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The d-dimensional Hamming torus is the graph whose vertices are all of the integer

points inside an a1n× a2n× · · · × adn box in R
d (for constants a1, . . . , ad > 0), and whose

edges connect all vertices within Hamming distance one. We study the size of the largest

connected component of the subgraph generated by independently removing each vertex

of the Hamming torus with probability 1 − p. We show that if p = λ/n, then there exists

λc > 0, which is the positive root of a degree d polynomial whose coefficients depend on

a1, . . . , ad, such that for λ < λc the largest component has O(log n) vertices (w.h.p. as n → ∞),

and for λ > λc the largest component has (1 − q)λ
(∏

i ai
)
nd−1 + o(nd−1) vertices and the

second largest component has O(log n) vertices w.h.p. An implicit formula for q < 1 is also

given. The value of λc that we find is distinct from the critical value for the emergence of

a giant component in bond percolation on the Hamming torus.

2010 Mathematics subject classification: Primary 05C80

Secondary 82B43

1. Introduction

Erdős and Rényi studied bond percolation on the complete graph in [10] (for an account

of their results, see [9]). In the Erdős–Rényi model, a random subgraph of the complete

graph on n vertices is obtained by independently deciding whether to remove each edge

with probability (1 − p) or keep it with probability p. Erdős and Rényi studied the size of

the largest connected component in the random subgraph under the scaling p = λ/n, where

λ is a constant parameter. They found that the size of the largest connected component

is with high probability O(log n) for λ < 1, and cn+ o(n) for c = c(λ) > 0 when λ > 1.

A sequence of events En is said to occur with high probability (w.h.p.) if P(En) → 1 as

n → ∞. Thus, at λ = 1, the Erdős–Rényi model undergoes a transition from having small

components to having a giant connected component.

† Dissertation research at UC Davis supported in part by NSF VIGRE grant DMS-0636297, and NSF grants

DMS-0805970 and DMS-0505734.
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Bond percolation has since been extensively studied on other graphs G = (V , E).

Alternatively, random subgraphs of G can be obtained by independently removing vertices

(and any edges incident to those vertices) with probability (1 − p); we refer to this model

as site percolation. Also, we will refer to the vertices in the random subgraph as occupied,

and those that are removed we call unoccupied.

An example of a graph for which both bond and site percolation have been studied

is the n-dimensional hypercube, Qn, which has vertex set V = {0, 1}n and edge set E =

{(x, y) ∈ V × V : d(x, y) = 1}, where d(x, y) is the Hamming distance between x and y

(the number of coordinates in which they differ). Ajtai, Komlós and Szemerédi [1] proved

that for bond percolation on Qn with p = λ/n, λ constant, if λ < 1 then all connected

components of the bond percolation subgraph have O(n) vertices w.h.p., and if λ > 1 there

is a component with c2n + o(2n) vertices w.h.p. for c = c(λ) > 0. Bollobás, Kohayakawa

and �Luczak [6] found similar behaviour for site percolation on Qn, showing that for

p = λ/n, if λ < 1 all components have at most O(n) vertices w.h.p., and if λ > 1, there is a

component with cλn−12n + o(n−12n) vertices for c = c(λ) > 0 w.h.p. Thus, both percolation

models on Qn have the same threshold. In fact, even the proportion of vertices in the

giant component above the threshold is the same.

The intuition behind each of these results is that bond percolation on the hypercube

and the complete graph, and site percolation on the hypercube look locally tree-like.

Since the underlying graph is D-regular, the connected component associated with a

fixed vertex can be compared to a branching process with a Binomial(D, p) offspring

distribution. A giant connected component exists precisely when the branching process

has positive survival probability, which is when the expected number of offspring per

individual (Dp = λ) exceeds 1. Borgs, Chayes, van der Hofstad, Slade and Spencer [7, 8]

showed that, for a wide variety of finite transitive graphs, the threshold for the existence

of a giant component in bond percolation should be at Dp = 1, though they focus on

behaviour in the critical window, and do not give a lower bound for the size of the

supercritical giant component. The case of site percolation is less clear in general, due to

local dependences between edges.

We study site percolation on the Hamming torus, H = H(n, a1, · · · , ad), which is the

graph given by the vertex and edge sets

V ={(x1, . . . , xd) ∈ Zd : 1 � xi � ain, i = 1, . . . , d},
E ={(x, y) ∈ V × V : d(x, y) = 1},

where d(x, y) is the Hamming distance between x and y. That is, two vertices in the

a1n× a2n × · · · × adn box in Zd are adjacent if and only if they differ in exactly one

coordinate. For d = 1 this is the complete graph on a1n vertices, and for d = 2 this is the

rook graph on an a1n by a2n chessboard. Site percolation on H is the random subgraph

Hp, obtained by independently deciding whether to discard each vertex with probability

(1 − p).

This model is amenable to comparison with a multitype branching process, Xa1 ,...,ad,λ,n =

(Z t)
∞
t=1, with d types, so Z t = (Z1

t , . . . , Z
d
t ). In the first generation of this process there

are Zj
1 ∼ Binomial(ajn, λ/n) offspring of type j for each j. Then, letting ei denote the ith
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standard basis vector in Rd, in each subsequent generation an individual of type i has

(Zj
t+1 | Z t = ei) ∼ Binomial(ajn, λ/n) offspring of type j for each j �= i and zero offspring

of type i. This branching process has non-zero survival probability if and only if the

largest eigenvalue of the matrix of expected progeny, M λ, is strictly larger than one [2].

Here,

M λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 λa2 λa3 · · · λad

λa1 0 λa3 · · · λad

λa1 λa2 0
...

...
...

. . . λad
λa1 λa2 · · · λad−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (1.1)

where the entry in position (i, j) is the expected number of type j offspring to which a

type i individual will give birth. This branching process is a good local approximation

for a connected component of Hp that contains a designated vertex when p = λ/n, which

motivates the following theorems.

Theorem 1.1. Fix d � 2 and a1, . . . , ad > 0, and let λc be the unique positive solution to

det(I − M λc
) = 0. If λ < λc is constant and p = λ/n, then the size of the largest connected

component of Hp is O(log n) w.h.p.

Theorem 1.2. Fix d � 2 and a1, . . . , ad > 0, and let λc be the unique positive solution to

det
(
I − M λc

)
= 0. If λ > λc is constant and p = λ/n, then there is a constant q = q(λ) such

that the size of the largest connected component of Hp is

(1 − q)λ

(∏
i

ai

)
nd−1(1 + o(1)) w.h.p.

Furthermore, the second largest component has O(log n) vertices w.h.p.

The constant q = q(λ) appearing in Theorem 1.2 is the extinction probability of the

branching process corresponding to Xa1 ,...,ad,λ,n in the limit as n → ∞, so the number

of offspring of each type follows an independent Poisson distribution, and q satisfies

0 < q < 1 for λ > λc. It is defined precisely at the start of Section 3. In both theorems I is

the d× d identity matrix. Note that the total number of vertices in site percolation on the

Hamming torus is asymptotically the expected number, p|V | = λ
(∏

i ai
)
nd−1, so (1 − q) is

the proportion of vertices remaining that are in the giant component. The critical value,

λc, can be defined equivalently as the root of a degree d polynomial, which is specified by

the following lemma.
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Lemma 1.3. Fix d � 2 and a1, . . . , ad > 0, and define M λ as in (1.1). Then the following

holds:

det(I − M λ) = 1 −
d∑
�=2

(�− 1)λ�
∑

S⊂{1,...,d}
|S |=�

∏
i∈S

ai.

Proof. We evaluate the determinant as

det(I − M λ) =
∑
σ∈Sd

sign(σ)

d∏
i=1

(I − M λ)iσ(i),

where Sd is the set of permutations of {1, . . . , d}. We break this sum up according to

the diagonal elements selected in the product (fixed points of σ). For S ⊂ {1, . . . , d} with

|S | = �, the sum of the terms such that the diagonal elements selected are precisely those

indexed by Sc is equal to the determinant of the submatrix of −M λ obtained by selecting

the rows and columns indexed by S . Taking a factor from each column, this is equal to

(−λ)�
∏

i∈S ai times the determinant of the �-by-� matrix with zeros on the diagonal and

ones off the diagonal, which is easily seen to be (−1)�−1(�− 1). Summing over S gives the

result.

Note that det(I − M λ) is strictly decreasing in λ for λ > 0, is positive when λ = 0 and

tends to −∞ as λ → ∞. Thus, the equation det(I − M λ) = 0 has a unique positive solution

λc. Since det(I − M λ) = 0 if and only if 1 is an eigenvalue of M λ, and the eigenvalues of

M λ scale with λ, it follows that the largest eigenvalue of M λ is less than 1 for λ < λc and

greater than 1 for λ > λc.

