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Abstract

Background. Major depressive disorder (MDD) is a common debilitating disorder character-
ized by impaired spontaneous brain activity, yet little is known about its alterations in
dynamic properties and the molecular mechanisms associated with these changes.
Methods. Based on the resting-state functional MRI data of 65 first-episode, treatment-naïve
patients with MDD and 66 healthy controls, we compared dynamic regional homogeneity
(dReHo) of spontaneous brain activity between the two groups, and we investigated gene
expression profiles associated with dReHo alterations in MDD by leveraging transcriptional
data from the Allen Human Brain Atlas and weighted gene co-expression network analysis.
Results. Compared with healthy controls, patients with MDD consistently showed reduced
dReHo in both fusiform gyri and in the right temporal pole and hippocampus. The expression
profiles of 16 gene modules were correlated with dReHo alterations in MDD. These gene
modules were enriched for various biological process terms, including immune, synaptic sig-
nalling, ion channels, mitochondrial function and protein metabolism, and were preferentially
expressed in different cell types.
Conclusions. Patients with MDD have reduced dReHo in brain areas associated with emo-
tional and cognitive regulation, and these changes may be related to complex polygenetic
and polypathway mechanisms.

Introduction

Major depressive disorder (MDD) is a leading cause of disability worldwide, affecting 350 mil-
lion people each year (World Health Organization, 2008). The conditions of more than half of
patients with MDD become chronic or recurrent after the first depressive episode, resulting in
huge economic and medical burdens (Cuijpers, Beekman, & Reynolds, 2012). Although sub-
stantial efforts have been made in the past decade, the pathophysiological mechanism of MDD
remains largely unknown.

Resting-state functional magnetic resonance imaging (rs-fMRI) is increasingly emerging as
a promising tool to delineate spontaneous brain activity of the human brain, which has prom-
inent advantages in clinical research due to the minimal need for cooperation from patients.
Previous studies have demonstrated altered resting-state spontaneous brain activity in MDD
via various approaches (Fitzgerald, Laird, Maller, & Daskalakis, 2008; Geng et al., 2019;
Guo et al., 2011a, 2011b; Xia et al., 2019), among which regional homogeneity (ReHo)
shows high reproducibility (Zang, Jiang, Lu, He, & Tian, 2004) and has been repeatedly
reported to be changed in MDD (Lai, 2018; Sun et al., 2018; Xia et al., 2019). However,
ReHo can reflect only static temporal synchronization of spontaneous brain activity among
nearby voxels, which is inconsistent with the concept that spontaneous brain activity is a time-
dependent dynamic process (Hutchison et al., 2013). In recent years, dynamic functional con-
nectivity has been used to assess large-scale dynamic patterns of temporal synchronization of
spontaneous brain activity between spatially remote brain regions/voxels (Friston, 2011;
Hutchison et al., 2013), and its changes have been reported in neuropsychiatric diseases,
including schizophrenia (Sakoglu et al., 2010), Alzheimer’s disease (de Vos et al., 2018), epi-
lepsy (Liu et al., 2017), and MDD (Demirtaş et al., 2016; Han et al., 2019; Kaiser et al., 2016;
Qiu et al., 2018). However, few studies have focused on the dynamic properties of regional
temporal synchronization of spontaneous brain activity among nearby voxels, which can be
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measured by dynamic ReHo (dReHo). Furthermore, no studies
have investigated dReHo changes in MDD.

MDD has an estimated heritability of approximately 37%
(Sullivan, Neale, & Kendler, 2000); however, reproducible risk
loci of MDD rarely have been identified in previous genome-wide
association studies (GWASs) (Howard et al., 2018, 2019, Sullivan
et al., 2009; Wray et al., 2018), possibly due to the inadequate
sample size. As intermediate phenotypes, neuroimaging features
of MDD are theoretically closer to genetic substrates of MDD
(Gottesman & Gould, 2003). In addition, gene expression is the-
oretically closer to neuroimaging features of MDD than genetic
variants. Therefore, several studies have used cross-sample or
cross-region spatial correlation analysis to investigate associations
between brain gene expression and neuroimaging features of
major psychiatric disorders and have achieved great success
(Liu, Tian, Li, Li, & Zhuo, 2019; Morgan et al., 2019;
Romero-Garcia, Warrier, Bullmore, Baron-Cohen, & Bethlehem,
2019; Romme, de Reus, Ophoff, Kahn, & van den Heuvel,
2017). Nevertheless, no transcription-neuroimaging association
studies have been carried out to identify genes whose brain
expression profiles are correlated with dReHo changes in MDD.

