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Bottom-heated convection in rotating spherical shells provides a simple analogue for
many astrophysical and geophysical fluid systems. We construct a database of 74 three-
dimensional numerical convection models to investigate the scaling behaviour of seven
diagnostics over a range of Ekman (10−6 6E6 10−3) and Rayleigh (156 R̃a6 18 000)
numbers while using a Prandtl number of unity. Our configuration is chosen to model
Earth’s core as defined by the fixed flux thermal boundary conditions, radius ratio
ri/ro of 0.35 and a gravity profile that varies linearly with radius. The quantities
of interest are the viscous and thermal boundary layer thickness, mean temperature
gradient, mean interior temperature, Nusselt number, horizontal flow length scale, and
Reynolds number. We find four parameter regimes characterised by different scaling
behaviour. For E 6 10−4 and low Ra the weakly nonlinear regime is characterised by
a balance between viscous, Archimedean and Coriolis forces and the heat transfer is
described by weakly nonlinear theory. At low E and moderate Ra, the rapidly rotating
regime sees inertia take over from viscosity in the global force balance. In this regime
the heat transfer scaling has increasing exponent with decreasing Ekman number and
shows no saturation to the diffusion free Ra3/2E2 scaling. At high Ra and all E the
importance of the Coriolis force gradually decreases and all diagnostics continually
change in the transitional regime before approaching the scaling behaviour of non-
rotating convection.

Key words: Bénard convection, rotating flows, geostrophic turbulence

1. Introduction
Convection plays a key role in the interior dynamics of many planets and stars.

Spherical geometry and rotation are important in many of these natural convecting
systems, including Earth’s liquid metal outer core, solar and stellar interiors, and
planetary atmospheres. The length scales associated with core convection in the Earth,
range from narrow columns of the order of 10 m to system size flow structures
(Jones 2015). Similarly the range of time scales varies from the rotation period on
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the diurnal scale, to magneto-Coriolis waves on the decadal scale, and geomagnetic
reversals which occur on average a few times every million years (Holme 2007). The
convective state of these astrophysical and geophysical systems, and the resulting
heat transport, cannot be probed directly via numerical or physical experiment as the
parameters of the system give rise to highly complex spatial and temporal behaviour.
Consequently, a large body of work exists (described below) deriving and testing
scaling relationships between the independent and dependent variables. This paper is
motivated by convection in planetary cores where the effects of rotation and spherical
geometry are important in determining the dynamics. We focus here on how rotation
affects the scaling behaviour of both global and local diagnostics describing the
heat transport (Nusselt number, interior temperature gradients, interior temperatures,
thermal boundary layers) and flow properties (Reynolds number, convective length
scales, viscous boundary layers). In what follows we will discuss the different scaling
behaviours previously observed in both the plane-layer and spherical shell geometries
and the different physical regimes of rotating convection, all of which is discussed
for Boussinesq convection.

1.1. Rayleigh–Bénard convection in a plane layer
Rayleigh–Bénard convection (RBC) is a paradigm problem of convective fluid
dynamics; the addition of rotation provides a simplified dynamical analogue for
many planetary and stellar systems. The RBC paradigm consists of a fluid contained
between two rigid horizontal plates with gravity acting perpendicular to the plates. A
sufficiently high temperature difference 1T is maintained between the boundaries to
destabilise the fluid layer. For a given aspect ratio the non-dimensional parameters
governing the system are the Rayleigh number, Ra, and Prandtl number, Pr
(see table 1). The effect of rotation, when present, is encapsulated by a third
non-dimensional parameter, the Ekman number, E, which measures the relative
importance of viscosity to rotation.

Rotating RBC has been shown to display dynamics in one of two regimes;
rapidly rotating (RR) and weakly rotating (WR) as evidenced by global heat transfer
behaviour measured by the Nusselt number, Nu (e.g. King et al. 2009; Schmitz &
Tilgner 2010), defined as the ratio of the total heat transport (sum of convective and
conductive contributions) to the conductive heat transport. Here, we briefly review
some relevant results for rotating RBC and refer the reader to Plumley & Julien (2019)
for a detailed discussion of Nu–Ra behaviour. RR convection exhibits suppressed heat
transfer relative to non-rotating convection with the scaling exponent increasing
monotonically with decreasing Ekman number, Nu ∼ Raλ(E) (e.g. Cheng et al. 2015;
Kunnen et al. 2016). Plane layer simulations with stress-free boundaries find that
the heat transport saturates at the asymptotic scaling Nu ∼ Ra3/2E2 (Julien et al.
2012a). In the no-slip case, however, the presence of Ekman boundary layer effects
can enhance the heat transport leading to larger scaling exponents (e.g. Stellmach
et al. 2014; Plumley et al. 2016) such as those observed by Cheng et al. (2015) and
Kunnen et al. (2016). Heat transfer in the WR regime behaves similarly to that for
convection without rotation: the empirical Nu∼Ra2/7 scaling is observed for moderate
Rayleigh numbers (Ra 6 1010) before saturating at Nu ∼ Ra1/3 for sufficiently high
values of Ra (Ra > 1010) (Cheng et al. 2015).

Three main parameters have been suggested to control the transition from RR to
WR convection. King et al. (2009) and King, Stellmach & Aurnou (2012) suggest
that the transition between the RR and WR regimes occurs when the thermal boundary
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Quantity Symbol Definition Meaning Simulations Earth’s
core

Ekman number E
Viscosity
Coriolis

ν

2Ωh2
10−6 6 E 6∞ 10−15

Prandtl number Pr
Viscous diffusion
Thermal diffusion

ν

κ
1 0.01–1

Modified Rayleigh R̃a
Buoyancy

Diffusion and Coriolis
αgoβ

2Ωκ
10 6 R̃a 6 2× 104 1013

number

Rayleigh number Ra
Buoyancy
Diffusion

αgo1Th3

νκ
104 6 Ra 6 2× 109 1029

TABLE 1. Dimensionless parameters governing rotating convection. Here ν is the fluid’s
viscous diffusivity, Ω is the angular rotation rate, h is the depth of the fluid layer, κ is
the thermal diffusivity, α is the coefficient of thermal expansion, go is the gravitational
acceleration, β is a measure of the imposed heat flux and 1T is the temperature drop
across the fluid layer. The modified Rayleigh number R̃a is the rotational flux Rayleigh
number and is used as an input parameter in this study. Note that R̃a can be transformed
to the traditional Rayleigh number, Ra as follows: Ra∝ R̃a/(ENu) where the constant of
proportionality is a geometric factor. A radius ratio ri/ro = 0.35 is used throughout.

layer becomes thinner than the viscous boundary layer, occurring at either RaE7/4
∼

O(1) or RaE3/2
∼O(1) depending on whether Nu∼Ra2/7 or Nu∼Ra1/3 (for the range

of Ra studied here we find the Nu∼Ra2/7 scaling behaviour and consequently test the
RaE7/4 boundary layer crossing parameter, see § 2.3 for details). Alternatively, models
with asymptotically small E (Julien et al. 2012b), suggest that the transition occurs
when the thermal boundary layers are no longer in geostrophic balance, predicting
a transition at RaE8/5

∼ O(1). Other works advocate the convective Rossby number,
Roc =

√
RaE2/Pr ∼ O(1) (Gilman 1977) to demarcate the transition. There is no

consensus on what controls the RR–WR transition and various other options have also
been considered (see Cheng et al. (2018) table 1 for an overview). The transition from
RR to WR heat transfer behaviour is accompanied by vanishing interior temperature
gradients, dTint (typically defined at mid-depth). Note that dTint scales inversely with
supercriticality in the RR regime (Julien et al. 2012b).

Despite the similar heat transfer behaviour between WR and non-rotating (NR)
convection, the flow properties continue to be influenced by rotation even in the
WR regime. The typical horizontal length scale associated with the convective flow
follows the classic viscous scaling, `/h ∼ E1/3 for both RR and WR convection
(King, Stellmach & Buffett 2013). In contrast, for NR convection the flow exhibits
three-dimensional turbulence and the typical length scale is then inversely proportional
to the heat transport, `/h∼Nu−1/2 (King et al. 2013). Combining with the Nu∼Ra2/7

behaviour, one obtains `/h∼Ra−1/7. The Coriolis force does no work and it affects the
convective flow speed (Reynolds number, Rec) scaling solely by changing the length
scales. A triple force balance between viscous, Archimedean and Coriolis forces (VAC
balance) gives a scaling prediction for the flow speed, Rec ∼ (Ra(Nu − 1))1/2E1/3 in
both the RR and WR regimes (King et al. 2013). The different length scale observed
in NR convection leads to a flow speed scaling, Rec ∼ (Ra − Ra/Nu)1/2 (King et al.
2013).
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A complete specification of the flow requires a description of the mechanical
and thermal boundary layers. In the RR and WR regimes Coriolis forces balance
viscosity in the region close to the walls leading to the Ekman boundary layer
of thickness, δE/h ∼ E1/2 (Greenspan 1968). In NR convection the Prandtl–Blasius
theory (e.g. Kundu & Cohen 1990) predicts a viscous boundary layer of thickness
δν/h ∼ Re−1/2

c . While some studies confirm this behaviour others find an empirical
scaling, δν/h ∼ Re−1/4

c (Lam et al. 2002). This discrepancy was attributed to the
boundary layers being either passive or active (Qiu & Xia 1998a,b), however, more
recent work has shown that the different scaling exponents follow from the adopted
definition of the viscous boundary layer (Breuer et al. (2004), Gastine, Wicht &
Aurnou (2015), see also figure 1(a) for the two different methods of defining a
viscous boundary layer). Within the thermal boundary layers heat is transported
almost purely by conduction and so for non-rotating convection the layer thickness
scales as δκ/h ∼ Nu−1. This scaling is observed to hold in the WR regime and
provides a reasonable first-order approximation in RR convection (King et al. 2013).