Random edge subgraphs of the Hamming torus were considered by Borgs, Chayes,

van der Hofstad, Slade and Spencer [7, 8], who indicated that the threshold, scaled by n,

for the emergence of a giant component in bond percolation should be 1/(a1 + · · · + ad),

though they do not provide a lower bound for the size of the largest component above

the threshold. This lower bound was later proved by van der Hofstad and Luczak [11]

in the case d = 2 and a1 = a2 = 1, demonstrating that the threshold occurs at 1/2. When

d = 2, the site percolation threshold is λc = 1/
√
a1a2, so the two processes clearly differ.

A model similar to site percolation on the Hamming torus, called line-of-sight percol-

ation, was studied by Bollobás, Janson and Riordan [5]. They studied site percolation

on the graph with vertex set Z2 in which two vertices are neighbours if they agree in

one coordinate and differ by at most ω � 1 in the other. They showed that if pc(ω) is

the critical probability for site percolation on this graph, then limω→∞ ωpc(ω) = log(3/2).

They also showed that the analogous result holds for the emergence of a giant component

on the n× n grid when ω = o(n), and they discuss the critical threshold when ω = cn.

Multitype branching processes have also been employed in the analysis of inhomogeneous

bond percolation of the complete graph by Bollobás, Janson and Riordan [4]. In the

inhomogeneous model, the probability of retaining the edge between vertices i and j is

pij , and the pij may not be equal. However, the inclusion or exclusion of each edge still

occurs independently of all other edges. Since the number of neighbours that a vertex
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has depends on the probabilities of the edges incident to that vertex, the inhomogeneous

model looks locally like a multitype branching process: each vertex has a different offspring

distribution, and is thus of a different ‘type’. Bollobás, Janson and Riordan [4] proved

that, under certain conditions on the values of the pij , a giant component exists with high

probability precisely when the corresponding multitype branching process has positive

probability of survival. For site percolation on the Hamming torus, the connection to a

multitype branching process arises in a different manner. As in [5], when exploring the

neighbourhood of a vertex, each direction must be searched except for the direction from

which a vertex was discovered. Thus, each new vertex is given a type according to the

direction from which it was discovered.

In Section 2 we prove Theorem 1.1 by coupling a process revealing the vertices in a

connected component of Hp with the multitype branching process Xa1 ,...,ad,λ,n. In Section 3

we prove Theorem 1.2 in four steps. The first step (Section 3.1) is to show that the process

of revealing the vertices in a connected component of Hp will either terminate before

discovering O(log n) occupied vertices, or will reveal m = Θ(log n) occupied vertices with

unrevealed neighbourhoods with high probability. The second step (Section 3.2) is to

show that if the process of revealing vertices acquires m occupied vertices with unrevealed

neighbourhoods, then it can be coupled with a lower-bounding branching process, which

will reach size nd−4/3 with high probability. The third step (Section 3.3) is to show that

any two component discovering processes (started from two different vertices in V ) that

reach size nd−4/3 will join together with high probability. For this step, we use a slight

modification of a ‘sprinkling’ argument like the one used in [1], but which gives us better

control over the event that a vertex is in the giant component. The final step (Section 3.4)

is to show that the proportion of vertices in components of size O(log n) converges to q

in probability.

2. Subcritical behaviour

Theorem 1.1 comes from a direct comparison with the binomial multitype branching

process described above, and thus follows from Proposition 2.2 below, which bounds

the total size of a multitype branching process. Consider a time-homogeneous multitype

branching process X = (Z t)
∞
t=0 with d types, so Z t = (Z1

t , Z
2
t , . . . , Z

d
t ), where Zi

t is the

number of type i individuals in the tth generation. Z0 is assumed to be deterministic,

and all birth events are independent of one another. Let M = (mij) denote the matrix of

expectations,

mij = E
(
Z
j
1 | Z0 = ei

)
. (2.1)

We say that a matrix, A, or a vector, x, is positive if Aij > 0 for all i and j or xi > 0 for all

i. Lemma 2.1 is a simplified restatement of the Perron–Frobenius theorem as it appears

in [2].

Lemma 2.1. If MN is positive for some natural number N, then M has a positive simple

eigenvalue, ρ, that is greater in absolute value than any other eigenvalue, and ρ corresponds

to a positive right eigenvector μ : Mμ = ρμ.

https://doi.org/10.1017/S096354831300059X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831300059X


Site Percolation on the d-Dimensional Hamming Torus 295

Proposition 2.2 bounds the total size of a subcritical branching process with ex-

ponentially decaying tails, and is surely known in some form (a proof sketch for a

similar and more general result appears in the proof of Theorem 12.5 of [4]). We were

unable to find a full proof of the specific form that we use, so we include a short

proof here. When d � 3, it is easy to check that M 2
λ is positive, so Lemma 2.1 applies,

and when d = 2 it can be verified directly that M λ has a unique positive eigenvalue

corresponding to a positive right eigenvector. Thus, M λ will satisfy the condition on M in

Proposition 2.2.

Proposition 2.2. Let M be the expectation matrix of a multitype branching process X as

in (2.1). Suppose there exists 0 < ρ < 1 and μ positive such that Mμ = ρμ, and there exists

θ0 > 0 such that E
[
eθ0〈Z1 ,μ〉 | Z0 = ei

]
< ∞ for i = 1, . . . , d. Then

P

( ∞∑
t=0

‖Z t‖1 > x

)
� Ce−αx,

where α, C > 0 can be chosen as

e−α := min
θ∈[0,θ0]

max
i

E
[
eθ〈Z1−ei ,μ〉 | Z0 = ei

]
,

and, letting θ′ be the smallest value of θ for which this minimum is attained, C := eθ
′〈Z0 ,μ〉.

Proof. Consider a random walk version of the multitype branching process, S t =

(S1
t , . . . , S

d
t ), constructed as follows. S0 = Z0 is a non-random initial vector whose ith

component indicates the number of type i individuals who are active. At each step, an

active individual is chosen (depending only on the current state S t), it gives birth to a

random number of individuals depending on its type and according to the law for that

type in the branching process (these new individuals are considered active), and then it is

made inactive (thus no longer included in S t). If Jt is the random variable that takes the

value i if an active individual of type i is selected at time t, then

S t+1 = S t +

d∑
i=1

1{Jt+1=i}
(
X i
t+1 − ei

)
, (2.2)

where for each i = 1, . . . , d and t � 0 the random vectors X i
t are independent and equal in

distribution to (Z1 | Z0 = ei). Notice that Jt+1 is dependent on S t, but X i
t+1 is not. The

process continues until the stopping time T := inf{t : S t = 0}, at which time the process

dies out, and we have

T
d
=

∞∑
t=0

‖Z t‖1.

https://doi.org/10.1017/S096354831300059X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831300059X


296 D. Sivakoff

Consider an increment of this random walk, and let

φv(θ) := E
[
exp

(
θ〈S t+1 − S t, μ〉

)
| S t = v

]
=

∑
i

P(Jt+1 = i | S t = v) Eeθ〈(X i
t+1−ei),μ〉

� max
i

Eeθ〈(X i
1−ei),μ〉

=: ψ(θ). (2.3)

Note that the last expression does not depend on the previous state vector, v. By our

assumption, there exists θ0 > 0 so that ψ(θ0) < ∞, so we have

d

dθ

(
Eeθ〈(X i

1−ei),μ〉)|θ=0 = μi(ρ− 1).

Since we assumed ρ < 1 and μi > 0 for all i, we have that ψ(θ) < 1 for θ near zero.

Further, since ψ is continuous on [0, θ0], there exist θ′, α > 0 such that minθ∈[0,θ0] ψ(θ) =

ψ(θ′) = e−α < 1. It is easy to see that eθ〈S t ,μ〉/ψ(θ)t is a positive supermartingale by (2.3),

so, by the Optional Stopping Theorem,

C := eθ
′〈S0 ,μ〉 � E

[
eθ

′〈ST ,μ〉

ψ(θ′)T

]
= EeαT ,

and then by Markov’s inequality,

P(T > x) = P(eαT > eαx) � Ce−αx.

We now prove the following lemma, which immediately implies Theorem 1.1. We will

make use of this slightly stronger statement in Section 3.2 of the proof of Theorem 1.2.

Lemma 2.3. Fix d � 2 and a1, . . . , ad > 0, let λc be the unique positive solution to det(I −
M λc

) = 0, and let λ < λc be constant. If p = λ/n, then for any η > 0 there exists β > 0

such that, for all sufficiently large n, with probability at least 1 − n−η , the size of the largest

connected component of Hp is at most β log n.

