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This paper deals with a combinatorial problem concerning colourings of uniform hypergraphs
with large girth. We prove that if H is an n-uniform non-r-colourable simple hypergraph then its
maximum edge degree Δ(H) satisfies the inequality

Δ(H) � c · rn−1 n(ln lnn)2

lnn
for some absolute constant c > 0.

As an application of our probabilistic technique we establish a lower bound for the classical
van der Waerden number W (n,r), the minimum natural N such that in an arbitrary colouring of
the set of integers {1, . . . ,N} with r colours there exists a monochromatic arithmetic progression
of length n. We prove that

W (n,r) � c · rn−1 (ln lnn)2

lnn
.

2010 Mathematics subject classification: Primary 05C15
Secondary 05D40, 05D10

1. Introduction

The work deals with an extremal problem on colourings of uniform hypergraphs with large girth.
One of the basic facts of graph theory is that the chromatic number of an arbitrary graph with
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maximum vertex degree d is at most d +1. A natural generalization of this fact for edge degrees
can be stated as follows: if Δ(G) � 2r−4 then G is r-colourable. Both bounds are tight since in
each case we have equality for the complete graph.

The situation in the case of uniform hypergraphs is much more complicated. In particular,
the best known quantitative bounds for the chromatic number in terms of the maximum edge
(or vertex) degree are not sharp. A fundamental result in this field was obtained by Erdős and
Lovász in their classical paper [5]. They showed that if H is an arbitrary n-uniform hypergraph
with maximum edge degree Δ(H) satisfying

Δ(H) � 1
e

rn−1, (1.1)

then H is r-colourable. This result does not provide a tight bound for the maximum edge degree.
The restriction (1.1) has been successively weakened for different values of the parameter r in
a series of papers. The results were obtained by Radhakrishnan and Srinivasan [17] for r = 2,
Shabanov [20] for r = 3, and Kostochka, Kumbhat and Rödl [11] for r > 3. Recently, for fixed
r > 2, the last two bounds have been improved by Cherkashin and Kozik [4], whose approach is
based on the algorithm proposed by Pluhár [16].

The first analogue of the Erdős–Lovász statement for simple hypergraphs was proved by Szabó
[24] in 1990. Recall that a hypergraph is said to be simple if every two distinct edges do not share
more than one common vertex. In fact he gave a lower bound for the maximum vertex degree
in an arbitrary n-uniform non-2-colourable simple hypergraph. Later, using a similar technique,
Kostochka and Kumbhat [10] established the following extension of his result.

Theorem 1.1 (Kostochka and Kumbhat [10]). For any ε > 0 and r � 2 there exists n0 =
n0(ε,r) such that, for any n > n0, every n-uniform simple hypergraph H with maximum edge
degree at most

Δ(H) � rn−1n1−ε (1.2)

is r-colourable.

Since the parameter ε in Theorem 1.1 can be taken arbitrarily small, one can replace it in
(1.2) with an infinitesimal positive function ε(n,r) tending to 0 with growth of n for any fixed
r. In their final comment in [10], Kostochka and Kumbhat asserted that for fixed r, the bound
(1.2) holds for some function ε(n,r) = Θ(ln ln lnn/ln lnn). However, the calculations in their
proof allowed for a better choice of ε(n,r): ε(n,r) = Ω( 4

√
lnr/ lnn). Theorem 1.1 was re-

fined by Shabanov [21], where he proved that, for fixed r, the function ε(n,r) can be taken
of order

√
ln lnn/ lnn. We emphasize that each of these results holds only when n is suffi-

ciently large, and for r (and fixed n) they do not improve the classical bound of Erdős and
Lovász.

The main result of the current paper is the following Erdős–Lovász-type theorem for simple
hypergraphs.
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Theorem 1.2. Suppose n � 9, r � 2, and H is an n-uniform simple hypergraph. There exists an
absolute constant c > 0 such that if

Δ(H) � c · rn−1 n(ln lnn)2

lnn
(1.3)

then H is r-colourable.

The bound (1.3) improves the results of Kostochka and Kumbhat [10] and Shabanov [21]
stated above, since the right-hand side of (1.3) is equal to rn−1n1−ε for some ε = ε(n,r) = (1 +
o(1)) ln lnn/ lnn. It is moreover within a factor of n((lnn)(lnr)/(ln lnn)2) of the best possible
bound, since Kostochka and Rödl [12] proved that for any n,r � 2, there exists an n-uniform
non-r-colourable simple hypergraph with

Δ(H) � n2rn−1 lnr.

Extremal results concerning colourings of uniform hypergraphs can often be applied to various
problems of Ramsey theory. In the next section we shall discuss the application of our main result
to the problem of determining the van der Waerden numbers.

2. Bounds for the van der Waerden numbers

In 1927, van der Waerden [25] proved his famous theorem on arithmetic progressions. It states
that for any integers n � 3 and r � 2, there exists the minimum number W (n,r) such that
any colouring with r colours of the set of integers {1, . . . ,W (n,r)} contains a monochromatic
arithmetic progression of length n. The values W (n,r) from the van der Waerden theorem are
called the van der Waerden numbers.

The best known upper bounds for W (n,r) were derived from results concerning densities of
sets of integers without an arithmetic progression of length n. For each N > n, let rn(N) denote
the maximum density of a subset of {1, . . . ,N} without an arithmetic progression of length n,
that is,

rn(N) =
1
N

max{|A| : A ⊂ {1, . . . ,N}, A does not contain APs of length n}.

It is easy to understand the following relation between the van der Waerden numbers and rn(N):

if rn(N) <
1
r
, then W (n,r) � N.

Indeed, every r-colouring of {1, . . . ,N} has a colour class of size at least N/r. If rn(N) < 1/r then
its density is greater than rn(N), and by the definition of rn(N) this colour class should contain
an arithmetic progression of length n. So, the upper bounds for rn(N) imply upper bounds for
W (n,r).

The best known bounds on rn(N) were obtained by Sanders [18] in the case n = 3, by Green
and Tao [9] in the case n = 4, and by Gowers [7] in general. These upper bounds have the
following form: an exponent of r(lnr)5 for n = 3,

W (3,r) � exp{cr(lnr)5};
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a double exponent of (lnr)2 for W (4,r),

W (4,r) � eec(lnr)2

;

a tower of six numbers in the general case,

W (n,r) � 22r22n+9

. (2.1)

By using a simple probabilistic approach, a lower bound for the van der Waerden number
W (n,r) was obtained by Erdős and Rado [6] in 1952. By using the simple probabilistic approach
they established that

W (n,r) �
√

2(n−1)rn−1. (2.2)

In 1960 this bound was improved for large values of r (in comparison to n) by Moser [14], who
gave an explicit construction of an r-colouring of the integers containing no long monochromatic
arithmetic progression, and derived that

W (n,r) � n · rc lnr (2.3)

for some absolute constant c > 0. The result (2.2) of Erdős and Rado was improved by Schmidt
[19] in 1962. He showed that there exists an absolute constant c > 0 such that

W (n,r) � rn−c
√

n lnn. (2.4)

In the case when p is a prime number and r = 2, Berlekamp [3] established the relation

W (p+1,2) > p2p. (2.5)

Further advances concerning lower bounds for W (n,r) were made employing the results and
methods of hypergraph colouring theory. How are the van der Waerden numbers connected with
colourings of hypergraphs? For any integers N > n, consider a hypergraph Hn(N) = ([N],En(N)),
where [N] = {1,2, . . . ,N} and En(N) denotes the collection of all arithmetic progressions of
length n contained in [N]. Clearly, Hn(N) is an n-uniform hypergraph. Note that Hn(N) is an
induced subhypergraph in Hn(N +1) and so

χ(Hn(N)) � χ(Hn(N +1)).

It is easy to see that in terms of hypergraph colouring theory an equivalent definition of the
van der Waerden numbers can be formulated as follows:

W (n,r) = min{N : χ(Hn(N)) > r}.

Thus, to establish the inequality W (n,r) > N for some N, we have to show that the hypergraph
of arithmetic progressions Hn(N) is r-colourable. One of the natural ways to do this is to use
quantitative relations between the chromatic number and other hypergraph characteristics. For
example, applying the bound (1.1) of Erdős and Lovász, one can easily get the following bound:

W (n,r) � rn−1

en

(
1− 1

n

)
. (2.6)

Indeed, for any x ∈ [N], there are at most n(N − 1)/(n− 1) arithmetic progressions of length n
from [N] containing x, since any such progression is uniquely defined by the position of x in the
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progression and by the difference of the progression. Thus, if

N � rn−1

en

(
1− 1

n

)
+1,

then the maximum edge degree of Hn(N) does not exceed rn−1/e, and by (1.1), Hn(N) is r-
colourable, so the bound (2.6) is proved. Note that it improves the result (2.4) of Schmidt
mentioned above.

Proving Erdős–Lovász-type results for hypergraphs with large girth is of special interest for
the studies of the van der Waerden numbers. In 1990 Szabó [24] proved the following lower
bound for W (n,2): for any ε > 0 there exists n0 = n0(ε) such that, for all n � n0,

W (n,2) � 2nn−ε . (2.7)

Szabó’s approach was to think of the hypergraph of arithmetic progressions Hn(N) as an
‘almost simple’ hypergraph. It is easy to see that for any arithmetic progression A of length n,
there are at most n4 other progressions sharing more than one integer with A. On the other hand,
the number of edges of Hn(N) intersecting A is Ω(N). Based on these simple observations, Szabó
applied the probabilistic technique used for colourings of simple hypergraphs to the hypergraph
of arithmetic progressions. Although Hn(N) is not simple, the number of 2-cycles it contains is
small, and allowed for the same proof.

