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Abstract
Analyzing audiovisual communication is challenging because its content is highly symbolic and less rule-
governed than verbal material. But audiovisual messages are important to understand: they amplify,
enrich, and complicate the meaning of textual information. We describe a fully-reproducible approach
to analyzing video content using minimally—but systematically—trained online workers. By aggregating
the work of multiple coders, we achieve reliability, validity, and costs that equal those of traditional, inten-
sively trained research assistants, with much greater speed, transparency, and replicability. We argue that
measurement strategies relying on the “wisdom of the crowd” provide unique advantages for researchers
analyzing complex and intricate audiovisual political content.
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We are in the midst of a content-analysis revolution driven by computing and crowd-sourcing.
New methodological techniques have helped automate the classification of political texts
(Benoit et al. 2009; 2016; Grimmer and Stewart 2013). But existing applications overwhelmingly
focus on text-based verbal content, rather than the complex mixture of verbal, non-verbal, and
visual signals and imagery in contemporary political communications. Visual and auditory con-
tent is frequently downplayed because analyzing it is difficult and time-consuming and because
there has been less theorizing on how audiovisual media convey meaning.

In this paper we describe a transparent, efficient, and reproducible approach to analyzing
audiovisual political communications. Focusing on political television advertising, we demonstrate
that crowd-sourced online coders can measure complex audiovisual content well. We show that
crowd-sourcing is particularly suited to this task, where coding categories are not reducible to
objective rules, and that this approach is more reproducible than traditional content analysis.

We recruited many coders from Amazon’s Mechanical Turk (mTurk) online labor market and
trained them systematically, yet less intensively than is typically advised. Through a custom-
programmed web platform, we supplied coders with a codebook that they used to train them-
selves without any feedback. We compare this approach with a traditional method relying on
research-assistant coders who we trained intensively and interactively in person. Across a
broad range of coding tasks, we show that online workers can code as well as traditional research
assistants. While online workers make worse coding decisions individually, their lower cost allows
us to rate each piece of content repeatedly. Aggregating these coding decisions produces reliability
and validity comparable to or better than that using research assistants, at similar net cost.

Online workers offer several additional advantages. First, they are much faster than research
assistants. This makes it easier to develop and execute content analyses using coding schemes
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customized to the research question, rather than relying on existing coding. Second, multiple cod-
ing of each item generates measures of ambiguity and uncertainty, opening avenues for additional
analysis. Third, standardized, hands-off training produces a completely open and fully reprodu-
cible data creation process. This allows scholars to build on each other’s work by replicating and
extending their coding protocols.

Benoit et al. (2016) showed that aggregated non-experts recruited online can equal subject-
matter experts at classifying ideology in party manifestos. They also highlighted the advantages
of online classification for transparent, reproducible, and adaptable data collection. We extend
their work in four ways. First, we compare coding by the crowd not with experts but with student
research assistants, who are the typical coders for political communications research. Second, we
evaluate coding of real-world political communication. Our coders rated complete political
texts—political advertisements—rather than discrete sentences or sound bites. Third, we examine
coding not simply of ideology but of a wide range of concepts that figure heavily in audiovisual
communication, varying from objective and clear-cut to abstract and symbolic. Finally and most
importantly, we focus on the complex medium of video. Audiovisual material is intrinsically dif-
ficult to code; therefore, it offers a difficult test of online coders’ ability to parse meaning from
political communication. Our findings thus speak to the analysis of audiovisual content in pol-
itical advertising and also in the news, infotainment, and non-political advertising.

The medium and the message
Beginning with viewer reactions to televised imagery of Nixon and Kennedy in the 1960 debates,
television has made political communication fundamentally visual. The Johnson campaign’s 1964
“Daisy” advertisement “transform(ed) American political advertising” (Mann 2011, 61) with its
compelling visual juxtaposition of a mushroom cloud with a girl in a field of daisies. Among
many examples, Ronald Reagan’s 1984 “Morning in America” and Hillary Clinton’s 2008 “3
a.m.” both used audio and visual elements to convey powerful emotional messages. Yet analysis
of audiovisual political advertising and other forms of communication lags behind work on verbal
text. The Enlightenment presumption that “verbal arguments are … the primary conduit of rea-
son” may be partly to blame (Grabe and Bucy 2009, 6). Measuring the content of visual commu-
nications is harder, both in theory and in practice, compared with text. This has created a huge
gap in our ability to analyze political communication.

“Most Americans receive the bulk of their messages about politics from audiovisual media”
(Graber and Smith 2005, 492). And for good reason: visual processing takes place in a brain
region specifically adapted for the purpose: the visual cortex. Compared with language processing,
visual perception is fast and efficient, engages emotion and cognition simultaneously, and creates
stronger memories (Grabe and Bucy 2009, 12–21). People make fast, powerful inferences about
traits, emotional states, motivations, and intentions based on facial expressions, gestures, tone of
voice, and body language (e.g. Masters and Sullivan 1993). For example, Rosenberg et al. (1986,
123) showed that ‘‘a single photograph can have a clear impact on voters’ judgments regarding a
candidate’s congressional demeanor, competence, leadership ability, attractiveness, likeableness,
and integrity” and can “exercise a strong and consistent influence on electoral choices.”