We hypothesize that brain gene expression is related to
regional spontaneous brain activity changes in MDD. Here,
gene expression data were derived from six postmortem brains
provided by the Allen Human Brain Atlas (AHBA) (Hawrylycz
et al., 2015), and regional spontaneous brain activity was assessed
by dReHo since it is more consistent with the fact that brain activ-
ity is dynamic (Hutchison et al., 2013). We then identified genes
associated with dReHo changes in MDD by performing cross-
sample spatial correlations between gene expression data from
the postmortem AHBA brains and case-control dReHo differ-
ences from living human brains. Finally, the function of the iden-
tified genes associated with dReHo changes in MDD was explored
by several enrichment analyses. An overview of the analytical
framework is summarized in Fig. 1.

Materials and methods

Subjects

Sixty-seven first-episode, treatment-naïve patients with MDD
were recruited from Tianjin Medical University General
Hospital. MDD was diagnosed based on the diagnostic criteria
of the Structure Clinical Interview of DSM-IV (SCID).
Following previous studies (Khan, Bhat, Kolts, Thase, & Brown,
2010), we recruited only MDD patients with Hamilton
Depression Rating Scale-17 (HDRS-17) scores ⩾18. The
Hamilton Anxiety Rating Scale-14 (HARS-14) was used to evalu-
ate anxiety symptoms in these patients, but we did not set a cut-
off value. Moreover, patients with other psychiatric diseases,
including schizophrenia, bipolar disorder, mental retardation
and personality disorder, were excluded. A total of 69 age- and
sex-matched healthy controls were recruited from the local com-
munity, and the SCID Non-Patient Edition was used to confirm
that they were free of any psychiatric disorders. Common exclu-
sion criteria for all participants were (1) age younger than 18
years or older than 65 years; (2) left-handedness; (3) the presence
of organic intracranial lesions; (4) any history of comorbid alco-
hol or drug abuse; (5) poor image quality; and (6) MRI contradic-
tions. The Ethics Institution of Tianjin Medical University
General Hospital approved the study protocol and written
informed consent was obtained from participants.

Image acquisition

All MRI images were obtained using a 3.0-Tesla Discovery MR750
scanner (General Electric, Milwaukee, WI). Foam paddings and ear-
plugs were utilized to minimize head movement and reduce noise.
The rs-fMRI data were obtained using a single-shot
gradient-recalled-echo echo-planar-imaging (SS-GRE-EPI) sequence
with the following parameters: repetition time (TR) = 2000ms; echo
time (TE) = 30ms; field of view (FOV) = 220mm× 220mm;
matrix = 64 × 64; flip angle (FA) = 90°; slice thickness = 3mm, no
gap; 36 interleaved transverse slices; and 180 volumes. During the
fMRI scanning, subjects were asked to close their eyes, hold still,
think of nothing in particular, and not fall asleep. Sagittal 3D
T1-weighted images were acquired by a brain volume sequence
using the following parameters: TR = 8.14ms; TE = 3.17ms; inver-
sion time = 450ms; FOV= 256mm× 256mm; matrix = 256 × 256;
FA = 12°; slice thickness = 1mm, no gap; and 188 slices.