The lower bound (2.7) obviously improves (2.6). Moreover, since ε > 0 is arbitrary in the
right-hand side of (2.7), the bound is actually of the form

W (n,2) � 2nn−ε(n), (2.8)

where ε(n) → 0 as n → ∞. The calculations from Szabó’s proof give ε(n) of order (lnn)−1/4.
More recently, this bound has been improved by Shabanov [22], who showed that one can
take ε(n) = Θ(

√
ln lnn/ lnn). The proof of [22] develops Szabó’s approach and considers the

hypergraph of arithmetic progressions Hn(N) as a hypergraph almost without 2- and 3-cycles.
The second main result of the paper provides a new lower bound for the van der Waerden

numbers.

Theorem 2.1. There exists an absolute constant c > 0 such that, for any n � 9, r � 2,

W (n,r) � c · rn−1 (ln lnn)2

lnn
. (2.9)

We remark that the result of Theorem 2.1 improves (2.6), which until now was the best known
general bound, and also the main result of [22], which was the best known bound in the case
r = 2.

When the colour parameter r is large in comparison with n, one can combine the Hypergraph
Symmetry Theorem (the reader is referred to the monograph [8] for details) and the lower bounds
for the function rn(N) (see e.g. [15]) to obtain better bounds than those given above. In particular,
for fixed n and large r, the following inequality can be deduced:

W (n,r) � exp{c(n)(lnr)m}, (2.10)
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for some c(n) > 0 and m = �log2 n�. However, the bound (2.10) becomes non-trivial only if
r � nΩ(

√
n). We remark that if n = 3 then (2.10) coincides with (2.3), the old result of Moser

stated earlier. We also remark that (2.9) is stronger than (2.10) whenever

lnr = O(
√

n lnn),

and hence provide a new lower bound for the van der Waerden numbers for all pairs in this range.
The proof of Theorem 1.2 is a reduction argument from a similar statement concerning colour-

ings of uniform hypergraphs with girth at least 5. Recall that a simple cycle of length k (k-cycle) in
the hypergraph H is a sequence e0,v0,e1,v1, . . . ,ek−1,vk−1,ek = e0 of k distinct edges e0, . . . ,ek−1

and k distinct vertices v0, . . . ,vk−1 such that vi ∈ ei ∩ ei+1 for all i = 0, . . . ,k− 1. The length of
the shortest simple cycle in a hypergraph is called the girth of the hypergraph, and is denoted
by g(H).

Theorem 2.2. Suppose that n � 9, r � 2, and H is an n-uniform hypergraph with g(H) > 5.
There exists an absolute constant c > 0 such that if

Δ(H) � c · rn−1 n(ln lnn)2

lnn
(2.11)

then H is r-colourable.

In the next section we prove Theorem 2.2. In Section 4 we derive Theorem 2.1. In the final
remarks we comment on the proof of Theorem 1.2.

3. Proof of Theorem 2.2

To prove that the hypergraph H is r-colourable we have to show the existence of a proper vertex
r-colouring for it. We construct a random r-colouring of H and estimate the probability that this
colouring is not proper. We show that certain bad ‘local’ edge configurations are responsible
for the occurrence of the non-proper colouring; we will estimate their probabilities and deduce,
using the Local Lemma of Erdős and Lovász [5], that all of them can be avoided with positive
probability.

3.1. Construction of random colouring
The construction of a random colouring is based on the method of random recolouring. This
technique was introduced by Beck [2] and then developed by Spencer [23] and by Radhakrish-
nan and Srinivasan [17] for 2–colourings. In our work we use the ideas of Radhakrishnan and
Srinivasan [17] concerning colourings of sparse hypergraphs.

Without loss of generality, we assume that V = {1, . . . ,m}. The construction consists of two
stages.

First stage: initial colouring. At this stage we randomly colour the vertices of the hyper-
graph with r colours uniformly and independently. Namely, let ξ1, . . . ,ξm be independent random
variables, each taking values 1,2, . . . ,r with equal probability 1/r. The random vector ξ =
(ξ1, . . . ,ξm) can be interpreted as a random r-colouring of the vertex set V (we assign the colour
ξi to the vertex i).
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The random colouring ξ can contain monochromatic and almost monochromatic edges. We
say that an edge A ∈ E is almost monochromatic in ξ if there is a colour u ∈ {1, . . . ,r} such that
the number of vertices in A which are coloured with u in ξ is at least n− s and at most n−1. In
this case the colour u is called dominating in A. Here s < n/2 is a parameter of our construction.
In our proof we will set s ∼ lnn, so s will be small in comparison with n.

Formally, for any A ∈ E and every u = 1, . . . ,r, let M(A,u) and AM(A,u) denote the follow-
ing events:

M(A,u) =
⋂
j∈A

{ξ j = u}, AM(A,u) =
{

1 � ∑
j∈A

I{ξ j �= u} � s

}
. (3.1)

Here I{B} denotes an indicator of the event B. Thus M(A,u) denotes the event that A is mono-
chromatic of colour u in ξ , and AM(A,u) denotes the event that A is almost monochromatic
with dominating colour u in ξ .

Second stage: the process of random recolouring. The main principle of the random recolour-
ing method is very simple: during the recolouring stage we would like to recolour some vertices
from the monochromatic edges to make them non-monochromatic. The crucial idea provided
by Radhakrishnan and Srinivasan is to pay special attention to the almost monochromatic edges
during the recolouring procedure. Since they are very close to being monochromatic, we will not
allow them to become monochromatic in the dominating colour.

To make a formal construction of the idea described above, consider the following set of
random variables.

(1) X1, . . . ,Xm – independent identically distributed random variables (also independent of ξ )
with uniform distribution on [0,1], that is, for any j = 1, . . . ,m,

P(Xj < x) = x, x ∈ [0,1].

(2) {η1, . . . ,ηm} – independent identically distributed random variables (also independent of
X1, . . . ,Xm) taking values 1,2, . . . ,r with the following conditional distribution: for every
j = 1, . . . ,m,

P(η j = u |ξ j = a) =
1

r−1
for any u �= a ∈ {1, . . . ,r},

that is, η j has uniform conditional distribution on the set {1, . . . ,r}\{ξ j}.

A continuous-time process of random recolouring goes as follows. Every vertex v ∈ V is con-
sidered only at time Xv, and at this moment of the procedure we check the following two
conditions.

Cond1 There is an edge A, v ∈ A, which is monochromatic in the colouring ξ and none of the
vertices of A changed the initial colour up to time Xv.

Cond2 The recolouring with colour ηv is not blocked. We say that the recolouring of the vertex
v with a colour u is blocked if there is an edge B, v ∈ B, such that B is almost monochromatic
with dominating colour u in ξ , and at time Xv the vertex v is the last vertex in B which is not
coloured with u.

If both conditions Cond1 and Cond2 hold then we recolour v with colour ηv. Otherwise, we
do not recolour v, and the process continues.
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For a vertex v and a time t � 0, let us define a random variable ζv(t), corresponding to the
colour of v at time t:

ζv(t) =

⎧⎪⎪⎨⎪⎪⎩
ξv if t < Xv,

ξv if t � Xv and one of the conditions Cond1, Cond2 does not hold,

ηv if t � Xv and both Cond1, Cond2 hold.

Thus, for any t � 0, we have the random r-colouring ζ (t) = (ζ1(t), . . . ,ζm(t)) of the hyper-
graph H. Our aim is to show that for some t ∈ (0,1) and s, the colouring ζ (t) is a proper r-
colouring of H under the conditions of Theorem 2.2.

Remark. In fact we only need a random ordering of the vertex set to start the recolouring
procedure. In our construction we order the vertices according to the values of the random
variables X1, . . . ,Xm. Nevertheless, using continuous-time helps to simplify the calculations.

3.2. Bad events
Consider the situation that the colouring ζ (t), t > 0, is not proper for H. Let us denote this event
by F(t). Suppose an edge A ∈ E is monochromatic in ζ (t). We have the following covering of
F(t) by three different classes of events.

(1) A bad event of the first type occurs when there is an edge A satisfying the following condi-
tions:

• A is monochromatic in the initial colouring ξ ,
• A is still monochromatic of the same colour in ζ (t),
• up to time t we have already considered at least h vertices of A (h is another parameter,

we will choose h ∼ lnn/ ln lnn).

Let E(A, t) denote the described bad event.
(2) A bad event of the second type (denoted by D(A, t)) occurs when there is an edge A satisfying

the following conditions:

• A is monochromatic in ξ ,
• it is still monochromatic of the same colour in ζ (t),
• up to time t we have considered at most h−1 vertices of A.

(3) A bad event of the third type (denoted by G(A, t)) happens if there is an edge A such that

• A is monochromatic of colour u in the colouring ζ (t),
• it is not monochromatic of colour u in the initial colouring ξ .

It is easy to see that F(t) is a union of these bad events:

F(t) =
⋃

A∈E

(E(A, t)∪D(A, t)∪G(A, t)). (3.2)

In the next few subsections we shall analyse the bad events more closely.

3.3. Bad events of the first type
Suppose that the event E(A, t) occurs for some edge A ∈ E. This event implies that the edge A
is monochromatic in the initial colouring, and that after the consideration of its first h vertices
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(according to the ordering provided by the random variables X1, . . . ,Xm) it is still monochromatic
of the same colour, i.e., no recolouring has been made. We will show that a special hypertree
configuration of depth at most 3 is responsible for this.