Pictures and sounds also evoke strong emotions that shape processing of verbal material.
Brader (2006) shows, for example, that anxiety cues lead viewers to attend to and remember
information conveyed by campaign ads, as in Clinton’s 2008 “3 a.m.” ad that worked to stir anx-
iety about Obama’s readiness to lead in a dangerous world. Irony and humor can also reinforce an
ad’s message. In “Tank Ride,” the 1988 Bush campaign buttressed the claim that Dukakis was soft
on defense with footage of him looking “juvenile and foolish as he takes a ‘joy ride’ in a tank”
(Reynolds and Whitlark 1995, 14). Similarly, in “Windsurfing,” the 2004 Bush campaign
employed video to forge a link between Kerry’s policymaking and personal character
(Spielvogel 2005). Visuals can also convey messages that do not appear in the verbal channel
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at all. This is especially important for racial messages; for example, a mug-shot of William Horton
in 1988’s “Weekend Passes” primed white Americans’ racial resentment without explicitly men-
tioning race (Mendelberg 2001). Thus, concludes Benoit (2010, 276), “There can be no question
that (visual) elements of texts are fundamentally important: These aspects of texts can reinforce
the verbal message (e.g., a candidate declaring his or her patriotism with the American flag in the
background), contradict the verbal message (irony or sarcasm indicated by tone of voice), or even
send a different message (e.g., subtle cues of racism amid protestations of the importance of equal
opportunity).”

People believe and remember what they see more than what they hear or read, and “visual
messages override other messages when processed simultaneously” (Schill 2012, 122). This fol-
lows from the fact that visuals are iconographic—that is, symbols that physically resemble the
things they represent, in contrast with the arbitrary signs of spoken or written language
(Messaris 1997). Iconography produces powerful psychological effects: cognitive reactions to vis-
ual representations of actions mirror the reactions of actual participation. Visual images are per-
ceived as real, which increases persuasion while undermining awareness of persuasive effects.
Thus, visuals “operate upon us in a manner which suppresses and conceals their ideological func-
tion because they appear to record rather than to transform or signify” (Woollacott 1982, 99;
cited in Messaris and Abraham 2001).

For these reasons, scholars have long called for more attention to visual political communication.
Graber (1987) concluded that coding only verbal content distorts the meaning of political messages.
Almost two decades later, though, Graber and Smith (2005, 492) found little evidence that scholars
employed visual coding. And in 2012, Schill argued that “the visual aspects of political communi-
cation remain one of the least studied and the least understood areas” (119).

Moreover, visual communication lacks the propositional syntax that governs formal language,
making it very hard to code. While there are “relatively precise conventions for indicating spatial
or temporal relationships among two or more images,” Messaris (1997, x) argues, “visual com-
munication is characterized by a lack of means for identifying other ways in which images
might be related to each other.” Visual communication operates by informal and less well-
understood rules, meaning that it cannot convey precise propositional claims (e.g., this policy
is a bad idea because it will lead to outcomes X and Y). Instead, visual messages are ambiguous,
carrying multiple messages simultaneously. Even when conveying spoken language, the speaker’s
tone of voice, gender, and other characteristics can shape message reception powerfully (e.g.
Strach et al. 2015).

These challenges to coding visual materials impede the cumulative empirical research needed
to support theory development. The power of the crowd promises to address these challenges,
advancing both empirical knowledge and theory development by generating a more efficient
and replicable measurement of real-life political communications.

Online coding interface, coders, and coding tasks
Coding interface

To allow direct comparisons of coding quality, we created a web-based coding portal used by both
research assistants and online coders. The research assistant coders accessed the portal directly
through our server, while the online workers saw it embedded within the mTurk worker site
(Figure 1). The interface showed coders a single ad, a data entry form, and a summary of the
coding instructions. Coders could expand the instructions and also download the codebook.1

They viewed each randomly selected ad one or more times while coding.2

1Appendix A1 discusses implementation of the portal.
2Online workers averaged 72 seconds coding each 30-second ad. Appendix A6 presents analyses of coding time and its

(lack of) impact on reliability and validity.
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The coding tasks

We coded a diverse array of concepts that (1) range in the likely difficulty of coding; (2) are com-
municated audiovisually and verbally; (3) vary in the level of political knowledge required to code;
and (4) replicate coding provided by the Wesleyan Media Project (WMP).3

We drew on Potter and Levine-Donnerstein’s (1999, 259) distinction between manifest content
that is “on the surface and easily observable,” where coding follows simple, objective rules, and
latent content, where the meaning underlies the surface. They subdivide latent into pattern con-
tent, identifiable by coders trained to recognize objectively-defined patterns among symbolic ele-
ments, and projective content, in which the “elements in the content are symbols that require
viewers to access their pre-existing mental schema in order to judge the meaning.”

We included two types of manifest content: the presence of the American flag and the mention
or appearance in the ad of the favored and opposition candidates. For latent pattern content, we
asked coders to identify economic appeals and to classify their tone as optimistic, pessimistic, or
both (i.e., mixed). In the latent projective category, we asked coders to identify four types of emo-
tional appeals: three provided by WMP (enthusiasm, fear, and anger) plus one additional emotion
(disgust); and four trait attributions for each ad’s favored candidate (competence, strong leader-
ship, integrity, and empathy) and the opponent (incompetence, weak leadership, lack of integrity,
and lack of empathy).4 Finally, we asked coders to assess the ideological position of the favored
and opposing candidates, as stated or implied by the content of the ad.

