinup outside-in process; and we treat separately (and then match) the
upper and lower dense-fluid domains, and the viscous thin domain M0–M (‘tail’).

The volume transport (flux) of the Ekman layer at the bottom (where v = 0) is
approximated by (1/2)δv(x, t) (see Appendix B). The interface at z = h reduces v of
the dense layer not to zero, but rather to 0.5v, while the reduction from 0.5v to zero is
performed in the ambient domain z > h. The Ekman layer on the z < h side is driven by
half the shear as compared to the bottom, and hence contributes half of the bottom flux.
Therefore, in general, we write the total Ekman-layer x-transport and z-suction (ejection)
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as
Q = −(k/2)δ v(x, t), w̃ = (k/2)δ vx(x, t), (5.1a,b)

where k = 1.5. (By putting k = 1, we obtain a model that takes into consideration only
the bottom layer.) We emphasize that now Q and w̃ combine the effects of both the bottom
and the interface layers. A negative w̃ means fluid sucked from the core into the layers.

The spinup circulation (u, w) in the core is O(δΩ), and the spinup time scale is 	1/Ω .
An order of magnitude estimate ( see Appendix C) shows that during spinup, the inertial
acceleration terms in the x-momentum equation are unimportant, and the dominant terms
satisfy the geostrophic balance

hx = 2
Ωv

g′ − γ. (5.2)

In other words, the pressure gradient g′hx, Coriolis 2Ωv and gravity g′γ forces along x are
in equilibrium for a long time compared to 1/Ω . This, however, does not preclude ‘slow’
but significant changes of h and v. The modelled flow satisfies (5.2) during the spinup
process. This is exactly the same equation as for the steady vein, but now we relax the
u = w = 0 condition. The y-momentum considerations are applied later.

The major objective is the prediction of the shape h(x, t) (in particular the position of
the edges xM(t), xN(t)) and of the velocity field in the cores (in particular of v(x, t)). The
initial conditions come from the natural steady vein.

The cores are of two types, according to the value of v(x, t): not-spunup and under
spinup.

5.1. The not-spunup core
Initially v(x, 0) = −2Ω(x − xπ). As shown in § 4, the change of the initial v propagates
from the edges M, N towards the pivot. Consequently, for a significant time,

v(x, t) = −2Ω(x − xπ) (xSl(t) � x � xSu(t)). (5.3)

Here, xSl(t) and xSu(t) are the positions of the spinup front in the lower and upper domains.
The starting points at t = 0 are M0 and N0, respectively.

This core shrinks in both height and length. Since v(x, t) = v(x, 0), the local slope of
the interface, hx, is maintained according to (5.2). Combining (5.3) with (5.1a,b), we find
that the axial motion is w̃ = −kδΩ , independent of x. This implies that the upper interface
descends with homogeneous speed, which means that the combined Ekman suction into
both the upper and lower layers is fully supplied by the vertical shrink of the domain of
dense fluid. This is expressed as

∂h
∂t

= −kδΩ. (5.4)

Using the known initial h(x, t = 0), we obtain the simple estimate

h(x, t) = h(x, 0) − kδΩt (xSl(t) � x � xSu(t)). (5.5)

The profile h(x, 0) in dimensional form is given by (A2).
The results (5.4) and (5.5) need some discussion. In general, the continuity equation for

the dense fluid (below the interface z = h(x, t)) is

ht + (Q + uh)x = 0, (5.6)

where uh is the flux in the core. We assumed that in the not-spunup core, the uh term is
negligible. We argue that this is a by-product of the fact that in the not-spunup domain, the
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope

slope of the interface, hx, is steady, i.e. the interface descends without change of shape.
Recall that in this domain, Qx is constant. The initial condition is u(x, t) = 0, and if this
situation is maintained, then the plausible (5.5) motion appears. On the other hand, we
could not find any mechanism that generates u(x, t) /= 0 compatible with the steady hx.

Next, we consider the behaviour of the cores under spinup. The matching with the
previous results will provide the values of xS(t). As pointed out above, the upper domain
of constant volume Vu spreads out to a more-or-less straight wedge by the spinup process.
Therefore, we focus most attention on the more intriguing motion of the lower part, x < xπ.
Here, we distinguish between the ‘body’ x > xM0 and the tail x < xM0.

5.2. The lower part, x < xSl(t)
At t = 0+, Ekman layers appear on the bottom and interface. Since v(x, t = 0) =
−2Ω(x − xπ), the flux is Q(x, t = 0) = kΩ(x − xπ)δ for xM0 < x < xπ. (The sign of Q
is negative, and the flow is downwards, as expected.) Initially, at the edge point M0, the
slope is hx > 0 because v > 0 and the Coriolis term in (5.2) exceeds −γ . Next, point M0
accumulates spunup fluid, v decreases, and the local hx decreases to 0. This occurs when

v(xM0, t) = VCH = g′γ
2Ω

, (5.7)

where the subscript CH means choked, as justified later. For the hx = 0 situation, the
Ekman layer flux is not arrested, i.e. the dense fluid is not fully stopped at the edge M and
forced to return towards the centre. Instead, a leak appears. A part of the flux Q(xM0, t)
is drained out at M0 and propagates as a long viscous tail along x < xM0, as sketched
in figure 6. An analysis of the tail indicates that the transport in the tail (downwards) is
choked to

QCH =
∣∣∣∣−1

2
kδVCH

∣∣∣∣ = k
g′γ δ

4Ω
= kΩxπδ. (5.8)

This sets the boundary conditions for the spinup process of the lower core. At the
beginning, the Ekman layers carry towards M a larger Q than QCH . The excess is returned
to the core, and ejected in the domain xM0 < x < xSl(t); see figure 6. Here, xSl is the
position of the spinup front. For x > xSl(t), the flow of § 5.1 prevails.