Image preprocessing

The imaging quality of each subject was carefully examined, and
subjects with poor imaging quality were excluded. The rs-fMRI
data were preprocessed using the Data Processing Assistant for
Resting-State fMRI (DPARSF) (Chao-Gan & Yu-Feng, 2010)
based on Statistical Parametric Mapping 12 (http://www.fil.ion.
ucl.ac.uk/spm). Briefly, the first ten volumes were discarded to
allow the signal to reach equilibrium and the remaining 170
volumes were corrected for temporal differences between slices
and head motion. Participants with maximum displacement
>2.0 mm and maximum rotation >2.0° were excluded from the
subsequent analyses. In addition, the mean framewise displace-
ment (FD) (Van Dijk, Sabuncu, & Buckner, 2012) was calculated.
Subsequently, individual structural images were co-registered to
the mean functional image, and then the transformed structural
images were segmented into grey matter, white matter and cere-
brospinal fluid. Based on these segmented images, the normaliza-
tion parameters from individual native space to Montreal
Neurological Institute (MNI) space were estimated by the
Diffeomorphic Anatomical Registration Through Exponentiated
Lie algebra (DARTEL) tool (Ashburner, 2007). The motion-
corrected functional imaging data were normalized to MNI
space using these normalization parameters and resampled to
3-mm cubic voxels. Spurious variances were removed by regres-
sion, including linear drift, Friston-24 head motion parameters
(Friston, Williams, Howard, Frackowiak, & Turner, 1996), and
signals from white matter and cerebrospinal fluid. Finally, tem-
poral bandpass filtering (0.01–0.08 Hz) was applied to reduce
the effects of low-frequency drift and high-frequency noise.

dReHo calculation

dReHo was calculated using the sliding window approach with the
Data Processing & Analysis of Brain Imaging (DPABI) toolbox
(Yan, Wang, Zuo, & Zang, 2016). Since there is no consensus
on the selection of window length and step size, we calculated
individual dReHo maps (Fig. 1a and online Supplementary
Table S1) based on 25 combinations of the two parameters (win-
dow lengths: 18, 34, 50, 66, 82 TRs; step sizes: 1, 2, 3, 4, 5 TRs)
that have been used in prior studies (Hutchison & Morton,
2015; Leonardi & Van De Ville, 2015; Li, Duan, Cui, Chen, &
Liao, 2019; Li, Lu, & Yan, 2020; Liao et al., 2014). For each com-
bination, ReHo was computed for each sliding window and then
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the standard deviation was calculated across these ReHo maps to
characterize the dReHo. The dReHo maps were finally smoothed
with a Gaussian kernel of 8-mm full width at half-maximum.

dReHo comparison

Voxel-wise two-sample t tests were performed to identify dReHo
differences between the two groups in each combination (five
window lengths and five step sizes), and 25 t-maps were generated
while adjusting for age, sex and mean FD. Multiple comparisons
were corrected by the topological false discovery rate (FDR)
method (the initial height threshold: uncorrected p < 0.001; topo-
logical FDR: q < 0.05). The topological FDR is an extension of the
Benjamini-Hochberg FDR (BH-FDR) and is specially designed to
correct multiple comparisons in neuroimaging analyses
(Chumbley, Worsley, Flandin, & Friston, 2010). To reduce the
influence of the selection of window lengths and step sizes on
the dReHo differences between groups, we created a probability
map to show highly consistent brain regions with significant dif-
ferences in dReHo calculated by different parametric combina-
tions. In addition, mean dReHo values of clusters with 100%
probability were extracted to perform partial correlations between
dReHo and clinical variables (HDRS, HARS and illness duration)
in patients with MDD while adjusting for age, sex, and mean FD.
Given that whole-brain coverage including the cerebellum and

brain stem was not available for all subjects, we restricted
between-group comparisons to within the cerebrum.

Gene expression data preprocessing

Publicly available gene expression data of six postmortem neuro-
typical adult brains were obtained from the AHBA database
(Hawrylycz et al., 2012), which, in total, consists of normalized
microarray expression data of more than 20 000 genes measured
in 3702 brain samples. Among them, four donors had expression
data only in the left hemisphere, and two donors had expression
data in both hemispheres. Based on the newly proposed pipeline
(Arnatkevic Iūtė, Fulcher, & Fornito, 2019), we separately pro-
cessed the two datasets and obtained two sample × gene expres-
sion matrices of 1196 × 10 185 from the four donors and
1209 × 10 185 from the two donors (Fig. 1b and online
Supplementary Material). Here, the samples represent brain tissue
samples, and the screening process of tissue samples is provided
in online Supplementary Fig. S1.