Figure 1. Coding interface

3Appendix A2 presents additional information about the coding process.
4These trait categories followed guidelines developed by Hayes (2011) after scholars who find trait assessment central to

candidate evaluation (e.g., Kinder et al. 1980).
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Latent projective concepts like these are very hard to code because are complex and symbolic
and do not have concise, rule-based definitions. Accordingly, the traditional response is to con-
duct even more extensive and interactive coder training.5 We expect, however, that ordinary peo-
ple are up to the coding task. Although hard to define precisely, most people understand these
concepts intuitively, making them something Potter and Levine-Donnerstein (1999, 260) call
“primitive concepts.” Consider the emotions: most American coders share broad understandings
of fear, anger, and other emotions, and we believe that coders can identify and distinguish among
them, especially if the instructions cue culturally available cognitive schema. Identifying traits
might be harder, though here too we believe that ordinary people will have relatively clear under-
standings. Coding ideological implication requires more specialized political knowledge, but also
relies on coders’ ability to recognize novel and creative expressions of ideology that go beyond any
set of objective rules for what counts as liberal or conservative.

There is some precedent for using the crowd to code for textual latent content. Lind et al.
(2017) show that the crowd equals traditional coders in identifying the presence and valence
of target evaluations in text sentences. Weber et al. (2018) demonstrate that ordinary citizens
can draw on “moral intuitions” to code text. And Budak et al. (2016) show that online workers
can classify the partisan slant of newspaper articles.

Content

We analyzed the universe of English-language campaign commercials aired on behalf of 2010 US
House and Senate candidates (Fowler et al. 2014). This includes 4,357 unique advertisements
(3,016 House and 1,341 Senate) produced by campaigns, political parties, and outside groups
on behalf of 662 different candidates. They were aired just over 1.5 million times.

Coders

Research assistants
We hired undergraduate research assistants with recruitment, training, and working conditions
that followed standard practice.6 We emailed advertisements to political science majors and
selected six capable students. They completed a background survey and studied the online coding
guide; then we trained them in two group meetings. At the first, we explained the codebook, prac-
ticed coding several ads together, answered questions, and discussed the guidelines. Between the
meetings each research assistant coded a set of 30 practice ads. At the second meeting we dis-
cussed and resolved disagreements, further clarified the rules, and answered questions. Then
the research assistants began coding; as they did so we stayed in touch to answer additional ques-
tions and clarify ambiguities.

Online workers
We recruited online coders from mTurk, an online labor market developed by Amazon.com to
facilitate work that requires human intelligence. The mTurk system allows employers to create
small tasks for workers to complete. Workers can select from among thousands of widely-varying
jobs.7

It is impossible to train online workers interactively because communication occurs only
through the mTurk website or by email. In theory one could pay workers to complete extensive
online training, but designing systems to enforce attention to the training would be difficult or

5Appendix A12 discusses other approaches to measuring latent content.
6Data collection was approved by the University of Virginia IRB, project number 2015031700.
7mTurk is the most prominent platform; other vendors offer similar services, including some that aggregate multiple

worker pools (Vakharia and Lease 2015).
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impossible. Instead, we evaluate an alternative: shorter, standardized instruction of many
lightly-screened workers. We required workers to be US residents who had completed at least
100 tasks with a 95 percent approval rate. We also required them to complete a background sur-
vey, read the coding guidelines, and verify they could watch the videos. Overall, 526 mTurk work-
ers coded at least one ad for us. The average worker coded 53 ads, though the distribution is
highly skewed: many dropped out after a few, some coded dozens, and a few coded hundreds.8

Comparing online and traditional coders
Both workforces received the same written coding manual; beyond this their training differed
substantially. We knew the research assistants and provided comprehensive face-to-face training
and discussion to tune their intuitions and refine and align their understanding of each coding
category. The online workers were unknown to us and less carefully selected. Our directions
aimed to cue the right concepts and alert them to important distinctions, but we relied heavily
on their intuitive understanding of concepts.

We analyze the 20 coding decisions for each ad that we describe above (see also Table 1). All
but 65 ads were coded by five or more mTurk workers; of those 198 were coded by at least 20
mTurk workers to allow more detailed reliability analysis. 1,512 ads were also coded by research
assistants, with 300 double-coded by two research assistants and 85 by all six. Over the course of
the project we adjusted coding instructions somewhat, so online coders encountered some vari-
ation in instructions and coding items across several distinct waves of coding.9

Reliability

We measure inter-coder reliability with Krippendorff’s α (Krippendorff 1970; Gwet 2014), which
measures the degree to which different coders make the same categorizations, adjusted for chance
agreements. It is an extension of Cohen’s (1960) canonical kappa statistic that handles ordinal
and interval data and multiple non-unique raters.10

Table 2 presents reliability for the different types of coding, separately among research assis-
tants and mTurk workers, plus absolute and percentage differences between the two types of
workers.11 The first column displays inter-rater agreement among the research assistants; there
is substantial variation across items. Reliability is highest for whether candidates appear in the
ad (average alpha is 0.90), followed by the presence of an American flag (0.71) and the optimistic
or pessimistic tone of any economic appeals (0.68).12 Reliability is lower for the presence of eco-
nomic appeals (0.54) and trait attributions (0.40 for traits attributed to the favored candidate; 0.41
for opponents). Emotional appeals coding is the least reliable, at 0.31. In case the three-way cod-
ing of emotion (strong, weak, or no appeal) lowered reliability, we collapsed each to the presence
(strong or weak) versus absence of the emotion. This had no effect: reliability on these items also
averaged 0.31.