All of the results discussed above are from models with rotation and gravity aligned.
There have been some investigations having the rotation axis tilted with respect to
gravity and these systems are more complex in that they are capable of driving mean
flows (Hathaway & Somerville 1983; Currie & Tobias 2016).

1.2. Spherical shell convection
In spherical shell convection the fluid is heated from the inner boundary and cooled
at the outer boundary with gravity acting radially. Recently the first systematic study
of rotating convection in a spherical shell geometry was published by Gastine, Wicht
& Aubert (2016). Similar to RBC, distinct regimes have been identified; and we
follow Gastine et al. (2016) by defining the weakly nonlinear (WN), rapidly rotating,
transitional and non-rotating regimes. When comparing quantitatively with Gastine
et al. (2015, 2016) we account for the factor two difference in their definition of the
Ekman number.

Close to the onset of convection, the WN regime exists and persists for low values
of supercriticality (e.g. Yadav et al. 2015). In this regime inertial forces are small and
the heat transfer follows the perturbation analysis of Gillet & Jones (2006), Nu− 1∼
Ra/Rac − 1. Gastine et al. (2016) found the WN regime exists for Rac 6 Ra 6 6Rac,
where Rac is the critical value for instability. The RR regime is found for E 6 5 ×
10−5 and is characterised by a steeper heat transfer scaling than the WN regime. As
in the plane layer case the Nu − Ra scaling exponents increase with decreasing E.
Though Mound & Davies (2017) found a continuous increase for the parameter range
considered, Gastine et al. (2016) observed saturation at Nu ∝ Ra3/2E2. This scaling
might imply that an asymptotic regime has been reached as it is derived in the absence
of thermal and viscous diffusion at asymptotically low E (Jones 2015). The Nu ∝
Ra3/2E2 heat transfer scaling is predicted to hold until the thermal boundary layer loses
geostrophic balance, which defines a transition to WR convection when RaE8/5

=O(1)
(Julien et al. 2012a). At numerically accessible values of E (> 10−7) it is found that,
above some transitional value of Ra, the Nu−Ra scaling exponent continually changes
in the transitional regime until the non-rotating scaling Nu ∼ Ra2/7

− Ra1/3 (Gastine
et al. 2015) is recovered in the NR regime. Gastine et al. (2016) found that the heat
transport scaling conforms to the NR behaviour when Ra> 328E−12/7. As in RBC the
transition to the NR scaling occurs alongside vanishing interior temperature gradients
(Gastine et al. 2015).
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The characteristic length scale and speed of the convective flow in the WN regime
is described by the VAC balance, predicting `/h∼E1/3 and Rec∼ (Ra(Nu− 1))1/2E1/3

(Gastine et al. 2016), as in rotating planar RBC. In the RR regime inertial effects
dominate over viscous forces and Gastine et al. (2016) found that the length scale
approaches the Rhines scale of convection, `/h ∼ (RecE)1/2 (Rhines 1975) for
E = 1.5 × 10−7. The appearance of the Rhines scale suggests that the fluid bulk
has reached a triple force balance between inertia, Archimedean and Coriolis
forces (referred to as the IAC balance) (e.g. Aubert et al. 2001). Within the RR
regime Gastine et al. (2016) found that Rec is described by decomposing the
flow speed into contributions from the fluid bulk and the viscous boundary layers.
Within the transitional regime no scaling laws can be defined. In the NR regime
rotational effects are subdominant and the typical length scale of the flow follows
`/h∼Ra−3/14

−Ra−1/3 (Gastine et al. 2015) where the range arises from the Nu−Ra
scaling. The flow speed in the NR regime depends only on the Rayleigh number with
an exponent that varies in a manner that is consistent with the theory of Grossmann
& Lohse (2000), Rec ∼ Ra0.4−0.6 (Gastine et al. 2015).

As in the plane layer configuration, the mechanical boundary layers in the RR
regime are of the Ekman type (Gastine et al. 2016) and the NR regime recovers the
traditional Prandtl–Blasius viscous boundary layer thickness scaling, δν/h ∼ Re−1/2

c
(Gastine et al. 2015). Similar to RBC the thermal boundary layers follow the typical
δκ/h∼Nu−1 scaling in the NR regime and a non-trivial dependence on E is observed
in the RR regime (Gastine et al. 2016). In a spherical shell the inner and outer
boundary layers can have different thicknesses due to the asymmetry in surface area
as a function of radius (Gastine et al. 2015).

1.3. This study
Convection in Earth’s core is driven by heat released by the solid iron inner core
and heat extracted by the silicate mantle as it convects. Mantle convection is
a million times slower than core convection and the low viscosity core fluid is
effectively isothermal in comparison to the much higher lateral temperature anomalies
within the mantle. The core then responds to a fixed heat-flux at the core–mantle
boundary (Gubbins 2003). No-slip conditions are appropriate at the rigid inner and
outer boundaries and are applied in the vast majority of models of core dynamics
(Christensen & Wicht 2015). The combination of no-slip and fixed flux boundary
conditions are therefore appropriate choices for the Earth’s core.

We report the first systematic study of hydrodynamic rotating convection in an
Earth-like configuration. Our model employs no-slip non-penetrative boundaries
prescribed a fixed heat-flux, a radius ratio of ri/ro = 0.35 and a gravity profile that
varies linearly with radius (see Mound & Davies 2017). This contrasts with the set-up
of Gastine et al. (2016) which uses a larger shell, ri/ro = 0.60, fixed temperature
thermal boundary conditions and a gravity profile of the form g ∼ r−2 as would be
appropriate for studying gas giants. The inverse square gravity profile also has the
benefit of allowing an analytical expression for the buoyancy production (Gastine
et al. 2016), which is not available when considering a linear gravity profile.

Previous studies have found that the choice of aspect ratio and thermal boundary
conditions can influence behaviour in rotating convective systems. Asymmetry between
the inner and outer spherical boundaries leads to different aspect ratio systems having
distinct temperature distributions with larger temperature drops occurring at the inner
boundary relative to the outer boundary (Gastine et al. 2015). The aspect ratio also
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changes the critical Rayleigh number at onset (Al-Shamali, Heimpel & Aurnou 2004)
and can alter the morphology of convection driven magnetic fields (Lhuillier et al.
2019). Fixed flux boundary conditions prefer longer wavelengths than the equivalent
fixed temperature case at onset (Gibbons, Gubbins & Zhang 2007) and lead to larger
scale convective flows in the fully nonlinear regime (Sakuraba & Roberts 2009),
although this difference may not be present for very strongly supercritical dynamos
(e.g. Aubert, Gastine & Fournier 2017). However, it is not yet known whether these
effects influence global heat transfer and flow scaling behaviour across broad ranges
of parameter space.

We include output from a subset of the models by Mound & Davies (2017) with
homogeneous boundary conditions and have extended this suite of models by running
43 new simulations with Ekman numbers E = 10−3, 3 × 10−4, 3 × 10−5 as well as
two additional runs at E = 10−4, two at E = 10−5 and three low Rayleigh number
runs at E = 10−6 giving us significantly better coverage of E–Ra space (details of
all new models are listed in tables 7–12 in the Appendix). We therefore consider a
total of 74 simulations in this paper. In § 2 we outline our problem formulation and
define the theoretical predictions we will test. In § 3 we present summary results of
all of our numerical simulations. Finally in § 4 we include an extended discussion and
comparison with other works.

2. Theory
2.1. Problem formulation

We investigate convection of a Boussinesq fluid using the numerical code of Willis,
Sreenivasan & Gubbins (2007) with the set-up of Mound & Davies (2017). The
fluid is confined in a spherical shell rotating with constant angular velocity, Ω =Ω1z,
where 1z is the unit vector parallel to the axis of rotation. Gravity varies linearly with
radius such that g=−(go/ro)r, where go is the gravitational acceleration at the outer
boundary, radius ro. The spherical shell is defined in spherical coordinates, (r, θ, φ),
by the inner and outer boundaries which are impermeable, no-slip, with a prescribed
fixed heat flux. The fluid is characterised by a coefficient of thermal expansion, α,
reference density, ρ0, thermal diffusivity, κ , and kinematic viscosity, ν, all of which
are constant. The non-dimensional velocity, u, and temperature, T , are evolved in time
by calculating numerical solutions of the Navier–Stokes and temperature equations in
dimensionless form,

E
Pr

(
∂u
∂t
+ (u · ∇) u

)
+ 1z × u=−∇P̃+ R̃aT ′r+ E∇2u, (2.1)

∂T
∂t
+ (u · ∇) T =∇2T, (2.2)

∇ · u= 0. (2.3)

The modified pressure, P̃, includes the centrifugal potential and T ′ is the temperature
fluctuation relative to the steady-state (conductive) temperature profile in the absence
of flow, Tc. The conductive temperature profile, Tc, satisfies the equation ∂Tc/∂r =
−β/r2. The length is scaled by the shell thickness, h, the fundamental time scale is
taken to be the thermal diffusion time, τ = h2/κ , and temperature is scaled by β/h.
The total heat flow through the boundary is related to β by Q= 4πβk, where k is the
thermal conductivity (see also Mound & Davies (2017)). The control parameters are
summarised in table 1.
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As the fluid is assumed incompressible, the velocity field, u, can be expressed using
the toroidal and poloidal decomposition (e.g. Christensen & Wicht 2015)

u=∇× (T r)+∇×∇× (Pr) .