The behaviour of the spunup domain xM0 < x < xSl(t) is more complex, and
simplifications are needed for progress. Inspired by the solution of § 4 and figure 5, we
assume that v changes linearly in this domain as follows:

v(x, t) = VCH + −2ΩxSl − VCH

xSl − xM0
(x − xM0). (5.9)

The unknown term is xSl(t). This v is substituted into (5.2), and integration (subject to the
condition on h(xSl, t) given by (5.5)) provides h(x, t). Then we calculate the volume of the
fluid in the lower part as∫ xSl

xM0

h(x, t) dx +
∫ xπ

xSl

[h(x, 0) − kδΩt] dx + QCHt = Vl. (5.10)

We imposed volume conservation; we recall that Vl is known,

Vl =
∫ xπ

xM0

h(x, 0) dx. (5.11)
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We obtained an algebraic equation, (5.10), for xSl(t). (The explicit form is cumbersome
and not given here; we calculated numerically the physical root xSl(t) for the results shown
later.)

We keep in mind that the Ekman layers absorb fluid in the original core and eject
fluid in the spunup domain. This yields a peculiar deflation of the vein near the centre,
accompanied by inflation close to the edge M0. It turns out that the tendency of the spinup
process is to flatten the interface of the lower part to hx = 0.

5.2.1. The major spinup stage
We conclude that the major change of the interface of the lower part of the vein is the
deflation about point O and inflation about point M0, until a constant h1 (i.e. hx = 0) is
reached between these points at time t1. We can calculate t1 from volume considerations:

[h(x = 0, t = 0) − kδΩt1] |xM0| = V − QCHt1 + kδΩxπt1. (5.12)

The left-hand side is the volume under the constant h1, from point M0 to O. The right-hand
side expresses the fact that in the domain M0 to O of initial volume V , there is constant
drainage at M0 and constant influx from the Ekman layers at O (where v = 2Ωxπ). The
second and third terms on the right-hand side cancel out (see (5.8)) and we obtain

t1 = 1
2

V
|xM0|

1
kδΩ

= 1
3

h(0, 0)
1

kδΩ
. (5.13)

We used the geometric relationship V = (2/3) h(0, 0) |xM0| for the initial parabolic vein.
The motion from t = 0+ to t1 we define as the major spinup stage. At the end of this

stage, in the domain [xM0, 0], we find v = VCH , w̃ = 0. The constant height of the vein
between points M0 and O is

h1 = h(0, 0) − kδΩt1 = 2
3 h(0, 0). (5.14)

The interesting conclusion is that t1 and h1 are general results, independent of the slope
angle γ . Moreover, h1 is a rather universal prediction: the lower half of the vein on a slope
during the spinup process will attain a constant height of 2/3 of the initial peak.

The proportion of the volume drained out from the vein is also of interest. We calculate,
using previous results,

QCHt1
2V = 1

4
xπ

xN0
= γ

8α
, (5.15)

which is typically a small number (0.10 in our example). This confirms the inference of AW
that during spinup, the major adjustment motion is of inflation–deflation in the original
position, rather than spreadout of the mass.

During this major stage, there is a significant reduction of the initial v, but some
additional spinup to v = 0 is expected. We admit that the new model cannot predict the
subsequent motion during t > t1. We speculate that a spinup wave from xπ towards M0
with the tendency towards hx = −γ will appear. This implies that h(xπ, t) will descend
further, and the vein will develop a dip, perhaps even split, about this position. Meanwhile,
the flow about point M0 will be steady, and the tail will be provided by the same drainage
flux as before, and maintain the same behaviour.
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope

5.3. The upper part xπ < x < xN(t)
In this domain, the initial v is negative and hx < −γ . The Ekman layers carry flux upslope
to point N. This produces v = 0 and, according to (5.2), hx = −γ about this point and the
interface does not detach from the bottom. The Ekman-layer flux is arrested at N and is
returned back, creating a spinup front xSu(t) moving backwards, as in figure 4. We make
again the assumption that v changes linearly from 0 at N to −2Ω(xSu − xπ) in the spunup
domain, then calculate h(x, t) and the volume. Matching volume with the non-spunup
domain completes the calculations.