Although some of these coefficients are low, they are consistent with WMP’s own coding. Though
we could not obtain reliability statistics for their 2010 coding, WMP provided kappa statistics for

8See Appendix A3 for more information on the composition of our workforce and our interactions with them and A7 for
analyses showing that practice had little impact on coding quality.

9We collapse coding waves in our analyses, having found no evidence of systematic variations in reliability or validity; see
Appendix A9.

10Note that our interest is in relative reliability of different coder populations, not the absolute reliability level. Appendix
A4 shows that our results are unchanged when we use alternate reliability measures.

11Analyses conducted in Stata with user-contributed kappaetc (Klein 2018). Appendix A4 presents item-level reliability
statistics.

12One might expect near-perfect reliability on the presence of the flag, which appears simple and manifest. As we discuss
below, this item illustrates the striking subtlety of many political advertisements.
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several comparable items in 2014, including manifest (flag) and projective (fear, enthusiasm,
anger) items. Across these our research assistant reliability is comparable to theirs.13

The power of aggregation: meta-coder reliability gains
The second column of Table 2 shows the corresponding inter-rater reliability statistics among
mTurk workers. In short, they are less reliable. Yet the efficiencies of the online labor market
enabled us to have each ad coded repeatedly by different coders. If the lower reliability is due
to greater random error in the coding by online workers, then we can reduce that error by aver-
aging together multiple coders. As Benoit et al. (2016, 279) point out, “as long as crowd workers
are not systematically biased in relation to the ‘true’ value of the latent quantity of interest … the
central tendency of even erratic workers will converge on this true value as the number of workers
increases.” In this section we exploit the mathematical properties of aggregation to ask whether
employing many of the plentiful crowd workers can produce reliability on par with the scarcer
student coders. The answer is a clear “yes.”

For this analysis we rely on the ads coded by 20 online workers. From those 20 workers, we
created a set of four aggregates, each constructed by averaging five randomly-chosen workers. We
call each aggregate a “meta-coder,” because although it is based on multiple actual coders, we
treat it as a single coding for reliability analysis.14 We rounded each average to produce the
same set of outcome values (2, 3, or 101, depending on the item), in order to make the analysis
comparable.15 (As we discuss below, we do not advocate this rounding in actual practice,

Table 1. Coding items

Item Description Categories

MANIFEST ITEMS

1 Flag Does an American Flag appear? yes | no
2 FC Appearancea

To what extent is candidate mentioned or
shown?

Picture, video, or audio | Actual name | In
‘paid for’ only | No reference

3 OC Appearance Picture, video, or audio | Actual name |
Vague or generic only | No reference

PATTERN ITEMS

4 Economic appeal Does ad include an economic appeal? yes | no
5 Optimistic economic Is economic appeal optimistic? yes | no
6 Pessimistic economic Is economic appeal pessimistic? yes | no

LATENT ITEMS

7 Enthusiasm
Does the ad make an appeal to any of the
following emotions?

Strong appeal | Weak appeal | No appeal8 Fear
9 Anger
10 Disgust
11 FC Competence

Competence
no | competent

12 OC Competence no | incompetent
13 FC Leadership

Leadership
no | strong leader

14 OC Leadership no | weak leader
15 FC Integrity

Integrity
no | has integrity

16 OC Integrity no | lacks integrity
17 FC Empathy

Empathy
no | empathetic

18 OC Empathy no | unempathetic
19 FC Ideology Where would you place each candidate

based on this ad?
slider: “very liberal” → “very conserv.”

20 OC Ideology

FC, favored candidate; OC, opposing candidate.
aAppearance categories varied slightly; analysis based on dichotomous version for any appearance versus none.

13Email communication, 2/17/2017.
14In Appendix A5, we show that 4-5 coders reduces measurement error substantially.
15In Appendix A4 we use mean-squared variation across coders to avoid rounding; the results are equivalent.
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preferring to harness the information about the strength or clarity of the underlying stimulus pro-
vided by the unrounded average.)

Table 3 presents the aggregation gains by examining agreement among these four meta-coders.
The first column summarizes the individual mTurk coder-level reliability; these differ slightly
from Table 2’s second column because they are calculated across the subset of ads coded by
20 workers. Table 3’s second column reports inter-rater agreement among the four mTurk meta-
coders; the third column reports the aggregation gain in agreement this produces. The results are
quite clear and consistent: aggregation increases inter-coder reliability substantially, increasing
alpha by +0.06 to +0.24.16

The fourth column shows agreement among the research assistants (for this subset of ads).
The final two columns compare mTurk meta-coders with research assistants, in absolute and
relative terms. Here, too, the results are relatively consistent and positive: in all areas except
the presence of economic appeals and ideology, the mTurk meta-coders achieve higher—and
often substantially higher—rates of agreement than research assistants. Meta-coder alpha is
0.05–0.26 higher, an improvement of 5–97 percent. For ideology, the meta-coders are equivalent
to research assistants; only on the presence of economic appeals do the meta-coders fall short of
the research assistants’ reliability, with alpha that is 0.14 lower.