Proof. Consider a fixed vertex, v, in the Hamming torus, and let Cv be the cluster

containing that vertex (Cv = ∅ if the vertex v is unoccupied). We can reveal the vertices

in Cv using the Cluster Discovering Algorithm that follows. As in [9], we will use three

sets to keep track of the status of each vertex in the process: Ut denotes the set of unseen

vertices, At is the set of active vertices (occupied vertices whose neighbourhoods have not

yet been searched entirely), and Rt denotes the set of removed vertices (occupied vertices

whose neighbourhoods have been exhausted). In the language of epidemics, this is like an

SIR epidemic, where Ut is the susceptible set, At is the infected set and Rt is the recovered

set. Our process differs from an epidemic in that Ut ∪ At ∪ Rt � V for t � 1, since not

every vertex that is seen (and thus leaves Ut) becomes active. In particular, those vertices

that are observed but not occupied are unaccounted for.

To define the algorithm, we let N (v) := {w ∈ V : d(v,w) = 1} denote the neighbourhood

of the vertex v ∈ V .
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Cluster Discovering Algorithm.

(1) Initialize the sets R0 = ∅, A0 = {v}, U0 = V \ A0.

(2) Choose any vertex, vt, from At.

(3) At+1 = At \ {vt} ∪ {w ∈ N (vt) ∩Ut : w is occupied}.

(4) Ut+1 = Ut \ N (vt).

(5) Rt+1 = Rt ∪ {vt}.

(6) If At+1 is empty, then return Cv = Rt+1, otherwise increment t and go to step (2).

In words, at time t, we select a vertex, vt, from the set of active vertices, At, and

search its unseen neighbourhood, N (vt) ∩Ut. We add each occupied vertex in the unseen

neighbourhood of vt to At+1, remove all of the neighbours of vt from Ut+1 (since they

have now been inspected), and move vt from At+1 to Rt+1. Thus, at the end of the process,

when At+1 is empty, the set Rt+1 is equal to Cv .

To compare this process with a multitype branching process, we say that at step (3), a

neighbour of vt, say w, is of type i if vt − w = mei for some integer m. If vt (t � 1) is of

type i, then only vertices of types j ∈ {1, . . . , d} \ {i} may become active, since all of vt’s

neighbours in the ei direction will have been removed from Ut+1 when vt became active.

In the first iteration, however, v has unseen neighbours in each of the d directions. Since

vt has at most ajn unseen neighbours in the ej direction, |Cv| is stochastically dominated

by the total size of the multitype branching process Xa1 ,...,ad,λ,n. In turn, Xa1 ,...,ad,λ,n is

stochastically dominated by the time-homogeneous branching process X ′
a1 ,...,ad,λ,n

with the

same d types as Xa1 ,...,ad,λ,n, but with the initial state Z0 := (1, . . . , 1), so the first generation

has Binomial((d− 1)ain, λ/n) type i individuals. The expectation matrix for this branching

process is M λ, and the largest eigenvalue of M λ is less than 1 if λ < λc. In this regime,

we have that the moment generating functions for (〈Z1 − ei, μ〉 | Z0 = ei) are uniformly

(in n) bounded above for θ � 0, as

E
[
eθ〈Z1−ei ,μ〉 | Z0 = ei

]
= e−θμi

∏
j �=i

[
1 +

λ

n
(eθμj − 1)

]ajn

� e−θμi
∏
j �=i

exp
[
λaj(e

θμj − 1)
]

=: ψi(θ). (2.4)

It is easy to verify that ψ′
i(0) = μi(ρ− 1) < 0, ψi(0) = 1, ψi(θ) → ∞ as θ → ∞, and ψ′′

i (θ) >

0 for all θ > 0, which imply that we can choose α, C > 0 such that

e−α := min
θ�0

max
i

ψi(θ) =: max
i

ψi(θ̂),

C := exp
[
θ̂‖μ‖1

]
.

The inequality in (2.4) shows that the corresponding generating functions for Z t are

bounded uniformly in n by ψi. Applying Proposition 2.2 to X ′
a1 ,...,ad,λ,n

with θ0 = θ̂, we
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obtain Cn, αn such that, by (2.4), e−αn � e−α and Cn � C for all n, and

P

(
|Cv| > d+ η + 1

α
log n

)
� P

( ∞∑
t=0

‖Z t‖1 >
d+ η + 1

α
log n

)
� Cn−d−η−1.

This implies the desired result with β = (d+ η + 1)/α:

P

(
max
v∈V

|Cv| > d+ η + 1

α
log n

)
� C

( d∏
i=1

ai

)
n−η−1 = o(n−η).

3. Supercritical behaviour

Theorem 1.2 shows that λc is the critical threshold for the emergence of a giant

component. If we let qi = P
(
Z t = 0 for some t | Z0 = ei

)
be the extinction probabilities

for the multitype branching process in which an individual of type i gives birth to a

Poisson(λaj) number of type j individuals for j �= i and zero individuals of type i, then

the proportion of occupied vertices in the largest component when λ > λc is

1 −
(∏

i

qi

)1/(d−1)

≡ 1 − q > 0.

Theorem 3.1 (Theorem 1.2 restated). Fix d � 2 and a1 � a2 � · · · � ad > 0, and let λc be

the unique positive solution to det(I − M λc
) = 0. If λ > λc and p = λ/n, then the size of the

largest connected component of site percolation on the Hamming torus is

(1 − q)λ

(∏
i

ai

)
nd−1 + o(nd−1) w.h.p.

Furthermore, the second largest component has O(log n) vertices w.h.p.

The proof of Theorem 1.2 begins here, and spans four subsections, Sections 3.1–3.4.

The proof is summarized at the end of Section 3.4.

We begin by considering Cv , the cluster containing a fixed vertex v, and reveal the

vertices in Cv using a similar process to the Cluster Discovering Algorithm, but with one

noteworthy modification. We will remove some additional vertices from the unseen set,

Ut+1, at step (4) before they can be observed in any subsequent iterations. In particular,

we remove vertices that are neighbours of two or more vertices in the active set, At+1.

This will avoid the problem of generating closed loops, which would severely reduce the

unseen neighbourhoods of active vertices and make it difficult to couple the process with

a lower-bounding branching process. In [5], a similar idea was used where each newly

discovered vertex ‘claims’ its neighbours. Here, if two active vertices could discover the

same unseen vertex, we remove the unseen vertex completely, so neither active vertex

claims this neighbour. The result is that this algorithm only returns a subset of Cv , but it

will suffice because we will be able to bound the number of vertices that are lost in this

manner.
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Cluster Discovering Algorithm (modified).

(1) Initialize the sets R0 = ∅, A0 = {v}, U0 = V \ A0.

(2) Choose any vertex, vt, from At.

(3) At+1 = At \ {vt} ∪ {w ∈ N (vt) ∩Ut : w is occupied}.

(4) Ut+1 =
(
Ut \ N (vt)

)
\ {w ∈ N (u) ∩ N (v) : u, v ∈ At+1, u �= v}.

(5) Rt+1 = Rt ∪ {vt}.

(6) If At+1 is empty, then return Rt+1, otherwise increment t and go to step (2).

During this process, we will need to keep track of the number of active vertices of each

type, so for t � 1 let A(i)
t denote the number of type i vertices in At, let At =

(
A(1)
t , . . . ,A(d)

t

)
,

and let N i(v) = {w ∈ V | v − w = mei for some m ∈ Z}. As in the proof of Theorem 1.1,

a vertex, w, discovered at time t is labelled type i if w ∈ N i(vt). That is, a vertex is of

type i if it is discovered by searching neighbouring vertices in the direction of the ith

basis vector. Note that we do not define A0 in the same way because the initial vector,

v0, is not of any of the d types, since it has unseen neighbours in all d directions. For

convenience of later calculations, we will assume ‖A0‖1 := 1. This will not hinder us in

any significant way, and really only comes into play in the computation of q later on.

The above algorithm will yield a lower bound on Cv , but we will make use of an upper-

bounding branching process, as in the proof of Theorem 1.1, to tightly control the size of

Cv . We can couple the random walk version of the upper-bounding branching process with

At by using the same random variables in the construction of S t as in the construction of

At whenever possible, and when independence is an issue, we add independent copies of

these random variables to S t. More rigorously, let ξv be the random variable that takes

the value 1 if the vertex v is occupied and is 0 otherwise. Define ‖S0‖1 = 1, and for each

i ∈ {1, . . . , d}

S
(i)
1 =

∑
w∈N i(v0)∩U0

ξw .

We define S t = (S (1)
t , . . . , S

(d)
t ) iteratively for each t � 1 and i ∈ {1, . . . , d} as

S
(i)
t+1 = S

(i)
t + 1{vt is not of type i}

[ ∑
w∈N i(vt)∩Ut

ξw +

ain−|N i(vt)∩Ut|∑
k=1

η
(t,i)
k

]
− 1{vt is of type i}, (3.1)

where the η(t,i)
k are i.i.d. Bernoulli(p) random variables, and are independent of the ξw .

