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The size-Ramsey number r̂(F) of a graph F is the smallest integer m such that there exists

a graph G on m edges with the property that every colouring of the edges of G with two

colours yields a monochromatic copy of F . In 1983, Beck provided a beautiful argument

that shows that r̂(Pn) is linear, solving a problem of Erdős. In this note, we provide another

proof of this fact that actually gives a better bound, namely, r̂(Pn) < 137n for n sufficiently

large.
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1. Introduction

Given two finite graphs F and G, we write G → F if every colouring of the edges of G

with two colours (say blue and red) contains a monochromatic copy of F (that is, a copy

that is either blue or red). The size-Ramsey number of a graph F , introduced by Erdős,

Faudree, Rousseau and Schelp [7] in 1978, is defined as follows:

r̂(F) = min{|E(G)| : G → F}.

In this note, we consider the size-Ramsey number of the path Pn on n vertices. It is

obvious that r̂(Pn) = Ω(n) and that r̂(Pn) = O(n2) (for example, K2n → Pn), but the exact

behaviour of r̂(Pn) was not known for a long time. In fact, Erdős [6] offered $100 for a
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proof or disproof that

r̂(Pn)/n → ∞ and r̂(Pn)/n
2 → 0.

This problem was solved by Beck [2] in 1983 who, quite surprisingly, showed that

r̂(Pn) < 900n for sufficiently large n. A variant of his proof was provided by Bollobás [5];

it gives r̂(Pn) < 720n for sufficiently large n. These bounds are not given by explicit

constructions; later Alon and Chung [1] gave an explicit construction of graphs G on

O(n) vertices with G → Pn.

Here we provide an alternative and elementary proof of the linearity of the size-Ramsey

number of paths that gives a better bound. The proof relies on a simple observation,

Lemma 2.1, which may be applicable elsewhere.

Theorem 1.1. For n sufficiently large, r̂(Pn) < 137n.

In order to show the result, similarly to Beck and Bollobás, we are going to use

binomial random graphs. The binomial random graph G(n, p) is the random graph G with

vertex set [n] in which every pair {i, j} ∈
(

[n]
2

)
appears independently as an edge in G

with probability p. Note that p = p(n) may, and usually does, tend to zero as n tends to

infinity. Throughout, all asymptotics are as n → ∞. We say that a sequence of events En in

a probability space holds with high probability (or w.h.p.) if the probability that En holds

tends to 1 as n → ∞. For simplicity, we do not round numbers that are supposed to be

integers either up or down; this is justified since these rounding errors are negligible to

the asymptotic calculations we will make.

2. Proof of Theorem 1.1

We start with the following elementary observation.1

Lemma 2.1. Let c > 1 be a real number and let G = (V , E) be a graph on cn vertices.

Suppose that every edge of G is coloured blue or red and that there is no monochromatic Pn.

Then there exist disjoint sets U,W ⊆ V of size n(c − 1)/2 such that there is no blue edge

between U and W .

Proof. We perform the following algorithm on G to construct a blue path P . Let v1 be

an arbitrary vertex of G, let P = (v1), U = V \ {v1}, and W = ∅. We investigate all edges

from v1 to U searching for a blue edge. If such an edge is found (say from v1 to v2), we

extend the blue path as P = (v1, v2) and remove v2 from U. We continue extending the

blue path P this way for as long as possible. Since there is no monochromatic Pn, we

must reach a point of the process in which P cannot be extended, that is, there is a blue

path from v1 to vk (k < n) and there is no blue edge from vk to U. This time, vk is moved

to W and we try to continue extending the path from vk−1, reaching another critical point

in which another vertex will be moved to W , etc. If P is reduced to a single vertex v1

1 A similar result was obtained independently by Pokrovskiy [10].
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and no blue edge to U is found, we move v1 to W and simply restart the process from

another vertex from U, again arbitrarily chosen.

An obvious but important observation is that during this algorithm there is never a blue

edge between U and W . Moreover, in each step of the process, the size of U decreases

by 1 or the size of W increases by 1. Finally, since there is no monochromatic Pn, the

number of vertices of the blue path P is always smaller than n. Hence, at some point

of the process both U and W must have size at least n(c − 1)/2. The result follows by

removing some vertices from U or W , if needed, so that both sets have size precisely

n(c − 1)/2.

Now, we prove the following straightforward properties of random graphs. For disjoint

sets S and T , e(S, T ) denotes the number of edges between S and T .

Lemma 2.2. Let c = 7.29 and d = 5.14, and consider G = (V , E) ∈ G(cn, d/n). Then, the

following two properties hold w.h.p.:

(i) |E(G)| = (1 + o(1))nc2d/2 < 137n,

(ii) for every two disjoint sets of vertices S and T such that |S | = |T | = n(c − 3)/4, we have

e(S, T ) > 0.