The toroidal (T ) and poloidal (P) scalar fields are given in terms of spherical
harmonics of degree l and order m on each spherical surface. Radial variations are
represented using second-order finite differences on the zeros of the Chebyshev
polynomials which provide finer resolution closer to the boundaries and allow
efficient parallelisation as each radial grid level can be given its own processor.
The spherical harmonic functions are truncated at maximum harmonic degree and
order, l = m, shown for all new runs in the Appendix. Time stepping is achieved
using a predictor–corrector scheme treating diffusion terms implicitly while the
Coriolis, buoyancy and nonlinear terms are treated explicitly. A detailed description
of the pseudo-spectral code may be found in Willis et al. (2007), Davies, Gubbins &
Jimack (2011) and in the recent dynamo benchmark paper (Matsui et al. 2016).

The simulations are typically initialised using the solution of a previous case at
similar values of the control parameters as this reduces the duration of transients.
After removing the transient response of the system to the initial condition, time
averages are constructed over a span of at least 10 advection times, although most
runs are averaged for at least 100 advection time units (an advection time unit is the
characteristic time taken for a fluid parcel to traverse the fluid shell). Each model
has reached thermal and energetic equilibrium as indicated by the residuals of the
relevant balances (all fall below a tolerance of 1 %). The boundary layer resolutions
are comparable with those suggested by Stevens, Verzicco & Lohse (2010) for
non-rotating Rayleigh–Bénard convection. Our choices for the truncation of the
spherical harmonic expansions are similar to those used by Gastine et al. (2016) for
comparable values of the control parameters. Full descriptions of the convergence
criteria are reported in Mound & Davies (2017) and all newly added models meet
the same level of convergence as discussed therein.

2.2. Diagnostic measurement technique
We use several diagnostics to quantify the effect of different control parameters on
the flow and temperature fields. The following notation is introduced for temporal
and horizontal (over a spherical surface) averages shown acting on an arbitrary
function, f :

f =
1
1t

∫ t0+1t

t0

f dt, (2.4)

〈 f (r, θ, φ)〉 =
1

4πr2

∫ π

0

∫ 2π

0
f (r, θ, φ) r2 sin(θ) dφ dθ, (2.5)

respectively, where 1t is the duration of the time averaging.
The Nusselt number measures the global efficiency of heat transport by convection

and conduction to that transferred by conduction alone,

Nu=

∫
(urT − ∂T/∂r) dr∫
|∂T/∂r| dr

.
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For our model configuration it can be shown that this is equivalent to

Nu=

∫
(dTc/dr) dr∫
(d〈T〉/dr) dr

=
1Tc

1〈T〉
, (2.6)

(Mound & Davies 2017) where 1〈T〉 is the difference in average temperature between
the inner and outer boundaries. The Nusselt number takes this form because as the
Rayleigh number increases the temperature drop across the shell is reduced for fixed
flux convection (see also Goluskin (2016)).

The characteristic velocity measured by the Reynolds number, Re, is derived from
the time-averaged dimensionless kinetic energy, Ek =

1
2

∫∫∫
Vs

u2 dV;

Re=

√
2Ek

Vs
, (2.7)

where Vs is the non-dimensional fluid volume. The axisymmetric zonal flow can
contribute a significant amount of the total kinetic energy, however, this flow does
not contribute to the radial heat transfer. We extract the Reynolds number of the
convective flow, Rec, from the kinetic energy by excluding the contribution from the
axisymmetric (m= 0) mode.

Characteristic length scales of the flow are determined from the time averaged
kinetic energy spectrum (e.g. Wicht & Christensen 2010; King & Buffett 2013) with
the dominant horizontal wavelength of the flow, ` defined as

`

h
=π

Ek∑
l〈ul · ul〉

, (2.8)

where ul is the flow component at degree l.
We will show that scaling laws for Rec depend on both the buoyancy production, B,

as well as the convective length scale. For hydrodynamic convection of a Boussinesq
fluid in the spherical shell geometry, the rate of change of kinetic energy arises
from the imbalance between viscous dissipation and kinetic energy production due
to buoyancy (e.g. King & Buffett 2013). We compute B directly from this energy
balance using a first-order difference scheme for dEk/dt:

B=
dEk

dt
+ E

∫
Vs

(∇× u)2 dVs, (2.9)

where the second term on the right-hand side is the viscous dissipation.
Unlike non-rotating convection, rotationally constrained convection is capable of

sustaining persistent interior temperature gradients even at high values of the Rayleigh
number (e.g. Julien et al. 1996; King et al. 2010). The temperature is normalised to
the range 0 and 1 as follows:

〈ϑ〉 =
〈T〉 −min(〈T〉)

max(〈T〉)−min(〈T〉)
.
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FIGURE 1. (a) Example radial profile of the time and horizontally averaged velocity,
Reh(r) showing how δν is defined. The viscous boundary layers are either defined by the
local maxima of Reh (highlighted by the grey shaded region) or by the intersection of the
linear fit to Reh near the boundaries with the tangent to the local maxima (black dotted
lines). (b) Example radial profile of the time and horizontally averaged temperature, 〈ϑ〉,
showing how δκ is defined. The thermal boundary layers are defined by the intersection of
the linear fit to 〈ϑ〉 near the boundaries and at mid-depth. Radial profiles were obtained
from the numerical model with E= 10−3 and R̃a= 1.3× 104.

We calculate the temperature and temperature gradient at mid-shell radius by

Tint = 〈ϑ〉|r=rm, dTint =
d〈ϑ〉

dr

∣∣∣∣
r=rm

, (2.10a,b)

respectively, where rm = (ri + ro)/2.
Two different approaches are typically considered to define the thickness of the

viscous boundary layer, δν , both of which utilise the time and horizontally averaged
velocity,

Reh(r)=
〈(

Re2
θ + Re2

φ

)1/2
〉
;

here the subscripts denote the components of Re. Our model implements no-slip
mechanical boundary conditions and as a result Reh exhibits steep local increases as
one moves away from the boundaries with well-defined local maxima (figure 1a). One
way to define δν is to measure the radial distance between the boundaries and the
closest maxima of Reh (Belmonte, Tilgner & Libchaber 1994; Kerr & Herring 2000)
here called the ‘local maxima method’. Alternatively, δν can be estimated as the
radial distance at which the linear fit to Reh near the boundary intersects the tangent
of the local maxima (Breuer et al. 2004; Gastine et al. 2016) herein referred to as
the ‘linear intersection method’. The two methods are known to produce different
boundary layer thicknesses (see figure 1a) with the local maxima method predicting
much thicker boundary layers (e.g. Gastine et al. 2015). Except where explicitly
mentioned we use the linear intersection method to define the viscous boundary layer
thickness.
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For the treatment of the thermal boundary layers we use the method based on
the mean radial temperature profile, 〈ϑ〉 (e.g. Breuer et al. 2004; Liu & Ecke 2011)
which defines the edge of the thermal boundary layer, δκ , by the location at which the
linear fit to 〈ϑ〉 near the boundary intersects the linear fit to the profile at mid-depth
(figure 1b).