However, insight and some tests indicate that a simplification can be introduced with
little sacrifice of accuracy. First, it is clear that the details of the motion in this domain
are not of much interest: at xπ, h decreases with kδΩt, and at point N, we have h = 0.
The domain tends to a triangular shape with a known volume, providing an approximation
for xN(t). Second, since the upper domain is thinner than the lower one, the spinup will
be significantly shorter than t1. Third, this domain contains a small volume compared to
the lower domain. Consequently, while we are concerned mostly with the details of the
longer process in the larger volume of fluid, we can use the approximation v = 0 for the
upper domain. We admit that there is some inconsistency between the slope of the triangle
interface and the −γ slope of the full spunup fluid, but we argue that this is an acceptable
approximation error within the uncertainties of our model. In this context, we observe that
N represents a corner viscous layer of typical dimension 5δ (20 m in our example), hence
reliable analysis of this domain is beyond the resolution of our model.

5.4. The tail xM(t) � x < xM0

We argued that at point M0−, the interface of the vein has hx = 0, which corresponds
to v = VCH and drainage rate QCH; see (5.7) and (5.8), imposed by matching with the
Ekman layers from the lower part of the vein. In the framework of our model, these
conditions are established at t = 0+, with the formation of the Ekman layers, and are
expected to prevail until at least t1. The detailed solution of the subsequent motion of the
drained-out fluid for x < xM0 is a complicated task because Coriolis, viscous, gravity and
time-dependent terms are present. However, various tested scenarios indicate that after a
quite short distance of propagation, the flow in the tail may attain a steady-state pattern
with hx = 0 that accommodates the same Ekman layers that are present at M0−, but in
‘merged’ form, i.e. the inviscid ‘core’ between the layers is negligible. We call this the
viscous tail, or merged-Ekman-layers tail.

This type of flow is in full agreement with the non-divergent Ekman-layer solution
described in § B.2. We adapt (B17) using vcore = VCH , and the fact that there is also a
weaker layer near the interface. We conclude that this merged layer transports downslope
the flux QCH drained from the vein. We estimate the thickness of this merged layer as 5δ,
and obtain the speed of propagation (downslope)

uM = −QCH

5δ
= k

5 × 4
g′γ
Ω

= k
5

Ωxπ. (5.16)

We keep in mind that there is some uncertainty about the definition of the thickness of
the merged layer as 5δ, hence we estimate the accuracy of the result (5.16) as ±20 %. Our
model predicts constant uM for the major stage of the spinup, t � t1. Our speculation (see
above) is that the same propagation will prevail for a longer time period. Interestingly,
although viscous effects are essential in the merged layer, uM is independent of ν.
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Figure 7. New model predictions for the parameters of our example, in dimensional form. The z/x ratio of
the plot is exaggerated; the arrow for g illustrates the slope. The plots show (a) h(x) and (b) v(x) at various
t (corresponding to τ = 0, 0.67, 2.60, 5.86, 10.16). The dots on the h profiles denote the transition from the
spunup to the not-spunup parts in the lower domain.

We argue that this merged layer imposes the choking conditions u = 0, v = VCH and
QCH at point M0 of the vein. For a different drainage rate Q, and/or different (u, v)

conditions, the tail will attain quickly hx /= 0. This causes a detachment of the interface,
or some rapid inflation near M0. We considered such scenarios unrealistic, while the long
tail with hx = 0 is physically acceptable and provides clear-cut matching conditions with
the flow in the vein. (This is compatible with observation and numerical simulations, as
reported by AW and Ezer & Weatherly 1990).

In our example, uM = 0.22 km h−1; during t1 = 56 h, the tail elongates from 0 to
12.3 km, which renders xM/xM0 = 2.26.
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope

Variable Dimensionless Dimensional Comment

−xM0, xN0 8.437 9.742 km Initial spread
h(0, 0) 0.178 205 m Initial peak
xπ 3.40 3.93 km Position of pivot
Vu/Vl 0.27 — Upper–lower volume ratio from xπ

δ 3.82 × 10−3 4.41 m Ekman layer (ν/Ω)1/2

w̃ = ∂h/∂t −2.02 × 10−4 −1.22 m h−1 In the not-spunup domain
t1 293 55.8 h Time of major spinup
h1 0.119 136 m Height of parallel interface at t1
uM 0.036 0.22 km h−1 Speed of tail propagation (downslope)

Table 1. Predictions for the example. The length scale is
√
V = 1.15 km, and the time scale is

(
√
V/g′)1/2 = 686 s = 0.191 h, where V is the half-volume of the initial vein.

5.5. Results
After assembling the components of the model, we obtain a prediction of the flow field of
the dense fluid as a function of x and t. This is illustrated in figure 7 and table 1 for the
input parameters of the example. The z/x ratio of the figure is strongly exaggerated, and the
inclination is illustrated by the g arrow. The times at which the profiles are presented have
been determined by the position of the lower spinup front: xSl/xM0 = 0.75, 0.50, 0.25, 0.1.
The interval between the times increases because the propagation of the spinup front is
slower in the thicker fluid near the centre. The pivot is at the fixed xπ where v = 0 prevails.