Creation of gene modules

Weighted gene co-expression network analysis (WGCNA) is an
effective tool that clusters genes into network modules and detects
biologically meaningful results (Zhang & Horvath, 2005).

Fig. 1. Overview of the analysis pipeline. (a) a sliding
window method was utilized to compute dReHo, and
between-group comparisons of dReHo maps were per-
formed; (b) the association between dReHo differences
and gene expression from the AHBA was explored; (c)
stable cortical and subcortical modules related to
MDD were identified; (d ) enrichment analysis was
applied for these modules. dReHo, dynamic regional
homogeneity; AHBA, Allen Human Brain Atlas.

2054 Kaizhong Xue et al.

https://doi.org/10.1017/S0033291720003876 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291720003876


Therefore, we first constructed a signed network for each
sample × gene expression matrix. Then, a WGCNA consensus
network was created from two networks to identify common
expression patterns across the two aforementioned expression
matrices, and 19 gene modules were finally obtained (online
Supplementary material, Supplementary Fig. S2 and Table S2).
For each module, the expression pattern (a matrix represented
by sample × number of genes in this module) was summarized
by the first principal component, defined as the module eigengene
(ME, number of samples × 1 vector).

Transcription-neuroimaging association analysis

To establish the sample correspondence between gene expression
and neuroimaging data, we defined a 6-mm radius sphere centred
at the MNI coordinate of each tissue sample and extracted the
mean value on each t-statistical map of dReHo difference (25
t-statistical maps). Then, for each module, we calculated
Pearson’s correlation between the ME and the t-value across
brain tissue samples. The correlation analysis was performed sep-
arately for the cortical and subcortical samples because of great
differences in gene expression profiles between cortical and sub-
cortical regions (Hawrylycz et al., 2012). Multiple comparisons
were corrected using the BH-FDR method (q < 0.05). Gene mod-
ules with significant correlations between the ME and the t-value
in cortical samples were defined as cortical modules, and
subcortical modules were defined by the same approach. As
shown in Fig. 1c, based on the results of correlation analyses,
we first intersected the results of 25 combinations of dynamic
parameters in cortical and subcortical modules, respectively.

The cortical/subcortical modules that were correlated with all
t-statistical maps derived from different combinations were con-
sidered stable modules. Then, the stable cortical and subcortical
gene modules were also intersected to identify shared and distinct
gene modules for cortical and subcortical regions.

Enrichment analysis

Enrichment analysis (Fig. 1d) for stable modules was mainly per-
formed by the web server g: Profiler (https://biit.cs.ut.ee/gprofiler),
including the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases and putative transcrip-
tion factor binding sites (TFBS) from the TRANSFAC database
(Reimand et al., 2016). All the 10 185 included genes were defined
as a background gene set, and the AutoAnnotate Cytoscape appli-
cation (Shannon et al., 2003) was used to show the enrichment
results. In addition, cell-type enrichment analysis was conducted
using Fisher’s exact test with a specificity index probability ( pSI)
(Dougherty, Schmidt, Nakajima, & Heintz, 2010) of 0.05
(BH-FDR correction) based on previously published gene expres-
sion data for different cell types of the human brain (Zhang et al.,
2016).

Results

Demographic information and clinical characteristics

After excluding two subjects (one patient and one control) due to
poor image quality and three subjects (one patient and two con-
trols) due to excessive head motion, 65 MDD patients and 66
healthy controls were finally included in this study. The

Fig. 2. A probability map showing brain voxels with
significant dReHo differences (q < 0.05, topological
FDR corrected) between the MDD and HC groups.
The colour bar represents the probability of a given
voxel showing a significant intergroup difference in
the 25 comparisons. Each comparison is performed
on individual dReHo maps calculated by a distinct
combination of dynamic parameters. FDR, false discov-
ery rate; HC, healthy control; L, left; MDD, major
depressive disorder; R, right.
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demographic and clinical data of these subjects are displayed in
online Supplementary Table S3. The two groups did not show sig-
nificant differences in sex (chi-squared test, p = 0.78), age (two-
sample t test, p = 0.65), or mean FD (two-sample t test, p = 0.31).