Suppose that v1, . . . ,vh are the first h vertices of A to be considered, that is,

Xv1
< Xv2

< · · · < Xvh
and Xvh

< Xv′ , for any v′ ∈ A\{v1, . . . ,vh}.

At time Xvh
we have considered all of them, but no recolouring has been made. Why did we not

change their colours? Since A is monochromatic in the initial colouring ξ , the condition Cond1
holds for every vi. So the second condition Cond2 does not hold, that is, the recolouring of vi

with colour ηvi
is blocked by some almost monochromatic edge Bi. Due to our algorithm we

have the following properties for the blocking edge Bi.

BL1 Bi is almost monochromatic in the initial colouring ξ with dominating colour ηvi
.

BL2 at time Xvi
the vertex vi remains the only vertex of Bi which is not coloured with ηvi

.

Property BL2 implies that any other vertex of Bi which is not coloured with ηvi
in the colouring

ξ should be recoloured with ηvi
up to time Xvi

. Property BL1 implies that the number of such
vertices is at most s−1 (recall that vi is not coloured with ηvi

in ξ ).
Let {wi,1, . . . ,wi,yi

}, where yi � s− 1, denote this subset of vertices of Bi \ {vi}. Since every
vertex wi, j (i = 1, . . . ,h, j = 1, . . . ,yi) has been recoloured with colour ηvi

up to time Xvi
, we have

ηwi, j
= ηvi

and, moreover, there is an edge Ci, j containing wi, j such that

• Ci, j is monochromatic in the initial colouring ξ ,
• up to time Xwi, j

no recolouring has been made in the edge Ci, j, that is, wi, j is the first vertex
of Ci, j which changes its colour during the recolouring process.

Thus, we get a hypertree with ‘trunk’ A, ‘branches’ B1, . . . ,Bh and ‘leaves’ C1,1, . . . ,C1,y1
,

C2,1, . . . ,Ch,1, . . . ,Ch,yh
(Ci,1, . . . ,Ci,yi

are the ‘leaves’ of ‘branch’ Bi). Since the girth of hypergraph
H is greater than 5, it is indeed a hypertree.

Let us summarize. We define a first-type configuration (A,Φ,y,Λ) as follows:

• A is an edge of H,
• Φ = (B1, . . . ,Bh) is an ordered collection of distinct edges of A such that |Bi ∩A| = 1 for any

i (since H is simple), and the vertices vi = Bi ∩A are distinct,
• y = (y1, . . . ,yh) is a vector from {0,1, . . . ,s−1}h,
• Λ is an unordered collection of edges Λ = {C1,1, . . . ,C1,y1

,C2,1, . . . ,Ch,yh
} such that |Ci, j ∩

Bi| = 1 for any i, j, and all the vertices wi, j = Ci, j ∩Bi are distinct,
• the set of edges A, B1, . . . ,Bh, C1,1, . . . ,Ch,yh

form a hypertree with ‘trunk’ A, ‘branches’
B1, . . . ,Bh and ‘leaves’ C1,1, . . . ,Ch,yh

.

We shall denote the set of first-type configurations by ϒ1. The above discussion shows that the
event E(A, t) implies an event A0(A,Φ,y,Λ) for some first-type configuration (A,Φ,y,Λ), where
A0(A,Φ,y,Λ) denotes the event that:

(1) A is monochromatic in ξ ; no recolouring is made up to the consideration of its first h vertices
v1, . . . ,vh;

(2) every Bi is almost monochromatic in ξ ; v1, wi,1, . . . ,wi,yi
are the vertices which are not

coloured with dominating colour; at time Xvi
only vi is not coloured with the dominating

colour;
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(3) every Ci, j is monochromatic in ξ ; wi, j is its first recoloured vertex during the recolouring
procedure.

Thus, we have

E(A, t) ⊂
⋃

Φ,y,Λ:
(A,Φ,y,Λ)∈ ϒ1

A0(A,Φ,y,Λ). (3.3)

Now we are going to analyse the event A0(A,Φ,y,Λ) more closely. Since this event implies
that any leaf-edge Ci, j ∈ Λ is monochromatic, the recolouring of any vertex preceding wi, j in
this edge is blocked (recall that wi, j is the first vertex of Ci, j that changes its colour during the
recolouring process). The number of such vertices is a random variable

μi, j = ∑
w′∈Ci, j\{wi, j}

I{Xw′ < Xwi, j
}.

Let A(A,Φ,y,Λ) denote the event A0(A,Φ,y,Λ) with the additional condition that μi, j does
not exceed h−1 for any i and j, that is, in any leaf-edge from Λ at most h−1 vertices had been
considered before the successful recolouring was made. The following claim is a key step in the
analysis of the event A0(A,Φ,y,Λ).

Claim 1. The event A0(A,Φ,y,Λ) satisfies the relation

A0(A,Φ,y,Λ) ⊂
⋃

A′,Φ′,y′,Λ′:
(A′,Φ′,y′,Λ′)∈ ϒ1

A(A′,Φ′,y′,Λ′). (3.4)

Proof. Suppose the event A0(A,Φ,y,Λ) holds. It implies that the edge A ∈ E was mono-
chromatic initially and no recolouring was made after the consideration of its first h vertices.
For each Ci, j ∈ Λ, if the inequality

μi, j = ∑
w′∈Ci, j\{wi, j}

I{Xw′ < Xwi, j
} � h (3.5)

holds, then wi, j does not belong to the first h vertices of Ci, j. Since wi, j is the first vertex of Ci, j

that was recoloured, we get the same property for Ci, j as for A: monochromatic initially and no
recolouring was made after the consideration of its first h vertices. Note that the construction of
the recolouring procedure implies that wi, j (and consequently also the hth vertex of Ci, j) should

be considered before the hth vertex of A. Thus, for some first-type configuration (Ci, j,Φ̃, ỹ, Λ̃),
the event A0(Ci, j,Φ̃, ỹ, Λ̃) occurs. Now we apply the same argument to the event A0(Ci, j,Φ̃, ỹ, Λ̃).

Since our hypergraph is finite and every time the first h vertices should be considered earlier
than in the previous edge, after several repetitions of the described argument we will get an edge
A′ and a first-type configuration (A′,Φ′,y′,Λ′) such that in every monochromatic leaf-edge from
Λ′ at most h−1 vertices had been considered before the successful recolouring was made (note
that the set Λ′ can be empty). This implies the event A(A′,Φ′,y′,Λ′) and the relation (3.4) is
established.
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It remains to estimate the probability of the event A(A,Φ,y,Λ) for a given first-type configur-
ation (A,Φ,y,Λ).

Claim 2.

P(A(A,Φ,y,Λ)) � r−(n−1)(1+h+∑h
i=1 yi)

(
h
n

)∑h
i=1 yi

(n−h)−h. (3.6)

Proof. Let us fix the colour u of an edge A in ξ , dominating colours u1, . . . ,uh for the edges
B1, . . . ,Bh and the colours ui, j for the monochromatic edges Ci, j. Our construction of the hypertree
implies that, for given values of u, ui for each i � h, and ui, j for each i � h and j � yi, the initial
colours of all the vertices in the configuration are uniquely determined:

ξv =

⎧⎪⎪⎨⎪⎪⎩
u if v ∈ A,

ui if v ∈ Bi \ (A∪⋃yi
j=1

Ci, j),

ui, j if v ∈Ci, j.

The number of edges in the hypertree is equal to 1 + h + ∑h
i=1 yi, so the number of vertices is

equal to 1+(n−1)(1+h+∑h
i=1 yi), and therefore

P

(⋂
v∈A

{ξv = u}∩
h⋂

i=1

⋂
v∈Bi\(A∪

⋃yi
j=1

Ci, j)

{ξv = ui}∩
h⋂

i=1

yi⋂
j=1

⋂
v∈Ci, j

{ξv = ui, j}
)

= r−1−(n−1)(1+h+∑h
i=1 yi). (3.7)

The values of the random variables η are also uniquely determined for the node vertices of the
hypertree:

ηv =

{
ui if v = vi, i = 1, . . . ,h,

ui if v = wi, j, i = 1, . . . ,h, j = 1, . . . ,yi.