Item-level variation
In Figure 2 we show reliability information for every item, comparing research assistants, individ-
ual mTurk workers, and aggregated mTurk meta-coders. Research assistant reliability—corre-
sponding to the fourth column in Table 3—is plotted on the x-axis. mTurk worker reliability
is on the y-axis. The arrows depict the gain in reliability when moving from individual mTurk
workers (at the base of the arrows, corresponding to the first column of Table 3) to aggregated
meta-coders (the arrowheads, corresponding to the second column of Table 3). This figure shows
that coding reliability and the benefits of aggregation are not evenly distributed across the items.

First, manifest items: research assistants and individual mTurk workers have high reliability
for candidate appearance and aggregation provides modest benefits. On the presence of a flag
research assistants are quite reliable, though perhaps lower than we would expect.17 We examined
a number of ads to see what was going on, as we expected this to be a relatively straightforward
coding decision. Several things generated disagreement among coders: first, some ads showed a
small, partial flag very briefly—less than half a second. Other ads included items of clothing (e.g.,
a construction hard-hat or a necktie) that plausibly—but not certainly—depicted a flag. Finally,
one ad included a prominent black-and-white image with a flag in the background. In this case,

Table 2. Inter-coder reliability

Research assistants mTurk workers mTurk versus RA mTurk versus RA (%)

Flag appears 0.71 0.52 −0.19 −26
Average for candidate appears 0.90 0.83 −0.06 −7
Economic appeal 0.54 0.37 −0.17 −32
Average for economic tone 0.68 0.58 −0.10 −15
Average for emotions 0.31 0.36 +0.05 +16
Average for dichotomized emotionsa 0.31 0.37 +0.06 +18
Average for FC traits 0.40 0.34 −0.06 −16
Average for OC traits 0.41 0.31 −0.10 −25
Average for ideology 0.63 0.41 −0.23 −36

Krippendorff’s α for multiple raters; with ordinal weights for three-point emotions and quadratic weights for 101-point ideology, averaged
across individual items.
aEmotion coding is on a three-point scale (strong, weak, none); dichotomized versions collapse strong and weak.

16Benoit et al. find that Bayesian scaling models produce very similar results to averaging.
17The flag item was not coded by 20 mTurk workers, so we cannot aggregate into multiple meta-coders.
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our coding guide may have contributed to the confusion by specifically mentioning “white stars
on blue field with red-and-white stripes.” Apparently some coders took this to mean that
black-and-white images do not count, while others took our instructions as we intended, to signal
that only actual American flags should be coded.18 For these ads coders were often about evenly
divided. As we discuss in the conclusion of the paper, an aggregated code of 0.5 might actually be
a reasonable and valid measure of the flag’s prominence in these ads. In any case, these cases
illustrate the density of imagery included in ads and the amazing variation in how political mes-
sages and symbols are conveyed.

For the two pattern items on economic tone, aggregation increases alpha slightly, such that
aggregated mTurk workers and research assistants are similarly and highly reliable. Oddly, aggre-
gated mTurk workers underperformed relative to research assistants at detecting economic
appeals in the first place. For this item we asked coders to distinguish discussion of the budgetary
or economic impact of government spending (which counts as economic) from more generic
references to government spending, or to the impact of spending on citizens rather than the econ-
omy (which did not count). We suspect that some online coders did not fully internalize this
rather subtle distinction.

Turning to latent items, there is considerable heterogeneity across items; however, on the
whole the aggregation gains are large. Ideology demonstrates the highest reliability among
both mTurk workers and research assistants, and thanks to very large aggregation gains, the
mTurk meta-coders and research assistants achieve similar reliability. This suggests that ideol-
ogy—despite its complexity as a cognitive and political concept—is frequently communicated
in clear-enough terms for coders to achieve reasonably high agreement.

Across the emotions, individual mTurk workers achieve similar reliability to research assistants
on average—somewhat better for fear and disgust, and somewhat worse for enthusiasm and
anger. There are large aggregation gains here, with alpha increasing by +0.18 across all four emotions
(+0.19 when dichotomized). These gains are especially pronounced for disgust, fear, and enthusi-
asm, leading aggregated meta-coders to outperform research assistants on all but anger.

For traits, aggregation produces gains are also large: they average +0.24 for favored candidate
traits and +0.15 for opponents. The gains are most pronounced for the favored candidate’s com-
petence and leadership, but are relatively substantial across the board. Although aggregated meta-
coders essentially equal or outperform research assistants across the traits and emotions, the abso-
lute reliability levels are moderate at best, mostly falling in the range from 0.4 to 0.6. By definition,

Table 3. Reliability gains from aggregation

mTurk
workers
(on meta
subset)

mTurk
meta-coders

Difference:
meta-coder

gain

Research
assistants
(on meta
subset)

meta-mTurk
versus RA

meta-mTurk
versus RA (%)

Average for candidate appears 0.86 0.97 +0.10 0.92 +0.05 +5
Economic appeal 0.34 0.39 +0.06 0.53 −0.14 −26
Average for economic tone 0.60 0.71 +0.10 0.66 +0.05 +7
Average for emotions 0.29 0.47 +0.18 0.28 +0.19 +67
Average for dichotomized emotionsa 0.31 0.50 +0.19 0.27 +0.23 +87
Average for FC traits 0.32 0.56 +0.24 0.41 +0.15 +38
Average for OC traits 0.33 0.49 +0.15 0.38 +0.11 +29
Average for ideology 0.43 0.68 +0.24 0.66 +0.01 +2

Krippendorff’s α for multiple raters; with ordinal weights for three-point emotions and quadratic weights for 101-point ideology, averaged
across individual items.
Meta-coders are average of five randomly-selected coders, rounded to generate a categorical code. Analysis restricted to ads with multiple
meta-coders.
aEmotion coding is on a three-point scale (strong, weak, none); dichotomized versions collapse strong and weak.