Case-control difference in dReHo

Based on individual dReHo maps from each of the 25 parametric
combinations, we compared voxel-wise dReHo differences
between patients with MDD and healthy controls (q < 0.05, topo-
logical FDR corrected), from which we created a probability map
(Fig. 2) to show the probability of a given voxel with a significant
intergroup difference in these comparisons. Compared with
healthy controls, patients with MDD consistently (100% probabil-
ity) showed significantly decreased dReHo in both fusiform gyri
and the right hippocampus and temporal pole (superior part)
(Fig. 2 and online Supplementary Table S4). We did not find sig-
nificantly increased dReHo in any comparisons in patients with
MDD relative to healthy controls. We also tested the impact of
HARS score on our results, but we did not find significant effects
(online Supplementary Results and Supplementary Fig. S3).

Correlations between dReHo and clinical variables

The mean dReHo values of clusters with consistent (100% prob-
ability) reduction in patients with MDD were extracted. Partial
correlation analysis was conducted between the mean dReHo
values and clinical variables, including HARS and HDRS scores
and illness duration, while adjusting for age, sex, and FD. No sig-
nificant correlations (all p > 0.05) were found between dReHo and
any clinical variables in patients with MDD.

Transcription-neuroimaging associations

Nineteen consensus modules were identified from WGCNA ana-
lysis based on expression data from four left-hemispheric and two
bi-hemispheric brain samples (Fig. 3). Cross-sample Pearson’s
correlation was calculated between MEs of each module and
dReHo differences to show the consistent correlation pattern of
modules across the two expression datasets and the 25 combina-
tions. The results showed that there were 16 consistently signifi-
cant MDD-related modules, 14 of which belonged to cortical
modules and six of which belonged to subcortical modules (over-
lapping four modules) (Figs. 4 and 5a). The positive correlation
means that brain regions with significant dReHo reduction in
MDD show higher gene expression, and the negative correlation
means that those regions show lower gene expression (online
Supplementary Figs. S4 and S5).

Enrichment analysis

GO enrichment analysis was conducted for each preserved mod-
ule (see detailed results in online Supplementary Data Table S1).
Genes in these preserved modules were enriched for pathways
related to synaptic signalling, adenosine triphosphate synthesis,
epithelial regulation, immune response, the regulation of tran-
scription and translation, protein localization and metabolic regu-
lation, ion channel activities, mitochondrial function, axon
ensheathment and central nervous system development. KEGG
enrichment analysis revealed that genes in these preserved mod-
ules were related to the glutamatergic system, serotonergic system,
neurodegenerative diseases (such as Alzheimer’s disease,

Parkinson disease and Huntington disease), autoimmune diseases
and circadian rhythms (Figs. 5b, c, online Supplementary Tables
S5 and S6). As illustrated in Fig. 5d and online Supplementary
Table S7, there were seven preserved modules specifically enriched
for neurons, two for astrocytes, two for microglia, one for endo-
thelial cells and one for oligodendrocytes. Moreover, TFBS
enrichment showed that 11 out of 16 preserved modules were
related to transcriptional control (online Supplementary
Table S8 and Data Table S1).

Discussion

To our knowledge, this is the first attempt to apply dReHo to
investigate regional temporal synchronization changes in

Fig. 3. Consensus analysis of expression data. (a) WGCNA dendrogram showing con-
sensus modules based on the topological co-expression of 10 185 genes from four
left hemispheres and two whole brains. (b) To avoid the scenario that co-expression
networks constructed accidentally based on the set of WGCNA parameters used, we
rebuilt networks by applying different parameter sets. The final consensus modules
used in this study were conserved among the majority of the tests with different par-
ameter sets. WGCNA, weighted gene co-expression network analysis.
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spontaneous brain activity in first-episode, treatment-naïve
patients with MDD and, in parallel, to directly correlate brain
gene expression with case-control dReHo differences to explore
gene modules associated with dReHo changes in MDD and to
characterize the involved biological pathways.