The additional random variables, η(t,i)
k , are added in so that S t will be a random walk

with i.i.d. increments. As long as At �= 0, then A(i)
t � S

(i)
t for each i, so the same type of

individual can be chosen for both processes. If At = 0 and S t �= 0, then we can choose a

type such that S (i)
t > 0 for the next increment of the process S t, and let this determine the

value of the indicators that vt is of type i or not. From this construction, it is clear that

if a type i individual is chosen at time t � 1, then

S t+1 − S t
d
= (Z2 | Z1 = ei) − ei,
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where Z t is the branching process Xa1 ,...,ad,λ,n. Therefore we have

inf{t : At = 0} � inf{t : S t = 0} d
=

∑
t

‖Z t‖1.

3.1. Establishing a set of m = b log n active vertices

As in the proof of Theorem 1.1, we make use of an upper-bounding branching process,

but this time in a more intimate fashion. We couple the random walk version of the

upper-bounding branching process, S t, with At as in equation (3.1). Recall from equation

(2.2) that we can also write

S t+1
d
= S t +

d∑
i=1

1{Jt+1=i}
(
X i
t+1 − ei

)
,

where Jt+1 is the random variable that takes the value i if vt is of type i (or, when At = 0,

if a type i individual is chosen at time t+ 1 in the random walk process), and where

the X i
t are independent and distributed as Z1 conditional on Z0 = ei. For this process

(and later for a lower-bounding process, W t) we will need the following large deviation

bounds.

Lemma 3.2. Let S t be the random walk version of a branching process with d types in

which an individual of type i has a Binomial(ajn, λ/n) number of offspring of type j �= i

and zero offspring of type i. Suppose M λμ = ρμ, where ρ > 1 and μ is the corresponding

positive eigenvector normalized so that ‖μ‖1 = 1, and μmax := maxi(μi), μmin := mini(μi).

Then, given y < 1 < x, there exist η1, η2 > 0 such that

P
(
〈S t − S0, μ〉 � x(ρ− 1)μmax t

)
� e−η1t, (3.2)

P
(
〈S t − S0, μ〉 � y(ρ− 1)μmint, ‖S t‖ > 0

)
� e−η2t. (3.3)

Proof. We will first prove inequality (3.2). By equation (2.3), the moment generating

function for an increment of the process 〈S t − S0, μ〉 is bounded, for v > 0, by

φv(θ) := E
[
exp

(
θ〈S t+1 − S t, μ〉

)
| S t = v

]
� max

i
Eeθ〈(X i

1−ei),μ〉 =: ψ(θ).

Since 0 is an absorbing state for S t, all future increments will be 0, and we have

φ0(θ) ≡ 1. To avoid this case, we only consider the event that the process has not yet

died by time t. Letting T := inf{t : S t = 0}, and using the above estimate, we see that

eθ〈S t ,μ〉1{T>t−1}[ψ(θ)]−t is a supermartingale, which implies that

Eeθ〈S t−S0 ,μ〉1{T>t−1} �
[
ψ(θ)

]t
. (3.4)

For each i = 1, . . . , d,

d

dθ

(
Eeθ〈(X i

1−ei),μ〉)|θ=0 = (ρ− 1)μi < x(ρ− 1)μmax =
d

dθ

(
eθx(ρ−1)μmax

)
|θ=0,
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since ρ > 1 and μ > 0. Because ψ(0) = 1, this implies that there exist θ1, η1 > 0 such that

e−η1 := ψ(θ1) e−θ1x(ρ−1)μmax < 1.

Since the event that 〈S t − S0, μ〉 � x(ρ− 1)μmax t implies that T > t > t− 1, Markov’s

inequality and inequality (3.4) imply that

P
(
〈S t − S0, μ〉 � x(ρ− 1)μmax t

)
= P

(
eθ1〈S t−S0 ,μ〉1{T>t−1} � eθ1x(ρ−1)μmaxt

)
� Eeθ1〈S t−S0 ,μ〉1{T>t−1}e

−θ1x(ρ−1)μmaxt

� e−η1t.

So we have proved inequality (3.2). To prove inequality (3.3), we observe that for each i =

1, . . . , d

d

dθ

(
Ee−θ〈(X i

1−ei),μ〉)|θ=0= −(ρ− 1)μi < −y(ρ− 1)μmin =
d

dθ

(
e−θy(ρ−1)μmin

)
|θ=0,

since ρ > 1 and μ > 0. Because ψ(0) = 1, this implies that there exist θ2, η2 > 0 such that

e−η2 := ψ(−θ2) eθ2y(ρ−1)μmin < 1.

Since 1{T>t} � 1{T>t−1}, Markov’s inequality and inequality (3.4) imply that

P
(
〈S t − S0, μ〉 � y(ρ− 1)μmint, ‖S t‖ > 0

)
= P

(
e−θ2〈S t−S0 ,μ〉1{T>t} � e−θ2y(ρ−1)μmin t

)
� Ee−θ2〈S t−S0 ,μ〉1{T>t−1}e

θ2y(ρ−1)μmint

� e−η2t.

We are now ready to prove the main lemma of this section.

Lemma 3.3. Let b > 0 be constant and set m = b log n. There are constants β,K > 0

depending on a1, . . . , ad, λ and b such that if s = β log n then

P
(
0 < ‖As‖1 � m

)
= O

(
n−(d+1)

)
,

and

P
(
‖As‖1 � K log n

)
= O

(
n−(d+1)

)
,

where K > b.

Proof. Our strategy is to prove a slightly stronger statement for S t (with a lower bound

larger than m), then use the coupling between S t and At in (3.1) to bound the difference

between the two. We wish to apply Lemma 3.2 to S t, but the first step of this process

is not the same as the subsequent steps, so we must handle this case separately. Notice

that in step (1) of the Cluster Discovering Algorithm, the initial vertex does not have

a type and is free to search in any of the d directions, while all subsequent vertices are

assigned types and thus behave like the multitype branching process with corresponding

mean matrix M λ. For each i = 1, . . . , d, S (i)
1 is distributed as a Binomial(ain, λ/n) random
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variable. We bound this step of the process as

P
(
〈S1, μ〉 � (d+ 2) log n

)
= P

(
e〈S1 ,μ〉 � e(d+2) log n

)
� n−(d+2)Ee〈S1 ,μ〉

� n−(d+2) exp

[ d∑
i=1

aiλ(e
μi − 1)

]

= O
(
n−(d+2)

)
. (3.5)

We only need this upper bound, since step (1) of S t is stochastically bounded below by

any of the typical increments (of types 1, . . . , d), so inequality (3.3) still holds. We now

apply Lemma 3.2 to S t at time s = β log n with x = 2 and y = 1/2, and use inequality

(3.5) to handle step (1) to yield

P
(
〈Ss, μ〉 �

[
2β(ρ− 1)μmax + (d+ 2)

]
log n

)
� n−η1β + O

(
n−(d+2)

)
P

(
〈Ss, μ〉 � 1

2
β(ρ− 1)μmin log n, ‖Ss‖ > 0

)
� n−η2β.

We choose β > 0 such that η1β > d+ 1, η2β > d+ 1 and

β >
2μmax(b+ 1)

μmin(ρ− 1)

(recall that m = b log n), and we choose

K � 2β(ρ− 1)μmax + (d+ 2)

μmin
+ β

such that K > b. Using 〈Ss, μ〉 � μmin‖Ss‖1 we obtain

P
(
‖Ss‖1 + s � K log n

)
� n−(d+1). (3.6)

This implies the second part of the lemma, since ‖As‖1 � ‖Ss‖1 with our coupling defined

in (3.1). Since 〈Ss, μ〉 � μmax‖Ss‖1, we also have

P
(
0 < ‖Ss‖1 � (b+ 1) log n

)
� n−(d+1). (3.7)

When ‖Ss‖1 + s � K log n, we have

|Us ∩ N i(v)| � ain−K log n (3.8)

for v of type j �= i. This is because |As| = ‖As‖1 � ‖Ss‖1, |Rs| � s (with equality here

if At is still alive at time s), and the maximum number of neighbours that As ∪ Rs
can have in N i(v) is |As ∪ Rs| as long as v is not of type i. Recall that η(t,i)

k are i.i.d.

Bernoulli(λ/n) random variables which are added into the S t process to account for lost

birth opportunities in At. Therefore, provided As > 0, the number of births that occur in

S t which are lost in At for t � s is at most

s−1∑
t=0

d∑
i=1

ain−|Ut∩N i(vt)|∑
k=1

η
(t,i)
k � Y (s), (3.9)

https://doi.org/10.1017/S096354831300059X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831300059X


Site Percolation on the d-Dimensional Hamming Torus 303

where

Y (s) ∼ Binomial

(
dβK(log n)2,

λ

n

)
.