We think that these results provide an informative prediction of the motion for a
significant time during which a dramatic change of shape and lateral velocity occur. The
sharp vertical h at the front xM0 in figure 7 looks peculiar. We must keep in mind the
distorted z/x proportion of this display. This front represents the meeting of the interface
Ekman layer with that on the bottom to flow into the merged tail. This merging domain
may have a thickness of a few δ, with some hx > 0 inclination. The relevant x-distances
are distorted (compressed) by the aspect ratio that is practical for our figure. We admit
that we do not know the details of the flow in this region, but we argue that this does not
invalidate the global model. We expect that in practice, the transition between the vein and
the tail occurs in some rounded, inclined and smooth domain on the scale of a few δ; the
sharp transition used in our model is a simplification that is exaggerated strongly by the
scaling of the figure.

The careful reader may ask why the figures are presented in dimensional form. The main
reason is that we could not find a satisfactory scaling that is both simple and informative.
Some of the results in dimensionless form, scaled according to § 2.1, are listed in table 1
and in figure 8.

6. Comparison with the AW model

It is of both academic and practical interest to elucidate the qualitative and quantitative
similarities and discrepancies between the new and AW models. AW argues that the
dynamics of the vein during spinup can be predicted approximately by a ‘minimal model’
formulated as a diffusion equation for h(x, t) with simple flux conditions at the edges of
the interval of solution. Here, we re-derive this model and compare results with our new
model. For more details concerning the original derivation, we refer the reader to § 3.3 and
figure 2 of AW, and recall that AW discards the Ekman layer on the interface and hence
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Figure 8. Comparisons between the new model (solid line) and the AW model (dashed line) in dimensionless
form for τ = 2.60, 5.86, 10.16. Parameters are as in our example, with scaling defined in § 2.2.

imposes k = 1 (we will keep the coefficient k to facilitate comparisons). Our notation is
slightly different; in particular, we use γ for the slope, and the approximation tan γ = γ .

We use dimensional variables. The components of this model are as follows. The
momentum equation is the geostrophic

hx = 2
Ω

g′ v − γ, (6.1)

the Ekman layer flux and suction/ejection are

Q = −1
2 kδ v(x, t), w̃ = 1

2 kδ vx(x, t), (6.2a,b)

and the motion of the interface is given by
∂h
∂t

= w̃ = 1
2

kδ vx(x, t). (6.3)
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Elimination of v between (6.1) and (6.3) yields a single equation for h(x, t):

ht − k
δg′

4Ω
hxx = 0. (6.4)

AW argues that this ‘heat equation’ is valid for the dense fluid ‘in the vein’, i.e. for
xA(t) � x � xN(t), where A is the point where the interface becomes parallel to the bottom
(similar to our point M0). The initial conditions h(x, 0) are given, which implies that the
total initial volume under h(x, t) is given (2V).

We note that no balance concerning the lateral y-motion has been used in the derivation
of the master equation (6.4). In other words, the governing equation for the dynamics
of the ‘minimal model’ makes no explicit use of the spinup process. Indeed, in the new
model, (6.3) is applied only to the not-spunup domain. Another reason for concern is the
lack of the inclination effect γ in (6.4). The AW model supposes that these effects can be
incorporated by the boundary condition at the edge points N and A.

AW sets these conditions guided by physical expectation and inspection of the interface
shape observed in some numerical simulations: at the upslope edge point N, hx = −γ ,
and at the downslope edge point A, hx = 0. With hindsight, we observe that the spinup
analysis of the present investigation supports these boundary conditions, if we identify
point A with the fixed point M0. We draw attention to the fact that a boundary condition
for hx is tantamount to one for v; see (6.1). We derived the conditions at the edges from
the theoretical argument that the spinup is an outside-in process, and hence at the edges,
v (and hx) attain quickly some fixed values. We now notice that the drainage at point A =
M0 and the slope at N turn out to be the same in both models. This gives credence to the
AW model.

On the other hand, the implementation of these conditions for the diffusion equation
(6.4) is problematic. If at point N the slope is imposed, then the attempt to also impose
the physical h = 0 (or h = 5δ) condition produces inconsistencies with the condition
at M. Indeed, the steady-state hxx = 0 is solved by the line c1x + c2, which in general
cannot satisfy two hx conditions. A serious physical deficiency emerges: in the AW model,
the nose N does not move upwards. The demonstration is as follows. Using (6.4), and
supposing that the interval M–N is fixed as M0–N0, we calculate

d
dt

∫ N

M
h(x, t) dx =

∫ N

M
ht dt = k

g′δ
4Ω

[hx(N) − hx(M)] = −k
g′γ δ

4Ω
. (6.5)

The result is exactly the drainage from edge M0 derived for the new model; see (5.8). This
means that the AW model misinterprets the behaviour of the arrested Ekman layer at N.
The flux stops because v = 0 is imposed there, not because some obstacle is encountered.
The artificially arrested flux is accommodated by a local inflation of h(xN0, t), with no
spreadout motion of N from N0. This could be anticipated because (6.3) takes into account
only the normal velocity component.