In the present study, we observed that first-episode,
treatment-naïve patients with MDD consistently showed signifi-
cantly decreased dReHo in the fusiform gyrus, hippocampus
and temporal pole, which were present in all 25 combinations
of window lengths and step sizes. The fusiform gyrus is involved
in the processing of emotional faces (Kanwisher, McDermott, &
Chun, 1997; Weiner & Grill-Spector, 2010). Thus, our finding
of reduced dReHo in the fusiform gyrus supports and extends
previous reports of the structural and functional impairments in
this area in MDD (Schmaal et al., 2017; Truong et al., 2013). As
an association area, the temporal pole is involved in various high-
level cognitive functions, such as facial recognition (Olsson &
Ochsner, 2008), memory (Munoz-Lopez, Mohedano-Moriano,
& Insausti, 2010), and language processing (Hickok & Poeppel,
2007). This structure also plays a role in emotion regulation and
the theory of mind mainly by interacting with the amygdala
and orbital frontal cortex (Frith & Frith, 2010), which also showed
a high probability of having decreased dReHo in patients with
MDD. Moreover, this result extends the finding of the reduced

static ReHo in MDD (Guo et al., 2011b; Liu et al., 2010) to the
impairment of regional dynamics of temporal synchronization
of spontaneous brain activity in the disorder. It has been widely
accepted that exposure to life stress is a major risk factor for
MDD (McEwen, 2008), which is related to the fact that over-
whelming stress can impair normal hippocampal function. An
increasing number of studies have demonstrated that the hippo-
campus is highly sensitive to stress (Pittenger & Duman, 2008),
the most important environmental risk factor for the development
of MDD (Kessler, 1997) and it is also the main target associated
with the genetic risk of MDD (Xu et al., 2018). This is why our
study and others always show hippocampal impairment in
patients with MDD (Gold, 2015; Liu et al., 2013). Taking previous
and our findings together, we propose that functional impairment
in the cognition- and emotion-regulatory networks is an import-
ant feature of MDD.

Unexpectedly, we did not find any significant correlations
between dReHo values in the consistently reduced dReHo regions
and clinical variables (HARS and HDRS scores and illness dur-
ation) in patients with MDD. The reasons for the non-significant
findings are elusive, but they may be related to the clinical features
of patients (first-episode, treatment-naïve), the lack of clinical
assessments (such as rumination) reflecting other aspects of
MDD, the relatively short illness duration, and others. Thus, the

Fig. 4. Correlations between gene expression and dReHo changes in MDD. (a) The heatmap shows Pearson’s correlation coefficients between MEs of gene modules
and t values of case-control dReHo differences in cortical samples. Each column represents a gene module (n = 18), and each row represents a case-control dReHo
difference map derived from dReHo maps calculated with a given combination (n = 25) of window size and step size. In the rows of the upper half, gene expression
data were obtained from two AHBA donors with whole-brain coverage; in the rows of the lower half, however, they were obtained from four AHBA donors only with
left-brain coverage. (b) The heatmap shows correlations in subcortical samples. * indicates that the correlation reaches the significance of q < 0.05 (BH-FDR cor-
rected) in all analyses. The colour bar represents Pearson’s correlation coefficients between MEs of gene modules and t values of case-control dReHo differences.
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clinical value of dReHo changes in MDD needs to be clarified in
future studies.