Since ηv has uniform conditional distribution on {1, . . . ,r} \ {ξv} and we know that ξvi
= u,

ξwi, j
= ui, j for any i, j, we get

P

( h⋂
i=1

{ηvi
= ui}∩

h⋂
i=1

yi⋂
j=1

{ηwi, j
= ui}

∣∣∣ h⋂
i=1

{ξvi
= u}∩

h⋂
i=1

yi⋂
j=1

{ξwi, j
= ui, j}

)
= (r−1)−(h+∑h

i=1 yi). (3.8)

Furthermore, we know that the number of every vertex wi, j in the edge Ci, j is at most h, and
that all these events are independent since the edges Ci, j do not intersect, so

P

( h⋂
i=1

yi⋂
j=1

{
∑

v∈Ci, j

I{Xv � Xwi, j
} � h

})
=

(
h
n

)∑h
i=1 yi

. (3.9)
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Finally, we know that vi has number i in the edge A, i = 1, . . . ,h. The probability of this event
can be easily calculated:

P

(
{Xv1

< · · · < Xvh
}∩

⋂
v∈A\{v1,...,vh}

{Xvh
< Xv}

)
=

1
n(n−1) · · ·(n−h+1)

. (3.10)

The event A(A,Φ,y,Λ) is the intersection of the events in (3.7)–(3.10). The edge A does not
intersect with the edges Ci, j, so the events in (3.9) and (3.10) are independent. Moreover, they
are also independent of the events in (3.7) and (3.8) since the random variables {Xv,v ∈ V} and
{ξv,ηv,v ∈V} are independent. Finally,

P(A(A,Φ,y,Λ))

=
r

∑
u=1

r

∑
u1,...,uh=1,

ui �=u, i=1,...,h

r

∑
u1,i,...,uh,yh

=1,

ui, j �=ui, j=1,...,yi

P

( h⋂
i=1

{ηvi
= ui}∩

h⋂
i=1

yi⋂
j=1

{ηwi, j
= ui}

∩
⋂
v∈A

{ξv = u}∩
h⋂

i=1

⋂
v∈Bi\(A∪

⋃yi
j=1

Ci, j)

{ξv = ui}∩
h⋂

i=1

yi⋂
j=1

⋂
v∈Ci, j

{ξv = ui, j}

∩
h⋂

i=1

yi⋂
j=1

{
∑

v∈Ci, j

I{Xv � Xwi, j
} � h

}
∩{Xv1

< · · · < Xvh
}∩

⋂
v∈A\{v1,...,vh}

{Xvh
< Xv}

)

=
r

∑
u=1

r

∑
u1,...,uh=1,

ui �=u, i=1,...,h

r

∑
u1,i,...,uh,yh

=1,

ui, j �=ui, j=1,...,yi

r−1−(n−1)(1+h+∑h
i=1 yi)(r−1)−(h+∑h

i=1 yi)

×
(

h
n

)∑h
i=1 yi 1

n(n−1) · · ·(n−h+1)

(the colours can be chosen in r(r−1)h+∑h
i=1 yi ways)

= r−(n−1)(1+h+∑h
i=1 yi)

(
h
n

)∑h
i=1 yi (n−h)!

n!
� r−(n−1)(1+h+∑h

i=1 yi)
(

h
n

)∑h
i=1 yi

(n−h)−h.

This deals with the first bad event and we proceed to the second one.

3.4. Bad events of the second type
Let us consider a bad event D(A, t) of the second type. By definition, this event implies that we
have considered fewer than h vertices, that is, ∑v∈A I{Xv � t} � h− 1. We know also that A is
monochromatic in ξ . Denoting the intersection of these events by B(A, t),

B(A, t) =
( r⋃

u=1

⋂
v∈A

{ξv = u}
)
∩

{
∑
v∈A

I{Xv � t} � h−1

}
,

we get

D(A, t) ⊂ B(A, t). (3.11)
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The random variables Xv are independent of the initial colouring ξ , so for t > 2/n we obtain
the following upper bound for the probability of the event B(A, t):

P(B(A, t)) = P

( r⋃
u=1

⋂
v∈A

{ξv = u}∩
{

∑
v∈A

I{Xv � t} � h−1

})

= P

( r⋃
u=1

⋂
v∈A

{ξv = u}
)

P

(
∑
v∈A

I{Xv � t} � h−1

)
=

r

∑
u=1

P

(⋂
v∈A

{ξv = u}
)

P

(
∑
v∈A

I{Xv � t} � h−1

)

(since ∑v∈A I{Xv � t} is a binomial random variable)

= r1−n
h−1

∑
i=0

(
n
i

)
ti(1− t)n−i � r1−n(1− t)n−h+1

h−1

∑
i=0

(nt)i

� r1−n(1− t)n−h+1(nt)h. (3.12)

3.5. Bad events of the third type
The last part of the event F(t) consists of bad events G(A, t) of the third type. Recall that G(A, t)
occurs if the edge A is monochromatic of some colour u in the colouring ζ (t), but in the initial
colouring ξ it was not monochromatic of this colour. Since during the recolouring process we
forbid almost monochromatic edges to become completely monochromatic of the dominating
colour, A is not almost monochromatic with dominating colour u in ξ . Hence, the number of
vertices in A which are not coloured u in ξ is at least s+1 (see (3.1)).

Suppose that {v1, . . . ,vl} is the set of all vertices of A which are not coloured with u in ξ . Since
ζvi

(t) = u for any i = 1, . . . , l, all these vertices should be recoloured with u up to time t. Thus, for
any vi, at time Xvi

both conditions Cond1 and Cond2 hold. In this case our construction provides
the existence of a set of l edges, {B1, . . . ,Bl}, with the following properties:

(1) vi ∈ Bi ∩A and ηvi
= u, i = 1, . . . , l,

(2) Bi is monochromatic in the initial colouring ξ of a colour other than u,
(3) vi is the first recoloured vertex in Bi during the recolouring process.

Moreover, we can assume that, for every edge Bi, the event E(Bi, t) does not hold, since we
have already analysed it in Section 3.3. The complement of this event implies that the number
of vertices considered in Bi before vi is at most h − 1, otherwise the edge Bi would still be
monochromatic after the consideration of its hth vertex. Hence, our configuration of edges also
satisfies the following additional property:

(4) for any i = 1, . . . , l,

∑
v∈Bi\{vi}

I{Xv < Xvi
} � h−1, Xvi

� t.
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The described properties form an event which we denote by C(A, l,Φ), where Φ = {B1, . . . ,Bl}.
Formally,

C(A, l,Φ, t) =
r⋃

u=1

⋃
u1,...,ul :u j �=u

( l⋂
i=1

⋂
v∈Bi

{ξv = ui}∩
⋂

v∈A\{v1,...,vl}
{ξv = u}

)

∩
l⋂

i=1

{ηvi
= u,Xvi

� t}∩
l⋂

i=1

{
∑

v∈Bi\{vi}
I{Xv < Xvi

} � h−1

}
. (3.13)

Since the girth of hypergraph H is at least 6, the set of edges A,B1, . . . ,Bl forms a hypertree
with ‘trunk’ A and ‘branches’ B1, . . . ,Bl . Note that the edges B1, . . . ,Bl are pairwise disjoint since
all the vertices v1, . . . ,vl are distinct.

Let us define a second-type configuration (A, l,Φ) as follows:

• A is an edge of E,
• l ∈ {s+1, . . . ,n},
• Φ is an unordered collection of distinct edges Φ = {B1, . . . ,Bl}, such that |Bi ∩e|= 1 for any

i, and the vertices vi = Bi ∩A are distinct,
• the set of edges A,B1, . . . ,Bl forms a hypertree.

We denote the set of second-type configurations by ϒ2. The above discussion implies the follow-
ing relation:

G(A, t)∩
⋃

B∈E

E(B, t) ⊂
⋃

l,Φ: (A,l,Φ)∈ ϒ2

C(A, l,Φ, t). (3.14)

Let us estimate the probability of the event C(A, l,Φ, t) for a given second-type configuration
(A, l,Φ, t).

Claim 3.

P(C(A, l,Φ, t)) � r−(n−1)(l+1)
(

h
n

)l

. (3.15)

Proof. Let us fix a colour u of A in the final colouring and u1, . . . ,ul as colours of B1, . . . ,Bl

in the initial colouring. Thus, for given u,u1, . . . ,ul , the initial colours of all the vertices in the
configuration are uniquely defined:

ξv =

{
u if v ∈ A\ (

⋃l
i=1 Bi),

ui if v ∈ Bi.

The number of edges in the hypertree is equal to 1 + l, so the number of vertices is equal to
1+(n−1)(1+ l), and thus

P

( l⋂
i=1

⋂
v∈Bi

{ξv = ui}∩
⋂

v∈A\(⋃l
i=1 Bi)

{ξv = u}
)

= r−1−(n−1)(1+l). (3.16)
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The values of the random variables η are also uniquely determined for the vertices vi: ηvi
= u.

Thus

P

( l⋂
i=1

{ηvi
= u}

∣∣∣ l⋂
i=1

{ξvi
= ui}

)
= (r−1)−l . (3.17)

Finally, every vertex vi such that νvi
= u has one of the h smallest values of Xv among v ∈ Bi.

Since the edges Bi do not intersect we get

P

( l⋂
i=1

{
∑

v∈Bi\{vi}
I{Xv < Xvi

} � h−1

})
=

(
h
n

)l

. (3.18)

Consequently, by (3.13) we obtain

P(C(A, l,Φ, t)) �
r

∑
u=1

r

∑
u1,...,ul=1,

ui �=u, i=1,...,l

r−1−(n−1)(1+l)(r−1)−l

(
h
n

)l

= r(r−1)lr−1−(n−1)(1+l)(r−1)−l

(
h
n

)l

= r−(n−1)(l+1)
(

h
n

)l

.

Note that we discarded the conditions Xvi
� t, i = 1, . . . , l.

3.6. Application of the Local Lemma
In the previous sections we have analysed a collection of bad events whose union contains the
event F(t). Remember that F(t) is the event that the random colouring ζ (t) is not a proper
r-colouring of hypergraph H. Recall equality (3.2):

F(t) =
⋃

A∈E

(E(A, t)∪D(A, t)∪G(A, t)).

It follows from the relations (3.3), (3.4), (3.11) and (3.14) that

F(t) ⊂
⋃

A∈E

B(A, t)∪
⋃

(A,Φ,y,Λ)∈ ϒ1

A(A,Φ,y)

∪
⋃

(A,l,Φ)∈ ϒ2

C(A, l,Φ, t). (3.19)

Our aim is to show that, for some parameters h,s ∈ N and t ∈ (0,1), the probability of the
event F(t) is strictly less than 1. To prove this we shall use a classical result, known as the Local
Lemma, which was first obtained in the paper of Erdős and Lovász [5]. We shall formulate it in
a special case convenient for later use.