So, on the event ‖Ss‖1 + s � K log n, we can bound the difference between Ss and As by

a constant, as

P
(
‖Ss‖1 + s � K log n,‖As‖1 > 0, ‖S s − As‖1 � d+ 2

)
� P

(
Y (s) � d+ 2

)
=

dβK(log n)2∑
k=d+2

(
dβK(log n)2

k

)(
λ

n

)k(
1 − λ

n

)dβK(log n)2−k

�
dβK(log n)2∑
k=d+2

(
λdβK(log n)2

n

)k

= O
(
n−(d+1)

)
. (3.10)

Finally, combining inequalities (3.6), (3.7), and (3.10) yields

P
(
0 < ‖As‖1 � (b+ 1) log n− (d+ 2)

)
= O

(
n−(d+1)

)
,

P
(
0 < ‖As‖1 � b log n

)
= O

(
n−(d+1)

)
,

which completes the proof of the lemma.

This means that, with high probability, at time s the process has either died out or there

are at least m = b log n active vertices in As.

3.2. Existence and survival of a lower-bounding random walk

In this section, we will couple the cluster discovering process with a lower-bounding

random walk (corresponding to a supercritical branching process) that picks up where

the coupling in the last section left off. That is, on the event that the cluster discovering

process attains |As| � m, we will construct a process A′
t ⊂ As+t that is unlikely to die out

before some moderately large time t = r. To construct this process, we would like to have

a lower bound on |U ′
r ∩ N i(v)|, so the unseen neighbourhood of v′

t at each step in the

algorithm will be large, and we will be able to couple a lower-bounding random walk

with this process. Using Durrett’s discussion of the Erdős–Rényi model as guidance [9],

we need n(d−1)/2 � r � nd−1, so we choose r = nd−4/3.

To generate the lower-bounding process, we begin by letting p = p1 + p2 − p1p2, where

p1 = λ1/n and p = λ/n with λ1 < λ. Site percolation on H with parameter p, Hp, can then

be viewed as

Hp = Hp1
∪ Hp2

,

where Hp1
and Hp2

are independent site percolations on H, the union is taken over their

vertex sets, and the bar denotes the inclusion of all edges from H between vertices in

Hp1
∪ Hp2

. It is crucial to note that

p2 =
λ− λ1

n
+
λ1(λ− λ1)

n(n− λ1)
=
ε

n
+ O(n−2),
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where ε = λ− λ1. The reason for this subdivision is twofold. First, we want to construct

a lower-bounding random walk, and for this we will use the parameter p1. Later, in

Section 3.3, we will use a ‘sprinkling’ argument, which amounts to independently making

a small number of additional vertices occupied to connect components of moderate size

into a giant component.

For 1 � k � d, let M (k)
λ denote the submatrix of M λ consisting of the first k rows and

columns, and let λ(k)
c be the positive solution to det(I (k) − M (k)

λ ) = 0. We want to choose

λ1 < λ so that λ1 > λc and λ1 < λ
(d−1)
c . In other words, we want λ1 to be supercritical

for the d-dimensional process, but subcritical for the process restricted to any (d− 1)-

dimensional plane. By the monotonicity of the event that a giant component exists, the

critical value for the (d− 1)-dimensional process obtained by considering the first (d− 1)

dimensions is smallest, since we assumed that a1 � a2 � · · · � ad > 0. The critical value

for this process is λ(d−1)
c , so to guarantee the existence of such a λ1, we just need to verify

that λc < λ
(d−1)
c . This is easiest to see by using Lemma 1.3. The values of det(I − M

λ
(d−1)
c

)

and det(I − M 0) have opposite signs, so by the Intermediate Value Theorem and the

uniqueness of λc, we have that 0 < λc < λ
(d−1)
c .

We now consider a restricted cluster discovering process that starts with an active set

that is a subset of As, and proceeds according to the Cluster Discovering Algorithm

with vertex probability p1; call this process (U ′
t, A

′
t, R

′
t) (note that we are resetting time to

0 for the new process). We assume that the initial sets satisfy (U ′
0, A

′
0, R

′
0) = (Us, As, Rs)

whenever |As| � m = b log n (recall that s = β log n, and we will decide what b is just

after equation (3.18)). If |As| > m, then we let A′
0 consist of the first m vertices of As in

lexicographic order. The vertices of As in excess of m are placed in the removed set, so we

let R′
0 = Rs ∪ (As \ A′

0), and U ′
0 = Us. Therefore, on the event |As| � m, the initial set of

active vertices in the process (U ′
t, A

′
t, R

′
t) has size |A′

0| = m. Let Pp,p1
denote the probability

measure associated with the processes (Ut, At, Rt) up to time s with parameter p and

(U ′
t, A

′
t, R

′
t) up to time r with parameter p1.

Let

P (�1 ,...,�k)
(i1 ,...,ik)

:= {v ∈ V | vi1 = �1, . . . , vik = �k} (3.11)

denote the intersection of the vertex set, V , with the hyperplanes vi1 = �1, . . . , vik = �k . We

will refer to these as just ‘planes’, and will emphasize their dimension when it is important

to do so. Throughout this argument we will assume that 1 � i1, . . . , ik � d, ij1 �= ij2 for

j1 �= j2, and �j ∈ {1, . . . , aij n}, so we have no trivial constraints. We want to bound the

number of vertices that become active up to time r in any 2-dimensional plane, P (�1 ,...,�d−2)
(i1 ,...,id−2) ,

as this will lead to a lower bound on |U ′
t ∩ N i(v′)| for each i and v′ that appear in the

modified Cluster Discovering Algorithm.

Lemma 3.4. If r = nd−4/3, then there is a constant Kd such that

Pp,p1

(
|P (�1 ,...,�d−2)

(i1 ,...,id−2) ∩ (A′
r ∪ R′

r)| � Kdn
2/3(log n)d−2

for some (i1, . . . , id−2) and (�1, . . . , �d−2)
)

= O(n−(d+1)). (3.12)
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Proof. By Lemma 3.3, with probability 1 − O(n−d−1), we have that either |A′
0| = |As| = 0,

which implies the complement of the event in (3.12), or |A′
0| = m and |R′

0| � s+K log n =

(β +K) log n. We now only need to consider what happens on the latter event, which we

refer to as F .

We begin with d = 2. In this case, equation (3.12) is simply the statement that at

most K2n
2/3 occupied vertices have been found by time r = n2/3, so we merely need

a large deviation bound. At each step, we can discover at most a Binomial(a1n, λ1/n)

number of occupied vertices, so the total number of births up to time r is stochastically

bounded by a Binomial(a1nr, λ1/n) random variable. By exponentiating and applying

Markov’s inequality, using the moment generating function for the binomial, and the

bound 1 + x � ex, we have

Pp,p1

(
F ∩ {|A′

r ∪ R′
r| � 2a1λ1n

2/3}
)

� e−2a1λ1rEp,p1
exp

[
|A′

r ∪ R′
r|1F

]
� e−2a1λ1r+(b+β+K) log n

[
1 +

λ1

n
(e− 1)

]a1nr

� exp
[
−2a1λ1r + a1λ1(e− 1)r + (b+ β +K) log n

]
= O(n−3),

where in the last line we used that e− 1 < 2. Thus we have (3.12) for d = 2 with

K2 = 2a1λ1.

For d � 3, we first consider a fixed (d− 1)-dimensional plane P (�1)
(i1) . If we restrict our

attention to just this plane, ignoring any edges with endpoints outside of P (�1)
(i1) , the

resulting subgraph on the vertices in P (�1)
(i1) will be a subcritical site percolation on a

(d− 1)-dimensional Hamming torus, by the assumptions we made on λ1. By applying

Lemma 2.3 with η = d+ 2, there is a constant β1 such that with probability at least

(1 − n−d−2), no vertex in P (�1)
(i1) will ultimately give rise to a cluster of occupied vertices in

P (�1)
(i1) larger than β1 log n.

If at time t during the Cluster Discovering Algorithm we choose v′
t /∈ P (�1)

(i1) , then this

vertex may have a single opportunity to discover an occupied vertex in P (�1)
(i1) . We will

refer to such an occupied vertex in the focal plane (in this case P (�1)
(i1) ) that is discovered

by observing the unseen neighbourhood of an occupied vertex that is not in the focal

plane as a seed vertex. If a potential seed vertex (at the intersection of P (�1)
(i1) and the line

orthogonal to P (�1)
(i1) that passes through v′

t) has already been examined during a previous

iteration of the algorithm, then it will not increase the number of seeds in P (�1)
(i1) whether it

is occupied or not. If the potential seed vertex has not been examined (it is in U ′
t), then it

will be occupied with probability λ1/n. So, if Xr is the number of seed vertices generated

in P (�1)
(i1) by time r, then Xr is stochastically bounded above by a Binomial(r, λ1/n) random

variable. Using this fact and applying a standard generating function argument shows

that, for γ1 = 2 log 2 − 1 > 0,

Pp,p1

(
Xr � 2

λ1r

n

)
� e−γ1(λ1r/n).
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Recalling that we have chosen r = nd−4/3, and that with probability at least 1 − n−d−2

each seed gives rise to a cluster in P (�1)
(i1) of size at most β1 log n, we have

Pp,p1

(
F ∩ {|P (�1)

(i1) ∩ (A′
r ∪ R′

r)| � 2λ1β1n
d−7/3 log n}

)
� e−γ1λ1n

d−(7/3)

+ n−d−2.