2.3. Scaling analysis
2.3.1. Flow speeds and length scales

We compare model output with theoretical predictions of the scaling behaviour
derived from the dimensional momentum and vorticity equations,

∂u
∂t
=−(u · ∇) u− 2Ω × u−

1
ρ0
∇P̃+ αT ′g+ ν∇2u, (2.11)

∂ω

∂t
=−(u · ∇)ω− 2Ω · ∇u+∇× (αT ′g)+ ν∇2ω, (2.12)

respectively.
Scaling arguments for Rec begin with a thermal wind balance, that is balancing

Coriolis and buoyancy terms in (2.12). Assuming that spatial derivatives scale as
∇∼ 1/`, except for the axial gradient ∂/∂z which scales as 1/h; i.e. convection takes
the form of tall thin columns, we obtain

U ∼
αT ′gh
2Ω`

for some characteristic velocity, U. Following King & Buffett (2013) we multiply by
U and assume that UαT ′g = UrαT ′g, which gives the non-dimensional flow speed
scaling

Rec =

(
BE

h
`

)1/2

. (2.13)

Equation (2.13) shows that the behaviour of ` determines the flow speed scalings.
The leading-order force balance in rapidly rotating systems is geostrophic, but purely
geostrophic flows cannot generate mean heat transport. At second order the flow must
be ageostrophic and the Taylor–Proudman (TP) theorem is broken either by viscosity
or inertia. A viscously broken TP constraint yields

2Ω · ∇u∼ ν∇2ω,

`

h
∼ E1/3 (2.14)

(Chandrasekhar 2013). Alternatively if viscous forces are negligible and inertial forces
are responsible for breaking the TP constraint,

2Ω · ∇u∼∇× (u · ∇u),
`

h
∼ (RecE)1/2. (2.15)

This is often referred to as the Rhines scale (Rhines 1975; Cardin & Olson 1994)
and arises from the balance of vortex stretching and vortex advection. Substituting
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(2.14) or (2.15) into (2.13) gives two possible dimensionless flow scalings associated
with the viscous-Archimedean–Coriolis and inertial-Archimedean–Coriolis balances,
respectively,

VAC :
`

h
∼ E1/3, Rec ∼ B1/2E1/3, (2.16a,b)

IAC :
`

h
∼ (RecE)1/2, Rec ∼ B2/5E1/5. (2.17a,b)

We now consider the theoretical expectations for non-rotating convection. Partition-
ing the advective and diffusive contributions in the temperature equation, u · ∇T ∼
κ∇2T , King et al. (2013) derived a flow speed scaling in terms of the Nusselt number,

Rec ∼Nu2 (2.18)

(see also Julien et al. (2012b)). Assuming a well-mixed fluid bulk, combining the
flow speed scaling (2.18) with a theoretical estimate for the length scale based on
the natural plume spacing,

`/h∼ Re1/2(δκ/h)3/2,

King et al. (2013), gives a scaling behaviour for `/h in non-rotating convection,

`

h
∼Nu−1/2. (2.19)

2.3.2. Mechanical boundary layers
In non-rotating convection the viscous boundary layers are found to be laminar for

the range of Rayleigh numbers currently accessible and are of the Prandtl–Blasius type
(e.g. Stevens et al. 2010). Balancing inertia of the fluid bulk with the viscous forces
in the boundary layer of thickness, δν , yields

u · ∇u∼ ν∇2u,
δν

h
∼ Re−1/2

c . (2.20)

In contrast, the Coriolis force is important in rotating convection and gives rise to
Ekman boundary layers (Pedlosky 2013). Balancing Coriolis and viscous forces in the
Ekman layer of thickness, δE, gives

2Ω × u∼ ν∇2u,
δE

h
∼ E1/2. (2.21)

2.3.3. Heat transfer and thermal boundary layers
Along with the theoretical expectations of the flow characteristics, we can also

make predictions for the heat transport scaling in rotating convection. The work
of Grossmann & Lohse (2000) shows that for non-rotating convection there exist
different regimes with different scaling exponents. The dependence of heat transport
in rotating convection on the control parameters, Ra, E, Pr, ri/ro is still a topic
of debate. Following Jones (2015), for a given radius ratio we assume that the heat
transport scaling can be written as

Nu∼ Raλ1Eλ2Prλ3, (2.22)
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with λ1,2,3 being real exponents to be determined. The weakly nonlinear perturbation
analysis of Gillet & Jones (2006) applies for marginally supercritical Rayleigh
numbers with the exponent λ1 = 1 giving

Nu∼ Ra/Rac. (2.23)

At sufficiently large Ra, Nu joins the non-rotating branch, having an exponent of
2/7 6 λ1 6 1/3. Jones (2015) hypothesised that a regime could exist between these
states in which the fluid bulk limits the heat transport instead of the diffusive thermal
boundary layers. If so, it is likely that the heat transport scaling will be independent
of viscous and thermal diffusion. From (2.22) the independence of ν and κ requires

− λ1 + λ2 + λ3 = 0, λ1 + λ3 = 1, respectively.

Linear theory predicts that Rac ∼ E−4/3 as E → 0 so λ2 = 4λ1/3 gives the unique
solution

Nu∼ Ra3/2E2Pr−1/2 (2.24)

(Julien et al. 2012a). In the case of non-rotating convection, the total amount of heat
transported by the fluid can be related to the thickness of the thermal boundary layer
δκ . Within the thermal boundary layer heat is transported almost purely by conduction
and for turbulent non-rotating convection (Spiegel 1971)

δκ

h
∼Nu−1. (2.25)

There is currently no accepted theoretical prediction for the scaling behaviour of δκ in
the rotating case as the assumption of the temperature drop occurring predominantly
in the boundary layers is less certain (e.g. King et al. 2012).

2.3.4. Transition parameters
The domain of validity in parameter space for each of these scaling laws cannot

be determined a priori and typically is obtained empirically (e.g. Schmitz & Tilgner
2010; Gastine et al. 2016). Recent studies have found conflicting results for the
parameter demarcating the upper bound of the rapidly rotating regime (King et al.
2013; Gastine et al. 2016). There are three proposed ideas to capture this transition
which are summarised in table 2 (with Prandtl number dependencies neglected).

The global-scale balance between the Coriolis and buoyancy forces can be expressed
by the convective Rossby number,

Roc =
√

RaE2/Pr (2.26)

(Gilman 1977; Aurnou 2007). The upper bound for rapidly rotating convection is then
predicted to occur when Roc ∼O(1).

King et al. (2009, 2012) proposed that, when the thermal boundary layer becomes
thinner than the Ekman layer the effects of rotation are secondary. In non-rotating
convection the thickness of the thermal boundary layer scales as δκ/h∼Ra−2/7 (for the
moderate range of Ra studied here) and equating this with the Ekman layer scaling
δE/h∼ E1/2 predicts the ‘boundary layer crossing’ transitional value,

Raδ = RaE7/4. (2.27)
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Transition parameter Meaning Reference

Convective Rossby number Roc = Ra1/2E Gilman (1977)
Boundary layer crossing Raδ = RaE7/4 King et al. (2010)
Degree of geostrophy RaG = RaE8/5 Julien et al. (2012a)

TABLE 2. Proposed parameters to demarcate the transition from the rapidly rotating to
the transitional regime. A transition can be expected when the parameter is O(1). All Pr
dependencies have been neglected.

Julien et al. (2012b) argued that the dynamics of the thermal boundary layers
control the transition from rapidly rotating convection. The thermal boundary layer
loses geostrophic balance when the local convective Rossby number is smaller than
unity predicting the ‘degree of geostrophy’ transition parameter,

RaG = RaE8/5 (2.28)

(Gastine et al. 2016). For each parameter we would expect the transition to occur at
O(1). We will test the applicability of each transition parameter in § 3.2.

2.4. Statistical methods
In order to identify different regimes of rotating convection, we will test the scaling
laws in the previous section against model output. We compute best fits to model
output using a least squares inversion. We restrict our analysis to power laws of the
form

Ŷ = γ0

p−1∏
j=1

xγj
j .

To consider one example; our system uses a fixed radius ratio and Prandtl number and
we want to identify the behaviour of the Nusselt number as

Nu= γ0Raγ1Eγ2 .

Simulation output is collected in Y and predictions Ŷ are calculated from the
independent variables xj. The number of data, n, is the size of Y and the number of
free parameters is p (prefactor and exponents). We take the logarithm to transform
this into a linear problem such that

log |Ŷ| = log |γ0| +

p−1∑
j=1

γj log |xj|.

The least squares inversion is used to calculate the prefactor γ0 and exponents γj. We
quantify the goodness-of-fit for the scaling laws using the coefficient of determination,
R2 (rounded to two decimal places). As another method of measuring the misfit
between data and fitted values, we define the mean relative misfit (Christensen &
Aubert 2006) to the original data Y ,

χ = 100

√√√√1
n

n∑
i=1

(
Yi − Ŷi

Yi

)2

.
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For cases where the R2 and χ values are not reported, they satisfy R2 > 0.97 and
χ < 5 % and are considered to be good fits to the data. When two scaling laws do
similarly well at describing the model data we compare the scaling laws quantitatively
through statistical F-tests (Snedecor & William 1989). An F-test checks if two scalings
can be distinguished by testing their misfits against the null hypothesis that they have
equal variance (to within some tolerance). We take the ratio of the residual variances
from the two scalings and compare with the 95 % confidence interval from an F-
distribution with the same degrees of freedom as the model populations (Snedecor &
William 1989).

3. Results
The heat transfer data for all of our runs is shown in figure 2. Figure 3 shows

the morphology of the convective flow for models taken from different regions of
Ekman–Rayleigh parameter space and we can qualitatively see distinct regimes which
coincide with different behaviours observed in figure 2. The onset of the convective
instability in rotating bottom-heated spherical shells materialises as a drifting thermal
Rossby wave which develops in the vicinity of the tangent cylinder (Busse 1970;
Dormy et al. 2004). In the limit of E� 1 and E/Pr→ 0 the critical Rayleigh number
Rac and azimuthal wavenumber mc follow

Rac ∼ E−4/3, mc ∼ E−1/3. (3.1a,b)

The values of Rac and mc for the different Ekman numbers used in this study are
given in table 3, these values are found by using linear stability analysis (for details
see Gibbons et al. (2007) and Davies, Gubbins & Jimack (2009)).