The solution h(x, t) of the parabolic diffusion (‘heat’) equation (6.4) is obtained
numerically (by finite differences). The initial h(x, 0) in the domain [xM0, xN0] is given,
and the boundary conditions are simple hx (‘heat flux’) fixed values.

Then the numerical h(x, t) is used to obtain v(x, t) from the geostrophic balance (6.1).
This elucidates the physical deficiency of this model. Instead of calculating v from spinup
considerations, the AW model forces this variable to adjust the volume fluxes that support
a quasi-steady x-momentum geostrophic balance. The physical spinup is governed by a
hyperbolic equation (see § 4), while the motion predicted by the AW model is governed

943 A31-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.447


M. Ungarish

by the parabolic equation (6.4). This implies that the propagation of the spinup fronts
is smeared. Therefore, although the boundary conditions for the diffusion equation are
compatible with the spinup process, the predicted spinup motion inside the vein and the
displacement of the interface are bound to be distorted by an error that increases with time.

We noted before that the AW model provides the same rate of drainage, QCH , at point M0
as the new model. Consequently, it is justified to use the same Ekman-layer tail solution
as derived in § 5.4 for the domain M–M0.

A quantitative comparison between the models, in dimensionless form, is displayed in
figure 8. In this comparison, we used k = 1.5 also for the AW model, and we added to
this model the tail of § 5.4. The dimensional solutions of the AW model are given in
Appendix E.

The qualitative behaviour of the diffusion model interface is in good agreement with
the prediction of the new model. As expected, the spreadout of point N is not captured.
Concerning the velocity v(x, t) profiles, it is evident that the AW diffusion equation model
smears out the spinup fronts predicted by the new model. Therefore, the pivot at xπ

with constant v = 0 during spinup is not detected by the AW model. As expected, the
disagreement between the prediction of the models increases with time. We conclude
that the AW model (supplemented with the tail of § 5.4) is a fair approximation for the
beginning of the spinup. The new model is more reliable and provides the spinup behaviour
for a longer period of time.

7. Conclusions

We considered the spinup-induced motion of a dense-fluid Cartesian gravity current (GC)
on a slope in a rotating system. We developed a new model for the 2.5-D simplified motion
(i.e. there is no dependency on the lateral coordinate y, but there is velocity v(x, t) in this
direction, with x in the upslope direction). We elucidated some novel features.

We focused attention on the non-small Rossby number regime (small C) in which
significant deviations from solid-body rotation occur, typical to geophysical currents. The
initial situation (t = 0) of the GC is a natural vein of well-defined geometry symmetric
with respect to the midpoint (x = 0) (but not just a plausible parabola as used in
previous investigations), in geostrophic equilibrium, which implies a significant v(x, t =
0) (counter-rotation about an excentre pivot xπ). Then this structure develops rapidly
Ekman layers on the bottom and at the interface with the ambient, which drive an internal
circulation, which causes the reduction of |v| (spinup). We show that the resulting spinup
is an outside-in process: v at the edges of the vein are reduced first, and from there, spinup
fronts propagate towards the fixed pivot point at upslope distance xπ from the midpoint.
Therefore, from the beginning, different conditions develop in the up and down sides of
the pivot, and the subsequent spinup process is strongly non-symmetric. Typically, the
upper part contains less volume and needs a shorter spinup time than the lower part. The
flux of the Ekman layers at the upper edge (nose) is arrested by a slowly moving contact
point with the bottom, and returned to the pivot in the core (outside the layers). The flux of
the Ekman layers at the lower edge is arrested partly and returned, and drained out partly
as a fast-moving tail. While both v and h change, the geostrophic quasi-steady balance
between the Coriolis 2Ωv and gravity g′(hx + γ ) terms is maintained, because the inertial
acceleration terms of the spinup circulation are negligible. We predict that during the
major spinup stage, the elongation of the tail is dramatic, but this domain contains only a
small part of the initial volume; the main volume performs mostly some deflation–inflation
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope

V ↑ g′ ↑ Ω ↑ γ ↑ ν ↑ k ↑
C ↑ ↓ ↑ — — — Dimensionless
E0 ↓ — ↓ — ↑ — Dimensionless
α ↑ ↓ ↑ — — — Dimensionless
xπ/xN0 = λ ↓ ↑ ↓ ↑ — — Dimensionless
xM0 = xN0 ↑ ↑ ↓ — — — Dimensional
h(0, 0), h1 ↑ ↓ ↑ — — — Dimensional
xπ — ↑ ↓ ↑ — — Dimensional
δ — — ↓ — ↑ — Dimensional
t1 ↑ ↓ ↑ — ↓ ↓ Dimensional
uM — ↑ ↓ ↑ — ↑ Dimensional
QCH — ↑ ↓ ↑ ↑ ↑ Dimensional

Table 2. Influence of change of the parameters in the first line on the variables of the first column. The
arrows ↑ and ↓ indicate increase and decrease.

shape adjustments, with little displacement from the initial x-range. This is in agreement
with previous simulations and experiments (Ezer & Weatherly 1990; Wirth 2009).