Since the number of planes, P (�1)
(i1) , is at most da1n, we have

Pp,p1

(
F ∩ {|P (�1)

(i1) ∩ (A′
r ∪ R′

r)| � 2λ1β1n
d−7/3 log n for some (i1) and (�1)}

)
= O(n−(d+1)). (3.13)

For the induction step, we wish to show that on the event, EkN , that for fixed k � d− 2

every (d− (k − 1))-dimensional plane of the form P (�1 ,...,�k−1)
(i1 ,...,ik−1) has at most N vertices in

A′
r ∪ R′

r , then with probability close to 1, every (d− k)-dimensional plane of the form

P (�1 ,...,�k)
(i1 ,...,ik)

has at most 2kλ1(N/n)βk log n vertices in A′
r ∪ R′

r . The reasoning is similar to the

argument above for P (�1)
(i1) . If no plane of the form P (�1 ,...,�k−1)

(i1 ,...,ik−1) has more than N vertices in

A′
r ∪ R′

r , then certainly no set of the form

P (�1 ,...,�k−1)
(i1 ,...,ik−1) \ P (�1 ,...,�k)

(i1 ,...,ik)

has more than N vertices in A′
r ∪ R′

r . Let us fix P (�1 ,...,�k)
(i1 ,...,ik)

, and (allowing for a slight abuse

of notation) let

P (�1 ,...,�k)\(�j )

(i1 ,...,ik)\(ij )
:= P (�1 ,...,�j−1 ,�j+1 ,...,�k)

(i1 ,...,ij−1 ,ij+1 ,...,ik)
\ P (�1 ,...,�k)

(i1 ,...,ik)

denote the set of vertices inside a (d− k + 1)-dimensional plane that contains the focal

(d− k)-dimensional plane, but with the vertices in the focal (d− k)-dimensional plane

removed. In one iteration of the Cluster Discovering Algorithm, the focal vertex, v′
t, is

either in P (�1 ,...,�k)
(i1 ,...,ik)

, in P (�1 ,...,�k)\(�j )

(i1 ,...,ik)\(ij )
for some j = 1, . . . , k, or neither. If it is in neither of these

sets, then

N (v′
t) ∩ P (�1 ,...,�k)

(i1 ,...,ik)
= ∅,

so this case does not contribute to the number of vertices of A′
r ∪ R′

r in the focal plane.

If v′
t ∈ P (�1 ,...,�k)

(i1 ,...,ik)
, then by restricting our attention to just this plane as we did above with

P (�1)
(i1) , we see that the process looks like a subcritical process in d− k dimensions by our

assumptions on λ1. By Lemma 2.3, there is a constant βk such that with probability at

least 1 − n−(d+k+1) all occupied vertices in P (�1 ,...,�k)
(i1 ,...,ik)

belong to clusters restricted to P (�1 ,...,�k)
(i1 ,...,ik)

of size at most βk log n. Finally, if

v′
t ∈ P (�1 ,...,�k)\(�j )

(i1 ,...,ik)\(ij )
for some j = 1, . . . , k,

then it has precisely one neighbour in P (�1 ,...,�k)
(i1 ,...,ik)

. If this neighbour is unseen (is in U ′
t), then

it has probability λ1/n of being an occupied seed vertex. On EkN , there are at most kN

vertices of A′
r ∪ R′

r in

∪jP (�1 ,...,�k)\(�j )

(i1 ,...,ik)\(ij )
.
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So if we let Yk be the number of seed vertices in P (�1 ,...,�k)
(i1 ,...,ik)

, then 1EkNYk is stochastically

bounded above by a Binomial(kN, λ1/n) random variable. Thus, we find that

Pp,p1

(
EkN ∩

{
Yk � 2

λ1kN

n

})
� e−γ1

λ1kN

n ,

where γ1 = 2 log 2 − 1. Therefore, we have

Pp,p1

(
EkN ∩

{
|P (�1 ,...,�k)

(i1 ,...,ik)
∩ (A′

r ∪ R′
r)| � 2kλ1βk

N

n
log n

})
� e−γ1λ1k

N
n + n−d−k−1.

Since the number of planes, P (�1 ,...,�k)
(i1 ,...,ik)

, is at most
(
d
k

)
ak1n

k , provided that N = ω(n1+ε) for

some ε > 0, we have

Pp,p1

(
EkN ∩

{
some P (�1 ,...,�k)

(i1 ,...,ik)
has |P (�1 ,...,�k)

(i1 ,...,ik)
∩ (A′

r ∪ R′
r)| � 2kλ1βk

N

n
log n

})
= O(n−(d+1)). (3.14)

Finally, combining equations (3.13) and (3.14) to complete the induction argument, we

obtain

Pp,p1

(
some P (�1 ,...,�d−2)

(i1 ,...,id−2) has |P (�1 ,...,�d−2)
(i1 ,...,id−2) ∩ (A′

r ∪ R′
r)| � Kdn

2/3(log n)d−2
)

= O(n−(d+1)),

where

Kd = 2d−2 · (d− 2)! · λd−2
1 ·

(d−2∏
k=1

βk

)
.

We now use Lemma 3.4 to get a lower bound on |U ′
t ∩ N i(v′

t)| where v′
t = (v′

t1, v
′
t2, . . . , v

′
td)

is a focal vertex of type j �= i in the cluster discovering process at any time t � r. Each

vertex in Pj
i ∩ (A′

r ∪ R′
r), where i = (i1, . . . , id−2), i ∈ i, and j = (v′

ti1
, . . . , v′

tid−2
), reduces the

number of vertices inU ′
t ∩ N i(v′

t) for t � r by at most one. There are d− 1 two-dimensional

planes of the form Pj
i , which are parallel to ei and pass through v′. Therefore, Lemma 3.4

implies that with probability at least 1 − O(n−(d+1)), for t � r and v′
t of type j �= i,

|U ′
t ∩ N i(v′

t)| � ain− (d− 1)Kdn
2/3(log n)d−2

� ai(1 − δ)n

for sufficiently large n, where δ > 0 is such that (1 − δ)λ1 > λc. This implies that, up to

time r, the process (U ′
t, A

′
t, R

′
t) of discovering occupied vertices can be bounded below

by the random walk version of a multitype branching process with expectation matrix

M (1−δ)λ1
, since each focal vertex, v′

t, of type j will have an unseen neighbourhood of size

at least ai(1 − δ)n in the ei direction for i �= j, and each vertex in this neighbourhood has

probability λ1/n of being occupied. Let us call the random walk version of this multitype

branching process W t = (W (1)
t , . . . ,W

(d)
t ), and assume that W 0 = A′

0. We can couple the
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processes W t and A′
t until time T0 ∧ Tδ ∧ r, where

T0 := inf{t : W t = 0},
Tδ := inf{t : |U ′

t ∩ N i(v′
t)| < ai(1 − δ)n for v′

t of type j and some i �= j}.

Note that we have just shown that

Pp,p1

(
Tδ > r

)
= 1 − O(n−(d+1)). (3.15)

We construct the coupling by first choosing v′
t in step (2) of the modified Cluster

Discovering Algorithm as follows: first decide that v′
t will be of type i with probability

W
(i)
t

‖W t‖1
,

then choose randomly a vertex from A′
t that is of this type. Let R(i)

δ (v′
t) be the unseen

neighbourhood of v′
t restricted to the first (lexicographically) ai(1 − δ)n vertices in U ′

t ∩
N i(v′

t). Then we can complete the coupling of W t with A′
t by defining for each i ∈ {1, . . . , d}

and t < T0 ∧ Tδ ∧ r

A′(i)
t+1 = A′(i)

t + 1{v′
t is not of type i}

∑
w∈U′

t∩N i(v′
t)

ξ′
w − 1{v′

t is of type i}, (3.16)

W
(i)
t+1 = W

(i)
t + 1{v′

t is not of type i}
∑

w∈R(i)
δ

(v′
t)

ξ′
w − 1{v′

t is of type i}, (3.17)

where ξ′
w is the random variable that takes the value 1 if vertex w is occupied in site

percolation with probability parameter p1, and is 0 otherwise. For t � T0 ∧ Tδ ∧ r we can

continue the random walk W t for all time by defining for each i ∈ {1, . . . , d}

W
(i)
t+1 = W

(i)
t +

d∑
i=1

1{J ′
t+1=i}

(
X ′

(t+1,i) − ei
)
,

where J ′
t+1 are random variables that take the value i with probability

W
(i)
t

‖Wt‖1
,

and the random vectors X ′
(t,i) are independent and equal in distribution to the first step of

a multitype branching process started with a single individual of type i, in which a type

i individual has a Binomial(aj(1 − δ)n, λ1/n) number of offspring of type j �= i, and no

offspring of type i.