The heat transfer data suggests four regimes; for a given value of E the slope of the
Nu−Ra scaling is shallow for low Ra (we call this the weakly nonlinear regime), the
scaling exponent increases with Ra in what we call the rapidly rotating regime, and
shallows again at the highest values of Ra in the non-rotating regime. The transitional
regime connects the steep scaling in the rapidly rotating regime and the relatively
shallow non-rotating behaviour. We investigate the flow physics which lead to these
different heat transfer behaviours and how to demarcate the boundaries between these
different regimes.

We first report the results from high E and Ra cases that show non-rotating
behaviour as this defines an upper limit for the heat transport in rotating spherical
shell convection (Grossmann & Lohse 2000; Gastine et al. 2016). We then consider
reduced Ra and highlight the continually changing behaviour in the transitional regime
and identify the upper boundary of the rapidly rotating regime. The weakly nonlinear
regime is described and its upper boundary identified. Then, we describe the rapidly
rotating regime having defined its upper and lower bounds. Finally, we discuss the
efficiency of convective mixing in terms of interior temperature gradients, interior
temperatures, and the thermal boundary layers.

3.1. Non-rotating regime
For a given value of the Ekman number, when the Rayleigh number is raised past
some transitional value the dynamics of the system change and begin to follow
non-rotating behaviour (King et al. 2009, 2013; Gastine et al. 2016). Motivated by
the behaviour seen in figure 2 we will focus on the E > 10−4 cases to investigate
the transition to the non-rotating branch of heat transfer. Figure 4(a) shows that the
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FIGURE 2. Nusselt number versus the Rayleigh number. Seven different Ekman numbers
are explored denoted by symbol shape and colour. Close to onset the weakly nonlinear
behaviour is indicated by the dotted line, the steep scaling behaviour at low E is illustrated
by the dashed line, and the end-member non-rotating behaviour is shown by the solid line.

E mc R̃ac Rac

10−3 1 6.61 7.98× 103

3× 10−4 1 8.43 3.39× 104

10−4 5 16.4 1.98× 105

3× 10−5 8 20.1 8.09× 105

10−5 12 24.7 2.98× 106

10−6 25 41.0 4.95× 107

TABLE 3. Ekman number, critical azimuthal wavenumber, critical modified Rayleigh
number and critical Rayleigh number for our simulations.

local Nu − Ra slope continually decreases until the most vigorously forced models
(Ra > 3× 105) for E= 10−3 follow a scaling of

Nu= 0.13Ra0.29. (3.2)

This scaling relation is consistent with other studies with Ra < 1010 (Glazier et al.
1999; Cheng et al. 2015) and the analytical work of Grossmann & Lohse (2000) who
show that this is a linear combination of two different analytically derived exponents
(see their equation (3.1)).

Figure 4(b) shows Rec plotted versus Nu. The least squares regression yields Rec=

6.39Nu1.88 with R2
= 1.00 and χ = 1.23. The empirical fit is indistinguishable from

the predicted square law,
Rec = 5Nu2. (3.3)

Combining the heat transfer and flow speed scalings (equations (3.2) and (3.3),
respectively) yields

Rec = 0.09Ra0.57. (3.4)

The theoretical scaling (2.18) is derived solely from the heat equation and (3.4) is
therefore unlikely to be valid at asymptotically high Re when inertia plays a dominant
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(a) (b)

(c) (d)

FIGURE 3. Contours of radial velocity shown on meridional and equatorial cuts, and
spherical surfaces. The inner and outer surfaces correspond to radii of 10 % and 90 %
of the domain. The different cases shown correspond to (a) a non-rotating model with
E= 10−3 and Ra= 1.3× 106, (b) a transitional model with E= 10−5 and Ra= 1.2× 108,
(c) a rapidly rotating model with E = 10−5 and Ra = 4.7 × 107, (d) a weakly nonlinear
model with E= 10−5 and Ra= 8.7× 106.

role. At larger Ra values (2.18) is expected to transition to the asymptotic Rec∼Ra1/2

behaviour as the ultimate regime of Kraichnan (1962) is reached.
Figure 4(c) shows that for E = 10−3 cases the length scale is described by a least

squares fit giving
`/h= 0.97Nu−0.48, (3.5)

in excellent agreement with (2.19). The E = 3 × 10−4 data may be approaching the
same scaling behaviour but with a different prefactor implying there is still some
secondary influence of rotation. Combining the scalings for the heat transfer and
length scales (equations (3.2) and (3.5)) yields

`/h= 2.58Ra−0.14. (3.6)

In figure 4(d) we show that there is no systematic dependence of δν/h on Rec for
the majority of models, even when other diagnostics follow non-rotating behaviours.
Figure 4(d) shows that for the highest Ra cases with E= 10−3, the theoretical Re−1/2

c
scaling is approached for the boundary layers at both the inner and outer boundaries.
The inner and outer boundary layer thicknesses have best fits

δi
ν/h= 0.82Re−0.52

c and δo
ν/h= 0.96Re−0.50

c , (3.7a,b)
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FIGURE 4. Models in the transitional regime with E > 10−4 showing (a) heat transfer
scaling: the two scaling behaviours associated with non-rotating convection, Nu ∼ Ra2/7

and Nu∼ Ra1/3 are shown as solid and dotted lines, respectively, (b) flow speed scaling:
solid and dotted lines show the empirical and theoretical scaling behaviours, respectively,
(c) typical length scales versus Nusselt number: solid line showing best fit to models with
E = 10−3, dotted line showing prediction with prefactor tuned for E = 3 × 10−4 models.
(d) Viscous boundary layer thicknesses shown versus Reynolds number, solid/empty
markers correspond to inner/outer boundary layer thicknesses. The solid and dotted lines
show the empirical fits to δν/h for the inner and outer boundary layers, respectively.

respectively. Combining the flow speed and boundary layer scalings gives (equations
(3.4) and (3.7), respectively) yields

δi
ν/h= 2.87Ra−0.30 and δo

ν/h= 3.20Ra−0.29 (3.8a,b)

for the inner and outer boundary layers, respectively.

3.2. Transitional regime
We have seen that at high Ra the dynamics behave as if non-rotating, but to approach
this behaviour there is a continuous transition of each quantity. Figure 2 shows that the
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FIGURE 5. Nusselt number compensated by the non-rotating scaling, NuNR (3.2) against
proposed parameters to control the transition from the rapidly rotating regime to the
transitional regime. The dotted lines are the expected locations where the data should
deviate from the steep heat transfer behaviour and start transitioning to a plateau. In (c)
the dashed line corresponds to RaG = 0.6, the location at which the data deviates from
the linear relationship at lower values. For clarity only models with Nu> 2 are shown.

range of Ra where the steep heat transfer scaling exists depends on E. Large Ekman
number cases quickly depart to a shallower scaling whereas the lower Ekman number
models exhibit the steep scaling behaviour up to higher values of Ra. Clearly a simple
supercriticality condition does not demarcate the transition from the rapidly rotating
regime to the transitional regime (see figure 2). Models in the transitional regime are
sensitive to rotational effects but are not completely columnar in nature (see figure 3b).
The continuously changing behaviour (see figures 5 and 6) makes it impossible to
obtain scaling laws in this regime and instead we focus on locating the lower boundary
of this regime. To best demarcate the lower bound of the transitional regime we test
each of the transition parameters.

The majority of our models have Roc < 1 and an order-unity transition is not
supported (figure 5a). The boundary crossing parameter, Raδ, performs better than
Roc in terms of collapsing the data, however, there is still sufficient scatter showing
a systematic Ekman dependence (figure 5b). The transition parameter of Julien et al.
(2012a) performs best; the steep heat transfer data collapses onto a single line
(figure 5c) and the F-test finds that the data becomes distinguishable from the linear
fit when RaG > 0.6. The cases with RaG > 0.6 show a gradual change in behaviour
until the data follows (3.2). The lower bound of the transitional regime is determined
to be

RaG = 0.6, or Ra= 0.6E−8/5. (3.9a,b)

This transition is found consistently if instead Rec or ` is used as shown in figure 6.
In § 3.4 we will discuss the importance of the transitional regime’s lower bound given
by (3.9) in terms of rapidly rotating convection.

To quantify the boundary between the transitional and non-rotating regimes we
would require additional numerical simulations at larger Ra. However, it is interesting
to note that our E = 10−3 cases follow the non-rotating scaling behaviour above
supercriticalities of Ra/Rac = 70 whereas models by Gastine et al. (2016) do not
approach this limit until supercriticalities of approximately 400. Some amount of
this difference is likely as a result of how Rac is treated; Gastine et al. (2016)
approximate Rac ∼ E−4/3 whereas we compute Rac from linear stability analysis.
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FIGURE 6. Compensated (a) Reynolds number and (b) length scale (normalised by the
non-rotating scalings (3.4) and (3.5), respectively) plotted against the transition parameter,
RaG. For clarity, only models with Nu > 2 are shown. The vertical lines have the same
meanings as in figure 5.