18Appendix A8 contains images of these examples.
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this means that coders—even after aggregation—often disagree on the presence of traits and emo-
tions. Perhaps individual coders are picking up different aspects of these concepts, in which case
the aggregated meta-coder would serve as a useful measure of a complex reality. Alternatively,
these concepts may be too subtle and varied for reliable coding. Ultimately this is a question
of validity.

Validity

Assessing validity is more difficult than reliability. Ideally, we would compare our coding with the
objective truth about each ad. But of course we do not have that truth, and a full-scale validity
analysis of each coding category is beyond the scope of this paper. Happily, our interest is not
in establishing absolute validity; rather, we need to compare the relative validity achieved by
our two workforces. Our results parallel those for reliability: coding by mTurk workers is less
valid than by research assistants, but meta-coders achieve validity that equals and often greatly
exceeds that of the research assistants.

We compare the criterion validity of the coding by the two workforces (Carmines and Zeller
1979). We identify external measures of content in the ads (or of the candidates featured in or spon-
soring them) that should correlate with our coding. Most of these criterion measures come from the
data that WMP provides, which is not completely valid itself. Nevertheless, they represent the best
measurement we have of most ad content. Moreover, these data are widely used to study political
communication and its effects; as such, they represent an important validity standard.19 One excep-
tion is ideology, where have a truly external validity measure: the DW-NOMINATE estimate of represen-
tatives’ ideological ideal point based on roll-call voting, available for candidates who served in
Congress at some point (Poole and Rosenthal 2007; Bonica 2016).

Figure 2. Reliability comparisons by coding item

19See Appendix A11 on the use of WMP data to measure political communication.
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Our measure of validity is the correlation between each criterion variable and the corresponding
coding. We compare these validity coefficients for research assistants, individual mTurk workers,
and meta-coders. For example, for economic appeals, the criterion variable is based on WMP mea-
sures that suggest economic content, including whether the ad touches on taxes; the deficit, budget,
or national debt; government spending; recession or economic stimulus; employment or jobs; and
general economic references; and also whether the ad mentions “Main Street” or “Wall Street.”

This criterion variable correlates 0.58 with research assistant coding of economic mentions—a
solid indication of accurate coding, especially considering that the WMP variables do not capture
all possible economic matters. mTurk workers produce lower validity here, with a coefficient of
0.42 (p < 0.05 for the difference between the two correlations). However, the meta-coders do bet-
ter, with validity of 0.56—indistinguishable both substantively and statistically from research
assistant validity.

We devised 15 criterion variables that cover 12 of our 20 coding categories. They are detailed
in Table 4, which presents the results for each of the 15 validity comparisons. The third column
presents the validity coefficients (i.e., correlations between criterion and coding) for research
assistants. These range from a high of +0.88, for the appearance of the favored candidate in
the ad (the criterion here is simply the WMP coding of the same thing), to +0.22, for coding of
claims that the opponent lacks integrity (the criterion is WMP indicating that the ad mentions
“corrupt” or “dishonest”). The fourth column shows the difference between the research assistant
and mTurk worker validity. In all cases but one, the mTurk validity is lower. Eleven of these 14
decreases are statistically significant, and ten of them exceed 0.05.

The next column shows how aggregation improves validity. As we saw above, coding of eco-
nomic appeals by mTurk meta-coders is just as valid as the research assistants’ coding. In ten of
15 cases, the mTurk meta-coders produce higher validity than research assistants; eight of these
differences are statistically significant at p < 0.05, and three are quite large (at least +0.10). In five
cases mTurk meta-coding is less valid, substantially so on attributions of integrity or lack thereof.

We draw particular attention to ideology, as these involve our best criterion measure. The
research assistants are quite valid, with a correlation between ideology coding and DW-NOMINATE

scores of 0.58 for favored candidates and 0.62 for opponents. mTurk workers do worse (by −0.15
and −0.16 for favored and opposing candidates, respectively). Once aggregated, however, the cor-
relation is indistinguishable from that among the research assistants. In sum, across all 15 tests the
meta-coders and research assistants are essentially equally valid.

Validity variation
Because we are limited by the available criterion measures, we cannot paint a comprehensive val-
idity picture. Nevertheless, we make some observations. Compared with the research assistants,
aggregated mTurk meta-coders came slightly closer to the criterion measures on the manifest
flag and candidate appearance items. The two types of coders achieved equal validity for the
one pattern-based validity test: the presence of economic appeals. Across the latent content,
there is systematic variation: the two groups are equally valid for ideology coding; mTurk meta-
coders do better across all of the emotional validity tests; and meta-coders do worse on two of
three trait tests.

Resources

It cost us about $0.60 to have each ad coded by five mTurk workers.20 Research assistant wages
averaged $0.56 per ad coding. Thus, the two workforces have comparable costs, assuming we have
each ad coded by four or five online workers. The online workforce is substantially faster. At this
compensation rate, workers coded one ad per minute over four days. At this pace, we could code
2,000 ads five times each in about a week—far faster than any reasonable team of student coders.