We wish to show now that this coupling will last until time r if m = |A′
0| = ‖A′

0‖1

is large enough. This will occur whenever the branching process corresponding to W t

survives (T0 = ∞) and Tδ > r. Let

q′
i = P

(
W t = 0 for some t | W 0 = ei

)
for i = 1, . . . , d. Since the corresponding branching process is supercritical, q′

i < 1 for each

i. If we let γ2 = − log(maxi q
′
i) > 0, then

P
(
W t = 0 for some t | ‖W 0‖1 = m

)
�

(
max
i
q′
i

)m
= e−γ2m. (3.18)
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If we let

m =
d+ 1

γ2
log n, |A′

0| = m and |R′
0| = O(log n),

then the coupling between W t and A′
t will last until time r with at least probability

1 − n−(d+1). Combining equations (3.15) and (3.18) with Lemma 3.3, we have

Pp,p1

(
m � |As| � K log n, |A′

r| = 0
)

= O
(
n−(d+1)

)
. (3.19)

3.3. Merging clusters of size r = nd−4/3

At this point, with high probability, the cluster discovering process started at a given

vertex, v, has either died out by time s = β log n (Lemma 3.3), or will continue to survive

until at least time r = nd−4/3 (Lemma 3.3, then Lemma 3.4 along with the coupling in

equations (3.16)–(3.19)). If the process has died out, then the size of the cluster containing

v is at most β log n. We will now show that if the site percolation cluster containing the

vertex v1 and the site percolation cluster containing the vertex v2 each have at least r

vertices, then v1 and v2 are in the same connected component with probability close to

one.

The clusters containing v1 and v2 will be generated as follows for i = 1, 2.

(1) Start the cluster discovering process, (Ut,i, At,i, Rt,i), with parameter p at R0,i = ∅,

A0,i = {vi} and U0,i = V \ A0,i. Continue until time s = β log n.

(2) Start the cluster discovering process, (U ′
t,i, A

′
t,i, R

′
t,i), with parameter p1 such that A′

0,i

consists of the first (at most) m vertices in As,i, R
′
0,i = R0,i ∪ (As,i \ A′

0,i), and U ′
0,i = Us,i.

Continue until time r = nd−4/3.

(3) Let Υi = R′
r,i \ R′

0,i.

Note that the processes for i = 1 and i = 2 are not independent of one another, but

we assume that each set Υi is generated without knowledge of the other, so they may or

may not have a non-trivial intersection. On the event that each process survives, |Υi| = r

and Υi � Cvi
for i = 1, 2. Also, recall that we had defined the parameter p2 such that

p = p1 + p2 − p1p2, p = λ/n and p1 = λ1/n, so p2 = ε/n+ O(n−2) where ε = λ− λ1. The

parameter p2 will be crucial in the proof of the following lemma, which states that if each

of the above processes survives, then v1 and v2 are likely to be in the same component.

The proof of the next lemma was simplified significantly due to a suggestion of the

anonymous referee, to whom the author is grateful.

Lemma 3.5. If Υ1 and Υ2 are defined for v1 and v2 as above, then

P
(
Cv1

�= Cv2
, |Υ1| = |Υ2| = r

)
= O(n−(d+1)).

Proof. We will employ a sprinkling technique using the probability, p2, reserved in the

first step, where the lower-bounding process was defined using probability parameter

p1. Recall that site percolation on H with parameter p, Hp, can then be viewed as

Hp = Hp1
∪ Hp2

, where Hp1
and Hp2

are independent site percolations on H, the union
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is taken over their vertex sets, and the bar denotes the inclusion of all edges from H
between vertices in Hp1

∪ Hp2
.

For the sprinkling argument to work as intended (so we can avoid dependences), we will

need to consider only the vertices in Us,1 ∩Us,2, since the vertices in V \ (Us,1 ∩Us,2) have

already been fully considered for inclusion in Hp in step (1) of the above definition of Υ1

and Υ2. However, the number of unseen vertices in any line through an unseen vertex must

be large. By Lemma 3.3, with probability 1 − O(n−d−1) there are at most (β +K) log n

vertices in As,i ∪ Rs,i, and if v ∈ Us,i, then v shares at most |As,i ∪ Rs,i| neighbours with

As,i ∪ Rs,i in each direction. So, if F is the event that |Us,1 ∩Us,2 ∩ N j(v)| � ajn− 2(β +

K) log n for all v ∈ Us,1 ∩Us2 and j ∈ {1, . . . , d}, then P(Fc) = O(n−d−1).

Our strategy is to construct a path of occupied vertices in Hp2
from Υ1 to Υ2. We begin

by looking at the projection of Υ1 in the e1 direction onto the coordinate axes, that is,

proj(Υ1) = {(x2, . . . , xd) : ∃ u s.t. (u, x2, . . . , xd) ∈ Υ1}.

By a standard exponential tail bound for Binomial(ain, p) and the union bound,

P
(

|Hp ∩ P (�1 ,...,�d−1)
(i1 ,...,id−1) | � (log n)2 for some (i1, . . . , id−1) and (�1, . . . , �d−1)

)
= O(n− log n+d),

so it is unlikely that any line contains more than (log n)2 occupied vertices. Since Hp

stochastically dominates Υ1,

P
(
|proj(Υ1)| < r/(log n)2, |Υ1| = r

)
= O(n−d−1).

Let E be the event that |proj(Υ1)| � r/(log n)2.

We now construct paths of occupied vertices starting at vertices in Υ1 whose projections

are distinct elements of proj(Υ1); that is, the starting vertices differ in at least one

coordinate besides the first. Suppose the first vertex selected is u1
0 := (x1

1, . . . , x
1
d), and we

begin by looking for neighbours in the e1 direction in Hp2
. As we search for occupied

vertices in Hp2
to construct paths, we will encounter vertices that have already been fully

considered for inclusion, either in step (1) of the construction of Υi or in the construction

of an earlier path. When such a vertex is encountered, we introduce an independent

indicator variable that has probability p2 of being occupied, and we will later bound the

probability that such a false vertex was used in a successful path. So, we will find at least

one occupied vertex in the e1 direction with probability

1 − (1 − p2)a1n � 1 − exp(−εa1 + O(n−1)) � δ1 > 0

for large n, and if there is more than one we choose one uniformly at random and call it

u1
1 := (u1

1, x
1
2, . . . , x

1
d). Having found u1

i = (u1
1, . . . , u

1
i , x

1
i+1, . . . , x

1
d), we search for neighbours

in the ei+1 direction to obtain u1
i+1 = (u1

1, . . . , u
1
i+1, x

1
i+2, . . . , x

1
d) with probability at least

δi+1 > 0. Continuing in this fashion, we ultimately obtain a vertex u1
d = (u1

1, . . . , u
1
d) (with

probability larger than Δ :=
∏
δi > 0), which is uniformly distributed in V . If this

experiment is successful (we find a vertex in Hp2
at each step), then we record the

path as path(1) = {u1
0, . . . , u

1
d} and we call such a path completed, otherwise we just record

the path up until the point at which we failed to find a vertex.
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We proceed to construct n1/2 paths in the same manner. Each subsequent path starts

from a vertex in Υ1 that projects onto an element of proj(Υ1) that has not been used

before, and that has not yet been fully considered for inclusion in Hp. We denote the

kth path by path(k) for 1 � k � n1/2, and the ith vertex (if it exists) along the kth path

by uki = (uk1, . . . , u
k
i , x

k
i+1, . . . , x

k
d) ∈ path(k). Also, we denote the set of all vertices observed

through the construction of path(k) by

M0 := ∅,

Mk := Mk−1 ∪
d⋃
i=1

N i
(
uki−1

)
,

where N i(uki−1) is the set of vertices searched at the ith step of constructing path(k), and

if uki−1 does not exist, then N i(uki−1) = ∅.

The key here is that if ukd ∈ N 1(Υ2), then path(k) connects Υ1 with Υ2, and therefore

the two components Cv1
and Cv2

will be joined. If it exists, ukd is uniformly distributed in

V . Also, by the same argument made above for proj(Υ1),

P
(
|N 1(Υ2)| < a1nr/(log n)2, |Υ2| = r

)
= O(n−d−1).