Proof. Part (i) is obvious. The expected number of edges in G is(
cn

2

)
d

n
= (1 + o(1))nc2 d

2
,

and concentration around the expectation follows immediately from Chernoff’s bound.

For part (ii), let X be the number of pairs of disjoint sets S and T of the desired size

such that e(S, T ) = 0. Setting α = α(c) = (c − 3)/4, we have

E[X] =

(
cn

αn

)(
(c − α)n

αn

)(
1 − d

n

)αn·αn

� (cn)!

(αn)!(αn)!((c − 2α)n)!
exp

(
−dα2n

)
.

Using Stirling’s formula (x! ∼
√

2πx(x/e)x), we see that E[X] � exp(f(c, d)n), where

f(c, d) = c ln c − 2α ln α − (c − 2α) ln(c − 2α) − dα2.

For c = 7.29 and d = 5.14, we have f(c, d) < −0.008, and so E[X] → 0 as n → ∞. (The

values of c and d were chosen so as to minimize c2d/2 under the condition f(c, d) < 0.)

Now part (ii) follows by Markov’s inequality.

Now, we are ready to prove the main result.

Proof of Theorem 1.1. Let c = 7.29 and d = 5.14, and consider G = (V , E) ∈ G(cn, d/n).

We show that w.h.p. G → Pn, which will finish the proof by Lemma 2.2(i).

Suppose that G 
→ Pn. Thus, there is a blue–red colouring of E with no monochro-

matic Pn. It follows (deterministically) from Lemma 2.1 that V can be partitioned into
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three sets P ,U,W such that |P | = n, |U| = |W | = n(c − 1)/2, and there is no blue edge

between U and W . Similarly, V can be partitioned into three sets P ′, U ′,W ′ such that

|P ′| = n, |U ′| = |W ′| = n(c − 1)/2, and there is no red edge between U ′ and W ′.

Now, consider X = U ∩ U ′, Y = U ∩ W ′, X ′ = W ∩ U ′, Y ′ = W ∩ W ′ and let x = |X|,
y = |Y |, x′ = |X ′|, y′ = |Y ′|. Observe that

x + y = |U ∩ (U ′ ∪ W ′)| = |U \ P ′| � |U| − |P ′| = n(c − 3)/2. (2.1)

Similarly, one can show that x′ + y′ � n(c − 3)/2, x + x′ � n(c − 3)/2, and that y + y′ �
n(c − 3)/2. We say that a set is large if its size is at least n(c − 3)/4; otherwise, it is small.

Claim 2.3. Either both X and Y ′ are large or both Y and X ′ are large.

Proof of the claim. Suppose that at least one of X,Y ′ is small and at least one of Y ,X ′ is

small, say, X and Y are small. Then x + y < n(c − 3)/4 + n(c − 3)/4 = n(c − 3)/2, which

contradicts (2.1). The remaining three cases are symmetric, and so the claim holds.

Now, let us return to the proof. Without loss of generality, we may assume that

X = U ∩ U ′ and Y ′ = W ∩ W ′ are large. Since X ⊆ U and Y ′ ⊆ W , there is no blue edge

between X and Y ′. Similarly, since X ⊆ U ′ and Y ′ ⊆ W ′, there is no red edge between X

and Y ′, and so e(X,Y ′) = 0, and therefore G does not have the property in Lemma 2.2(ii).

Since, by Lemma 2.2, G does have this property w.h.p., we deduce that w.h.p. G → Pn, as

required.

3. Remarks

In this note we have shown that r̂(Pn) < 137n. The best known lower bound,

r̂(Pn) � (1 +
√

2)n − 2,

was given by Bollobás [4], who improved the previous result of Beck [3] that r̂(Pn) � 9
4
n.

Decreasing the gap between the lower and upper bounds might be of some interest. One

approach to improving the upper bound could be to deal with non-symmetric cases in

our claim or to use random d-regular graphs instead of binomial graphs.

Another related problem deals with longest monochromatic paths in G(n, p). Observe

that it follows from the proof of Theorem 1.1 that, for every ω = ω(n) tending to

infinity as n → ∞, we have that w.h.p. any 2-colouring of the edges of G(n, ω/n) yields

a monochromatic path of length ((1 − ε)/3)n for an arbitrarily small ε > 0. On the other

hand, a simple construction of Gerencsér and Gyárfás [8] shows that such a path cannot

be longer than 2
3
n. We conjecture that actually (1 + o(1)) 2

3
n is the right answer for random

graphs with average degree tending to infinity.2

2 The conjecture was recently proved by Letzter [9].
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