Theorem 3.1. Let events Q1, . . . ,QM be given on some probability space. Let S1, . . . ,SM be
subsets of [M] = {1, . . . ,M} such that, for any i ∈ [M], the event Qi is independent of the algebra
generated by the events {Q j, j ∈ [M]\(Si ∪ {i})}. If, for any i ∈ [M], the following inequality
holds,

∑
j∈Si∪{i}

P(Q j) � 1/4, (3.20)
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then

P

( M⋂
j=1

Q j

)
�

M

∏
j=1

(1−2P(Q j)) > 0.

The proof of the Local Lemma in the general case can be found in the monograph [1].
Consider the system of events Ψ(t) consisting of all the events B(A, t), A ∈ E, all the events

A(A,Φ,y,Λ), where (A,Φ,y,Λ) ∈ ϒ1, and all the events C(A, l,Φ, t), where (A, l,Φ) ∈ ϒ2. By
(3.19) we have

P(F(t)) � P

( ⋃
Q∈Ψ(t)

Q
)

= 1−P

( ⋂
Q∈Ψ(t)

Q
)

. (3.21)

We would like to show that the probability of
⋂

Q∈Ψ(t)Q is greater than zero. Due to the Local
Lemma it is sufficient to find, for every Q ∈ Ψ(t), a system of events ΨQ ⊂ Ψ(t) such that
Q∈ ΨQ, Q and the algebra generated by {J ∈ Ψ(t)\ΨQ} are independent, and

∑
J∈ΨQ

P(J ) � 1/4. (3.22)

The event Q∈ Ψ(t) can have one of the following three types:

(1) Q = B(A, t) for some A ∈ E,
(2) Q = A(A,Φ,y,Λ) for some first-type configuration (A,Φ,y,Λ) ∈ ϒ1,
(3) Q = C(A, l,Φ, t) for some second-type configuration (A, l,Φ) ∈ ϒ2.

For any Q∈ Ψ(t), we define the domain D(Q) of the event Q and the edge set E(Q) as follows:

D(Q) =

⎧⎪⎪⎨⎪⎪⎩
A if Q = B(A, t),

A∪⋃
B∈Φ B∪⋃

C∈Λ C if Q = A(A,Φ,y,Λ),

A∪⋃
B∈Φ B if Q = C(A, l,Φ, t),

E(Q) =

⎧⎪⎪⎨⎪⎪⎩
{A} if Q = B(A, t),

{A}∪Φ∪Λ if Q = A(A,Φ,y,Λ),

{A}∪Φ if Q = C(A, l,Φ, t).

Each of the events A(A,Φ,y,Λ), B(A, t) and C(A, l,Φ, t) are defined based uniquely on the
information about the random variables associated with the vertices in its domain. In other words,
every Q∈Ψ(t) belongs to the algebra generated by the random variables {ξ j,η j,Xj : j ∈D(Q)}.
Therefore, this event is independent of the algebra generated by the random variables {ξ j,η j,Xj :
j ∈V \D(Q)}. So, we can choose the system ΨQ to consist of all the events J ∈ Ψ(t) such that
D(J )∩D(Q) �= /0:

ΨQ = {J : J ∈ Ψ(t), D(J )∩D(Q) �= /0}.

Thus, the event Q is independent of the algebra generated by {J ∈ Ψ(t)\ΨQ}. Moreover, Q ∈
ΨQ. It remains to check the inequality (3.22). By the choice of the set ΨQ, for any Q∈ Ψ(t) we
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have

∑
J∈ΨQ

P(J ) � ∑
J∈E(Q)

[
∑

A∈E: J∩A�= /0

P(B(A, t))+ ∑
(A,Φ,y,Λ)∈ ϒ1:

J∩(A∪⋃
B∈Φ B∪⋃

C∈Λ C)�= /0

P(A(A,Φ,y,Λ))

+ ∑
(A,l,Φ)∈ ϒ2:

J∩(A∪⋃
B∈Φ B)�= /0

P(C(A, l,Φ, t))

]
. (3.23)

In what follows, we shall analyse the sums in the right-hand side of (3.23) separately. For
convenience, we also use the notation Δ for the maximum edge degree Δ(H) of the hypergraph
H. In fact, all we need to do is to estimate the number of different configurations intersecting a
fixed edge A, that is, the number of edge configurations in which at least one edge has non-empty
intersection with A.

For the first sum in the right-hand side of (3.23), the configuration consists of only one edge,
so the number of intersecting edges is at most Δ+1. So, we have to deal with the remaining two
sums. Let us start with the second one.

Claim 4. For a fixed edge J and y = (y1, . . . ,yh), there are at most

Δ1+h+∑h
i=1 yi

(
1+hs

∏h
i=1(yi!)

)
configurations (A,Φ,y,Λ) of the first type intersecting J.

Proof. If

J∩
(

A∪
⋃

B∈Φ
B∪

⋃
C∈Λ

C

)
�= /0,

then there are three possibilities.

• Suppose J ∩A �= /0. Then the edge A can be chosen in at most Δ+1 ways, the ordered set Φ
of h edges Φ = (B1, . . . ,Bh) can be chosen in at most Δ(Δ−1) · · ·(Δ−h+1) ways (every Bi

should intersect A and not coincide with it) and the unordered set Λ of y1 + · · ·+yh edges Λ =
(C1,1, . . . ,C1,y1

, . . . ,Ch,yh
) can be chosen in at most

(Δ−1
y1

)
· · ·

(Δ−1
yh

)
ways (for any i = 1, . . . ,h,

j = 1, . . . ,yh, the edge Ci, j should intersect Bi and not coincide with it and with A). Thus, the
number of such configurations is at most

(Δ+1)Δ(Δ−1) · · ·(Δ−h+1)
( h

∏
i=1

(
Δ−1

yi

))
. (3.24)

• Suppose J ∩Bi �= /0 for some i = 1, . . . ,h, but J ∩A = /0. Thus, the number i and the edge Bi

can be chosen in at most h(Δ + 1) ways, the edge A can be chosen in at most Δ− 1 ways
(among edges intersecting Bi we cannot choose Bi itself and J), the remaining set of h− 1
edges (B1, . . . ,Bi−1,Bi+1, . . . ,Bh) can be chosen in at most (Δ− 1) · · ·(Δ− h + 1) ways and,
finally, the unordered set Λ of y1 + · · ·+ yh edges as in the previous case can be chosen in
at most

(Δ−1
y1

)
· · ·

(Δ−1
yh

)
ways. Thus, the number of configurations in the second situation is at
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most

h(Δ+1)(Δ−1)(Δ−1) · · ·(Δ−h+1)
( h

∏
i=1

(
Δ−1

yi

))
. (3.25)

• The last option is that J ∩Ci, j �= /0 for some i = 1, . . . ,h, j = 1, . . . ,yi, but J ∩ (A∪B1 ∪ ·· ·∪
Bh) = /0. In this case the edge Ci, j can be chosen in at most Δ + 1 ways, the edge Bi can
be chosen in at most Δ−1 ways (among edges intersecting Ci, j we cannot choose Ci, j itself
and J), the edge A can be chosen in at most Δ− 1 ways (we cannot choose Bi itself and
Ci, j), the remaining set of h− 1 edges (B1, . . . ,Bi−1,Bi+1, . . . ,Bh) can be chosen in at most
(Δ−1) · · ·(Δ−h+1) ways and the rest of the set Λ, that is, (C1,1, . . . ,Ch,yh

) without Ci, j, can
be chosen in at most (

Δ−1
y1

)
· · ·

(
Δ−2
yi −1

)
· · ·

(
Δ−1

yh

)
ways. Thus, in this case the number of configurations is at most

h

∑
i=1

(Δ+1)(Δ−1)2(Δ−1) · · ·(Δ−h+1)
( h

∏
i=1

(
Δ−1

yi

))
yi

Δ−1

= (Δ+1)(Δ−1)(Δ−1) · · ·(Δ−h+1)
( h

∏
i=1

(
Δ−1

yi

))
(y1 + · · ·+ yh). (3.26)

Summarizing (3.24), (3.25) and (3.26), we obtain the following upper bound for the number of
configurations of the first type with fixed y:

(Δ+1)(Δ−1) · · ·(Δ−h+1)
( h

∏
i=1

(
Δ−1

yi

))(
(h+

h

∑
i=1

yi)(Δ−1)+Δ
)

� Δ1+h+∑h
i=1 yi

(
1+h+∑h

i=1 yi

∏h
i=1(yi!)

)
� Δ1+h+∑h

i=1 yi

(
1+hs

∏h
i=1(yi!)

)
.

The last inequality follows from the simple estimate yi � s−1, i = 1, . . . ,h.

Claim 5. For a fixed edge J and l � s, there are at most

Δ1+l

(
1+ l

l!

)
configurations (A, l,Φ) of the second type intersecting J.