During the major stage of spinup, t � t1, the drainage into the tail is fixed by a choking
condition, and the downward propagation of the tail is with constant speed uM . The lower
part of the vein contracts at the centre and inflates at the drainage point, until a constant
h1 is attained. Surprisingly, t1 does not depend on the slope γ , while h1 = (2/3) h(0, 0)

in general. The reaction of the system to change of the main parameters is summarized in
table 2.

We compared the predictions of our model with those of the simpler AW model, which
provides h(x, t) as a solution of a diffusion equation; the spinup effect is represented only
by hx conditions at the edges of the initial vein. There is fair agreement at early times, and
perfect agreement concerning the drainage into the tail. The physical spinup is governed by
the sharp fronts predicted by a hyperbolic PDE. The diffusive parabolic PDE smears out
these fronts with time. This explains the time-increasing discrepancy between the models.
Another reason for discrepancy is that the AW model restricts the position of the interface
h to normal displacement only (inflation and deflation, but not spread out). Therefore,
although the AW model captures well the quantitative essentials of the spinup adjustments
of the vein, the new model can be considered more reliable physically and of improved
coverage.

Another advantage of the present model is the clear-cut identification of patterns,
prediction of the initial shape, justification of the boundary conditions, and prediction of
the motion. In particular, we derive simple analytical results for the pivot xπ, propagation
of the viscous tail xM(t), and time t1. Other results are obtained from algebraic equations.

We admit that our solution is for a quite restricted time, t1, during which the lateral
v in the lower part is reduced significantly, but not fully spunup (a few days in ocean
systems). However, a significant spreadout occurs during this time. Another uncertainty
of the present solution is the stability of the predicted interface close to t1. The model
contains, explicitly and implicitly, some adjustable constants. The kinematic viscosity
coefficient can express either molecular or eddy effects, and this will influence the values
of the Ekman-layer thickness δ and the Ekman number. The coefficient k expresses the
number of Ekman-layer contributions to the spinup shear and flux; while the contribution
of the bottom is certain (k = 1), that of the interface is estimated as one-half, thus we used
k = 1.5. There are indications that the interfacial Ekman layer decays by diffusion in some
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circumstances (see Wirth 2011) in which case an intermediate value, such as k = 1.25, may
be more accurate. The thickness of the tail, a domain of merged Ekman layers, estimated
as 5δ, may also need some adjustment when more knowledge is available.

These open issues must be left for future work, including laboratory experiments and
direct numerical simulations. We hope that the insights and results presented in this paper
will be useful guidelines and comparison data for these future studies. Here, we reiterate
that our analysis is focused on a natural vein whose initial profile is determined by release
from a lock followed by significant expansion. A similar mathematical model can be
derived for a more general ‘forced’ parabolic h profile in geostrophic equilibrium (note that
for a parabola, hx and hence v are linear with x, as in the natural case). However, the details
are different, and may require different interpretation; this issue has not been pursued in
this study. We also note that the transition between systems with inclined bottom γ > 0
(present solution) and horizontal bottom γ = 0 (investigation by Salinas et al. 2019) is
not clear. A buffer domain of very small γ , in which some features of inclination (like
the tail) compete with the tendency of symmetry about the axis predicted by the γ = 0
solution, is expected to exist. We expect that there is some threshold slope γtr below which
the g′γ effect is so weak that the symmetric spinup of Salinas et al. (2019) dominates.
Since the intrinsic slope of the vein is the aspect ratio α, we speculate that γtr ≈ 0.1α. The
clarification of this issue must be left to future work. The request that the pivot is inside
the vein provides an upper limit to the slope of relevance, γ < 2α.

Our model discards the motion in the ambient fluid. In realistic circumstances, the
ambient is usually confined to a finite height by an open-to-the-atmosphere horizontal
boundary, hence volume continuity and dynamic considerations indicate that a return flow
(recirculation) is induced in the ambient by the spinup and spreadout motion of the dense
layer. This needs a separate study, along similar lines to the recent investigation of Negretti,
Tucciarone & Wirth (2021) for axisymmetric geometry.
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Appendix A. Dimensional results of initial vein

The dimensionless results for the small C case were derived in § 2.4; here we show the
dimensional form. Recall that the scaling lengths h0 and x0 used in § 2.4 are both taken
as

√
V (dimensional), and the lateral velocity is scaled with Ωx0. Here; the dimensional

h, x, v are denoted by an asterisk. By straightforward calculations; we obtain

−x∗
M = x∗

N =
(

3
4

)1/3 (
g′V
Ω2

)1/3

, (A1)

h∗ = 2
(

3
4

)2/3 (
Ω2V2

g′

)1/3 [
1 −

(
x∗

x∗
N

)2
]

, (A2)

x∗
π = g′γ

4Ω2 , (A3)

v∗ = −2Ω(x∗−x∗
π). (A4)
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On the spinup and spreadout of a Cartesian rotating gravity current on a slope

The height/length aspect ratio is

α = h∗(0)

x∗
N

= 61/3
(

Ω4V
g′2

)1/3

. (A5)

We note the relation
x∗
π

x∗
N

= γ

2α
. (A6)

In geophysical applications, Ω is known, hence the initial vein is prescribed by g′, V and
γ .