3.3. Weakly nonlinear regime
For Rayleigh numbers just above critical, a weakly nonlinear perturbation analysis
(Gillet & Jones 2006) predicts that the heat transport increases proportionally with
supercriticality (2.23). Figure 7 shows Nu − 1 as a function of Ra/Rac − 1 for the
models with E 6 10−4 and Ra/Rac 6 20. The best fit to the data with Ra/Rac 6 8
yields

Nu− 1= 0.13 (Ra/Rac − 1)1.04 , (3.10)

with R2
=0.99 and χ = 18.55. Data with Ra/Rac> 8 shows a clear departure from this

scaling law and if included in the fitting a statistically different behaviour is found
when checked with an F-test. We would not expect the weakly nonlinear theory to
hold for Nu>2 and (2.23) describes the data with Ra68Rac reasonably well although
a weak dependence on the Ekman number persists. We have included the E = 10−4

data in figure 7 to illustrate that the weakly nonlinear behaviour is only observed for
low E.

Figure 8(a) shows the average length scale `/h plotted as a function of E for the
numerical models close to onset (Ra 6 8Rac) as to include only the models which
exhibit the weakly nonlinear heat transfer scaling. The best fit to the data yields

`/h= 9.28E0.34, (3.11)

with R2
= 0.95 and χ = 25.50. For models with E < 10−4 the misfit reduces to χ =

17.92 implying that the typical length scale gradually approaches the theoretical VAC
scaling (2.14) when E < 10−4. The cases with higher Ekman numbers significantly
depart from this scaling. Figure 8(b) shows Rec versus the VAC prediction B1/2E1/3

for models with Ra 6 8Rac. The least squares fit to the data with E< 10−4 yields

Rec = 0.50
(
B1/2E1/3

)0.97
, (3.12)

with R2
= 0.99 and χ = 5.44 which is in good agreement with the theory. The

exponent being different from unity for the Reynolds number scaling is due to the
length scaling not exactly matching the theory.
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FIGURE 7. Nusselt number Nu − 1 as a function of Ra/Rac − 1. Only the cases with
E 6 10−4 and Ra< 20Rac are displayed in this figure for clarity. The solid black line is
the least squares fit to the filled marker data. The unfilled markers show a departure from
this scaling which breaks down close to Ra/Rac = 8 shown as the vertical dotted line.

Figure 8 shows that the VAC theory for the length scales and flow speeds is valid
for E 6 10−4 and breaks down at larger values of E. The E − Ra parameter space
corresponding to the weakly nonlinear regime of rotating convection is given by Ra6
8Rac, and E 6 10−4. We do not investigate the boundary layers in this regime as the
flow is not fully developed and boundary layer analysis is not meaningful close to the
onset of convection.

3.4. Rapidly rotating regime
The weakly nonlinear scaling (2.23) describes the heat transport data until Ra= 8Rac
(§ 3.3) after which the Nu − Ra scaling becomes much steeper for moderate to low
Ekman numbers. The regime of nonlinear and rotationally constrained convection is
bounded above by RaG = 0.6 (see § 3.2) and exhibits heat transfer scaling exponents
that increase with decreasing Ekman number (figure 2)

Nu∼ Raλ(E), (3.13)

as reported in previous studies in both plane layer (King et al. 2012; Cheng et al.
2015) and spherical shell geometries (Yadav et al. 2015; Gastine et al. 2016).
Plane layer studies find exponents that are much larger than those observed in
spherical shells (roughly a factor of two different) and this is likely due to Ekman
pumping being maximised in plane layer cases which have gravity aligned with
the rotation axis (Greenspan 1968). In the absence of diffusion, equation (2.24)
predicts Nu ∝ (RaE4/3)3/2. This scaling does a good job of collapsing the data,
however, our models do not follow the asymptotic scaling Rac ∼ E−4/3, as they are
not at asymptotically low E. Furthermore table 4 shows that the steepest Nu − Ra
scaling exponents for E 6 10−5 exceed the value of 1.5 predicted by Jones (2015).
Ekman boundary layers have been shown to allow states of enhanced heat transport
and deviations from the asymptotic Nu ∝ Ra3/2E2 behaviour (Stellmach et al. 2014;
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FIGURE 8. (a) Average flow length scale `/h versus the Ekman number. (b) The Reynolds
number Rec versus the prediction of the VAC scaling, B1/2E1/3. Only models with Nu< 2
are shown in both panels. In both plots, the solid black lines correspond to the least square
fits to the data having E< 10−4 (filled markers). The empty symbols are not included in
the empirical fits.

Plumley et al. 2016, 2017) and this could explain the steeper heat transfer exponents
in the rapidly rotating regime.

To quantify the steep heat transfer scaling behaviour above Ra= 8Rac, we fit each
set of four consecutive Ra runs at a fixed Ekman number and take the linear best fit
with maximum scaling exponent as in Mound & Davies (2017). For E= 10−6 we fit
a straight line through the three simulations with highest Ra values. The best-fitting
values for λ as a function of the Ekman number are listed in table 4. We find that
λ increases monotonically with decreasing E with a scaling close to λ∝ ln |E−1

|, in
agreement with Cheng et al. (2015).

It has been argued that the numerical dataset of Christensen & Aubert (2006)
follows the VAC scaling beyond the weakly nonlinear regime of rotating convection
(King & Buffett 2013; Oruba & Dormy 2014). We examined the scaling law that
describes the length scale for the weakly nonlinear models, `/h∼ 9.28E0.34, and found
that it does not capture the variations in the rapidly rotating regime. Figure 9(a) shows
the length scale versus RecE for all cases with Ra > 8Rac; at our lowest sampled
Ekman numbers a systematic dependence seems to emerge,

`

h
= 1.50(RecE)0.44. (3.14)

It is not surprising that the behaviour of the length scale only approaches the
theoretical scaling (2.17) since the boundary layers still play a substantial role due
to the high values of E used. Gastine et al. (2016) found that for their models with
E= 1.5× 10−7 the length scale showed the dependence, `/h∼ (RecE)0.45, which is in
good agreement with (2.15) and suggests that at low enough Ekman number (perhaps
only one to two orders of magnitude away from present values) the Rhines scaling
could be confirmed (see also Guervilly, Cardin & Schaeffer (2019), who observe the
Rhines scaling in quasi-geostrophic models at much lower Ekman number than those
accessible in our fully three-dimensional cases). Based on the relevant length scale
being different from the theory we would not then expect the IAC scaling for the
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FIGURE 9. (a) Average length scales plotted against the Rossby number based on the
convective flow, RecE. (b) The Reynolds number, Rec versus the prediction of the IAC
balance. Only models with Nu > 2 are shown. The filled markers are including in the
empirical fit whereas the empty markers are not.

Ekman number Exponent

10−3 0.56
3× 10−4 0.72
10−4 0.97
3× 10−5 1.33
10−5 1.66
10−6 1.75

TABLE 4. Nusselt–Rayleigh scaling exponents given by the steepest heat transfer behaviour
of four consecutive cases for each Ekman number. For E= 10−6 we fit the three highest
Ra cases. No clear asymptotic scaling behaviour has been found in our numerical models:
the values of λ continuously increase as a function of E−1 (e.g. Grooms & Whitehead
2014; Cheng et al. 2015).

flow speed to be exactly reproduced. We do find a scaling law which sufficiently
collapses the data for the rapidly rotating regime (figure 9b). The best fit yields

Rec = 0.22(B2/5E1/5)1.15, (3.15)

which is statistically different from the IAC scaling (2.17), as expected, owing to
the IAC length scale only being partially realised in our simulations. An exact IAC
balance is not to be expected over the range of E values studied here as viscous
boundary layer effects still make up a considerable contribution to the dynamics and
boundary layer dissipation is not negligible for our range of Rec (Gastine et al. 2015).
The cases with larger Rec better approach the IAC prediction (2.17).

We now investigate the behaviour of δν/h in a systematic manner. For all cases
with Ra > 8Rac the least squares regression to the inner and outer boundary layer
thicknesses using the linear intersection method gives δi

ν/h ∼ E0.40, δo
ν/h ∼ E0.47,

respectively. If the additional constraint of rapid rotation is imposed, the best fit
for the cases with Ra > 8Rac and E 6 10−4 yields δi

ν/h ∼ E0.44, δo
ν/h ∼ E0.48, an
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Linear intersection Local maxima
Prefactor Exponent R2 χ(%) Prefactor Exponent R2 χ(%)

Nu> 2 δi
ν 0.51 0.40 0.99 10.87 1.36 0.40 0.99 8.74
δo
ν 1.05 0.47 1.00 7.48 3.42 0.48 1.00 7.29

Nu> 2, E 6 10−4 δi
ν 0.74 0.44 0.99 9.28 1.72 0.42 0.99 9.56
δo
ν 1.27 0.48 1.00 5.84 3.82 0.49 1.00 7.13

Nu> 2, E 6 10−4, δi
ν 1.19 0.47 0.99 8.55 2.58 0.45 0.99 9.24

RaE8/5 < 0.6 δo
ν 1.51 0.50 1.00 6.67 4.88 0.51 1.00 6.16

TABLE 5. Prefactors, exponents, coefficients of determination and relative misfit of the best
fit scaling to the velocity boundary layer thickness as a function of E. Analysis is limited
to fully convecting models having Nu > 2, the data is further tested by quantifying the
importance of rotation by limiting the analysis to models with E 6 10−4, and then finally
the we consider models which are also rotationally constrained having RaE8/5 < 0.6.

improvement over the prior. If we consider only fully convecting models (Ra> 8Rac)
which are rapidly rotating (E 6 10−4) and rotationally constrained (RaE8/5 < 0.6), the
best fit then scales as

δi
ν/h= 1.19E0.47, δo

ν/h= 1.51E0.50, (3.16a,b)

in good agreement with (2.21); see figure 10. Interestingly, as we further constrain the
models included in the fit we find that the relative misfit χ stays roughly the same and
only the fitted exponent changes (see table 5). When comparing the definitions using
the linear intersection and local maxima methods we find that the scaling exponents
are statistically indistinguishable when compared using an F-test, though the prefactor
of the linear intersection method is larger.