Proof. If J∩A �= /0, then A can be chosen in at most Δ+1 ways and the unordered set of edges
Φ = {B1, . . . ,Bl} in at most

(Δ
l

)
ways. If J ∩Bi �= /0 for some Bi ∈ Φ, then Bi can be chosen in

at most Δ + 1 ways, the edge A in at most Δ− 1 ways and the remaining edges of Φ in at most(Δ−1
l−1

)
ways. So, the total number of configurations does not exceed

(Δ+1)
(

Δ
l

)
+(Δ+1)(Δ−1)

(
Δ−1
l −1

)
� (l +1)Δl+1

l!
.
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Combining the inequality (3.23) with the estimates of probabilities (3.6), (3.12), (3.15) and
Claims 4 and 5, we obtain that

∑
J∈ΨQ

P(J ) � |E(Q)|
(

(Δ+1)r1−n(1− t)n−h+1(nt)h +n
s−1

∑
y1,...,yh=0

(
hΔ

rn−1n

)∑h
i=1 yi

×
(

Δ
rn−1n

)h+1( n
n−h

)h 1+hs

∏h
i=1(yi!)

+
n
h

n

∑
l=s+1

(l +1)
l!

(
hΔ

nrn−1

)l+1)
. (3.27)

To complete the proof of the theorem we have to show that the right-hand side of (3.27) is at
most 1/4 for some choice of parameters.

3.7. Choosing the parameters and completing the proof
The cardinality of the set E(Q) can be easily calculated:

|E(Q)| =

⎧⎪⎪⎨⎪⎪⎩
1 if Q = B(A, t),

1+h+ y1 + · · ·+ yh if Q = A(A,Φ,y,Λ),

1+ l if Q = C(A, l,Φ, t).

(3.28)

Let us make the following choice of parameters s and h:

h =
⌊

3lnn
ln lnn

⌋
, s = �lnn�. (3.29)

This choice of parameters satisfies the required conditions: s < n/2 for any n � 3, and h < n for
any n � 9.

Since the parameter l does not exceed n, and every yi is at most s−1 (hence 1+h+y1 + · · ·+
yh � 1+h+h(s−1) � 4(lnn)2), it follows from (3.28) that |E(Q)| � n+1 for any Q∈ Ψ(t).

Using the initial restriction (2.11) on the maximum edge degree Δ of the hypergraph H (recall
that Δ � crn−1n(ln lnn)2/ lnn) and our choice of parameters (3.29), we get the following upper
bounds for the second and the third summands of the right-hand side of (3.27):

n
s−1

∑
y1,...,yh=0

(
hΔ

rn−1n

)∑h
i=1 yi

(
Δ

rn−1n

)h+1( n
n−h

)h 1+hs

∏h
i=1(yi!)

� n
s−1

∑
y1,...,yh=0

(3c ln lnn)∑h
i=1 yi

(
c(ln lnn)2

lnn

) 3lnn
ln lnn

(
n

n−h

)h 4(lnn)2

∏h
i=1(yi!)

= n

(
c(ln lnn)2

lnn

) 3lnn
ln lnn

(
n

n−h

)h

4(lnn)2

(s−1

∑
y=0

(3c ln lnn)y

y!

)h

(assuming 0 < c < 1)

� nc

(
(ln lnn)2

lnn

) 3lnn
ln lnn

(
n

n−h

)h

4(lnn)2 (e3c ln lnn)h

� n · c · e−3lnn+O(lnn ln ln lnn/ ln lnn) eO((lnn)2/n)nO(ln lnn/ lnn)e3c lnn = c ·n(3c−2)(1+o(1)) (3.30)
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and

n
h

n

∑
l=s+1

l +1
l!

(
hΔ

nrn−1

)l+1

� 2Δ
rn−1

n

∑
l=s+1

1
(l −1)!

(
hΔ

nrn−1

)l

(since Δ/rn−1 < cn and (s+ j)! > s! j!)

� 2cn
1
s!

(
hΔ

nrn−1

)s+1 n−s−1

∑
l=0

1
l!

(
hΔ

nrn−1

)l

(since hΔ/nrn−1 � 3c ln lnn and s! > (s/e)s)

� 2cns
e

(
3ec ln lnn

s

)s+1 n−s−1

∑
l=0

(3c ln lnn)l

l!
� 2cns

e

(
3ec ln lnn

s

)s+1

e3c ln lnn

(since s = �lnn�)

= c ·n1+O(ln lnn/ lnn)e−(ln lnn)(lnn)(1+o(1))eO(ln lnn) = c ·n−(1+o(1)) ln lnn. (3.31)

We are finally ready to complete the proof of Theorem 2.2. The established estimates (3.30)
and (3.31) imply the following bound for the desired sum in the left-hand side of (3.27):

∑
J∈ΨQ

P(J ) � |E(Q)|
(

(Δ+1)r1−n(1− t)n−h+1(nt)h +n
s−1

∑
y1,...,yh=0

(
hΔ

rn−1n

)∑h
i=1 yi

×
(

Δ
rn−1n

)h+1( n
n−h

)h 1+hs

∏h
i=1(yi!)

+
n
h

n

∑
l=s+1

(l +1)
l!

(
hΔ

nrn−1

)l+1)
� (n+1)(Δ+1)r1−n(1− t)n−h+1(nt)h + c ·n1+(1+o(1))(3c−2) + c ·n1−(1+o(1)) ln lnn.

There exists an absolute constant c ∈ (0,1) such that, for any n � 9,

c ·n1+(1+o(1))(3c−2) + c ·n1−(1+o(1)) ln lnn < 1/4.

Having chosen such a constant c, we can take t very close to 1 satisfying

(n+1)(Δ+1)r1−n(1− t)n−h+1(nt)h + c ·n1+(1+o(1))(3c−2) + c ·n1−(1+o(1)) ln lnn < 1/4. (3.32)

Let us make the final conclusions. With this choice of parameters we establish that the required
inequality (3.22) holds for any Q ∈ Ψ(t). This relation implies that the Local Lemma can be
applied to the system of the events Ψ(t). The Local Lemma states that

P

( ⋂
Q∈Ψ(t)

Q
)

> 0.

So, by (3.21) we get that the probability of the event F(t) is strictly less than 1, and, consequently,
the hypergraph H is r-colourable. Theorem 2.2 is proved.
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4. Proof of Theorem 2.1

Suppose that

N � c · rn−1 (ln lnn)2

lnn
.

We have to establish r-colourability of the hypergraph of arithmetic progressions

Hn(N) = ([N],En(N)).

For this purpose, we shall apply the same random colouring ζ (t) from the proof of Theorem 2.2
to Hn(N) and show that it is a proper r-colouring with positive probability. However, Hn(N) does
not satisfy the conditions of Theorem 2.2 (it does not have large girth), so it will require some
additional analysis.

Before starting the analysis, let us make some useful observations concerning arithmetic pro-
gressions.

Observation 1. For any two integers x,y, there at most m2 arithmetic progressions of length m
containing both x and y.

Observation 2. For any arithmetic progression of length n, there are at most n2m2 arithmetic
progressions of length m having at least two common vertices with it.

For any arithmetic progression A ∈ En(N), A = {a,a+d, . . . ,a+d(n−1)}, let us introduce a
larger progression l(A) of length 2n as follows:

l(A) =
{

a−d

⌊
n
2

⌋
, . . . ,a,a+d, . . . ,a+d(n−1)+d

⌈
n
2

⌉}
.

Observation 3. If A and B are arithmetic progressions of length n such that |A∩B|� n/2, then
B ⊂ l(A).

4.1. Short cycles in the hypergraph of arithmetic progressions
Now we apply the randomized colouring algorithm from Section 3 and construct the final col-
ouring ζ (t). The analysis in Section 3 shows that the existence of a monochromatic edge implies
one of the bad events which can be one of three types:

(1) A(A,Φ,y,Λ) for some first-type configuration (A,Φ,y,Λ) ∈ ϒ1,
(2) B(A, t) for some A ∈ E,
(3) C(A, l,Φ, t) for some second-type configuration (A, l,Φ) ∈ ϒ2.

However, in Section 3 the probabilities of these events were estimated for a hypergraph with
girth greater than 5. In our hypergraph Hn(N) there are cycles of smaller length. So, we have to
consider additional cases with short cycles in the configurations (A,Φ,y,Λ) and (A, l,Φ).

To simplify the analysis, we introduce the notion of a generalized cycle. An ordered set of
j � 2 edges (A1, . . . ,Aj) of Hn(N) is said to form a generalized j-cycle if, for j > 2,

• |Ai ∩Ai+1| = 1 for i = 1, . . . , j−1,
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• |Ai ∩Ak| = 0 for |k− i| > 1, except the pair (1, j),
• 1 � |A1 ∩Aj| < n/2 or |A1 ∩Aj| = 0 and |A1 ∩ l(Aj)| � 1.

If 1 � |A1 ∩Aj| < n/2 then the generalized cycle is a usual cycle in a hypergraph. For j = 2, we
assume that |l(A1)∩ l(A2)| � 2 and |A1 ∩A2| < n/2.

For a given generalized j-cycle (A1, . . . ,Aj), we define a bad event L j(A1, . . . ,Aj) as follows:
every edge Ai is monochromatic or almost monochromatic in the initial colouring ξ . The prob-
ability of this event is roughly estimated in the following claim.

Claim 6.

P(L j(A1, . . . ,Aj)) � r j

(
n
s

) j

r js−|A1∪···∪A j | � n jsr( j+2)s−( j−1/2)n. (4.1)

Proof. Since all the edges A1, . . . ,Aj are monochromatic or almost monochromatic, in every
edge there is a set of s vertices such that all the remaining n− s vertices are coloured with the
chosen dominating colour. The dominating colours can be chosen in r j ways, the uncoloured set
of vertices can be chosen in at most

(n
s

) j
ways. The number of the remaining vertices is at least

|A1 ∪ ·· ·∪Aj|− js, so the probability that all of them are coloured with the chosen colours is at

most r js−|A1∪···∪A j |. The last thing to do is to note that for generalized j-cycles,

|A1 ∪·· ·∪Aj| � jn− n
2
− j.