Appendix B. The Ekman layers

We present a short derivation and justification of formulas for the flux Q and suction w̃
that appear at the boundary (plate) z = 0 below a large body of fluid in a rotating system.
On the plate, u = v = w = 0. Far from the plate, the fluid is an (almost) inviscid ‘core’
whose dominant velocity is v = v(x). We use dimensional variables.

Assuming ∂/∂y = 0, the steady-state Navier–Stokes (NS) equations read

ux + wz = 0, (B1)

uux + wuz = −px/ρ + 2Ωv + νuzz + νuxx, (B2)

uvx + wvz = −2Ωu + νvzz + νvxx, (B3)

uwx + wwz = −pz/ρ + νwzz + νwxx. (B4)

The matching of the core to the no-slip and no-penetration boundary conditions is
achieved in a thin layer in which the Coriolis–viscous balance plays a major role, referred
to as the Ekman layer. The relevant scale is δ = √

ν/Ω (see Greenspan 1968), and the
convenient stretched coordinate is

ζ = z/δ. (B5)

We note that when in the core, vcore is linear with x, u = 0 and w = const., the x-shear
terms in (B2)–(B4) are expected to vanish. In this case, and assuming an unbounded
domain, the Ekman layer is a part of an exact solution of the NS equation. We present
two cases.

B.1. Divergent flow
Let vcore = εΩx, where ε is a non-zero constant. In the core, u = 0 and w = const. We
anticipate a solution of the form

{u, v} = εΩx {F(ζ ), G(ζ )}, w = εΩδ W(ζ ),

p/ρ = εΩ2[x2 + δ2 P(ζ )],

}
(B6)

where the dimensionless functions F, G, W, P are of the order unity. Upon substitution,
(B1)–(B4) reduce to

F + W ′ = 0, (B7)

ε(F2 + WF′) = −2 + 2G + F′′, (B8)

ε(FG + WG′) = −2F + G′′, (B9)

εWW ′ = −P′ + W ′′, (B10)
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where the prime denotes a derivative with ζ . The boundary conditions are F(0) = G(0) =
W(0) = 0, F(∞) = 0, G(∞) = 1, W(∞) = const. and P(∞) = const. (arbitrary). The
constant W(∞) is determined by the solution of (B7):

W(∞) = −
∫ ∞

0
F(ζ ) dζ. (B11)

This gives the following connections with the core: the flux carried by the Ekman layer is

Q =
∫ ∞

0
u dz = εΩxδ

∫ ∞

0
F(ζ ) dζ = −εΩxδ W(∞) = −W(∞) δvcore, (B12)

and the suction at the ‘edge’ of the layer is expressed as

w̃ = εΩδ W(∞) = −∂Q/∂x. (B13)

The coefficient ε (or rather |ε|) is the Rossby number of the flow (ratio of inertial to
Coriolis accelerations). The inertial terms in (B8)–(B10) are multiplied by this coefficient.
The sign of ε indicates the swirl vx in the core. Consider the pressure drive in the
x-direction, −px/ρ = −2εΩx. For a negative ε, the fluid near the plate is pushed outwards
and w̃ < 0; for a positive ε, the fluid is pushed inwards along the plate and w̃ > 0.

The Ekman layer solution of (B7)–(B10) for finite ε is obtained numerically with the
condition at ‘∞’ applied at some finite ζ . (The solution for P(ζ ) is unimportant in
the present investigation and will not be shown.) For |ε| → 0, the linear Ekman-layer
analytical solution G = 1 − exp(−ζ ) cos ζ , F = − exp(−ζ ) sin ζ and W(∞) = 1/2 is
recovered.

Our main concern is the flow with ε = −2 that appears in the core of the natural
vein. The corresponding results are displayed in figure 9. In this case, the Ekman-layer
flux, expressed by W(∞) = 0.7, is slightly larger than the linear value 1/2 (based on
Coriolis–viscous shear balance, with no inertial terms). Solutions with other values of ε

indicate that the linear result is a fair approximation for a practical range of |ε| that justifies
the general simplification for the Ekman-layer transport and suction (w̃):

Q = −1
2

δvcore, w̃ = 1
2

δ
∂vcore

∂x
. (B14a,b)

The linear solution, and figure 9 for ε = −2, indicate that the ‘thickness’ of the layer is
≈ 3δ, and this value is used in our analysis of the vein unless stated otherwise.

B.2. Non-divergent flow
In the previous subsection, vcore varies linearly with x. The v = 0 plate generates an
Ekman layer with a correspondingly varying Q(x) that is accompanied by a non-zero
w̃ ∼ −∂Q/∂x volume transport between the layer and the core. The term ‘divergent’
indicates a non-constant Q and the presence of a non-zero w̃.