20See Appendix A10 for more detail on compensation.
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Discussion
Additional advantages of multiple coding

We have stressed that aggregation reduces measurement error. Multiple coding brings other import-
ant benefits. Though most of our coding decisions are binary or ternary, the underlying concepts are
continuous. For example, though we code for the presence or absence of integrity, an ad can make
more or less strong, direct, and explicit claims about a candidate’s honesty. Similarly, coding emo-
tional appeals as absent, weak, or strong captures only some of the wide variation in their strength.

If coders vary in their sensitivity to the presence of a concept, reliability suffers even if they
completely agree on its nature. Working to align coders’ sensitivity thresholds is statistically inef-
ficient, however, as this discards information about the strength or clarity of a concept within the
ad. We can harness that information to produce more valid measures when multiple workers
analyze each item, because they provide multiple indicators of the strength and clarity—not
just presence—of the concept. As long as ads are randomly assigned to coders this variation pro-
duces an unbiased and more valid estimate of the concept.

In addition, we can use multiple measurements of each item to model statistically the inter-
pretive task of coding. These data lend themselves to multi-level modeling, with coding decisions
at the lowest level, nested within several higher levels: the ad, the candidate, and the particular
race. This could even be extended to a focus on the individual coders, in a non-nested model
with coding decisions simultaneously grouped by ad and by coder.

Transparency and replicability

Any scientifically respectable content analysis provides a codebook that documents the coding
system. Nevertheless, reproducibility remains a major challenge. Developing guidelines, training

Table 4. Validity

Item Criterion variable

Correlation in RA
coding

Relative validity of Number of
ads

mTurk
individual mTurk-meta

Flag appears WMP: American flag appears 0.66 −0.09* +0.06* 474–1,492
FC appears or

mentioned
WMP: FC mentioned or pictured 0.70 −0.01 +0.05* 1,485–1,510

OC appears or
mentioned

WMP: OC mentioned or pictured 0.88 −0.02* +0.03* 1,485–1,510

Economic appeal WMP: Economic issue or mention 0.58 −0.18* −0.01 1,416–1,511
Emotion:

enthusiasm
WMP: Enthusiasm appeal 0.41 −0.04 +0.10* 1,485–1,510

Emotion:
enthusiasm

WMP: Uplifting music 0.42 −0.04 +0.10* 1,485–1,510

Emotion: fear WMP: Fear appeal 0.38 −0.11* +0.02 1,485–1,510
Emotion: fear WMP: Ominous or tense music 0.24 +0.03 +0.16* 1,485–1,510
Emotion: anger WMP: Anger appeal 0.55 −0.14* +0.06* 1,415–1,506
Emotion: anger WMP: Ominous or tense music 0.45 −0.09* +0.08* 1,415–1,506
FC strong leader WMP: Ad mentions “tough,”

“fighter,” “experienced”
0.32 −0.10* −0.00 1,202–1,338

FC integrity WMP: Ad mentions “honest” 0.24 −0.15* −0.10* 1,204–1,336
OC lacks integrity WMP: Ad mentions “corrupt,”

“dishonest”
0.22 −0.13* −0.09* 897–1,049

FC ideology FC DW-NOMINATE ideology scorea 0.58 −0.15* +0.03 477–507
OC ideology OC DW-NOMINATE ideology score 0.62 −0.16* −0.07 215–256

Average 0.48 −0.09 +0.03

Restricted to ads with RA coding. Relative validity shows the difference in the correlation, compared with that observed in the RA coding.
** p < 0.01, * p < 0.05 for the comparison with RA reliability.
aFirst-dimension DW-NOMINATE score; available for candidates who served in Congress. Ideology analyses restricted to candidate-sponsored ads.
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coders, and implementing an analysis involve interaction and discussion. We can never truly rep-
licate this process, because no written codebook can fully document the discussions and other
interactions involved. Here the limits of online training are virtues, because this training is
entirely standardized. Once the codebook is finalized, it completely documents the coding and
training system.

Moreover, an open codebook of this sort facilitates “agile” data collection, in which we custom-
ize coding systems for each project (Benoit et al. 2016). In addition, we can even vary coding
guidelines and training materials experimentally. This permits the systematic study of different
training materials on coding quality and provides empirical evidence for weighing trade-offs
and guiding choices about procedures.

The nature of human categorization and the wisdom of the crowd

Content analysis sounds deceptively straightforward. Researchers formulate a concept of interest
and communicate it to coders, who search for indications of the concept in a body of material.
But defining and communicating precise definitions for most concepts of interest is inherently
challenging for reasons having to do with the fundamental nature of concepts and the cognitive
process of categorization. We think an online system employing numerous coders and an open
codebook offers particular advantages for such challenging coding.

The classical theory of conceptual categories—corresponding to everyday understanding—
holds that categories are “structured mental representations that encode a set of necessary and
sufficient conditions for their application” (Gelman and Wellman 1999; see also Lakoff 1987,
5–11). Our coding included manifest categories of this sort. For example, the category
“American flag” is readily described in terms of necessary and sufficient conditions (13 red
and white stripes; 50 white stars on a blue field; and so on). Although the ads presented ambigu-
ous cases, in principle we could develop objective rules to cover these variations.