We will show that every situation in the additional analysis of the first bad event implies the
event L j(A1, . . . ,Aj) for some j � 5, so it would be sufficient to avoid only these events. To
apply the Local Lemma, we will also need to estimate the number of generalized j-cycles in the
hypergraph Hn(N), intersecting a fixed edge J.

Claim 7. The number of generalized j-cycles intersecting any fixed edge does not exceed

32 j n4Δ j−1, (4.2)

where Δ = Δ(Hn(N)) is the maximum edge degree of Hn(N).

Proof. Recall that for a progression A = {a,a+d, . . . ,a+d(n−1)}, l(A) is a larger progression
of length 2n,

l(A) =
{

a−d

⌊
n
2

⌋
, . . . ,a+d(n−1)+d

⌈
n
2

⌉}
.

Let (A1, . . . ,Aj) be a generalized cycle intersecting an edge J. Suppose that Ai ∩ J �= /0. Then

• Ai can be chosen in at most Δ = Δ(Hn(N)) ways,
• its position i in the cycle can be chosen in at most j ways,
• the remaining edges except Aj, if i < j, or A1 for i = j can be chosen in at most Δ j−2 ways,
• for j > 2, l(Aj) (or l(A1)) should intersect A1 and Aj−1 (or A2 and l(Aj)), so it can be chosen

(due to Observation 1) in at most (2n)4 ways,
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• for j = 2, we have |l(A1)∩ l(A2)| � 2, hence Observation 2 says that here we also have at
most (2n)4 variants.

Finally, we obtain that the total number of generalized j-cycles intersecting a fixed edge does not
exceed

j(Δ+1)Δ j−2(2n)4 � 32 j n4Δ j−1.

The choice of parameters of the probabilistic construction will be almost the same as in the
proof of Theorem 2.2, but we shall not take the time parameter t very close to 1:

h =
⌊

3lnn
ln lnn

⌋
, s = �lnn�, t =

2(lnn)2

n
. (4.3)

Note that the choice t = Θ((lnn)2/n) is also sufficient to satisfy (3.32), but small t ensures
that, for every vertex v, the probability that it can be recoloured during the process is also small,
because Xv should be less than t. This observation is highly useful for avoiding bad configurations
with short cycles.

Now we are ready to analyse bad events caused by short cycles in Hn(N).

4.2. Additional analysis of the first bad event
Recall that in the first bad event A(A,Φ,y,Λ) we have a ‘tree’ with ‘trunk’ A, ‘branches’ Φ =
(B1, . . . ,Bh) and ‘leaves’ Λ = (C1,1, . . . ,C1,y1

, C2,1, . . . ,Ch,1, . . . ,Ch,yh
), where Ci,1, . . . ,Ci,yi

are the
‘leaves’ of the ‘branch’ Bi. This event implies that A is monochromatic in the initial colouring
ξ , that Bi is almost monochromatic for any i, and that leaf-edges Ci, j are also monochromatic in
ξ . In Theorem 2.2 the induced hypergraph on the set of edges A, Φ and Λ did not contain any
cycles due to the condition on girth. So, for Hn(N), we have to analyse the situations when the
configuration contains short cycles.

Claim 8. If the configuration (A,Φ,y,Λ) contains cycles of length at most 5, then the event
A(A,Φ,y,Λ) implies one of the events L j(A1, . . . ,Aj) for some generalized j-cycle (A1, . . . ,Aj)
and some j � 5.

Proof. Suppose that (A1, . . . ,Aj) is the shortest cycle in the configuration (A,Φ,y,Λ). Since the
tree (A,Φ,Λ) has depth equal to 2, the cycle (A1, . . . ,Aj) has length at most 5. Further, we may
assume that

• |Ai ∩Ai+1| = 1 for 1 � i < j,
• |Ai ∩Ak| = 0 for |i− k| > 1, except the pair A1,Aj,
• |A1 ∩Aj| > 0.

The event A(A,Φ,y,Λ) implies that every edge in the configuration (A,Φ,y,Λ) is either mono-
chromatic or almost monochromatic in the initial colouring ξ . If |A1∩Aj|< n/2 then (A1, . . . ,Aj)
is a generalized j-cycle and the event L j(A1, . . . ,Aj) holds. If |A1 ∩Aj| � n/2 then we have to
consider different values of j.

Case j > 2. In this case A1 ⊂ l(Aj) and therefore, A2 ∩ l(Aj) �= /0. Hence (A2, . . . ,Aj) forms a
generalized ( j−1)-cycle and the event L j−1(A2, . . . ,Aj) holds.
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Case j = 2. Since |A1 ∩A2| � n/2, these edges cannot be neighbours in the tree. Indeed, in this
situation one of them is monochromatic in ξ and the other should be almost monochromatic
with a different colour. Thus, they can have at most s < n/2 common vertices and form only a
generalized 2-cycle. Consequently, we may also assume that any tree neighbours do not form a
2-cycle.

Hence, A1 and A2 are not neighbours in the tree and we can construct direct paths from both of
them to the root A. For example, if A1 = Ci,k, A2 = Cu,z for some i,k,u,z, then we obtain a 5-cycle
(Ci,k,Bi,A,Bu,Cu,z). After that we have a few possibilities:

• if |Bi ∩Bu| � n/2 then we obtain a generalized 2-cycle (A,Bi),
• if 0 < |Bi ∩Bu| < n/2 then we obtain a generalized 3-cycle (A,Bi,Bu),
• if |Bi ∩Bu| = 0 and |Ci,k ∩Bu| < n/2 then we obtain a generalized 4-cycle (Ci,k,Bi,A,Bu),
• if |Bi ∩Bu| = 0 and |Ci,k ∩Bu| � n/2 then we again obtain a generalized 3-cycle (Bi,A,Bu).

The other situations are considered similarly.

We have finished the additional analysis of the first bad event A(A,Φ,y,Λ). The second one,
B(A, t), depends only on one edge, so there is no need to deal with short cycles here. Now we
proceed to the third bad event.

4.3. Additional analysis of the third bad event
The third bad event C(A, l,Φ, t) (see (3.14)) contains a configuration (A, l,Φ) of the second type,
where A and Φ = (B1, . . . ,Bl) form a tree with the ‘trunk’ A and the ‘branches’ B1, . . . ,Bl . For
the hypergraph of arithmetic progressions, this set of edges does not necessarily form a real
hypertree, so we have to make an additional analysis. In comparison with the first event here we
shall make use of the time parameter t, as it helps to make the probability of the event sufficiently
small.

Indeed, for simple hypergraphs we know that vi is the only vertex in the intersection of A
and Bi. In the non-simple case we do not know exactly which vertex in A∩Bi will be the first
to be recoloured during the procedure. But for every w ∈ A∩Bi, the inequality Xw � t should
hold, because the edge Bi is monochromatic initially and the edge A is monochromatic in the
final colouring of another colour. All the vertices from A∩Bi should be recoloured during the
procedure. Thus, we get the following statement.

Claim 9.

(1) For any Bi ∈ Φ,

C(A, l,Φ, t) ⊂ L6(A,Bi, t)

=
r⋃

b=1

r⋃
a=1:a�=b

( ⋂
v∈Bi

{ξv = b}∩
⋂

w∈A∩Bi

{ηv = a,Xv � t}

∩
⋂

v∈A\Bi

({ξv = a}∪{ξv �= a,ηv = a,Xv � t})
)

.
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(2) For any Bi,Bk ∈ Φ,

C(A, l,Φ, t) ⊂ L7(A,Bi,Bk, t)

=
r⋃

c,b=1

r⋃
a=1:a�=b,c

( ⋂
v∈Bi

{ξv = b}∩
⋂

v∈Bk

{ξv = c}∩
⋂

w∈A∩(Bi∪Bk)

{ηv = a,Xv � t}

∩
⋂

v∈A\(Bi∪Bk)

({ξv = a}∪{ξv �= a,ηv = a,Xv � t})
)

.

Proof. (1) The proof of the relation follows easily from the definition of C(A, l,Φ, t) (see
(3.13)). It says that the edge Bi should be monochromatic in ξ (first event

⋂
v∈Bi

{ξv = b}).
Moreover, every vertex of A should be coloured with colour a in ζ , so for every v ∈ A either
ξv = a or ξv �= a,ηv = a,Xv � t (third event

⋂
v∈A\Bi

{ξv = a}∪{ξv �= a,ηv = a,Xv � t}). But for

v ∈ A∩Bi we already know that ξv = b �= a, so we have only the second alternative.

(2) The argument is exactly the same as for the first statement.

Next, we give the estimates for the probabilities of the events L6 and L7.

Claim 10.

(1) If |A∩ l(Bi)| � 2, then

P(L6(A,Bi, t)) � r2−n max{(t/(r−1))n/2,r−n/2etn/2}. (4.4)

(2) If |Bi ∩A| = 1, |Bk ∩A| = 1, 0 < |Bi ∩Bk| � n/2 and |Bi ∩Bk ∩A| = 0, then

P(L7(A,Bi,Bk, t)) = r(r−1)
(

1
r

+
t
r

)n−2( t
r−1

)2

r−|Bi∪Bk | � r4−5n/2etnt2. (4.5)

Proof. (1) The probabilities of the events in the intersections are as follows:

P

( ⋂
v∈Bi

{ξv = b}
)

= r−n,

P

( ⋂
w∈A∩Bi

{ηv = a,Xv � t}
∣∣∣ ⋂

v∈Bi

{ξv = b}
)

=
(

t
r−1

)|A∩Bi|
,

P

( ⋂
v∈A\Bi

({ξv = a}∪{ξv �= a,ηv = a,Xv � t})
)

=
(

1
r

+
t
r

)n−|A∩Bi|
.