The non-divergent counterpart solution with wcore = 0 appears when, in the rotating
frame, vcore = V = const. (and ucore = 0). In this case, we expect a constant Q in the
Ekman layer, and a flow of the form

u = u(ζ ), v = v(ζ ), w = 0, p/ρ = 2ΩVx + const. (B15a–d)

Substitution into (B1)–(B4) shows that the continuity equation is satisfied identically,
and the inertia terms vanish (the system is linear). The solution subject to the boundary
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Figure 9. For ε = −2, the Ekman-layer results −F, G, W versus ζ are shown.

conditions is

u = −V e−ζ sin ζ, v = V(1 − e−ζ cos ζ ), w = 0, (B16a–c)

and the Ekman-layer transport is the constant

Q = δ

∫ ∞

0
u dζ = −1

2δV = −1
2δvcore, (B17)

while w̃ = 0. Note that this result is in full agreement with (B14a,b). In the present case,
the inertial terms on the left-hand sides of (B1)–(B4) are identically zero, hence this flow
coincides with the solution of the linear ε → 0 Coriolis–viscous shear balance.

B.3. Extensions
The results (B14a,b) are a good approximation when the core–boundary interaction is
more practical than that used for the exact solutions, in particular time-dependent and
with some topography. Suppose that the typical x, z dimensions of the ‘core’ are L, H,
with H/L not large, and the Ekman number is E = (δ/H)2 � 1. Let v(x) vary nonlinearly
on the L scale, and suppose a variation of w on the H scale that is accompanied by a small
u (compared to v). The viscous terms in the NS equations are not identically zero, but
are much smaller than the inertial and Coriolis terms, hence the ‘inviscid core’ concept
is valid. Overall, it can be shown that the differences of Q and w̃ from the exact solution
predictions turn out to be O(E1/2). The deviation is also small when (a) v varies with t on
a time scale much larger than 1/Ω , and (b) the bottom boundary slightly varies from z = 0
(with a small local slope). The mathematical details concerning the more general solution
are cumbersome, but the qualitative interpretation is straightforward: the new extension
contributes small perturbation terms in the NS equations (compared with the ideal flow
balances), hence the influence on the results (B14a,b) is small (negligible). We conclude
that the use of (B14a,b) with the local and instantaneous v(x, t) is justified in the spinup
problems considered in this paper.
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Figure 10. AW model predictions, details as in caption of figure 7.

Appendix C. The inertial term in the geostrophic balance

Consider the x-momentum equation (in dimensional form) during spinup. We argue that
Du/Dt is negligible as compared to the g′γ term. We use an order of magnitude argument.
We have Du/dt ∼ U/T . During spinup, U ∼ ΩxN0δ/h00 = E1/2ΩxN0 and T ∼ xN0/U,
where h00 = h(x = 0, t = 0) and E = (δ/h00)

2. Consequently, we estimate

U
Tg′ = U2

h00g′ = E
Ω2xN0

g′ = EC4/3. (C1)

In our example, the estimate (C1) is of the order of 10−4, much smaller than γ = 0.017.
This is typical of geophysical systems. This justifies the use of the quasi-steady geostrophic
balance (5.2) during spinup. It is also evident that the term (C1) is much smaller than the
first term on the right-hand side of (5.2).
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Appendix D. Natural vein for large C (small Rossby number)

Here, we use dimensionless variables; see § 2.2, with x0 = h0 = √
V . The geostrophic

adjustment ends with a steady-state structure u = 0, vt = 0, but non-trivial h(x), v(x). To
calculate these variables, we combine (2.7) with (2.4) (in steady state) into

vxx − 4C2v = −2γ, h = 1 + 1
2vx. (D1a,b)

The boundary conditions are h = 0 at the edges xM, xN , and given total volume 2.
The solution v(x), h(x) is a combination of exp(±2Cx) (plus a constant), and the large C

implies that a sharp variation (like a boundary layer) appears at the edges xM and xN . After
some manipulations and matching with the boundary conditions, we find that the leading
terms are

− xM = xN = 1 + 1
2C . (D2)

Recall that 1/(2C) is the Rossby radius (dimensionless). The initial spreadout of the vein
with large C is exactly one Rossby radius.

In the upper part, 0 < x � xN ,

h(x) = 1 − exp[2C(x − xN)], v = γ

2C2 − 1
2C exp[2C(x − xN)]. (D3a,b)

In the lower part, xM � x < 0,

h(x) = 1 − exp[2C(xM − x)], v = γ

2C2 + 1
2C exp[2C(xM − x)]. (D4a,b)

There is symmetry of h(x) about x = 0, but again not of v(x).
Since in this case the change from the initial h = 1 and spread [−1, 1] is small, it is

convenient to chose the scalings h0 and x0 in accordance with the observed vein, if it is
of this type. The change of scaling variables does not affect the form of the results, with
the exception that γ should be multiplied by x0/h0. Evidently, the numerical value of C
changes. The spinup of this vein needs an investigation different from that of the small C
case because here hx = 0 in the main domain from the beginning. The instability trends
are also different (baroclinic rather than shear, because v is small). This flow is beyond the
scope of this paper.

Appendix E. Results of the AW model

The plots of figure 10 are the counterpart of the new model results of figure 7. The original
AW model does not predict the tail; here, we added the tail of § 5.4. A comparison between
the models is given in figure 8.
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