As reported in previous studies (e.g. Gastine et al. 2016) we find that the viscous
boundary layer better follows the theoretical scaling at the outer boundary than it does
for the inner boundary. We suspect this is because of the importance of curvature at
the inner boundary, which would require a suite of models with varying radius ratio
to test. At larger values of radius ratio the curvature effects should diminish and in
the thin gap limit the scaling behaviour of δi

ν/h should better follow the E1/2 scaling
with inner and outer boundary layers having equal thicknesses.

3.5. Convective mixing
Here we quantify the efficiency of turbulent convection in mixing the bulk fluid
by considering the temperature gradients, dTint, and the temperatures, Tint, at
mid-shell radius. Figure 11 shows radial profiles of the time and horizontally
averaged temperature, 〈ϑ〉, for models with E = 10−3 and E = 10−5. Increasing
the supercriticality changes the temperature distribution from a conductive profile
toward that of a nearly isothermal fluid bulk (zero interior temperature gradients are
realised only for our highest Ra simulations with E= 10−3). The interior temperature
and temperature gradients within the weakly nonlinear regime are well described
by the theoretical predictions of the conductive state by King et al. (2010) (see
table 6). Figure 12(a) shows the temperature gradient at mid-depth as a function
of supercriticality. In agreement with Julien et al. (2012b) we find a simple scaling
relation between dTint and Ra/Rac. With the exception of E= 10−3 all models follow
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FIGURE 10. Viscous boundary layer thicknesses at the (a) inner and (b) outer boundary
as a function of the Ekman number. The solid black lines correspond to the best fit to the
13 cases that fulfil RaE8/5<0.6, E610−4 and Nu>2 (filled markers). The least squares fit
to the inner boundary has R2

= 0.99 and χ = 8.55 while the outer boundary has R2
= 1.00

and χ = 6.67.

a relation of dTint = (Ra/Rac)
−γ where 0.61<γ < 0.66. We introduce a weak Ekman

dependence to collapse the data for models in the rapidly rotating and transitional
regimes,

− dTint = 0.63 (Ra/Rac)
−0.60 E−0.10, (3.17)

this scaling has R2
= 0.95 and χ = 5.58 for the data within the rapidly rotating

regime, and χ = 32.22 for models with Ra > 8Rac and RaG > 0.6. This observation
of a continuously decreasing temperature gradient with increasing Ra differs from
the behaviour in plane layers which sees the mid-depth temperature gradient decrease
for weak supercriticalities and plateau for turbulent quasi-geostrophic convection (e.g.
Stellmach et al. 2014). Our findings are consistent with Gastine et al. (2016), which
suggests that either the geometry or degree of supercriticality is the reason for the
different behaviour.

The increase in misfit suggests that this scaling law holds in the rapidly rotating
regime, but not the transitional regime. We observe that decreasing dTint is accompan-
ied with a decreasing interior temperature, Tint (see figures 11 and 12). Unlike the
gradient we find no direct link between Tint and supercriticality. Instead we find that
for some of the rapidly rotating regime and into the transitional regime, Tint scales
with the transition parameter, RaG = RaE8/5 (figure 12b),

Tint = 0.23
(
RaE8/5

)−0.28
, (3.18)

which describes models with Ra> 8Rac having R2
= 0.96 and χ = 9.34. The scaling

exponent is statistically indistinguishable from a −2/7 law and suggests a link
between the interior temperature and convective heat transfer. The transition from
rapidly rotating to non-rotating convection is associated with a gradual lowering
of the mean temperature gradient (King et al. 2010) until an end-member state is
reached where the thermal boundary layers are responsible for the entire temperature
drop across the system. For a perfectly well-mixed Boussinesq fluid we expect a zero
mean temperature gradient in the fluid bulk.
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FIGURE 11. Radial profiles of the time and horizontally averaged temperature 〈ϑ〉 for
different values of the transition parameter RaG=RaE8/5 for Ekman numbers (a) E= 10−3

and (b) E= 10−5. The solid black line corresponds to the conductive temperature profile.
In all cases the temperature has been normalised to the range 0–1.
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FIGURE 12. (a) Mean internal temperature gradient as measured at mid-depth versus
supercriticality with a weak Ekman dependence added in order to best collapse the data.
(b) Interior temperature evaluated at mid-depth versus the transition parameter, RaG. The
value 0.11 is shown as a dashed line and is the isothermal prediction of King et al. (2010).
The filled markers are in the rapidly rotating regime and unfilled markers are cases in the
transitional regime.

The thickness of the thermal boundary layers in the transitional regime are well
described by a Nu−1 law, and even in the rotationally constrained cases this provides
a good first-order description of the behaviour (see figure 13). In the rapidly rotating
regime there is some non-trivial dependence of both the prefactor and scaling exponent
on E and Ra as previously reported (Gastine et al. 2016),

δκ/h= ζ (Ra, E)Nu−1+f (Ra,E). (3.19)

This is a purely qualitative description and we do not quantify it further.
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FIGURE 13. Thermal boundary layer thicknesses at the (a) inner and (b) outer boundary
as a function of the Nusselt number. The solid black line corresponds to the theoretical
expectation, δκ/h∝Nu−1. Only models with Nu> 2 are shown. The filled markers are in
the rapidly rotating regime and unfilled markers are cases in the transitional regime.

3.6. Composite scaling laws

By combining the flow speed and heat transfer scaling laws in a given regime we can
obtain scalings of outputs in terms of the input parameters. The flow speed scaling
in a given regime is dependent on the kinetic energy due to buoyancy production.
Comparing our definition for the buoyant energy production, B, with King & Buffett
(2013) we can write

B= Ra(Nu− 1). (3.20)

Combining (2.16), (2.23) and (3.20) allows us to write the scaling behaviour for the
flow speed in the weakly nonlinear regime in terms of only the control parameters

ReWN ∼

[
Ra
(

Ra
Rac
− 1
)]1/2

E1/3. (3.21)

Similarly for the rapidly rotating regime we relate B to the control parameters,
however, in this regime the Nusselt–Rayleigh scaling exponent is a function of the
Ekman number. Combining (2.17b), (3.13) and (3.20), leads to

ReRR ∼
[
Ra
(
Raλ(E) − 1

)]2/5
E1/5. (3.22)

Finally, the length scale in the rapidly rotating regime can be written in terms of the
input parameters by combining (2.17a) and (3.22),(

`

h

)
RR

∼
[
Ra
(
Raλ(E) − 1

)]1/5
E3/5. (3.23)
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FIGURE 14. Regime diagram summarising the boundaries between different physical
regimes. Each marker indicates a numerical simulation with symbol shape and background
colour indicating regime; circles are in the weakly nonlinear regime (purple), upward
pointing triangles in the rapidly rotating regime (green), squares in the transitional regime
(yellow) and right facing triangles correspond to the non-rotating cases. The stars (pink)
represent a unique regime at high E which we have not explored in this work. The dashed
line shows Ra= 8Rac and the solid red line shows the upper bound of the rapidly rotating
regime demarcated by RaE8/5

= 0.6.

4. Conclusions

We have studied the scaling behaviour of rotating convection in a spherical shell
geometry using direct numerical simulations. We have performed 74 numerical
simulations spanning 10−6 6 E 6 10−3, flux Rayleigh numbers up to 800 times
supercritical for Pr = 1. In all cases we prescribe a fixed heat flux at the no-slip
boundaries, a linearly varying gravity distribution and the radius ratio ri/ro= 0.35. We
have studied seven different diagnostics of the system across E−Ra parameter space.
These diagnostic quantities are the Nusselt number, Nu, the Reynolds number, Rec,
the flow length scale, `/h, the mechanical boundary layer thickness, δν/h, interior
temperatures, Tint, interior temperature gradients, dTint and thermal boundary layer
thicknesses, δκ/h. Observed changes in the scaling behaviours of these diagnostics are
used to identify boundaries of distinct regimes of rotating convection summarised in
figure 14. The scaling behaviours of these seven quantities are summarised in table 6.