The third event is independent of the first two, so taking the sum over a and b we obtain

P(L6(A,Bi, t)) = r(r−1)r−n

(
t

r−1

)|A∩Bi|(1
r

+
t
r

)n−|A∩Bi|
.

If |A∩Bi| � n/2 then (
1
r

+
t
r

)n−|A∩Bi|
� r−n/2(1+ t)n/2 � r−n/2etn/2.
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Otherwise (t/(r−1))|A∩Bi| � (t/(r−1))n/2. Hence, in the general case we obtain the upper bound
(4.4) for the probability of L6(A,Bi, t):

P(L6(A,Bi, t)) � r2−n max{(t/(r−1))n/2,r−n/2etn/2}.

(2) The proof repeats the argument for the first statement of Claim 10. Note that, since Bi∩Bk �= /0,
the colours b and c should be equal, and instead of the factor r−n we have r−|Bi∪Bk|. Finally, the
probability of the event L7(A,Bj,Bk, t) is equal to

P(L7(A,Bj,Bk, t)) = r(r−1)
(

1
r

+
t
r

)n−2( t
r−1

)2

r−|B j∪Bk| � r4−5n/2etnt2,

and the relation (4.5) follows.

Finally, we show that the cases considered cover all the situations.

Claim 11. If the configuration (A,Φ) contains a 2- or 3-cycle then the event C(A, l,Φ, t) implies
either the event L6(A,Bi, t) with |A∩ l(Bi)| � 2 for some i = 1, . . . , l, or the event L7(A,Bj,Bk, t)
with |Bi ∩A| = 1, |Bk ∩A| = 1, 0 < |Bi ∩Bk| � n/2, |Bi ∩Bk ∩A| = 0 for some i �= k.

Proof. If |A∩ l(Bi)| � 2 for some i then we immediately apply Claim 9, case (1).
If |A∩Bi| = 1 for every i = 1, . . . , l, then there should be a pair of edges Bi and Bk with non-

empty intersection (otherwise there will be no 2- and 3-cycles in the configuration). If |Bi∩Bk|�
n/2 then Bk ⊂ l(Bi). Therefore |A∩ l(Bi)| � 2 and we apply Claim 9, case (1). In the other case
we apply Claim 9, case (2) to get the event L7(A,Bj,Bk, t).

Now we proceed to the application of the Local Lemma.

4.4. Completion of the proof
In comparison with Theorem 2.2 for the hypergraph of arithmetic progressions Hn(N), the set of
bad events Ψ(t) is larger since we add to it the events of the types Li, i = 2, . . . ,7. For any such
new event Q, the domain D(Q) and the edge-set E(Q) are defined similarly to Section 3.6. All
we have to do is to check the condition (3.22) required for the application of the Local Lemma.
By analogy with (3.23), for any Q∈ Ψ(t), we have

∑
J∈ΨQ

P(J ) � ∑
U∈E(Q)

[
∑

A∈En(N): U∩A�= /0

P(B(A, t))+ ∑
(A,Φ,y,Λ)∈ ϒ1:

U∩(A∪⋃
B∈Φ B∪⋃

C∈Λ C)�= /0

P(A(A,Φ,y,Λ))

+ ∑
(A,l,Φ)∈ ϒ2:

U∩(A∪⋃
B∈Φ B)�= /0

P(C(A, l,Φ, t))+
5

∑
j=2

∑
gen. j-cycle (A1, . . . ,Aj):

U∩(A1∪···∪A j)�= /0

P(L j(A1, . . . ,Aj))

+ ∑
(A,B): |A∩l(B)|�2,

U∩(A∪B)�= /0

P(L6(A,B, t))+ ∑
gen. 3-cycle (A,B,C):

U∩(A∪B∪C)�= /0

P(L7(A,B,C, t))

]
. (4.6)
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Before starting the analysis of the sums in the right-hand side of (4.6), let us make a prelimin-
ary observation. Let Δ = Δ(Hn(N)) denote the maximum edge degree of the hypergraph Hn(N).
Since any integer from [N] is contained in at most n(N − 1)/(n− 1) arithmetic progressions of
length n from En(N), we get

Δ �
(

n
N −1
n−1

−1

)
n � Nn

n
n−1

� 9
8

crn−1 n(ln lnn)2

lnn
. (4.7)

Here we use the restriction on N and the condition n � 9.

(1) The first sum in (4.6) is estimated in the same way as in (3.12) (the bound is correct since the
choice of the parameter t implies the required inequality nt > 2):

∑
A∈E: U∩A�= /0

P(B(A, t)) � (Δ+1)r1−n(1− t)n−h+1(nt)h

(using (4.7) and (4.3))

� 9
4

cne−t(n−h+1)(2(lnn)2)h = cne−2(lnn)2(1+o(1))e2h ln lnn(1+o(1)) = ce−2(lnn)2(1+o(1)). (4.8)

(2) The second and the third sums were analysed in Section 3.7, so the bounds (3.30) and (3.31)
hold with c replaced by (9/8)c.

(3) In the fourth sum the number of summands does not exceed the bound (4.2). Thus, using the
estimate (4.1), we obtain

5

∑
j=2

∑
gen. j-cycle (A1, . . . ,Aj):

U∩(A1∪···∪A j)�= /0

P(L j(A1, . . . ,Aj)) �
5

∑
j=2

32 j n4Δ j−1n jsr( j+2)s−( j−1/2)n

(since j � 5, s � lnn and Δ � (9c/8)nrn−1)

�
5

∑
j=2

160(9c/8) j−1n5lnn+4r7lnn−1/2n � ce5(lnn)2(1+o(1))r7lnn−1/2n

(since r � 2)

� ce5(lnn)2(1+o(1))2−n/2(1+o(1)) = c2−n/2(1+o(1)). (4.9)

(4) In the fifth sum we have to calculate the number of pairs (A,B) intersecting a fixed progression
U . The intersecting edge can be chosen in at most 2(Δ+1) ways, but the second edge in at most
(2n)4 ways since |A∩ l(B)| � 2. Hence, the estimate (4.4) implies that

∑
(A,B): |A∩l(B)|�2,

U∩(A∪B)�= /0

P(L6(A,B, t)) � 2(Δ+1)(2n)4r2−n max{(t/(r−1))n/2,r−n/2etn/2}
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(since t = 2(lnn)2/n and Δ � (9c/8)nrn−1)

� 64 · (9c/8)n5 r ·max

{(
2(lnn)2

n(r−1)

)n/2

,r−n/2e(lnn)2

}
� 72cn5 r ·max

{(
4(lnn)2

nr

)n/2

,r−n/2e(lnn)2

}
(it is easy to see that the second value is always maximal)

� 72cn5 r1−n/2e(lnn)2 � 72cn5 21−n/2e(lnn)2
= c2−n/2(1+o(1)). (4.10)

(5) Finally, for the last sum we know the estimate for the number of intersecting generalized
3-cycles (4.2) and the bound for the probability of the event (4.5). Thus,

∑
gen. 3-cycle (A,B,C):

U∩(A∪B∪C)�= /0

P(L7(A,B,C)) � 96Δ2n4 r4−5n/2etnt2

(applying (4.3), (4.7))

� 96 ·92

82
c2n6 r2−n/2

(
2lnn

n

)2

= c2n4+o(1)r2−n/2

� c2n4+o(1)22−n/2 � c2 ·2−n/2(1+o(1)). (4.11)

Let us complete the proof. For the application of the Local Lemma it is sufficient to show that
the right-hand side of (4.6) does not exceed 1/4. Since for any Q∈ Ψ(t) we have |E(Q)|� n+1
(see (3.28)), by using the obtained estimates (4.8)–(4.11) we have

∑
J∈ΨQ

P(J ) � (n+1)
(
ce−2(lnn)2(1+o(1)) + (9/8)c ·n(27c/8−2)(1+o(1)) + (9/8)c ·n− ln lnn(1+o(1))

+ c ·2−n/2(1+o(1)) + c ·2−n/2(1+o(1)) + c2 ·2−n/2(1+o(1))).
It is easy to see that there exists c ∈ (0,1) such that the given function of n is strictly less than
1/4 for all n � 9. Theorem 2.1 is proved.

5. Final remarks

(1) In the previous section we used a reduction argument to establish r-colourability of the
hypergraph of arithmetic progressions. For a simple hypergraph H, this reduction is almost the
same. There are no 2-cycles in H, so the bad events of the type L2 and L6 do not happen. The
analysis of the remaining bad events in Section 4 used only the following properties:

• the maximum edge degree of the hypergraph is O(rn−1(n(ln lnn)2/lnn)) ((1.3) for H),
• the size of edge intersections is at most n/2 (at most 1 for a simple hypergraph),
• the maximum codegree is at most n2 (1 for a simple hypergraph).

All these properties hold for simple hypergraphs, so the same proof argument shows that it is
r-colourable. Theorem 1.2 is proved.
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(2) After we submitted this paper, similar results concerning colourings of simple hypergraphs
and van der Waerden numbers were independently obtained by Kozik [13]. Our bounds are
greater by a factor of (ln lnn)2 than those in [13]. The general proof approach in [13] (random
recolouring method) is the same, but the recolouring technique is quite different.
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