In contrast to previous GWASs that failed to identify reprodu-
cible risk loci of MDD (Howard et al., 2018, 2019; Sullivan et al.,
2009; Wray et al., 2018), by combining an endophenotype
(dReHo) of MDD and brain gene expression data, we found a
dozen gene modules with various functions associated with
dReHo changes in MDD, indicating that MDD may develop via
complex polygenetic and polypathway mechanisms. Gene expres-
sion profiles in both cortical and subcortical areas, in multiple cell
types, in different biological functions and pathways might be
related to the development of MDD. Gene expression in both cor-
tical and subcortical areas was associated with dReHo changes in
MDD, mimicking the pattern of the brain structural and func-
tional changes in this disorder (Chen et al., 2012; Liu et al.,
2013; Ma et al., 2012; Vasic, Walter, Hose, & Wolf, 2008). The
co-existence of the shared and specific gene modules between cor-
tical and subcortical areas reflects the complexity of the molecular
substrates of MDD. This complexity was also supported by the
involvement of the related gene modules in various cell types, bio-
logical functions and pathways. For example, several modules

enriched for neurons were mainly implicated in synaptic trans-
mission and neuronal development, indicating that neuronal
impairment and maldevelopment may be possible mechanisms
of MDD (Krishnan & Nestler, 2008; Willner, Scheel-Kruger, &
Belzung, 2013). Several modules enriched for microglia are
mainly implicated in the immune system, which is consistent
with the stress model of MDD via microglial activation and the
inflammatory response (Felger & Lotrich, 2013; Hodes, Kana,
Menard, Merad, & Russo, 2015; Setiawan et al., 2015). Since
dReHo is calculated based on blood-oxygen-level-dependent
(BOLD) signals, the association of dReHo changes in MDD
with the expression profiles of gene modules enriched for neu-
rons, astrocytes and endothelial cells is consistent with the neuro-
vascular coupling theory of BOLD signals because these cells are
the main components of the neurovascular unit (Iadecola, 2017;
Muoio, Persson, & Sendeski, 2014). These findings indicate that
impaired neurovascular coupling may also contribute to depres-
sive symptoms. In addition, the enrichment of MDD-related
genes for neurodegenerative diseases may be a reflection of the
shared assaulting target (such as hippocampus) by the risk factors
for these disorders (Xu et al., 2018). Moreover, hub gene detection

Fig. 5. Enrichment of genes in stable modules and hub genes. (a) Counts of MDD-related cortical and subcortical modules. (b) KEGG enrichment for genes in all
modules (top two pathways shown for each module). All obtained results could pass q < 0.05 (BH-FDR correction) and showed odds ratios >1. (c) GO enrichment for
genes in all modules (top two pathways shown for each module marked by different colours). (d ) Cell-type marker enrichment of genes in cortical modules. The
bubble size represents significance for – log10FDR (BH-FDR correction), and the bubble colour represents whether the module is significant or not. (e) The top 10
hub genes are shown for all MDD-related modules. Edges are weighted by the strength of correlation between nodes (genes). KEGG, Kyoto Encyclopedia of Genes
and Genomes; GO, Gene Ontology.
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can provide candidate genes for further studies. For example, sev-
eral immune-related genes were identified by hub gene detection,
which may be used to explore the immune mechanism of MDD.

At least two limitations should be considered when interpret-
ing our findings. The first limitation is that gene expression data
and brain imaging data were not obtained from the same subjects.
The identified correlations between gene expression data from six
postmortem brains and brain imaging data from other living
human brains may be correct only if gene expression profiles
are highly conserved across individuals. That is, this study
would inevitably miss genes or gene modules with great individ-
ual differences. Since gene expression profiles are dependent on
age, sex, and ethnicity (Mogil et al., 2018; Somel et al., 2010),
the mismatch of age, sex, and ethnicity between expression and
imaging data may introduce bias to this study. Another limitation
is the impact of the selection of dynamic parameters on the cal-
culation of dReHo. Although we used 25 combinations of
dynamic parameters to identify consistent results, the develop-
ment of strategies to select the optimal combination of parameters
is still critically important.

In this study, we found that first-episode, treatment-naïve
patients with MDD showed reduced dReHo in the regulatory net-
works of cognition and emotion, indicating that functional
abnormalities in these networks are important features of
MDD. The case-control differences in dReHo showed replicable
spatial correlations with the expression profiles of gene modules
associated with various cell types, biological functions and path-
ways, indicating that MDD may develop via complex polygenetic
and polypathway mechanisms.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291720003876.
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