The weakly nonlinear regime consists of columnar flow localised to the inner
boundary with heat transfer predicted by weakly nonlinear theory and the convective
flow described by a VAC balance. The rapidly rotating regime is turbulent with heat
transfer throttled by Ekman pumping and the flow being characterised by an IAC
balance in the bulk and VAC balance in the boundary layers. The upper bound of the
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rapidly rotating regime is demarcated by the parameter, RaE8/5
=O(1), of Julien et al.

(2012b) in agreement with Gastine et al. (2016). The rotational constraint on the flow
is gradually lost in the transitional regime before all diagnostics follow non-rotating
scaling behaviour in the non-rotating regime.

Our systematic survey of convection in a rotating spherical shell reveals interesting
differences compared to the study of Gastine et al. (2016). There are three differences
in model configuration between our study and Gastine et al. (2016); we use a smaller
radius ratio, ri/ro (0.35 to their 0.60), a different gravity distribution (linear to their
quadratic) and fixed-flux thermal boundary conditions (they use fixed temperature).
It is not clear how each of these quantities affect the heat transfer and flow speed
behaviour. For the weakly nonlinear and non-rotating regimes of rotating convection
our results are in agreement with Gastine et al. (2016), however, we observe
differences in the scaling behaviour of the Reynolds number and Nusselt number
in the rapidly rotating regime. In the rapidly rotating regime, Gastine et al. (2016)
find that the heat transfer data saturates to the asymptotic scaling exponent of 1.50,
whereas we find exponents as high as 1.75 with no signs of the scaling exponent
reaching a limit. We find similar scaling behaviour of the convective length scale in
this regime but different Reynolds number scaling behaviour. Our results suggest a
more significant contribution of the viscous boundary layers to both the Reynolds
number and Nusselt number scaling behaviours. Even for our lowest E cases Ekman
pumping effects are still important to the globally averaged heat transport. Simulations
in Cartesian geometries find much larger scaling exponents with values as high as
3.60 (Cheng et al. 2015) and this can be attributed to the efficiency of Ekman
pumping being maximised as gravity is antiparallel to the rotation axis. Although the
scaling behaviour in a given regime differs, we find very similar regime boundaries to
Gastine et al. (2016) implying that the relative importance of rotation is the key factor
in determining these regimes, with the other quantities having secondary effects.
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Appendix. Summary of new models
Summary tables of the model resolution, control parameters and selected output

parameters for all simulations. A large subset of the simulations used in this study
were previously reported by Mound & Davies (2017) and we only include details
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of the additional simulations here. In all cases Pr = 1 and the radius ratio ri/ro =

0.351. Here N is the numerical resolution, the number of radial points is equal to the
maximum degree and order. Definitions of the Ekman number and modified Rayleigh
number are given in table 1. The Reynolds number, Rec, is determined by (2.7) and

R̃a Nu Rec B `/h δi
ν/h δo

ν/h dTint Tint N

15 1.11 4.7 2.12× 104 0.970 — — −0.72 0.27 60
30 1.28 9.0 8.48× 104 0.896 — — −0.66 0.27 64
45 1.45 12.6 1.86× 105 0.707 — — −0.58 0.27 64
60 1.55 15.1 2.96× 105 0.598 — — −0.53 0.26 64
90 1.74 19.2 5.41× 105 0.540 — — −0.45 0.24 64
120 1.96 23.0 8.22× 105 0.568 — — −0.36 0.22 80
150 2.11 26.6 1.13× 106 0.540 3.4× 10−2 4.3× 10−2

−0.32 0.21 80
225 2.42 33.5 1.89× 106 0.497 3.2× 10−2 4.3× 10−2

−0.26 0.20 92
350 2.81 43.0 3.20× 106 0.474 3.1× 10−2 4.2× 10−2

−0.18 0.18 92
550 3.18 54.5 5.40× 106 0.495 3.1× 10−2 4.3× 10−2

−0.15 0.18 92
1 400 4.08 86.3 1.49× 107 0.471 2.9× 10−2 4.1× 10−2

−0.06 0.14 96
2 000 4.41 102.4 2.17× 107 0.485 2.9× 10−2 4.2× 10−2

−0.05 0.14 96
4 000 5.10 137.3 4.50× 107 0.446 2.7× 10−2 3.9× 10−2

−0.06 0.13 128
6 000 5.54 161.7 6.85× 107 0.429 2.6× 10−2 3.7× 10−2

−0.03 0.13 128
13 000 6.62 219.8 1.52× 108 0.399 2.5× 10−2 3.2× 10−2

−0.04 0.12 128

TABLE 7. Summary of all runs for E= 10−3.

R̃a Nu Rec B `/h δi
ν/h δo

ν/h dTint Tint N

15 1.11 6.4 5.6× 104 0.864 — — −0.74 0.28 64
30 1.34 14.4 3.1× 105 0.759 — — −0.62 0.28 64
45 1.50 19.7 6.3× 105 0.719 — — −0.56 0.28 64
90 1.69 27.8 1.7× 106 0.508 — — −0.52 0.27 64
150 2.03 36.3 3.4× 106 0.409 2.3× 10−2 2.6× 10−2

−0.46 0.25 80
225 2.39 45.4 6.0× 106 0.358 2.2× 10−2 2.5× 10−2

−0.37 0.24 92
350 2.88 57.8 1.0× 107 0.345 2.1× 10−2 2.5× 10−2

−0.31 0.22 92
550 3.49 73.7 1.8× 107 0.342 2.0× 10−2 2.5× 10−2

−0.23 0.20 92
900 4.14 95.4 3.4× 107 0.338 2.0× 10−2 2.5× 10−2

−0.17 0.19 92
1 400 4.72 119.3 5.1× 107 0.346 1.9× 10−2 2.4× 10−2

−0.17 0.18 96
2 000 5.32 141.8 7.4× 107 0.338 2.0× 10−2 2.4× 10−2

−0.13 0.16 96
4 000 6.46 198.7 1.4× 108 0.351 1.9× 10−2 2.4× 10−2

−0.07 0.15 96
6 000 7.09 240.1 2.3× 108 0.347 1.8× 10−2 2.3× 10−2

−0.04 0.15 128
13 000 8.25 342.9 5.2× 108 0.307 1.8× 10−2 2.3× 10−2

−0.07 0.15 128

TABLE 8. Summary of all runs for E= 3× 10−4.

R̃a Nu Rec B `/h δi
ν/h δo

ν/h dTint Tint N

60 1.47 28.6 2.21× 106 0.505 1.9× 10−2 2.0× 10−2
−0.61 0.30 64

350 2.67 74.7 2.89× 107 0.269 1.4× 10−2 1.5× 10−2
−0.40 0.25 92

1 400 5.17 151.1 1.52× 108 0.241 1.2× 10−2 1.4× 10−2
−0.23 0.20 128

TABLE 9. Summary of all runs for E= 10−4.
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R̃a Nu Rec B `/h δi
ν/h δo

ν/h dTint Tint N

30 1.07 9.9 4.3× 105 0.310 — — −0.80 0.27 80
60 1.22 21.5 2.7× 106 0.263 — — −0.86 0.31 90
90 1.35 33.1 6.9× 106 0.244 — — −0.78 0.33 90
150 1.59 56.0 1.9× 107 0.280 — — −0.66 0.33 90
225 1.90 79.3 4.3× 107 0.273 — — −0.53 0.30 128
350 2.21 96.6 8.1× 107 0.199 — — −0.52 0.29 128
550 2.84 115.4 1.5× 108 0.159 — — −0.50 0.29 128
900 3.82 152.4 2.8× 108 0.157 7.9× 10−3 7.9× 10−3

−0.41 0.28 128
1 200 4.53 180.0 4.0× 108 0.162 7.8× 10−3 8.0× 10−3

−0.38 0.27 128
2 000 5.79 237.8 7.3× 108 0.176 7.6× 10−3 7.9× 10−3

−0.33 0.24 144
2 500 6.60 267.0 9.3× 108 0.171 7.5× 10−3 7.9× 10−3

−0.29 0.22 144

TABLE 10. Summary of all runs for E= 3× 10−5.

R̃a Nu Rec B `/h δi
ν/h δo

ν/h dTint Tint N

60 1.14 22.1 4.78× 106 0.188 1.3× 10−2 5.0× 10−3
−0.85 0.30 90

350 1.87 112.8 1.85× 108 0.150 8.4× 10−3 4.8× 10−3
−0.59 0.31 128

TABLE 11. Summary of all runs for E= 10−5.

R̃a Nu Rec B `/h δi
ν/h δo

ν/h dTint Tint N

60 1.04 17.0 1.1× 107 0.083 — — −0.80 0.27 128
90 1.10 34.6 5.1× 107 0.075 — — −0.84 0.30 128
150 1.29 72.1 3.2× 108 0.055 — — −0.83 0.30 136

TABLE 12. Summary of all runs for E= 10−6.

does not include any contribution from the zonal flow. Here B is the time average of
the buoyancy production throughout the shell and `/h is the length scale computed
from the kinetic energy spectra. The viscous boundary layer thicknesses, δν/h, are only
given for the cases where boundary layers can be clearly identified. The temperature,
Tint, and temperature gradient, dTint, are computed at mid-depth from the horizontally
and time averaged temperature profile.
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