Therefore,

P
(
ukd /∈ N 1(Υ2), |Υ2| = r

)
� 1 − Δa1nr

nd(log n)2
+ O(n−d−1)

= 1 − Δa1n
−1/3(log n)−2 + O(n−d−1).

Now that we have constructed a collection of paths, {path(k)}n1/2

k=1, which are condition-

ally independent given their starting points in Υ1, we must now bound the probability that

path(k) contains any vertices that were already fully considered for inclusion in Hp. The

first possibility is that path(k) ∩ (V \ (Us,1 ∪Us,2)) �= ∅. There are not more than 2β log n

vertices of proj(Υ1) that must be avoided, leaving r/(log n)2 − 2β log n starting points, and

we will only use n1/2 of them. On the event F , there are at most 2(β +K) log n vertices in

N i(uki−1) ∩ (V \ (Us,1 ∪Us,2)),

so the probability of including any such vertex in path(k) is at most

1 − [1 − 2(β +K) log n/(adn)]
d = O(log n/n),

which bounds the probability that the kth path intersects with (V \ (Us,1 ∪Us,2)).

The second possibility is that path(k) ∩ Mk−1 �= ∅ for some k � n1/2. Observe that

during the discovery of each path we explore at most one neighbourhood in each

direction (one N i(u�i−1) for each i = 1, . . . , d and � � k) in lexicographic order, and no

two starting points u�0 share any neighbours in the e1 direction. Therefore, the explored

neighbourhoods for path(k) meet the explored neighbourhoods of the first k − 1 paths

orthogonally, if they meet at all, until a collision involving path(k) occurs, such that

uki ∈ N j(u�j−1) for some i, j ∈ {1, . . . , d} and � < k. Therefore, until such a collision, each

neighbourhood in the discovery of path(k) sees at most one vertex explored in the

construction of path(�) for � < k. So, if a collision has not occurred by step i of path(k),
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then |Mk−1 ∩ N i+1(uki )| � k − 1 � n1/2. Therefore, the probability of a collision where

path(k) ∩ Mk−1 �= ∅ is at most 1 − [1 − n1/2/(adn)]
d = O(n−1/2).

We consider path(k) to be successful if it is completed, ukd is in N 1(Υ2), and path(k) does

not intersect with vertices in V \ (Us,1 ∪Us,2) or Mk−1. We have shown that, on the events

E ∩ F and |Υ1| = |Υ2| = r and conditional on the first k − 1 < n1/2 paths, the probability

that path(k) is unsuccessful is at most 1 − Δa1n
−1/3(log n)−2 + O(n−1/2). Therefore, on the

events E ∩ F and |Υ1| = |Υ2| = r, the probability of no successful path among the first

n1/2 paths is at most [1 − Δa1n
−1/3(log n)−2 + O(n−1/2)]n

1/2 � exp(−n1/7) for large n. This

bounds the probability that the two components, Cv1
and Cv2

, are disjoint in Hp, and

completes the proof of Lemma 3.5.

3.4. The size of the giant component

To complete the proof of Theorem 1.2, we need to demonstrate that the proportion of

occupied vertices included in the giant component approaches (1 − q) > 0 in probability.

To this end we will prove Lemma 3.6, but first we recall the definition of q.

Recall from earlier that qi = P
(
Z t = 0 for some t | Z0 = ei

)
is the extinction probab-

ility for a multitype branching process in which, for any k = 1, . . . , d, (Zj
1 | Z0 = ek) ∼

Poisson(λaj) if j �= k and (Zk
1 | Z0 = ek) ≡ 0, and initially there is one individual of type

i. The initial vertex in the cluster discovery process gives birth to Binomial(ain, λ/n)

neighbours of type i for each i, and henceforth proceeds like the multitype process in

which no vertex can give birth to its own type. The limiting branching process is one

in which each binomial birth event is replaced with a Poisson birth event with the same

mean. If we consider (d− 1) independent copies of this Poisson multitype branching

process with the modified initial step, and we define q to be the extinction probability of

one of these copies, then the collective process will have the same distribution for all time

as the multitype branching process that starts with one individual of each of the d types.

This implies that
∏

i qi = q(d−1). From the theory of multitype branching processes [2], the

vector (q1, . . . , qd) is the solution to f(x) = x for x ∈ (0, 1)d, where

fi(x) = exp

[
−λ

∑
j �=i

aj(1 − xj)

]
.

Thus, we have implicitly defined q < 1.

Lemma 3.6.

#{v ∈ V : |Cv| � β log n, ξv = 1}
λ
(∏

i ai
)
n(d−1)

−→ q in probability. (3.20)

The proof of Lemma 3.6 is a fairly standard second-moment argument (a proof of the

analogous lemma for the Erdős–Rényi random graph can be found in [9]), so we give

only a sketch here.

Proof sketch of Lemma 3.6. The first step is to show that P
(
|Cv| � β log n | ξv = 1

)
→ q.

This is easy, since we have already shown that the cluster discovering process, At, and
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the random walk version of the binomial multitype branching process, S t, are identical

up to time s = β log n with probability 1 − o(1) as per inequality (3.9). Then S t can be

coupled with the corresponding Poisson multitype branching process up to time s, so that

the probability that they differ is o(1) [3], which completes this step of the proof.

The next step is to use a second-moment argument to show that the actual proportion

of occupied vertices in components smaller than β log n approaches q. To do so, we define

the indicator random variables

Hv =

{
1 if |Cv| � β log n, ξv = 1,

0 otherwise,

so that ∑
v∈V

Hv = #{v ∈ V : |Cv| � β log n, ξv = 1},

∑
v∈V

EHv = λ

(∏
i

ai

)
n(d−1) P

(
|Cv| � β log n | ξv = 1

)
.

If we can show that

lim
n→∞

∑
v∈V Hv∑

v∈V EHv
= 1

in probability, then we are done. To apply the second-moment method we need to control

the variance of
∑
Hv . We begin by observing that

EHvHw = p2 P
(
|Cv| � β log n, |Cw| � β log n | ξv = 1, ξw = 1

)
. (3.21)

If v and w are not neighbours, then we can first run the cluster discovering process

starting at w, and check whether |Cw| � β log n. If it is, then we also check whether

v ∈ Cw (an event referred to as a collision). Since |Cw| � β log n and at each step in the

cluster discovering process the focal active vertex shares at most two neighbours with v,

a collision happens with probability at most 1 − (1 − p)2β log n = O(n−1 log n) on the event

that |Cw| � β log n. Now, if a collision has not occurred and |Cw| � β log n, then we can

run the cluster discovering process starting at v and check whether |Cv| � β log n. There is

a slight wrinkle when doing this, since we must condition on the events that |Cw| � β log n

and no collision has occurred. Fortunately, since no collision has occurred, the number

of vertices that are observed in each of the β log n steps of the cluster discovering process

started at v that were also observed during the cluster discovering process started at w is

at most 2β log n, and all of these vertices must not be occupied. All of the other vertices

observed by the cluster discovering process started at v up to time β log n are independent.

Therefore, we obtain the following bound on the covariance:

EHvHw � EHvEHw

(1 − p)2β2(log n)2 + p2P
(
collision, |Cw| � β log n | ξv = 1, ξw = 1

)
= (EHv)

2 + O(n−3(log n)2).
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Since |N (v)| = O(n), the contribution to the variance of w ∈ N (v) is small compared to

the mean squared: ∑
v

∑
w∈N (v)

EHvHw = O(ndnp2) = O(nd−1).

Therefore, the variance is

Var

(∑
v∈V

Hv

)
= O(n2d−3(log n)2).

So Chebyshev’s inequality finishes the proof of Lemma 3.6:

P

(∣∣∣∣
∑

v∈V Hv∑
v∈V EHv

− 1

∣∣∣∣ > n−1/3

)

= P

(∣∣∣∣∑
v∈V

Hv −
∑
v∈V

EHv

∣∣∣∣ > λ

(∏
i

ai

)
n(d−1) P

(
|Cv| � β log n | ξv = 1

)
n−1/3

)

= O
(
n−1/3(log n)2

)
. (3.22)

Proof of Theorem 1.2. To summarize, Lemma 3.3 implies that the cluster discovering

process started at a vertex v either dies out by time β log n or has at least m =

(d+ 1)/γ2 log n active vertices at this time. If the process survives to time β log n, then

Lemma 3.4 implies that the cluster discovering process dominates a supercritical branching

process, so we get equation (3.19), which says that the process will not die out before time

r = nd−4/3. So with high probability, every occupied vertex is either in a component of

size at most β log n or at least nd−4/3. Lemma 3.5 implies that all vertices in components

of size at least nd−4/3 are actually in a single large component. Finally, Lemma 3.6 says

that the proportion of occupied vertices that are in small components is asymptotically

q, so the proportion in the giant component is (1 − q).
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