But many categories in life, in content analysis, and in politics are not defined by necessary
and sufficient conditions. Wittgenstein uses the concept of a “game” to illustrate this (1953).
Games, he points out, share no set of common features: some involve luck, others skill, others
both. Some have winners and losers, others not. Moreover, the advent of video games expanded
the concept (Lakoff 1987, 16). Categories of this kind are unified not by rules but by “family
resemblances.” Different games are linked together like “the various resemblances between mem-
bers of a family: build, features, colour of eyes, gait, temperament, etc. etc. (that) overlap and
criss-cross” (Wittgenstein 1953; quoted it Khatchadourian 1966, 206). The concept “game” exists
not as a list of rules, but rather as a cluster “of gamey attributes, only some of which are instan-
tiated by any one game” (Armstrong et al. 1999, 229).

Many concepts we seek to identify in political communication share this clustered structure.
Consider anger. Anger is expressed many different ways—Lakoff spends 36 pages cataloging the
synonyms, abstract metaphors, and prototypical scenarios that can convey anger just in language,
leaving aside audiovisual imagery (1987, 380–415). It would be impossible to construct a compre-
hensive coding manual for the concept of anger, or for other clustered concepts. Instead, we trad-
itionally supplement the written rules with intensive training in hopes that coders will “know it
when they see it” (in Justice Stewart’s famous words about obscenity). But given the unpredict-
ability of this training process, written coding documentation cannot fully capture the training as
implemented, and future researchers cannot replicate it exactly. This contributes, we believe, to
the well-documented variation in estimates of the same concepts produced by different content
analysis teams. For example, Geer (2006, 37) describes dramatic variation in coding of presiden-
tial campaign-ad negativity—a relatively straightforward concept—with estimates varying from
24 to 54 percent. Scholars hoping to replicate or extend these analyses can train research assis-
tants using the respective coding guides, but they cannot produce in the minds of their coders
an understanding that exactly matches that of the original coders.
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The open-codebook strategy does not try to align fully each coder’s understanding of the con-
cept. Rather than stamping out variation among coders’ intuitions, we instead embrace it, or at
least tolerate and measure it. We think this approach is especially useful for coding complex,
cluster-based concepts for which most people have an intuitive understanding—Potter and
Levine-Donnerstein’s (1999, 260) “primitive concepts.”

We note the greater success here for emotions than for traits. We suspect this is because our
coders had richer and more consistent intuitions about emotions than about traits. Scholars of
emotion confirm that ordinary people have a well-developed intuitive understanding of major
emotions like fear, anger, enthusiasm, and disgust. There are distinct facial expressions, body lan-
guage, tone of voice, and words associated with each, and people are quite skilled at decoding
them (e.g. Frijda 1988). Each emotion involves visceral reactions that everyone has experienced,
that coders can draw upon to help recognize them. In contrast, traits like competence, strong
leadership, integrity, and empathy are more abstract and context-dependent. What constitutes
competence, for example, depends on the task at hand, and some might (reasonably) believe
that integrity, strong leadership, and empathy constitute competence for a politician. This
makes it difficult to distinguish among them in campaign ads. We tried to delineate distinctions
among traits; for example, we directed that integrity must include reference to honesty and that
“strong values” or “authenticity” do not count by themselves. However, the lower validity on traits
among mTurk workers hints that these distinctions may be too far removed from people’s primi-
tive concepts to allow online workers to code them well.

Conclusion
In closing, we offer four general recommendations for coding political video using online labor
markets. First, have each video coded multiple times, to maximize reliability and validity through
aggregation. This repeated coding also produces continuous measures from easy-to-make binary
coding decisions, and opens opportunities for modeling the coding process itself.

Second, develop, test, and revise the coding system in person with a small team of experts or
research assistants before beginning online coding. We learned this the hard way. Initially we
tried to separate “sociotropic” economic appeals that reference the economy from “pocketbook”
appeals that touch on the viewer’s personal finances (Kinder and Kiewiet 1981). Reliability was
terrible; in training the research assistants, and then reviewing many more ads, we learned
why: actual campaign ads often mix these appeals in ways that make them very hard to distin-
guish. Therefore, we dropped the distinction in later rounds of coding. Our experience here—
and with trait coding—suggests that scholars should not assume that theoretical concepts map
neatly onto real-world political communication.

Third, cue general schema in the coding guide rather than providing exhaustive definitions for
concepts. Long lists of criteria and examples are inevitably incomplete, and workers will not
attend fully to them anyway. Here we depart from typical content analysis practice, where
in-person interaction proposes to fine-tune coders’ intuitions. In the online context, it is better
to bring the primitive concept to mind and to explain only very important nuances. From
there, embrace the inevitable minor variation among coders and rely on multiple measurements
to aggregate and/or model that variation.

Finally, implement a custom qualification for online coders that collects demographic and
other background information in addition to providing the coding guide. Making workers take
this initial step likely excludes coders uninterested in making a good faith coding effort, and
incentivizes continued coding work (as workers are invested in completing the initial survey).
It also allows the researcher to revoke the qualification of those few workers who systematically
ignore instructions.

In summary, this paper provides evidence that workers recruited from online labor markets
can classify political content—ranging from manifest to latent—with reliability, validity, and
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cost similar to that of traditional research assistants. What is more, these online workers save
time, while also making the entire coding process more transparent, replicable, and easier to
extend and adapt in future work. And finally, crowd-sourced coding addresses the challenge of
coding audio-visual content, helping political analysts identify received meaning through the
haze of ambiguous messaging.

Supplementary Material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2019.4
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